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Abstract: Climate change has had an almost irreversible impact on the distribution patterns of
tree species on the Tibetan Plateau, driving some vulnerable species to the brink of extinction.
Therefore, it is important to assess the vulnerability of tree species in climate-sensitive areas under
the following three IPCC-CMIP6 scenarios: SSP126, SSP370, and SSP585. The MaxEnt model was
used to predict adaptive distribution for one endangered (Acer wardii W. W. Smith (A. wardii)) and
six vulnerable maple plants on the Tibetan Plateau under current and future conditions. We then
evaluated their vulnerability using the landscape fragmentation index. Our results showed that
the current adaptive areas of vulnerable maple species were mainly distributed in the southeast of
the Tibetan Plateau. The dominant factors affecting adaptive areas were temperature annual range
(BIO7) for Acer sikkimense Miq. and Acer sterculiaceum Wall.; annual precipitation (BIO12) for Acer
cappadocicum Gled.; precipitation of driest month (BIO14) for Acer pectinatum Wall. ex G. Nicholson,
Acer taronense Hand.-Mazz., and A. wardii; and subsoil clay fraction (S_CLAY) for Acer campbellii
Hook.f. & Thoms. ex Hiern (A. campbellii) Under the three future scenarios, the adaptive areas
of maple on the Tibetan Plateau area shifted to the northwest, and habitat suitability increased in
the northwestern part of the adaptive areas. In the SSP370 scenario, all seven species showed an
increase in adaptive areas, while certain species decreased in some periods under the SSP126 and
SSP585 scenarios. The status of the endangered maple species is likely to be even more fragile under
the three future scenarios. A. wardii and A. campbellii are more vulnerable and may face extinction,
requiring immediate attention and protection. In contrast, the vulnerability of the remaining five
species decreased. In conclusion, this study provides recommendations for conserving vulnerable
maple species on the Tibetan Plateau. Our data support understanding the distributional changes
and vulnerability assessment of these tree species.

Keywords: climate change; MaxEnt model; vulnerable maple species; adaptive distribution; vulnera-
bility assessment

1. Introduction

Climate change is one of the most important factors affecting the distribution and shifts
in adaptive areas for vulnerable species [1,2]. Climate change not only affects the growth
of plants [3,4] but also significantly influences their geographic distribution patterns [5,6],
thereby directly or indirectly affecting biodiversity [7,8]. The distribution patterns of
species have thus become a focus of global concern [9,10], especially in the context of global
warming [11]. The Tibetan Plateau, recognized as a sensitive and ecologically vulnerable
zone to climate change [12–14], has a unique geographical location and special ecological
environment that promotes the diversity and richness of species [15–17]. Climate warming
will likely lead to the gradual migration of vulnerable species to higher altitudes and the
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destruction of and reduction in adaptive areas, and may even lead to extinction for certain
species, which presents obstacles to the implementation of conservation measures [18–26].
Therefore, exploring the responses of vulnerable species’ adaptive distribution (suitable
areas) and vulnerability to climate change improves the development of scientific conserva-
tion strategies [27].

Predicting the adaptive geographic distribution of species under climate change sce-
narios is a common method for understanding species adaptation [28]. Currently, species
distribution models (SDMs) are a popular approach to predicting the adaptive geographical
ranges of species, using data on the geographical distribution of species, bioclimatic and
environmental factors, and other relevant information [29,30]. As a commonly used ecolog-
ical niche model [31], the maximum entropy model (MaxEnt) has attracted more attention
due to its relatively superior predictive power [32–35]. The MaxEnt model outperforms
other modeling approaches, such as genetic algorithms for Rule-Set Prediction (GARP),
Ecological Niche Factor Analysis (ENFA), BIOCLIM, and DOMAIN [36]. Most importantly,
the MaxEnt method provides species response curves for environmental parameters; addi-
tionally, it is insensitive to sample sizes [37], even ones as small as three to five [36,38–40].
The MaxEnt model has been widely used to simulate the adaptive distribution areas of
various types of vegetation in the context of climate change [41], such as violet crops in
China [42,43], as well as vulnerable species [44,45].

The maple (Acer) genus has about 150 species in China, and it is an important com-
ponent of temperate deciduous broad-leaved forests, with the eastern–southern Tibetan
Plateau as one of its natural distribution ranges [46–48]. It plays an irreplaceable role
in maintaining the ecological environment and water resources, and has an important
influence on biodiversity in the Tibetan Plateau [49,50]. According to an assessment of
maple on the Tibetan Plateau by the China Red List Species [51], Acer wardii W. W. Smith (A.
wardii) was listed as Endangered (EN); Acer campbellii Hook.f. & Thoms. ex Hiern (A. camp-
bellii), Acer cappadocicum Gled. (A. cappadocicum), Acer pectinatum Wall. ex G. Nicholson (A.
pectinatum), Acer sikkimense Miq. (A. sikkimense), Acer sterculiaceum Wall. (A. sterculiaceum),
and Acer taronense Hand.-Mazz. (A. taronense) were all listed as Vulnerable (VU). In recent
decades, extensive studies have focused on the genetic breeding, vegetation classification,
and medicinal purposes of these maple species [52–57]. Although some studies have
analyzed the factors that influence the geographical distribution and migration direction
of maple [58,59], there are very few high-quality studies regarding the variations in its
adaptive distribution and vulnerability assessments on the Tibetan Plateau.

In this study, we used the MaxEnt model to analyze the adaptive areas of maple
species on the Tibetan Plateau, based on the geographical distribution of vegetation data
and climate, topography, and soil factors. We then evaluated their vulnerability to climate
change using the landscape fragmentation index. This research aims to (1) identify and
analyze the dominant environmental factors limiting the distribution of maple species
on the Tibetan Plateau; (2) simulate and predict the adaptive areas of maple species on
the Tibetan Plateau under different scenarios and at different times; and (3) assess the
vulnerability of maple species in various regions of the Tibetan Plateau under different
scenarios and at different times in the future. Our study offers invaluable insights for the
scientific management of and conservation strategies for maple species under the impacts
of climate change.

2. Materials and Methods
2.1. Data Screening and Processing

Tibetan Plateau boundary data were obtained from the National Tibetan Plateau
Science Data Centre [60]. Provincial boundary data were obtained from the Centre for
Resource and Environmental Science and Data of the Chinese Academy of Sciences [61].

Geographical distribution data for the seven maple species were obtained from two
sources: (1) the Global Biodiversity Information Network Database [62]; (2) the China
Digital Herbarium [63]. Firstly, invalid, duplicated, and cultivated data were removed from
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the GBIF and CVH databases; then, longitude and latitude were determined according to
the geographical location of the species. Secondly, the ArcGIS 10.8 SDM tool was used to
set a buffer for a 5 km × 5 km (2.5′) grid. Only one distribution point remained in each
grid. Finally, we collected a total of 158 distribution points for the seven maple samples
(Figure 1). To build the MaxEnt model, we inputted the information collected on species
distribution points into Excel and saved it in a separate CSV format.
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Figure 1. The distribution of maple on the Tibetan Plateau.

A total of 36 environmental factors (including 19 bioclimate factors, 3 topography
factors, and 14 soil factors) were chosen. In the IPCC-CMIP6, four shared socio-economic
paths (SSPs) are set up in future climate scenarios (SSP126, SSP245, SSP370, and SSP585) [64].
In many studies, it is very common and representative to select three future climate mod-
els (SSP126, SSP370, and SSP585), with low, medium, and high forcing [65,66]. SSP126
represents a sustainable scenario with the lowest radiative forcing, as well as low miti-
gation and adaptation challenges [67]. SSP370 represents the medium-to-high end of the
range of future forcing pathways, with particularly high aerosol emissions and land use
change [67]. SSP585 represents the highest radiative forcing scenario, with many socio-
economic challenges to mitigation and few to adaptation [67,68]. Therefore, selecting these
three representative climate scenarios can enhance the scientific accuracy of the research
results [69]. Three scenarios (SSP126, SSP370, and SSP585) under the BCC-CSM2-MR model
were selected in this study. Current (1970–2000) and future climate (2050s (2041–2060), 2070s
(2061–2080), and 2090s (2081–2100)) data and topography data were downloaded from the
World Climate Database [70]. Soil data were obtained from the World Soil Database [71].
The spatial resolution of the above data was resampled to 2.5′ via ArcGIS 10.8 for subse-
quent research analysis. For this study, we assumed that topography and soil factors would
remain unchanged over the next 100 years, as climate change scenarios are not expected to
have a significant impact on these factors.

We eliminated some factors because of strong correlations with other factors to avoid
model overfitting as follows. Firstly, 36 environmental factors were imported into the Max-
Ent software (version 3.4.4) for simulation. Factors with a percentage contribution of >1.0%
were screened to obtain the corresponding environmental factors. Secondly, environmental
factors were extracted according to the distribution points of species’ coordinate informa-
tion using ArcGIS 10.8 software, and Pearson correlation coefficients were calculated using
IBM SPSS 27 software for correlation analysis. If two or more of the screened environmental
variables have a correlation with an absolute value of ≥0.8 [21,65], only the factor with
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the largest contribution was selected. Finally, we constructed models using the screened
environmental factors (Table 1).

Table 1. Environmental factors involved in species modeling.

Category Variable A.
campbellii

A.
pectinatum

A.
pectinatum

A.
sikkimense

A.
sterculiaceum

A.
taronense

A.
wardii

Climate

BIO2
√ √ √

-
√

-
√

BIO3 -
√ √

- -
√

-
BIO4

√ √
- -

√ √ √

BIO5 -
√

- - - - -
BIO6 -

√
- - - - -

BIO7
√

-
√ √ √ √

-
BIO11 - -

√ √
-

√
-

BIO12
√ √

- - - -
√

BIO14
√

-
√

- -
√ √

BIO15 -
√ √

- - - -
BIO16 - - - -

√
- -

BIO17 - - - -
√

- -

Topography SLO
√ √ √

- -
√ √

ASP
√ √ √

- -
√ √

Soil

T_ESP -
√ √

- -
√ √

T_GRAVEL
√

-
√

-
√

-
√

T_PH_H2O - - - -
√

- -
T_REF_

BULK_DEN - - - -
√

- -

S_CLAY
√ √ √

- -
√ √

S_GRAVEL
√

- -
√

- - -
S_REF_

BULK_DEN - - -
√ √

- -

See Table S1 for an explanation according to environmental variable; ticks indicate modelling factor.

2.2. Model Prediction and Accuracy Assessment

Species distribution data and environmental factors were imported into MaxEnt 3.4.4,
and the samples were tested using the cross-validation method. A total of 75% of the
distribution point data were randomly selected to build the model as the training group,
and the remaining 25% of the distribution data were selected to test the accuracy of the
model as the test group. The output data format was logistic, and the process was repeated
10 times. We tested the accuracy of the model predictions based on the closed area under
the curve (AUC) value formed by the receiver operator characteristic curves (ROCs) and
the horizontal coordinates [72]. The AUC value is in the ranges [0, 1]. The higher the AUC
value is, the more accurate the model is. A value in the range [0.9, 1] indicates a perfect
prediction [73]. The jackknife test can be used to evaluate the impact of environmental
variables on the model. The most significant factor is determined using the environmental
variable with the greatest contribution.

The output of the MaxEnt result was the Habitat Suitability Index (HSI) [74] on species
distribution, representing the probability of species occurrence. Due to the different ecologi-
cal characteristics of different species, there was no fixed format for classifying the adaptive
distribution for species prediction results. Thus, we chose a method commonly used by
researchers, the Natural Breaks (Jenks) classification method [21]. Typically, MaxEnt predic-
tions are classified into four categories (Table S2), namely, not adaptive, minimally adaptive,
moderately adaptive, and highly adaptive, and the area of adaptive areas was quantified.

2.3. Habitat Suitability Calculation Methodologies for Highly Adaptive Areas

We applied the equation S1 = (FR − SR)/(FR + SR) to the analysis of changes in highly
adaptive areas over the next three periods and three scenarios. The study produced a range
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of values from −1 to 1, indicating a decrease or increase in habitat suitability, respectively.
S1 represents the trend of changes in highly adaptive areas under future climate change. SR
and FR represent the HIS value of each raster in the present and future, respectively [75,76].

2.4. Vulnerability Assessment Methodologies for Highly Adaptive Areas

Landscape pattern indices can flexibly reflect information on landscape patterns, re-
vealing their structural and spatial configuration characteristics [77]. Patch density (PD)
is a fundamental index that represents landscape configuration. It indicates the number
of patches per unit area within an area. PD describes the best indicator of landscape frag-
mentation, and landscapes with a higher density of patch types are more fragmented [78].
It has been shown that the negative effects of habitat fragmentation on plant populations
are common phenomena, often being the main cause of local species extinction [79]. Thus,
we used fragmentation to assess the vulnerability of species. We first used FragStats 4.2
software to compute the number of patches (NPs) in the landscape pattern of highly adap-
tive areas. Then, the formula PD = NP/A was applied to calculate the density of patches
in high-suitability areas for the three scenarios in the next three periods, where PD is the
density of highly adaptive area patches, NP is the number of highly adaptive area patches,
and A is the area of highly adaptive areas.

3. Results
3.1. Current Adaptive Distribution and Environmental Factors

Most of the adaptive areas for the seven vulnerable maple species are found in the
southeastern part of the Tibetan Plateau (Yunnan, Sichuan, and Tibet), with a few adaptive
areas in the southwestern part. The adaptive areas for each species overlap, with the
highly adaptive areas mainly distributed in Yunnan (Figure 2). The adaptive areas of A.
cappadocicum and A. pectinatum are the largest (12.41% and 12.38% of the Tibetan Plateau).
A. sikkimense has the largest highly adaptive area (2.9% of the Tibetan Plateau), while A.
wardii has the smallest area for both adaptive and highly adaptive areas (only 3.78% and
0.31% of the Tibetan Plateau; Table S4). The dominant factors of seven vulnerable maple
species include A. cappadocicum (BIO12, 36.7%), A. sikkimense (BIO7, 53.9%), A. sterculiaceum
(BIO7, 40.6%), A. pectinatum (BIO14, 47.7%), A. taronense (BIO14, 53%), A. wardii (BIO14,
64.5%), and A. campbellii (S_CLAY, 29.3%) (Figure S1).

3.2. Future Adaptive Distribution

We conducted an analysis of future changes in the distribution of the seven maple
species under different scenarios based on current patterns. The habitats for the seven
maple species in each period scenario are predominantly in the southeastern part of the
Tibetan Plateau (Yunnan, Sichuan, and Xizang), with a concentration in southeastern Tibet
(Nyingchi and Chamdo) and a migration to the northwestern part of the plateau, with high
latitudes or high altitudes. A. cappadocicum, A. pectinatum, A. sikkimense, and A. taronense
showed significant migration trends, while the remaining three species showed small
changes in their habitats and relatively insignificant migration trends (Figures 2–5).

In the 2050s, for the SSP126 scenario, A. taronense had the largest adaptive areas, while
in the SSP370 scenario, the remaining six plants had the largest adaptive areas. In the
SSP370 scenario, A. campbellii’s adaptive areas increased, while they decreased in the other
two scenarios. The remaining six plants’ adaptive areas increased to varying degrees in all
three scenarios (Figure 3 and Table S5). Under SSP126 and SSP370 scenarios, A. campbellii
had a larger area of reduced habitat suitability, while A. sikkimense had a larger area of
reduced habitat suitability under all scenarios (Figure S3).

In the 2070s, for the SSP126 scenario, the largest adaptive areas were found for A.
sterculiaceum, while in the SSP370 scenario, A. campbellii and A. wardii had the largest
adaptive areas. The remaining four plants had their largest adaptive areas in the SSP585
scenario. Notably, the largest highly adaptive areas for the seven plants were observed in
the SSP370 scenario. In the SSP126 scenario, A. wardii’s adaptive areas increased, while they
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decreased in the other two scenarios. The remaining six plants’ adaptive areas increased
to varying degrees in all three scenarios (Figure 4 and Table S5). In all three scenarios, the
adaptive areas of A. sikkimense, A. campbellii, and A. wardii experienced a greater decline
in habitat suitability. Similarly, in the SSP126 and SSP370 scenarios, the adaptive areas
of A. pectinatum and A. taronense also showed a decline, being greater in terms of habitat
suitability (Figure S4).
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In the 2090s, for the SSP370 scenario, the largest adaptive areas were observed for
A. campbellii, A. cappadocicum, A. sterculiaceum, and A. wardii. In the SSP585 scenario, the
largest adaptive areas were observed for the remaining three maple species. It is worth
noting that the SSP370 scenario had the largest adaptive areas for the seven plants. In the
SSP126 scenario, the adaptive areas of A. wardii decreased, while in the other two scenarios,
they increased. The remaining six plants exhibited an increase in adaptive areas under all
three scenarios, although to varying degrees (Figure 5 and Table S5). Reductions in habitat
suitability were greater in all three scenarios for A. sikkimense, and for the remaining six
species, these reductions were greater in the SSP126 scenario (Figure S5).

3.3. Vulnerability Assessment of Maple

In the current condition, A. campbellii (61.41) exhibited the highest vulnerability, while
A. sikkimense (10.71) exhibited the lowest. A. cappadocicum, A. taronense, and A. wardii
exhibited similar vulnerability levels, being relatively small (Figure 6a). In the 2050s, A.
campbellii (66.97, 68.12, and 51.60) exhibited the highest vulnerability in highly adaptive
areas across all three scenarios, while A. sikkimense (16.98, 11.30, and 12.44) exhibited the
lowest (Figure 6b). In the 2070s, A. campbellii (88.23) exhibited the highest vulnerability
in highly adaptive areas in the SSP585 scenario, while A. wardii (68.25 and 97.92) had the
highest vulnerability in the remaining two scenarios. A. sikkimense (11.16, 12.06, and 14.41),
however, had the lowest vulnerability in highly adaptive areas across all three scenarios
(Figure 6c). In the 2090s, vulnerability in the highly adaptive areas was highest for A. wardii
(125.84) under the SSP126 scenario, while it was highest for A. campbellii in the remaining
two scenarios (67.99 and 66.26). In the SSP585 scenario, A. sterculiaceum (21.00) exhibited
the lowest vulnerability in highly adaptive areas, similarly to A. sikkimense in the remaining
two scenarios (14.36 and 20.49; Figure 6d).
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4. Discussion

The prediction accuracy of the MaxEnt model depends on the actual distribution points
of species and environmental factors [80]. Obtaining accurate and reliable distribution
points for endangered species can be challenging due to factors including small populations,
the topography of the Tibetan Plateau, and poor accessibility, potentially affecting the
simulation results. However, the results (Figure S2) obtained from the MaxEnt model
showed that the AUC values obtained from the means of the training set for the seven
maple species were both close to 1 (Table S3), indicating that the results were highly
accurate. Thus, the MaxEnt model can be used to simulate the adaptive distribution of
endangered maple plants on the Tibetan Plateau [72,73].

There are numerous factors that influence the geographical distribution of plants, and
previous studies have found that climate is a key factor influencing the distribution of plants
at the regional scale [81–83]. The adaptive areas of the seven maple species are mainly
distributed in the southeastern part of the Tibetan Plateau, characterized by a cold and
moist climate influenced by humid air from the Indian Ocean [58]. These areas represent
conditions that are conducive to the survival of these maple species [84]. Many studies
have also been conducted on the response of Tibetan Plateau vegetation to climatic factors.
The high contribution of precipitation (BIO12, BIO14) to species distribution models has
been noted in studies of maple [58,85,86], which is consistent with our study including
A. cappadocicum, A. pectinatum, A. taronense, and A. wardii. When studying the dominant
environmental factors that influence vegetation change on the Tibetan Plateau, the effect
of soil moisture was found to be more pronounced relative to precipitation [87], which is
consistent with our study on A. campbellii.

On the Tibetan Plateau, precipitation was found to play a dominant role in the dis-
tribution of vegetation growth over a significantly larger area when compared to temper-
ature [88]; that is, vegetation change is more closely influenced by precipitation than by
temperature [89]. Moreover, the distribution of vegetation growth was also found to be
driven by hydrothermal factors in more than 50% of the area, with air temperature being
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the primary driver [90]. Nepal is adjacent to the Tibetan Plateau, and temperature (BIO7)
was found to be a key determinant in species distribution in a study of its important plant
species [91], which is consistent with our study including A. sikkimense and A. sterculiaceum.
However, the results obtained vary due to differences in the data used by the researchers,
the study period, the study area, and the method of analysis. Based on the different physio-
logical and ecological characteristics of maple on the Tibetan Plateau, we concluded that
changes in temperature and precipitation are the main drivers of change in the geographical
distribution of vegetation influenced by climate change [92].

The distribution of vegetation on the Tibetan Plateau was modeled using BIOME3
under the scenarios of future climate change and elevated CO2 levels, and the vegetation
zone was found to shift toward the northwest [93]. The forests on the Tibetan Plateau
will expand in a north-westerly direction as a result of warmer temperatures, with the
vegetation boundary moving northwest when the climate warms by 1.5 ◦C. This trend is
likely to strengthen with increased levels of precipitation [94]. Picea likiangensis and Picea
purpurea on the Tibetan Plateau have been projected to increase their range to the northwest
under future climate change scenarios [95]. As the eastern part of the Tibetan Plateau
shows a wetter trend, accompanied by warmer temperatures, this may limit the eastward
expansion of plateau vegetation [96]. Climate change may cause species to shift from low
to high elevations [97], and existing studies have found that most species will migrate and
expand to higher altitudes and latitudes under future warming trends [21,98]. Although
the distribution pattern of species varies under different scenarios, areas with higher
biodiversity and habitat suitability are mainly located in the southern part of the Tibetan
Plateau. As such, most of these species will migrate to the northwest in the future [99,100].
This aligns with the direction of migration and expansion of the seven maple habitats
identified within this study across various future scenarios.

The range of appropriate plant habitats is both increasing and contracting due to
the impact of global climate change. For example, simulations using the revised LPJ
dynamic model found that the geographic distribution of Tibetan Plateau forests and shrub
vegetation will increase in the future [101]. Global warming contributes to wet weather
in some parts of the plateau, which favors the growth of vegetation and an increase in
vegetation cover [102]. As a result, the rejuvenation period of the vegetation in the plateau
region has generally advanced, resulting in increased vegetation cover [89,103]. In addition,
broadleaf forests have increased over a large area [94], which has played a significant
positive role in the trend of Net Primary Productivity (NPP) across the plateau [104,105].
All of the above studies indicate that Tibetan Plateau climate change has a positive effect
on the expansion of adaptive areas in plateau ecosystems, which is consistent with the
results of the present study. Other studies have found that climate change will negatively
impact plant species and ecosystems [106,107]. The decline in the size of adaptive areas in
some scenarios can also be explained by the trends identified in this study for A. wardii and
A. campbellii.

Species vulnerability is commonly evaluated by comparing potential changes in their
ranges [108]. This study found that the adaptive areas for all seven maple species increased
in all three periods under the SSP370 scenario. The changes in adaptive areas and highly
adaptive areas were comprehensively analyzed for the remaining two scenarios. The
SSP370 scenario was found to be the most favorable for the survival of vulnerable maple
vegetation in the Tibetan Plateau compared to the other two scenarios. Habitat and climate
change can significantly hinder plant conservation [109]. Habitat loss and fragmentation
pose significant threats to various species [110]. Due to climate change, the adaptive and
highly adaptive areas for the endangered species A. wardii are the smallest. Thus, it is the
most vulnerable species. Consequently, it is highly likely that this species will become
extinct in the future. There has been a decrease in the adaptive areas for A. campbellii, and
its vulnerability has increased. In the SSP585 scenario, its vulnerability was higher than
that of the endangered A. wardii in the three time periods. This suggests that A. campbellii
is likely to become an endangered species or even face extinction in the future. These
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species require immediate as well as focused attention and protection. A. sikkimense and
A. sterculiaceum are less vulnerable than the other species, exhibiting increased adaptive
areas, which suggests a very high likelihood of a future conservation downgrade to non-
threatened status. In the vast majority of cases, the vulnerability of the remaining three
species was lower than that of A. wardii. This indicates that there is a low probability of
these species becoming endangered in the future, as well as a high probability of them being
classified as near-threatened or even non-threatened. The results of this study indicate
an increase in species vulnerability and a significant decline in habitat suitability under
different future scenarios [111]. The corroboration between the two results indicates the
accuracy of the results from the vulnerability assessment.

To mitigate the unavoidable impacts of climate change on plants [85], effective conser-
vation strategies should be adopted in a timely manner. Nature reserves play a crucial role
in protecting and restoring vulnerable vegetation [112]. We suggest that the spatial pattern
of nature reserves should be optimized and adjusted by considering the distribution and
physiological characteristics of various species, as well as the existing nature reserves. This
would facilitate establishing a system of nature reserves with national park clusters as the
main body, similarly to Yellowstone National Park. The management and protection of
endangered maple species’ germplasm resources and their habitats should be strengthened
in protected areas. This could include the establishment of a modern ex vivo preserved
gene bank and the development of sustainable land use planning. In situ conservation
should be carried out in areas with stable habitats. For habitats unsuitable for vegetation
growth, relocation conservation can be utilized by combining the physiological charac-
teristics of maple and transplanting them to suitable adaptive areas at high altitudes and
latitudes [113].

5. Conclusions

Maple is an important component of temperate deciduous broad-leaved forests, play-
ing an irreplaceable role in maintaining the ecological environment and water resources on
the Tibetan Plateau. The MaxEnt model was used to predict adaptive distribution for maple
plants on the Tibetan Plateau under current and three future scenarios (SSP126, SSP370, and
SSP585). We then evaluated their vulnerability using the landscape fragmentation index
and proposed feasible conservation recommendations. We observed the following: (1) In
all three current and future scenarios, vulnerable maple plants were mainly located in the
southeastern part of the Tibetan Plateau. (2) Vulnerable maple species in the Tibetan Plateau
were subject to the combined effects of temperature and precipitation. The most important
factor for the distribution of Acer cappadocicum Gled., Acer pectinatum Wall., Acer taronense
Hand., and Acer wardii was precipitation, while the distribution of Acer sikkimense Miq.
and Acer sterculiaceum Wall. was more dependent on changes in temperature. However,
the dominant factor was subsoil clay fraction (S_CLAY) for Acer campbellii Hook. (3) In
all three future scenarios, adaptive areas migrate northwest toward higher altitudes and
latitudes. The SSP370 scenario indicated an increase in adaptive areas for all seven vulnera-
ble maple plant species in the Tibetan Plateau. Conversely, the remaining two scenarios
demonstrated a decrease in adaptive areas for some species. (4) A future vulnerability
assessment of maple species on the Tibetan Plateau found that Acer wardii is highly likely
to become extinct, and Acer campbellii Hook. is highly likely to become endangered or even
extinct under the future three scenarios. Acer sikkimense Miq. and Acer sterculiaceum Wall.
are highly likely to be non-threatened, while the remaining three species are likely to be
near threatened or even non-threatened. (5) We recommend efforts targeted toward the
conservation of vulnerable maple species in the Tibetan Plateau region. This study provides
data that support understanding distributional changes and vulnerability assessment of
maple species on the Tibetan Plateau.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f15030491/s1, Figure S1. Contribution of environmental factors
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for the seven maple species: (a) A. campbellii, (b) A. cappadocicum, (c) A. pectinatum, (d) A. sikkimense,
(e) A. sterculiaceum, (f) A. taronense, and (g) A. wardii. Figure S2. AUC training values for the
seven maple species: (a) A. campbellii, (b) A. cappadocicum, (c) A. pectinatum, (d) A. sikkimense, (e) A.
sterculiaceum, (f) A. taronense, and (g) A. wardii. Figure S3. Trends in highly adaptive areas for maple
under different scenarios in the 2050s. Figure S4. Trends in highly adaptive areas for maple under
different scenarios in the 2070s. Figure S5. Trends in highly adaptive areas for maple under different
scenarios in the 2090s. Table S1. Environmental factors used for modeling. Table S2. Classification
criteria for vulnerable maple species. Table S3. AUC values of 7 species of maple vegetation. Table S4.
Adaptive areas (×104 km2) of 7 maple species in contemporary climate. Table S5. Adaptive areas
(×104 km2) of 7 maple species in future climate scenario.
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