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Abstract Septic shock is characterized by an excessive inflammatory response depicted in a cyto-
kine storm that results from invasive bacterial, fungi, protozoa, and viral infections. Non- canonical 
inflammasome activation is crucial in the development of septic shock promoting pyroptosis and 
proinflammatory cytokine production via caspase- 11 and gasdermin D (GSDMD). Here, we show 
that NAD+ treatment protected mice toward bacterial and lipopolysaccharide (LPS)- induced 
endotoxic shock by blocking the non- canonical inflammasome specifically. NAD+ administration 
impeded systemic IL- 1β and IL- 18 production and GSDMD- mediated pyroptosis of macrophages 
via the IFN-β/STAT- 1 signaling machinery. More importantly, NAD+ administration not only improved 
casp- 11 KO (knockout) survival but rendered wild type (WT) mice completely resistant to septic 
shock via the IL- 10 signaling pathway that was independent from the non- canonical inflammasome. 
Here, we delineated a two- sided effect of NAD+ blocking septic shock through a specific inhibition 
of the non- canonical inflammasome and promoting immune homeostasis via IL- 10, underscoring its 
unique therapeutic potential.

eLife assessment
In this valuable contribution, the authors demonstrate that the infusion of NAD+ may prevent death 
and reduce disease severity from lethal experimental bacterial sepsis, possibly through inflam-
masome inhibition, without reducing bacterial load. They provide solid evidence for these protective 
effects of NAD+, though the precise mechanisms involved remain unclear and need further support 
and elucidation. The core findings may well have clinical implications but, in addition to mechanistic 
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clarifications, contextualised interpretation as metabolic adaptation to sepsis would create wider 
interest.

Introduction
Sepsis is characterized by a systemic inflammatory response syndrome (Kaukonen et al., 2015) driven 
by host cells following systemic bacterial (Ramachandran, 2014) and viral infections. The excessive 
inflammatory response can derail into septic shock resulting in multiple organ failure, the leading 
cause of death in intensive care units. Inflammasome activation, which downstream pathways cause 
the release of proinflammatory cytokines and the induction of an inflammatory cell death termed 
pyroptosis (Kumar, 2018), has been pointed out as the major driver of septic shock. Hereby, a 
two- armed lipopolysaccharide (LPS)- derived induction of the NLRP3- canonical inflammasome, the 
major source of IL- 1β and IL- 18 cytokine production (Lopez- Castejon and Brough, 2011) and the 
caspase- 11- mediated non- canonical inflammasome leading to pyroptosis in monocytes (Yi, 2017), 
was determined as the underlying mechanism. Mechanistically, caspase- 11 acts as a pattern recogni-
tion receptor for intracellular bacteria (Ding and Shao, 2017) that cleaves gasdermin D (GSDMD), a 
membrane pore- forming protein subsequently inducing pyroptotic cell death (Shi et al., 2015). The 
NLRP3- canonical inflammasome in turn was found to be indispensable (Man et al., 2017) for septic 
shock- induced death. However, cross- activation through caspase- 11 promoting cytokine release has 
been described (Kayagaki et al., 2015; Kayagaki et al., 2011; Yang et al., 2015a), assigning the 
non- canonical inflammasome a cardinal role (Kayagaki et al., 2013).

Recent approaches such as anti- proinflammatory cytokine strategies blocking downstream targets 
of inflammasomes have been ineffective (Angus and van der Poll, 2013) while inhibiting inflammatory 
key regulators such as NF-κB may promote adverse side- effects (Fraser, 2006). Hence, contemporary 
clinical therapy of septic shock is based on symptomatic treatment rather than curative approaches 
that clear the cause of the disease itself.

In our previous studies, we have underscored the immunosuppressive properties of NAD+ in auto-
immune diseases and allo- immunity via the regulation of CD4+ T cell fate (Tullius et al., 2014; Elkhal 
et al., 2016). More recently, we have shown that NAD+ administration protected mice from lethal 
doses of Listeria monocytogenes (L. m.) via mast cells (MCs) exclusively and independently of major 
antigen presenting cells (APCs) (Rodriguez Cetina Biefer et  al., 2018). However, the underlying 
mechanism that allows NAD+, to concomitantly protect against autoimmune diseases, via its immuno-
suppressive properties (Tullius et al., 2014; Elkhal et al., 2016), and against lethal bacterial infection 
remains unclear.

Therefore, in the current study we investigated whether NAD+ protects against bacterial infec-
tion by dampening the systemic inflammatory response associated with sepsis or through enhanced 
bacterial clearance. Although, wild type (WT) mice subjected to NAD+ or PBS and lethal doses of 
pathogenic Escherichia coli (E. coli) exhibited similar bacterial load in various tissues, mice treated 
with NAD+ displayed a robust survival. Moreover, NAD+ protected against LPS- induced death that was 
associated with a dramatic decrease of systemic IL- 1β and IL- 18 levels, two major cytokines involved 
in the inflammasome signaling machinery. More importantly, we show that NAD+ protected from LPS- 
induced death by targeting specifically the non- canonical inflammasome via a blockade of the STAT1/
IFN-β signaling pathway. Moreover, NAD+ treatment rendered not only caspase- 11 knockout (KO) 
but WT mice fully resistant to poly(I:C)+LPS- induced septic shock, via an inflammasome- independent 
pathway mediated by a systemic IL- 10 cytokine production.

Results
NAD+ protects mice against septic shock not via bacterial clearance but 
via inflammasome blockade
Our previous studies have underscored the role of NAD+ in regulating CD4+ T cell fate and its immu-
nosuppressive properties via IL- 10 cytokine production (Tullius et  al., 2014; Elkhal et  al., 2016; 
Rodriguez Cetina Biefer et al., 2018). More recently, we have shown that NAD+ protected mice 
against lethal doses of L. m. independently of major APCs (Tullius et al., 2014). However, it remained 
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unclear whether NAD+ protected mice against lethal doses of L. m., a gram- positive bacterium, via a 
clearance mechanism or by dampening the inflammatory response. Since L. m. is known to be an intra-
cellular pathogen, we tested if NAD+ protects as well against E. coli, a gram- negative bacterium that 
is well known to induce septic shock (Mellata et al., 2016). WT mice were treated with NAD+ or PBS 
for 2 consecutive days followed by a lethal dose (1×109) of E. coli or PBS. Notably, mice treated with 
PBS died within 5 hr after infection, while mice treated with NAD+ exhibited an impressive survival 
(Figure  1A). Moreover, when assessing the bacterial load in liver and kidney (Figure  1B), organs 
exposed to the infection, by counting CFU in both, NAD+ and PBS groups, revealed no significant 
difference, suggesting that NAD+ does not promote bacterial clearance. More importantly, these data 
suggest that NAD+ may reduce the inflammatory response toward bacterial infection. It is well estab-
lished that the bacterial LPS abundant on the outer membrane exhibits a key role in the pathology 
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Figure 1. NAD+ protects mice from lethal bacterial infection and endotoxic shock by dampening systemic inflammation. (A) Mice were treated with 
PBS or NAD+ prior to administration of a lethal dose of either pathogenic E. coli or lipopolysaccharide (LPS) by intraperitoneal injection. (B) After the 
death of each animal, lungs, kidney and livers were removed and bacterial load was determined by counting colony- forming unit (CFU). Column plots 
display mean with standard deviation (n=3). (C) Survival was monitored over 48 hr after bacterial infection and (D) LPS injection of both serotypes (n=6, 
3 independent survival experiments). In addition, body temperature was monitored in the kinetics of up to 100 hr. (E) Lungs, kidneys, and livers were 
removed and IHC was performed for hematoxylin and eosin (H&E) staining. (F) Systemic levels (serum) of IL- 6, TNFα, IL- 1β, and IL- 18 were assessed by 
ELISA. Column plots display mean with standard deviation (n=5). Statistical significance was determined by using Student’s t- test or one- way ANOVA 
while survival data were compared using log- rank Mantel- Cox test. Asterisks indicate p- values *=p<0.05, **=p<0.01, and ***=p<0.001, only significant 
values are shown. All data depicted in this figure are provided as source data.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Raw data for Figure 1B: Bacterial load.

Source data 2. Raw data for Figure 1C: E. coli infection.

Source data 3. Raw data for Figure 1D: Lipopolysaccharide (LPS) infection.

Source data 4. Raw data for Figure 1E: Histology.

Source data 5. Raw data for Figure 1F: ELISA.

Figure supplement 1. NAD+ preserves ileal villi structure and reduces splenic hemorrhage during lipopolysaccharide (LPS)- induced septic shock.

Figure supplement 1—source data 1. Raw data for Figure 1—figure supplement 1: Histology.

Figure supplement 2. Neutrophils per mm2 infiltrating mice: ileum, kidney, lung, and liver in the IHC stains.

Figure supplement 2—source data 1. Raw data for Figure 1—figure supplement 2: Neutrophil count.

https://doi.org/10.7554/eLife.88686
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of E. coli- derived septic shock (Angus and van der Poll, 2013). Thus, we further characterize the 
impact of NAD+ on septic shock by subjecting mice to a lethal dose (54 mg/kg) of two different LPS 
serotypes (O111:B4 and O55:B5) described to vary in the antigen lipid A content and to promote 
distinct hypothermia kinetics (Dogan et al., 2000). Following LPS (O111:B4 and O55:B5) adminis-
tration, PBS- treated control mice displayed severe symptoms of endotoxic shock with a dramatical 
body temperature decrease (<23°C) within 15 hr. In contrast, mice subjected to NAD+ exhibited highly 
distinct kinetics with a recovery of body temperatures after 15  hr (Figure  1C). When monitoring 
survival, 100% of PBS- treated mice succumbed to LPS after 24 hr while NAD+- treated animals exhib-
ited an overall survival >85% (Figure 1D), which was consistent with our bacterial infection model. 
Mice infected and treated with NAD+ survived for several months and recovered fully after 10 days. Of 
note, mice survived for over a year following infection and died of aging. LPS- induced death derives 
from multi- organ failure (Bullock and Benham, 2019). Therefore, lung, kidney, liver, ileum, and spleen 
were harvested 15 hr after LPS administration and tissue damage was assessed by hematoxylin and 
eosin (H&E) staining. Tissue evaluation indicated severe pulmonary hemorrhage, excessive tubular 
fibrin deposition, hepatocyte cell swelling, disseminated intravascular coagulation (DIC), and ileal villi 
destruction consistent with a multi- organ dysfunction syndrome (Rossaint and Zarbock, 2015) in 
mice treated with PBS. In contrast, NAD+ administration dramatically attenuated signs of organ failure 
with significantly less pulmonary hemorrhage and DIC, intact liver and kidney tissue architecture, and 
preserved ileal villi (Figure 1E, Figure 1—figure supplement 1, and Figure 1—figure supplement 
2). To elucidate the protective effects of NAD+ systemic levels of IL- 1β and IL- 18, two major cytokines 
implicated in inflammasome activation were measured 10 and 15 hr after intraperitoneal injection of 
LPS (Figure 1F). Of, note IL- 6 and TNFα systemic levels were measured as well (Figure 1F). Our find-
ings indicated that LPS injection resulted in a robust systemic increase of IL- 1β, IL- 6, TNFα, and IL- 18 in 
the PBS group, which was almost abolished in NAD+- treated mice. Taken together, our results suggest 
that NAD+ protects mice against septic shock not via bacterial clearance but rather via inflammasome 
blockade.

NAD+ specifically inhibits the non-canonical inflammasome
Our data suggest that NAD+ protects against septic shock via inflammasome blockade. Monocytes, 
especially macrophages, have been described as major drivers of inflammasome- derived cytokine 
secretion in the context of septic shock (Evans, 1996). Thus, to test the effect of NAD+ on inflam-
masome function, bone marrow- derived macrophages (BMDMs) were obtained and both canonical 
and non- canonical inflammasomes were stimulated in the presence or absence of 100 µmol/ml NAD+. 
Activation of the canonical pathway was achieved through LPS priming (1 µg/ml) followed by ATP 
stimulation (5 mmol/l). Notably, BMDMs subjected to NAD+ or PBS treatment followed by canonical 
inflammasome activation did not exhibit any significant difference in IL- 1β secretion or pyroptosis that 
was assessed by LDH release measurement, a marker for cell death (Chan et al., 2013; Figure 2A). 
To trigger the non- canonical inflammasome pathway, BMDMs were primed with Pam3CSK4, a TLR1/2 
agonist, followed by cholera toxin B (CTB) and LPS (2 µg/ml) administration. The data showed that 
NAD+ treatment resulted in a robust reduction of IL- 1β release and cell death when compared to 
the PBS control group (Figure 2A). Furthermore, western blotting revealed that BMDMs cultured 
in the presence of NAD+ exhibited a dramatic decrease of casp- 11 expression and its downstream 
targets including casp- 1, IL- 1β, and cleaved GSDMD (Figure 2B). Moreover, we observed a prominent 
decrease in casp- 1 expression under NAD+ treatment that was constant over the time course of 16 hr. 
In contrast, BMDMs treated with PBS exhibited excessive casp- 1 expression at 4 hr that was found to 
be absent after 16 hr (Figure 2C), which is consistent with the strong cytotoxicity leading to membrane 
permeabilization and release of casp- 1 into the supernatant. Noteworthy, Pam3CK4- derived BMDM 
priming was not affected by NAD+ since NF-κB as well as pro- caspase- 1 levels had not been altered 
(Figure 2A and Figure 2—figure supplement 1) underlining the specific inhibition of casp- 11. To 
visualize NAD+- mediated blockade of pyroptotic macrophage death, BMDMs were treated with PBS 
or NAD+, primed with Pam3CSK4, then stimulated with LPS and CTB, and cell viability and apoptosis 
were monitored using the IncuCyte live microscopy system. Hereby, we observed distinct longitu-
dinal kinetics over 100 hr with complete disaggregation of cell integrity in the PBS group contrary to 
overall preserved cell structure in NAD+- treated BMDMs (Figure 2D, Figure 2—figure supplement 
2, Video 1). To rule out that NAD+ impairs LPS internalization into cells, BMDMs were stimulated 

https://doi.org/10.7554/eLife.88686
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Figure 2. NAD+ specifically inhibits the non- canonical inflammasome by targeting caspase- 11. Bone marrow was isolated from mice and bone marrow- 
derived macrophages (BMDMs) were differentiated in vitro. Subsequently, BMDMs were cultured in the presence of NAD+ or PBS. BMDMs were then 
primed with either Pam3CSK4 or lipopolysaccharide (LPS) O111:B4. Next primed BMDMs were stimulated with ATP or LPS and cholera toxin B (CTB). 
(A) Pro- casp- 1, pro- casp- 11, casp- 11, NLRP3, casp- 1, IL1β, and gasdermin D (GSDMD) expression were determined using western blot and (B) IL- 1β 
secretion and LDH release were assessed in the supernatant. Column plots display mean with standard deviation (n=5- 8). (C) Time- dependent caspase- 1 
expression was determined via active staining and assessed using a confocal microscope. Column plots display mean with standard deviation (n=5) (D) 
Cell viability and apoptosis were monitored using the IncuCyte live microscopy system. (E) LPS transfection with CTB was visualized by using FITC- 
coupled LPS and DAPI staining and quantified by confocal microscopy and flow cytometry. Column plots display mean with standard deiation (n=6) 
(F) For human experiments macrophages were differentiated from PBMC, primed with Pam3CSK4 and subsequently transfected with LPS and 0.25% 
Fugene HD Plus. Column plots display mean with standard deviation (n=6). Statistical significance was determined by using Student’s t- test or one- 
way ANOVA. Asterisks indicate p- values *=p<0.05, **=p<0.01, and ***=p<0.001, only significant values are shown. All data depicted in this figure are 
provided as source data.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Raw data for Figure 2A: Original western blots.

Source data 2. Raw data for Figure 2A: Western blots with highlighted bands and sample labels.

Source data 3. Raw data for Figure 2B: ELISA mouse bone marrow- derived macrophages (BMDMs).

Source data 4. Raw data for Figure 2C: Caspase- 1 staining.

Figure 2 continued on next page
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with CTB and LPS that was coupled to a fluorescent reporter (FITC) and transfection effectivity was 
assessed by fluorescence microscopy and flow cytometry. Our data indicated no significant difference 
between the PBS and NAD+- treated group (Figure 2E), suggesting that NAD+ does not alter LPS inter-
nalization. Notably, BMDMs only stimulated with LPS showed no internalization of LPS consistent with 
previous reports (Kayagaki et al., 2013). Casp- 4 and -5 have been delineated as the human homolog 
of casp- 11 in mice carrying out the same effector functions including pyroptosis induction and IL- 1β 
secretion (Shi et al., 2014). As clinical relevance, we therefore tested whether NAD+ was also able to 
block the non- canonical pathway in human macrophages. Hence, human macrophages were differen-
tiated from PBMC and treated with NAD+ followed by intracellular LPS transfection (Fugene) and IL- 1β 
secretion and cytotoxicity were quantified. The results indicated that NAD+ treatment significantly 
dampened both IL- 1β secretion and pyroptosis (Figure 2F), underscoring its therapeutic potential. 
Collectively, our results suggest that NAD+ acts directly on macrophages by targeting specifically the 
non- canonical inflammasome signaling machinery.

NAD+ inhibits the non-canonical inflammasome via STAT-1/IFN-β 
pathway blockade
Although our data emphasized that NAD+ blocks the non- canonical inflammasome pathway, the 
underlying mechanisms remained yet to be determined. Therefore, we performed RNA- sequencing 
of Pam3CSK4 primed BMDMs that were treated with PBS or NAD+ and subsequently stimulated with 
CTB+LPS O111:B4. Interestingly, when blotting gene expression differences in a Venn diagram, we 
found strikingly more genes commonly expressed in the NAD+ and control group when compared to 
the PBS- treated group (Figure 3A). Gene ontology enrichment analysis revealed a significant downreg-
ulation of genes involved in the antiviral response in addition to the cellular response to the type I IFN, 
IFN-β, when comparing NAD+ and PBS- treated groups (Figure 3B). Type I IFN are known to promote 
the expression of over 2000 IFN- stimulated genes (ISGs), translated into ISGs- induced proteins which 
have been shown to act by enhancing pathogen detection and restrict their replication (Schneider 
et al., 2014). Recently, it was reported that type I IFNs are required for casp- 11 expression contributing 
to non- canonical inflammasome activation (Rathinam et al., 2012; Tang et al., 2018). Consistently, 

LPS- stimulated macrophages from TRIF- deficient 
mice displayed impaired casp- 11 expression, 
implying a context- dependent role for type I IFN 
in the regulation of caspase- 11 activity (Rathinam 
et  al., 2012). Indeed, when comparing expres-
sion of genes involved in IFN-β signaling through 
cluster analysis we found a significant decrease 
in a broad range in genes in the NAD+- treated 
group (Figure  3C). Most strikingly, GTPases 
and guanylate binding proteins involved in the 
downstream signaling of IFN-β were significantly 
downregulated (Figure 3C and Figure 3D) while 
IFN-β-receptor 2 expression remained unaffected 
(Figure 3C). Recently, IFN- inducible GTPases and 

Source data 5. Raw data for Figure 2D: IncuCyte live microscopy.

Source data 6. Raw data for Figure 2E: Lipopolysaccharide (LPS) transfection staining.

Source data 7. Raw data for Figure 2F: ELISA human macrophages.

Figure supplement 1. NAD+ does not alter bone marrow- derived macrophage (BMDM)- derived NF-κB expression or phosphorylation.

Figure supplement 1—source data 1. Raw data for Figure 2—figure supplement 1A: Western blot.

Figure supplement 1—source data 2. Raw data for Figure 2—figure supplement 1A: Western blots bands with highlighted and sample labels.

Figure supplement 1—source data 3. Raw data for Figure 2—figure supplement 1B: Immunofluorescence.

Figure supplement 2. Unstimulated bone marrow- derived macrophage (BMDM) cell viability and apoptosis.

Figure supplement 2—source data 1. Raw data for Figure 2—figure supplement 2: IncuCyte live microscopy.

Figure 2 continued

Video 1. Live Microscopy of NAD+ and PBS treated 
BMDMs subjected to non- canonical inflammasome 
activation.

https://elifesciences.org/articles/88686/figures#video1

https://doi.org/10.7554/eLife.88686
https://elifesciences.org/articles/88686/figures#video1
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Figure 3. NAD+- mediated inhibition of the non- canonical inflammasome is based on an impaired response to IFN-β. Differentiated bone marrow- 
derived macrophages (BMDMs) were cultured in the presence of NAD+ or PBS. BMDMs were then primed with Pam3CSK4, subsequently stimulated 
with lipopolysaccharide (LPS) and cholera toxin B (CTB) and RNA- sequencing was performed. Unstimulated BMDMs served as controls. (A) Venn 
diagram plotting common gene expression between all three groups. (B) Gene ontology enrichment analysis displaying the highest significant pathways 
differing when comparing NAD+ and PBS- treated BMDMs. (C) Expression cluster analysis of genes involved in IFN-β signaling through cluster analysis 
depicted in a heat map. (D) Volcano plot displaying the most significant genes up- or downregulated comparing NAD+ and PBS- treated BMDMs. (E) 
Stimulated BMDMs were additionally treated with recombinant INF-β, and IL- 1β and LDH release were measured. Column plots display mean with 
standard deviation (n=6) (F) Moreover, pro- casp- 1, casp- 11, NLRP3, gasdermin D (GSDMD), (G) signal transducer activator of transcription- 1 (STAT- 1), 
and phospho- STAT- 1 expression were assessed by western blot. Statistical significance was determined by using Student’s t- test or one- way ANOVA. 
Asterisks indicate p- values *=p<0.05, **=p<0.01, and ***=p<0.001, only significant values are shown. All data depicted in this figure are provided as 
source data.

The online version of this article includes the following source data for figure 3:

Figure 3 continued on next page

https://doi.org/10.7554/eLife.88686
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guanylate binding proteins have been assigned a crucial role for the intracellular recognition of LPS 
and linked caspase- 11 activation (Tang et al., 2018; Pilla et al., 2014). Thus, to test if NAD+ medi-
ated non- canonical inflammasome blockade via IFN-β, NAD+ or PBS- treated BMDMs were primed 
with Pam3CSK4 and subsequently stimulated with LPS O111:B4+CTB and 1000 U/ml of recombi-
nant IFN-β. Strikingly, administration of recombinant IFN-β resulted in a complete reversal of NAD+- 
mediated blockade of IL- 1β secretion and pyroptosis (Figure  3E). Moreover, IFN-β administration 
restored casp- 11, NLRP3, and GSDMD expression in the NAD+- treated group (Figure 3F). It is well 
established that signal transducer activator of transcription- 1 (STAT- 1) phosphorylation constitutes the 
link between intracellular type I IFN signaling and the transcription of ISGs through nuclear transloca-
tion (Stark and Darnell, 2012; Ivashkiv and Donlin, 2014). Notably, our RNA- sequencing data indi-
cated a significant downregulation of STAT- 1 (Figure 3C). Moreover, we have previously shown that 
NAD+ administration dampens the expression and activation of transcription factors such as STAT- 5 
(Elkhal et al., 2016). To test, whether NAD+ blocks IFN-β signaling via STAT- 1, BMDMs were subjected 
to NAD+ or PBS followed by non- canonical inflammasome stimulation and recombinant IFN-β. After 
16 hr STAT- 1 expression and phosphorylation were assessed by western blotting. Consistent with our 
previous results, NAD+ treatment downregulated expression levels of STAT- 1 and phospho- STAT- 1. 
In contrast, addition of recombinant IFN-β treatment to NAD+- treated BMDMs restored STAT- 1 
and phospho- STAT- 1 expression that was equivalent to the PBS- treated group (Figure 3G). Taken 
together, our data indicate that NAD+ impedes non- canonical inflammasome activation via IFN-β/
STAT- 1 blockade (Figure 4).

NAD+ increases caspase-1 KO mice resistance to endotoxic shock via 
systemic IL-10 production
Caspase- 11 KO mice have been reported to be resistant toward lethal doses of LPS inducing septic 
shock (Kayagaki et al., 2013). However, upon priming with TLR3 instead of a TLR4 ligand, casp- 11 
KO mice merely exhibit partial resistance toward LPS- induced shock with a 50–60% survival rate 
(Kayagaki et al., 2013; Hagar et al., 2017). Our data indicate that NAD+ prevents LPS- induced cell 
death via the non- canonical inflammasome pathway and casp- 11 blockade. We thus tested whether 
NAD+ could achieve similar protection against septic shock in WT vs casp- 11 KO mice. Casp- 11 KO 
mice were intraperitoneally injected with NAD+ and PBS and treated with 6 mg/kg poly(I:C) 6 hr prior 
to LPS administration. Consistent with previous studies the results indicated a modest resistance of 
casp- 11 KO mice (40% survival). In high contrast, both WT and casp- 11 KO mice subjected to NAD+ 
exhibited 85–100% survival, respectively, when compared to casp- 11 KO mice that were treated with 
PBS, suggesting the existence of an alternative protective pathway against septic shock that is casp- 11 
independent. WT mice, treated with 6 mg/kg poly(I:C) followed by LPS (54 mg/kg) administration, 
not only survived but fully recovered 7 days later, underscoring the unique and robust therapeutic 
effect of NAD+ in septic shock. Previous studies have reported inferior outcomes of IL- 10-/- mice in 
septic shock (Latifi et al., 2002; Berg et al., 1995) pointing out a 20- fold lower lethal dose of LPS 
compared to WT mice (Berg et al., 1995). Moreover, IL- 10 itself has been shown to prevent mice 
from septic shock- induced death after a single administration (Howard et al., 1993). We have previ-
ously delineated immunosuppressive properties of NAD+ via a systemic production of IL- 10, a robust 
immunosuppressive cytokine. In addition, we have described the pivotal role of NAD+ protecting 
toward EAE and allograft rejection via an increased frequency of IL- 10 producing CD4+ T cells (Tullius 
et al., 2014; Elkhal et al., 2016). To test if IL- 10 plays an additional protective role in the context of 
NAD+- mediated protection toward LPS- induced death, WT mice treated with NAD+ or PBS subjected 
to intraperitoneal LPS injection (54  mg/kg) and IL- 10 expression by macrophages, dendritic cells, 
and T cells was assessed 15 hr after LPS administration. Consistent with our previous studies (Tullius 

Source data 1. Raw data for Figure 3E: ELISA bone marrow- derived macrophage (BMDM).

Source data 2. Raw data for Figure 3F: Original western blots.

Source data 3. Raw data for Figure 3F: Western blots with highlighted bands and sample labels.

Source data 4. Raw data for Figure 3G: Original western blots.

Source data 5. Raw data for Figure 3G: Western blots with highlighted bands and sample labels.

Figure 3 continued

https://doi.org/10.7554/eLife.88686
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et al., 2014; Elkhal et al., 2016), we found significantly augmented frequencies of IL- 10 producing 
CD4+ and CD8+ T cells (Figure 5C). Moreover, we detected a dramatic increase of IL- 10 production by 
macrophages, but not the DC population (Figure 5B). Interestingly, IL- 10 has been described to inhibit 
macrophage function and proinflammatory cytokine production in both, human (de Waal Malefyt 
et al., 1991) and mice (Fiorentino et al., 1991). Moreover, autocrine IL- 10 secretion of macrophages 
was found to decrease pro- IL- 1β concentration by promoting STAT- 3 expression (Sun et al., 2019). 
To investigate the potential autocrine impact of an augmented IL- 10 production on macrophage self- 
regulation, we administered combined IL- 10 neutralizing antibody and IL- 10 receptor antagonist to 
BMDMs primed with Pam3CSK4 and stimulated with CTB and LPS O111:B4. The results showed that 
neutralization of the autocrine IL- 10 signaling pathway dampened NAD+- mediated decrease of IL- 1β 
secretion and reversed pyroptotic cell death partially (Figure 5D). To further investigate the relevance 
of our in vitro findings, IL- 10-/- mice were treated with NAD+ or PBS, subjected to LPS (54 mg/kg) and 
survival was monitored. Consistent with previous reports (Latifi et al., 2002; Berg et al., 1995), mice 
lacking IL- 10 exhibited an inferior protection against septic shock when compared to WT animals. 

Figure 4. Inhibitory effects of NAD+ on IFN-β downstream signaling and inflammasome activation. NAD+ inhibits signal transducer activator of 
transcription- 1 (STAT- 1) expression and phosphorylation, thus compromising the intracellular response to IFN-β. Subsequently, stimulation of the IFNAR 
receptor by IFN-β leads to a decreased transcription of pro- caspase- 11 as well as IFN- stimulated genes (ISGs) (IFN- inducible GTPases and GBPs). 
Due to diminished caspase- 11 levels, non- canonical inflammasome activation through intracellular, gram- negative bacteria opsonization by GBPs is 
significantly inhibited.

https://doi.org/10.7554/eLife.88686
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Figure 5. IL- 10 constitutes an additional mechanism mediating the protective capacities of NAD+ in the context of septic shock. (A) Caspase- 11 KO 
(knockout) mice were treated with NAD+ or PBS. Subsequently mice were subjected to poly(I:C) prior to lipopolysaccharide (LPS) injection and survival 
was monitored (n=5, 2 independent survival experiments). Mice treated with either NAD+ or PBS were injected with LPS and after 10 hr, splenic 
frequencies of IL- 10 producing (B) macrophges and dendritic cells (C) and CD4+ and CD8+ T cells were assessed by flow cytometry. Box plots display 
fold change of leukocyte proportions as mean with standard deviation (n=5) (D) Bone marrow- derived macrophages (BMDMs) treated with NAD+ or PBS 
were stimulated with LPS and cholera toxin B (CTB) in the presence of IL- 10 neutralizing antibodies and IL- 10 receptor antagonists. Subsequently IL- 1β 
and LDH release were assessed. Column plots display mean with standard deviation (n=6) (E) IL- 10-/- mice treated with NAD+ or PBS were challenged 
with LPS and survival was monitored (n=5–7, 2 independent survival experiments). Statistical significance was determined by using Student’s t- test or 
one- way ANOVA while survival data were compared using log- rank Mantel- Cox test. Asterisks indicate p- values *=p<0.05, **=p<0.01, and ***=p<0.001, 
only significant values are shown. All data depicted in this figure are provided as source data.

The online version of this article includes the following source data for figure 5:

Source data 1. Raw data for Figure 5A: Casp11 knockout (KO) survival.

Source data 2. Raw data for Figure 5B: FACS macrophages and DCs.

Source data 3. Raw data for Figure 5C: FACS CD4+ and CD8+ T cells.

Source data 4. Raw data for Figure 5D: ELISA bone marrow- derived macrophage (BMDM).

Source data 5. Raw data for Figure 5E: IL- 10-/- survival.

https://doi.org/10.7554/eLife.88686
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More importantly, IL- 10-/- mice subjected to NAD+ exhibited a compromised survival (Figure  5E), 
suggesting that systemic production of IL- 10 following NAD+ administration plays a pivotal role in 
NAD+- mediated protection against septic shock.

Discussion
Previously, we have delineated the protective role of NAD+ in the context of L. m. infection, a gram- 
positive bacterium (Rodriguez Cetina Biefer et al., 2018). However, it remained unclear whether 
NAD+ conveyed resistance toward L. m. by an augmented bacterial clearance or rather through 
its immunosuppressive effects dampening pathological systemic inflammation. Although the cell 
membrane of L. m. has been shown to bear lipoteichoic acids, which resemble the endotoxin LPS 
from gram- negative bacteria in both, structure and function, it is widely considered as an intracel-
lular bacterium (Farber and Peterkin, 1991). In our current study, we administered a lethal dose of 
pathogenic E. coli, that is well known to promote septic shock, and showed that NAD+ also protected 
toward a lethal dose of this gram- negative bacterium. More importantly, we demonstrate that NAD+ 
conveys protection toward septic shock by specifically inhibiting the non- canonical inflammasome 
but not via bacterial clearance. Mechanistically, NAD+ impedes pro- casp- 11 and casp- 11 expression 
in macrophages blocking non- canonical- derived GSDMD cleavage and NLRP3 inflammasome acti-
vation, thus inhibiting pyroptotic cell death and proinflammatory cytokine release. The resistance of 
NAD+- treated WT mice against E. coli and LPS- induced septic shock reflected the robust inhibitory 
effect observed in vitro of NAD+ on the non- canonical inflammasome signaling machinery.

Until now, the exact mechanism how pro- casp- 11 expression and its maturation to casp- 11 is regu-
lated remains unclear. Given the low basal expression of both pro- casp- 11 and casp- 11 (Schauvliege 
et al., 2002), a priming signal is required for initiating the non- canonical inflammasome pathway 
and macrophage sensing of intracellular LPS (Yang et al., 2015b). Previous work has demonstrated 
that transcriptional induction of the pro- casp- 11 isoforms p42 and p38 in macrophages requires 
type I IFN stimulation (Schauvliege et  al., 2002; Yen and Ganea, 2009) while IFN-β has been 
shown to promote transcriptional induction and processing of caspase- 11 (Rathinam et al., 2012). 
In line with these findings, CTB treatment of macrophages primed with Pam3csk4 failed to elicit 
IL1-β release compared to LPS primed controls while exogenous administration of IFN-β in turn 
restored CTB- induced IL- 1β production (Rathinam et  al., 2012) underscoring the transcriptional 
role of type I IFN. Our RNA- sequencing results indicated a dampened cellular response toward 
IFN-β while western blotting revealed a significant downregulation of both, pro- casp- 11 and casp- 
11, suggesting a transcriptional downregulation of both enzymes. Consistently, NAD+ decreased 
STAT- 1 expression and phosphorylation, which constitutes the mechanistic link between extracellular 
type I IFN stimulation and transcriptional effects through translocation of phosphorylated STAT- 1 to 
the nucleus inducing ISGs (Ivashkiv and Donlin, 2014). Thus, treatment of stimulated macrophages 
subjected to NAD+ with recombinant IFN-β restored STAT- 1 signaling, caspase- 11 expression, and 
GSDM cleavage which translated into reconstituted IL- 1β production and LDH release. Collectively, 
NAD+ mitigates the intracellular response to IFN-β that leads to non- canonical inflammasome induc-
tion by suppressing macrophage- derived STAT- 1 expression and phosphorylation. Furthermore, we 
showed that NAD+ treatment improved resistance of casp- 11 KO mice toward poly I:C primed septic 
shock. More importantly, WT mice treated with NAD+ exhibited 100% survival while casp- 11 KO mice 
treated with PBS exhibited a modest 40% survival, suggesting that NAD+ promotes survival beyond 
non- canonical inflammasome blockade. Our previous studies have delineated the effects of NAD+ on 
various immune cells such as dendritic cells and CD4+ T cells including Th1, Th17, regulatory type 1 
(Tr1), and Treg cells communicated exclusively through MCs (Tullius et al., 2014; Elkhal et al., 2016; 
Rodriguez Cetina Biefer et al., 2018). Thereby, NAD+ treatment promoted MC- derived induction of 
TR1 cells that resulted into increased systemic levels of IL- 10. Latter one was found to play a cardinal 
feature during bacterial infection as MC-/- mice were more susceptible to L. m. infection than WT 
animals when treated with NAD+. Here, we found a direct effect of NAD+ on macrophages by specif-
ically inhibiting the non- canonical inflammasome and promoting IL- 10 production. Polymorphisms 
in the IL- 10 locus or IL- 10R deficiencies have been linked to severe intestinal inflammatory diseases 
in both, human and mice (Franke et  al., 2008; Franke et  al., 2010; Kühn et  al., 1993; Begue 
et al., 2011). More importantly, mice deficient for IL- 10 have been shown to display elevated inflam-
masome activation and IL- 1β production resulting in severe colitis (Zhang et al., 2014) or Ag- induced 

https://doi.org/10.7554/eLife.88686
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arthritis (Greenhill et al., 2014). When inhibiting the autocrine pathway for IL- 10 through combined 
receptor antagonization and IL- 10 neutralization, we found a pronounced increase of IL- 1β produc-
tion of NAD+- treated macrophages stimulated with CTB and LPS (Figure 4D). This is consistent with 
previous reports showing that autocrine IL- 10 signaling interferes with the transcription of pro- IL- 1β 
(Sun et al., 2019). LDH release, in turn, was only restored partly possibly due to missing effects of 
second party leucocytes secreting IL- 10 in vivo such as Tr1 cells which have been shown to inhibit the 
transcription of IL- 1β and inflammasome- mediated activation of caspase- 1 (Yao et al., 2015). More 
recently, casp- 8, that plays a central role in apoptosis, has been reported as an important medi-
ator of endotoxemia resistance and LPS- driven systemic inflammation. Since our RNA- sequencing 
results revealed a dramatically attenuated cellular response toward type I IFN with downregulation 
of various interferon regulatory factors, that have been reported as major regulators of casp- 8 (Apel-
baum et al., 2013; Newton et al., 2019), it is possible that NAD+ may exert protection against 
septic shock by altering caspase- 8 expression as well. Although we have previously reported the 
protective effect of NAD+ against apoptosis of activated CD4+ T cells (Tullius et al., 2014), it remains 
yet to be determined how NAD+ impacts executioner proteins of other cell death processes such as 
apoptosis and necroptosis.

Notably, both casp- 8 and casp- 11 have been found dispensable in the hematopoietic compart-
ment that produces the proinflammatory cytokines necessary to initiate shock (Mandal et al., 2018). 
Thus, NAD+ treatment may improve resistance of casp- 11 KO mice to septic shock by also dampening 
the initiating proinflammatory cytokine cascade via its systemic IL- 10 cytokine production. Impor-
tantly, while inhibiting macrophage- derived inflammasome function, NAD+ does not interfere with 
NF-κB signaling which has been shown to promote various inflammatory and autoimmune diseases 
when dysregulated (Liu et al., 2017). Taken together, we dissected the dichotomous capacity of NAD+ 
to dampen auto- and allo- immunity while concomitantly protecting toward severe bacterial infection, 
outlining its unique effects in the context of septic shock.

Materials and methods
Animals
Young (8–12 weeks) C57BL/6, B6.129P2- IL10tm1Cgn/J, and B6.129S4(D2)- Casp4tm1Yuan/J mice were 
purchased from Charles River Laboratory, Wilmington, MA, USA. All mice were male, age- matched 
and experimental and control animals were housed separately. Animals and samples were randomly 
assigned to either the control or treatment group to ensure biological diversity. The study protocol 
was approved by the Brigham and Women’s Hospital Institutional Animal Care and use Committee 
(IACUC) (animal protocol #2018N000049). All mice were male, age- matched and experimental and 
control animals were housed separately. Owing to the exploratory nature of our study, we did not 
use randomization and blinding. No statistical methods were used to predetermine sample size. All 
animals were maintained in specific pathogen- free conditions at the Brigham and Women’s Hospital 
animal facility in accordance with federal, state, and institutional guidelines. Animals were maintained 
on 12 hr light, 12 hr dark cycle in facilities with an ambient temperature of 19–22°C and 40–60% 
humidity and were allowed free access to water and standard chow. Euthanasia was performed by 
cervical dislocation following anesthesia with isoflurane (Patterson Veterinary, Devens, MA, USA).

Murine bone marrow-derived macrophage differentiation and culture
8- to 12- week- old C57BL/6 mice were euthanized by cervical dislocation, sprayed with alcohol and 
skin was removed to expose femurs. The femur was flushed with ice- cold PBS and the obtained bone 
marrow was filtered through 70 µm Nylon cell strainer. After washing with PBS, red blood cell lysis 
was performed using ammonium- chloride- potassium solution (Fisher Scientific) and the reaction was 
blocked with complete Dulbecco’s modified eagle medium (DMEM) (Fisher Scientific) supplemented 
with 10% endotoxin- free bovine serum and PS. To minimize fibroblast contamination cells were 
cultured in complete DMEM at 37°C, 5% CO2 and non- adherent cells were collected after 30 min. 
Bone marrow cells were then differentiated into macrophages in DMEM supplemented with 10% 
endotoxin- free bovine serum, PS, and 40 ng/ml murine GM- CSF (Abcam) for 8 days. Medium was 
changed every 2 days to remove non- adherent cells.

https://doi.org/10.7554/eLife.88686
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Canonical and non-canonical inflammasome activation in murine 
macrophages
After 8 days of culture the medium was replaced by 40 ng/ml GM- CSF containing 100 µmol NAD+ 
culture medium. For 2 following days NAD+ was added daily until stimulation. To induce canonical and 
non- canonical inflammasome activation in murine macrophages, NAD+- treated and control BMDMs 
were cultured overnight in a 24- well plate at 1×106  cells/ml and afterward primed with 1  µg/ml 
Pam3CSK4 or 1 µg/ml LPS O111:B4 (Sigma) for 5–6 hr. Primed BMDMs were then stimulated for 16 hr 
with either 5 mmol ATP (canonical inflammasome stimulation) or 2 µg/ml LPS O111:B4 and 20 µg/ml 
CTB (Sigma) to allow LPS entry (non- canonical inflammasome stimulation) where indicated. To test the 
effect of NAD+ on type 1 IFN and STAT1 signaling, BMDMs were cultured overnight in a 24- well plate 
at 1×106 cells/ml and afterward primed with 1 µg/ml Pam3CSK4 or 1 µg/ml LPS O111:B4 (Sigma) for 
5–6 hr. Primed BMDMs were then stimulated for 16 hr 2 µg/ml LPS O111:B4, 20 µg/ml CTB, and U/
ml recombinant IFN-β.

ELISA
Expression of macrophage- derived murine IL- 1β, IL- 18, and human IL- 1β was analyzed in the cell 
culture supernatant by commercial ELISA kits (Invitrogen) following the manufacturer’s recommended 
procedures.

Pyroptosis assay
Pyroptotic cell death was measured by assessing LDH release in the cell culture supernatant of human 
and murine macrophages using a CytoTox 96 Non- radioactive Cytotoxic Assay (Promega) following 
the manufacturer’s recommended procedures.

RNA extraction and RNA-sequencing
BMDMs were harvested and differentiated as outlined in the particular section. After 8 days of culture 
the medium was replaced by 40 ng/ml GM- CSF containing culture medium (control group) or 40 ng/
ml GM- CSF containing 100 µmol NAD+ culture medium (NAD+- treated group). For 2 following days 
NAD+ was added daily. Subsequently, NAD+- treated and control BMDMs were cultured overnight in a 
24- well plate at 1×106 cells/ml and afterward primed with 1 µg/ml Pam3CSK4 or 1 µg/ml LPS O111:B4 
(Sigma) for 5–6 hr. Primed BMDMs were then stimulated for 16 hr with 2 µg/ml LPS O111:B4 and 
20 µg/ml CTB (Sigma) to allow LPS entry. Another set of BMDMs were differentiated without additional 
treatment serving as naïve controls. Subsequently, RNA was extracted with the RNAqueous extraction 
kit (Applied Biosystems), according to the manufacturer’s protocols. Briefly, cells were homogenized 
in lysis buffer (total volume of 0.5 ml) and passed through a column. After successive washes, RNA 
was eluted. RNA- sequencing was commercially performed by Novogene Co., Ltd. In brief, mRNA was 
enriched from total RNA using oligo(dT) beads and subsequently fragmented randomly in fragmenta-
tion buffer, followed by cDNA synthesis using random hexamers and reverse transcriptase. After first- 
strand synthesis, a custom second- strand synthesis buffer (Illumina) was added with dNTPs, RNase 
H, and E. coli polymerase I to generate the second strand by nick- translation. The final cDNA library 
is ready after a round of purification, terminal repair, A- tailing, ligation of sequencing adapters, size 
selection, and PCR enrichment.

Isolation and differentiation of human macrophages from PBMCs
Blood was obtained from healthy adult volunteers with the only purpose to isolate PBMCs in order 
to create a basis for macrophage cultures. Blood withdrawal was performed in accordance with the 
guidelines of and approved by the Institutional Review Board of the Charité Universitätsmedizin 
Berlin (EA4/006/22). Informed consent and consent to publish was obtained from each volunteer in 
accordance with the Declaration of Helsinki. All personal information collected from volunteers were 
treated with utmost confidentiality. For experiments on human macrophages, PBMCs were isolated by 
performing a density centrifugation in SepMate tubes (StemCell) using lymphoprep (StemCell) density 
gradient medium. PBMCs were then plated in DMEM culture medium supplemented with standard 
antibiotics, 10% FCS, and human 50 ng/ml GM- CSF (PeproTech) at a density of 1×106 cells/ml. The 
medium was changed every 2–3 days until the cells reached a full confluence.

https://doi.org/10.7554/eLife.88686
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Non-canonical inflammasome induction in human macrophages
After 8 days of culture the medium was replaced by 50 ng/ml GM- CSF containing 100 µmol NAD+ 
culture medium. For 2 following days NAD+ was added daily until stimulation. To induce non- canonical 
inflammasome activation in human macrophages, cells were primed with 1  µg/ml Pam3CSK4 for 
5–6 hr. Subsequently, the medium was replaced, and cells were treated with 3 µg/ml LPS O111:B4 
and 0.25% (vol/vol) Fugene HD Plus (Promega) to cause transfection. Finally, plates were centrifuged 
at 805 × g for 2 min and subsequently cultured for 20 hr at 37°C, 5% CO2.

Western blot
For western blot analysis, proteins were extracted using RIPA buffer and the concentrations deter-
mined using Pierce BCA Protein Assay Kit. Subsequently, proteins were resolved in SDS- PAGE, trans-
ferred to 0.45 μm nitrocellulose membranes (Bio- Rad), blocked with 5% non- fat dry milk in PBS with 
0.1% Tween 20, and processed for immunodetection. The following primary antibodies were used 
according to the manufacturer’s instructions: pro- caspase- 1 (#ab179515, Abcam), caspase- 1 (#14- 
9832- 82, eBioscience), IL- 1β (AF- 401- NA, R&D Systems), NLRP3 (#768319, R&D Systems), caspase- 11 
(#mab8648, R&D Systems), GSDMD (ab209845, Abcam), P- STAT- 1 (#9167S, Cell Signaling), STAT- 1 
(#9172S, Cell Signaling), NF-κB- p65 (#49445S, Cell Signaling), NF-κB- p52 (#4882S, Cell Signaling), 
β-actin (ab3280, Abcam). Antibody detection was performed with HRP- coupled goat secondary 
anti- mouse or anti- rabbit antibodies (ImmunoResearch), followed by ECL reaction (Perkin Elmer) and 
exposure to Fuji X- ray films. Finally, films were scanned, and signals quantified using the web- based 
image processing software ImageJ (NIH).

Analysis of LPS transfection efficiency
For intracellular detection of LPS, primed BMDMs were stimulated with 20  µg/ml CTB and FITC- 
conjugated LPS O111:B4 for 16 hr, washed twice with PBS, fixed in 4% PFA containing PBS and DAPI 
for 10 min, and subsequently analyzed using a confocal microscope and flow cytometry. To determine 
transfection efficiency using confocal microscopy, FITC- stained pixels per image were quantified using 
the web- based image processing software ImageJ (NIH).

Caspase-1 assay
To determine the expression of caspase- 1, primed BMDMs were stimulated with 20 µg/ml CTB and 
2 µg/ml LPS O111:B4 for 4 and 16 hr, respectively, washed twice with PBS, stained using a caspase- 1 
active staining kit (Abcam) including caspase- 1 staining (fluorescent green) and DAPI staining (fluores-
cent blue) according to the manufacturer’s protocol and analyzed using a confocal microscope.

Endotoxic shock model
8- to 12- week- old C57BL/6 mice were treated with 40 mg NAD+ for 2 following days before intraper-
itoneal injection of 54 mg/kg LPS O111:B4 or LPS O55:B5. Where indicated mice were administered 
6 mg/kg poly(I:C) 6 hr prior to LPS administration. Consequently, survival and body temperature were 
monitored every 2–4 hr for up to 100 hr. To assess the amount of systemic IL- 1β and IL- 18 by ELISA 
(both Invitrogen), mice were euthanized by decapitation 10 and 15 hr after LPS injection serum was 
isolated from collected blood.

Flow cytometric analysis
To analyze splenic lymphocytes for the intracellular expression of IL- 10, mice were challenged with 
54 mg/kg LPS O111:B4 for 10 hr and euthanized by cervical dislocation subsequently. Spleens were 
harvested in a sterile environment and single- cell suspensions were obtained using a 70 µm Nylon 
cell strainer. Then, 1×106 splenocytes per animal per condition were cultured in RPMI 1640 (#10- 
040- CV, Corning) supplemented with 10% BenchMark Fetal Bovine Serum (#100- 106, Gemini), 1% 
penicillin/streptomycin (#30- 002  CI, Corning), 2  mM L- glutamine (#25- 005  CI, Corning), 20  ng/ml 
phorbol 12- myristate 13- acetate (#P8139- 1MG, Sigma- Aldrich), 1  μg/ml ionomycin (#I9657- 1MG, 
Sigma- Aldrich), and 0.67 μl/mL BD GolgiStop (#554724, BD Biosciences) for 4 hr at 37°C and 5% CO2 
in 1 ml- volumes in a 12- well plate. After 4 hr, the cells were collected from each 12- well plate well and 
prepared for flow cytometry by staining the surface epitopes in flow staining buffer consisting of 1× 
DPBS supplemented with 1.0% (wt/vol) bovine serum albumin (#A2153, Sigma- Aldrich) and 0.020% 
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sodium azide (#S8032, Sigma- Aldrich) for 25 min at 4°C. Then, the cells were fixed and permeabilized 
with the eBioscience Foxp3 Fixation/Permeabilization concentrate and diluent cocktail (#00- 5523- 00, 
Invitrogen) for 30 min at 4°C. Finally, the intracellular cytokine target was stained in 1× permeabiliza-
tion buffer diluted from 10× eBioscience Foxp3 Permeabilization Buffer (#00- 5523- 00, Invitrogen) with 
deionized water. Finally, the stained samples were analyzed on a FACS Canto II (BD Biosciences, San 
Jose, CA, USA) flow cytometer, and the resultant flow cytometry standard (FCS) files were analyzed 
with FlowJo version 10 (FlowJo LLC, Ashland, OR, USA).

Bacterial infection model
Frozen stock suspensions of E. coli (Migul) (ATCC, 700928) were obtained from ATCC and cultured in 
5 ml Luria- Bertani medium at 37°C. Bacterial concentration was determined by plating 100 µl, 10- fold 
serial diluted bacterial samples and counting the colony- forming units (CFU) after overnight incuba-
tion at 37°C. One day prior to injection 1 ml of culture was reinoculated into 5 ml of medium and incu-
bated for 3–5 hr using a 37°C shaker at 250 rpm agitation. Bacterial cultures were then centrifuged for 
10 min at 3000 rpm and washed twice with PBS. Mice were previously treated with NAD+ for 2 serial 
days and subsequently infected with E. coli by injecting 1 ml of 1×109 CFU/ml bacterial suspension 
intraperitoneally. The survival was monitored. In another set of experiments mice were sacrificed 5 hr 
after infection and kidneys and liver were harvested. The collected tissues were homogenized in 1 ml 
of sterile PBS and 10- fold serial dilutions plated overnight at 37°C on LB agar plates to determine 
bacterial load per gram.
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