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1. Pharmacogenetics testing improves drug efficacy and safety 

The field of personalized medicine is currently witnessing the start of 
a new phase of the pharmacogenomics (PGx) revolution. Based on 
several large pragmatic trials, the added value of PGx testing is 
becoming increasingly clear, notably showing its potential to enhance 
drug efficacy and safety through personalizing drug choices and dosages 
based on individual genetic factors. Consequently, expert panels, such as 
the Dutch Pharmacogenetics Working Group (DPWG) and the Clinical 
Pharmacogenetics Implementation Consortium (CPIC), have been 
developing guidelines to optimize drug dosing based on PGx testing, and 
routine application of these tests is increasing rapidly [1]. 

Current PGx tests mainly target variation in genes encoding the en-
zymes responsible for drug metabolism which causes altered conversion 
rates of drugs and their metabolites. Consequently, this type of variation 
may be associated with under- or overexposure to active pharmaceutical 
ingredients. PGx tests are thus most urgent for drugs with narrow 
therapeutic windows and when the consequences of an under- or over-
exposure can be life-threatening. Accordingly, most PGx guidelines 
focus on anticancer drugs, immunosuppressants, antithrombotic agents, 
and psychotropic medicines [1]. 

2. A principal pillar of pharmacogenetics-based personalized 
medicine seems unstable 

PGx guidelines generally rest on three pillars: (1) knowledge about 
the enzymes involved in the metabolism of a drug and the metabolites 
formed; (2) insights into how genetic variation in the enzymes respon-
sible for this metabolism affect drug efficacy and safety; and (3) the 
availability of analytical tests to (rapidly and reliably) determine a 
user’s metabolizer status for these enzymes. In contemporary PGx 
research, attention is mostly paid to the latter two pillars, while infor-
mation on drug metabolism is typically derived from small-scale, pre- 
registration trials conducted during commercial drug development. 
However, it is often disregarded that the generalizability of findings on 
metabolite patterns from these studies may be limited, notably because 
regulatory guidelines for drug metabolism studies recommend rather 
basic sets of experiments [2,3]. Specifically, regulations require studies 
on the identification of drug-metabolizing enzymes by in-vitro 

experiments targeting only the seven ‘major’ drug metabolizing (cyto-
chrome P450) enzymes. Other enzymes only have to be studied if a drug 
candidate is not found to undergo significant metabolism by these seven 
enzymes [2]. Furthermore, in-vivo drug metabolite investigations are 
generally conducted in four to six young, healthy, male volunteers 
during early-phase clinical research in so-called ‘mass balance’ studies 
[3]. Therefore, we postulate that the metabolite patterns observed in 
these studies may be less heterogeneous than can be expected in in-
dividuals receiving the drug once it is approved. 

3. Pharmacometabolomics confirms and complements 
knowledge of drug metabolism (and excretion) 

To test the hypothesis that metabolite patterns found in pre- 
registration trials differ from those found in clinical drug users, we 
conducted so-called ‘pharmacometabolomics’ (PMx) experiments to 
profile drug metabolites in the real-world setting of liver and kidney 
transplantation [4,5]. We first applied this approach to the immuno-
suppressive drug azathioprine (AZA) which represents an early success 
story of PGx-driven personalized medicine. In addition, we studied 
mycophenolate mofetil (MMF) which has largely replaced AZA usage in 
the past decades. For both drugs, disagreements between metabolite 
patterns expected from clinical trials and patterns detected in clinical 
samples were substantial (see Fig. 1). In particular, we found more AZA 
and MMF metabolites in the urine samples of transplant recipients than 
could be expected based on prior knowledge of how these drugs are 
metabolized and excreted. Importantly, some of the identified metabo-
lites are unknown or unreported thus confirming the abovementioned 
hypothesis. 

The value of PMx studies can be illustrated further by taking AZA as 
an example. This prodrug is converted via a series of intermediate me-
tabolites to thioguanine nucleotides which exert cytotoxic effects 
through incorporation in DNA and RNA. However, some of the inter-
mediate metabolites are scavenged by the enzymes XDH, TPMT and 
NUDT15, which results in inactive metabolites that are eliminated from 
the body. 

Based on the current PGx consensus understandings [1], our PMx 
data should indicate the presence of two known inactive AZA metabo-
lites (i.e., methylmercaptopurine, thiouric acid), which were both found. 
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In addition, azathioprine itself and the intermediate metabolite 
mercaptopurine are expected following previous bioanalytical findings, 
and both were detected. Importantly, however, we also identified two 
previously unknown/unreported urinary AZA-related signals, and 
computational calculations indicated that these signals both correspond 
to S-methylated thiouric acid (MTUA) species [4]. Recent insights 
furthermore uncovered that one reflects unconjugated MTUA and that 
the other originates from glucuronidated MTUA (see Fig. S1). Our 
findings thus indicate the presence of metabolic pathways other than 
those described in the current PGx guidelines, which seemingly paint an 
incomplete picture of AZA metabolism. 

This example shows how PMx can inform PGx by unveiling previ-
ously unknown metabolic pathways which could be considered to 
realize more effective and safer use of this immunosuppressive drug. 
Clearly, it would be important to elucidate these mechanisms and pro-
vide insights into the activity/toxicity of the unknown metabolites. 
Subsequently, potential genetic variants of the associated enzymes that 
may lead to decreased or increased functions could be included in the 
pharmacogenetic passports of AZA users and thereby contribute to 
guiding drug dosing. 

Besides informing, PMx can also complement PGx by providing in-
sights into active and inactive drug fractions in biological matrices like 
blood and urine. The AZA example is revealing in this regard, because all 

AZA-related substances found in urine reflect a portion of the adminis-
tered drug that has (presumably) never been active in the human body. 
Admittedly, a person’s genetic makeup is an important determining 
factor herein by affecting the efficiency of metabolite scavenging 
through XDT, TPMT, and NUDT15. Drug metabolism is, however, also 
affected by non-genetic factors such as drug-drug interactions, co- 
exposure to other xenobiotics (e.g., dietary, lifestyle, environmental), 
and non-inherited liver dysfunction. These factors are captured in PMx 
data and can thus provide a phenotypic view of drug metabolism. PMx 
may accordingly hold considerable clinical potential as a stand-alone 
tool, for example for the long-term monitoring of efficacy and safety 
profiles. In this regard, potential future applications of PMx should be 
designed taking into account existing analytical workflows for untar-
geted clinical metabolite profiling. Notably, this includes the urinary 
steroid profiling workflow which has been serving in clinical labora-
tories for decades as the primary test to detect and monitor disorders of 
steroid hormone synthesis based on relative metabolite abundances [6]. 

4. Pharmacometabolomics can readily be implemented on 
analytical instruments routinely used in many hospitals and 
clinical laboratories 

Our PMx platform is a variant of the well-known metabolomics 

Fig. 1. Overview of (a,b) azathioprine and (c,d) mycophenolate mofetil metabolic pathways as (a,c) are expected in urine and as (b,d) were detected in urine of liver 
and kidney transplant recipients. Corresponding pharmacometabolomics data of exemplary azathioprine and mycophenolate mofetil users are presented in the 
Figs. S1 and S2, respectively. 
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methodology, which is commonly used in biomedical research to profile 
small-molecule metabolites within biological systems. Additionally, it 
builds upon the pioneering work of Prof. Rima Kaddurah-Daouk, a key 
innovator of the PMx field, who has mostly focused on the effects of 
therapeutic drugs on the abundances of endogenous metabolites [7]. 
Our workflow, however, specifically targets the abundances of drugs 
and their (exogenous) metabolites, which can also be present in 
metabolomics datasets but are frequently filtered out during data pro-
cessing to limit data complexity. 

Moreover, our workflow was designed for analytical instruments that 
are used routinely for toxicological screening in clinical laboratories. 
This technique, called ‘high-resolution mass spectrometry’, is also 
commonplace in doping analysis and clinical chemistry for detection of 
(unknown) doping substances and profiling of endogenous steroids, 
respectively. Admittedly, employing novel applications on analytical 
instruments being used in a regulatory environment is not straightfor-
ward, and implementation of profiling workflows is arguably complex, 
while also their cost-effectiveness needs to be demonstrated. In this re-
gard, we would mostly like to stress that our PMx platform does not 
depend on a complex technique that is only available in highly 
specialized academic institutions. Instead, it matches infrastructure 
present in various (ISO 15189) certified medical laboratories, which can 
expedite its potential clinical implementation in the future. Lastly, it is 
worth mentioning that more affordable high-resolution mass spec-
trometers are becoming increasingly available, and these instruments 
are not inherently less sensitive than many triple quadrupole mass 
spectrometers commonly used for therapeutic drug monitoring pur-
poses. These instruments can simultaneously quantify pre-specified 
drugs and metabolites (using internal standards) and also generate 
untargeted profiles of other metabolites, thereby providing a phenotypic 
view of drug metabolism at the same time. 

5. In conclusion 

Our pharmacometabolomics platform and its application to studying 
drug metabolite patterns in a real-world setting can be used to inform 
pharmacogenetics research and clinical practice. Moreover, PMx can 
complement PGx-driven personalized medicine given that variation in 
detected metabolite patterns is not solely determined solely by genetic 
differences. Factors such as drug-drug interactions, co-exposure to other 
xenobiotics, kidney dysfunction, and liver dysfunction can also impact 
drug metabolism, and the corresponding variability is captured in PMx 
data. These data thus allow for studying drug metabolism at the 
phenotype level, hence PMx as a stand-alone tool may also be considered 
to form the basis of future clinical applications. 
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