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PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY*

M. K. CAMLIBEL\dagger AND A. J. VAN DER SCHAFT\dagger 

Abstract. The relationship of the theory of port-Hamiltonian systems with the mathematical
concept of monotonicity is explored. The earlier introduced notion of incrementally port-Hamiltonian
systems is extended to systems defined with respect to maximal cyclically monotone relations, to-
gether with their generating convex functions. This gives rise to interesting subclasses of incremen-
tally port-Hamiltonian systems, with examples stemming from physical systems modeling as well as
from convex optimization. Furthermore, it is shown how cyclical monotonicity for Dirac structures is
equivalent to separability. An in-depth treatment is given of the composition of maximal monotone
and maximal cyclically monotone relations, where in the latter case the resulting maximal cyclically
monotone relation is shown to be computable through the use of generating functions. The results on
compositionality are employed for steady-state analysis and for a convex optimization approach to
the computation of the equilibria of interconnected incrementally port-Hamiltonian systems. Finally,
the relation to incremental and differential passivity is discussed, and it is shown how incrementally
port-Hamiltonian systems with strictly convex Hamiltonians are equilibrium independent passive.
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1. Introduction. Port-based modeling of physical systems leads to their de-
scription as port-Hamiltonian systems. Such models have turned out to be powerful
for purposes of analysis, simulation, and control; see, e.g., [1, 2, 3]. On the other hand,
the mathematical notion of monotonicity has become more and more important---in
several areas and from multiple points of view. With regard to the current paper the
following two aspects of monotonicity are most relevant. First, monotonicity has been
a key concept in the study of nonlinear electrical circuits and general nonlinear net-
work dynamics; see, e.g., the recent paper [4] for a historical context and references.
From a systems and control point of view this view on monotonicity is intimately re-
lated to notions of incremental passivity [5]. Second, monotonicity is a key concept in
convex optimization (see, e.g., [6] and the references therein), as well as in nonlinear
(convex) analysis (see, e.g., [7, 8, 9]) and in the study of evolution inclusions (see,
e.g., [10] and the references therein).

The present paper takes a closer look at the connections between port-Hamiltonian
systems and monotonicity, and explores overarching notions. Already in our paper
[11], partially inspired by [12], we defined a new class of dynamical systems with in-
puts and outputs, coined as incrementally port-Hamiltonian systems. This was done
by replacing the composition of the Dirac structure and the energy-dissipating rela-
tion in the standard definition of port-Hamiltonian systems by a general (maximal)
monotone relation. Furthermore, it was shown in [11] how monotone relations share
the compositionality property of Dirac structures, and sufficient conditions for the
composition of two maximal monotone relations to be again maximal monotone were

*Received by the editors June 16, 2022; accepted for publication (in revised form) February 1,
2023; published electronically July 17, 2023.

https://doi.org/10.1137/22M1503749
\dagger 
Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of

Groningen, 9700 AK Groningen, The Netherlands (m.k.camlibel@rug.nl, a.j.van.der.schaft@rug.nl).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2193

D
ow

nl
oa

de
d 

02
/2

1/
24

 to
 1

29
.1

25
.1

48
.2

47
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/22M1503749
mailto:m.k.camlibel@rug.nl
mailto:a.j.van.der.schaft@rug.nl


2194 M. K. CAMLIBEL AND A. J. VAN DER SCHAFT

given. Moreover, connections between incrementally port-Hamiltonian systems and
properties of incremental and differential passivity were briefly discussed.

In the current paper this line of investigation is continued in several directions.
First, we pay special attention to incrementally port-Hamiltonian systems defined
with respect to a (maximal) cyclically monotone relation. Maximal cyclically mono-
tone relations are of special interest because they correspond to convex functions, in
the sense that any maximal cyclically monotone relation is given as the subdifferential
of an extended convex function, called the generating function of the relation. Precise
conditions for a Dirac structure and an energy-dissipating relation to be cyclically
monotone are provided. When applied to the composition of a Dirac structure and
an energy-dissipating relation, this yields conditions for a port-Hamiltonian system to
be also incrementally port-Hamiltonian. Second, a full-fledged theory of composition
of maximal monotone relations is developed. In particular, we show how, under mild
technical conditions, the composition of two maximal monotone relations is again a
maximal monotone relation. Furthermore, we show how the composition of two max-
imal cyclically monotone relations is again maximal cyclically monotone and how the
composition can be computed via their generating functions.

While convincing examples of incrementally port-Hamiltonian systems in physi-
cal systems modeling are abundant, they also naturally show up in convex optimiza-
tion. In fact, examples are continuous-time gradient algorithms for convex functions,
and primal-dual gradient algorithms in case of minimization under affine constraints.
Furthermore, it is shown how the equilibrium of interconnections of incrementally
port-Hamiltonian systems defined by maximal cyclically monotone relations can be
computed by convex optimization, thereby extending the innovative work [13]. An-
other connection with convex analysis appears if we assume the Hamiltonian function
of the incrementally port-Hamiltonian system to be convex. This is shown to lead to
shifted passivity [2] of steady states for constant inputs, and in particular to (maximal)
equilibrium independent passivity [13, 14].

Finally, we discuss the relation of the notion of incrementally port-Hamiltonian
systems to incremental and differential passivity . Indeed, as already noted in [11],
(maximal) monotonicity in the definition of an incrementally port-Hamiltonian sys-
tem does not always correspond to incremental passivity (which can be regarded as
the monotonicity of its input-output map). In fact, incrementally port-Hamiltonian
systems will be shown to be incrementally and differentially passive in case the Hamil-
tonian is nonnegative and quadratic. For nonquadratic Hamiltonians the dynamical
properties of incrementally port-Hamiltonian systems remain elusive, which appears
to be related to fundamental issues in the notion of incremental passivity.

The organization of the paper is as follows. In section 2, we briefly review the con-
cepts of Dirac structures and standard port-Hamiltonian systems. Section 3 provides
the necessary preliminaries on monotone relations. This is followed by the defini-
tions of incrementally port-Hamiltonian systems and their subclasses in section 4. The
definitions are illustrated on a number of examples, both from the physical system
domain and from convex optimization. Section 5 deals with the monotonicity prop-
erties of Dirac structures and of energy-dissipating relations. In section 6, we prove
that under mild technical conditions the composition of two (maximal) (cyclically)
monotone relations is (maximal) (cyclically) monotone, and thus the power-conserving
interconnection of incrementally port-Hamiltonian systems is again an incrementally
port-Hamiltonian system. Furthermore, by applying the results to the composition
of Dirac structures and energy-dissipating relations, it follows under which condi-
tions port-Hamiltonian systems are also incrementally port-Hamiltonian. Section 7
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PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY 2195

deals with the structure of the set of steady states of incrementally port-Hamiltonian
systems and with the computation of equilibria of interconnected maximal cyclically
monotone port-Hamiltonian systems via convex optimization, making crucial use of
the results on composition. Finally, section 8 investigates the relations of the notion of
incrementally port-Hamiltonian system with passivity. It is shown that if the Hamil-
tonian is strictly convex, then incrementally port-Hamiltonian systems are (maximal)
equilibrium independent passive. Furthermore, if the Hamiltonian is quadratic-affine
and nonnegative, then incremental passivity and differential passivity result. The con-
clusions and outlook are in section 9.

2. Recap of port-Hamiltonian systems on linear state spaces. In order
to motivate the definition of incrementally port-Hamiltonian systems we first review
the definition of ``ordinary"" port-Hamiltonian systems; cf. [1, 2, 3] for more details
and further ramifications.

Underlying the definition of a port-Hamiltonian system is the geometric notion of
a Dirac structure, which relates the power variables of all the constitutive elements of
the system in a power-conserving manner. Since incrementally port-Hamiltonian sys-
tems will be defined on linear1 spaces we restrict as well attention to port-Hamiltonian
systems on linear state spaces, and correspondingly to constant Dirac structures on
linear spaces.2

Power variables (such as voltages and currents, or forces and velocities), appear
in conjugated pairs, whose products have physical dimension of power. In particular,
let \scrF be a finite-dimensional linear space and \scrE := \scrF \ast be its dual space. We call \scrF 
the space of flow variables and \scrE the space of effort variables. The duality product
for the pair (\scrE ,\scrF ), denoted by \langle \cdot | \cdot \rangle , is given as

\langle e | f\rangle = eT f \in \BbbR 

for e \in \scrE and f \in \scrF , and is the power associated to the pair (f, e). Furthermore on
\scrF \times \scrE an indefinite bilinear form is defined as

\langle \langle (f1, e1), (f2, e2)\rangle \rangle = \langle e1 | f2\rangle + \langle e2 | f1\rangle ,

where (fi, ei) \in \scrF \times \scrE with i \in \{ 1,2\} . For any subspace \scrS \subset \scrF \times \scrE , we denote its
orthogonal companion with respect to this indefinite bilinear form by \scrS \bot \bot .

Throughout the paper, we will work with various spaces of flow/effort variables.
By convention, if \scrF \bullet denotes a certain space of flow variables, then \scrE \bullet := \scrF \ast 

\bullet will
denote the corresponding space of effort variables.

Definition 2.1 (see [16]). Let \scrF be a linear space. A subspace \scrD \subset \scrF \times \scrE is a
constant Dirac structure on \scrF if \scrD =\scrD \bot \bot .

From now on in this paper a Dirac structure will simply refer to a constant Dirac
structure on a linear space.

Remark 2.2. An equivalent definition is the following [1, 15, 16]. A Dirac struc-
ture is any subspace \scrD with the property

\langle e | f\rangle = 0 for all (f, e)\in \scrD ,(2.1)

1In fact, everything can be naturally extended from linear to affine state spaces. Note that the
tangent space to a point in an affine state space is a linear space, which is independent of the base
point taken in the affine space.

2For the extension to port-Hamiltonian systems on manifolds, and the corresponding notions of
Dirac on manifolds, we refer the reader to, e.g., [2, 15, 16].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

1/
24

 to
 1

29
.1

25
.1

48
.2

47
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



2196 M. K. CAMLIBEL AND A. J. VAN DER SCHAFT

which is maximal with respect to this property. (That is, there does not exist a
subspace \scrD \prime with \scrD \subsetneq \scrD \prime such that \langle e | f\rangle = 0 for all (f, e)\in \scrD \prime .)

In the finite-dimensional case (as will be the case throughout this paper) the
maximal dimension of any subspace \scrD satisfying (2.1) equals dim\scrF = dim\scrE . Thus,
equivalently, a Dirac structure is any subspace \scrD satisfying (2.1) together with

dim\scrD =dim\scrF .

The definition of a port-Hamiltonian system on a linear space contains the fol-
lowing ingredients (see, e.g., [2, 3, 15, 17]). First there is a Dirac structure \scrD defined
on the space of all flow and effort variables, that is,

\scrD \subset \scrF x \times \scrF P \times \scrF R \times \scrE x \times \scrE P \times \scrE R.(2.2)

Here (fx, ex) \in \scrF x \times \scrE x are the flow and effort variables linking to the energy-storing
elements, (fR, eR) \in \scrF R \times \scrE R are the flow and effort variables linking to energy-
dissipating elements, and finally (fP , eP ) \in \scrF P \times \scrE P are the flow and effort port
variables (e.g., inputs and outputs). The port-Hamiltonian system is defined by
specifying, next to its Dirac structure \scrD , the constitutive relations of the energy-
dissipating elements and of the energy-storing elements. An energy-dissipating rela-
tion is any subset \scrR \subset \scrF R \times \scrE R with the property

\langle eR | fR\rangle \geqslant 0 for all (fR, eR)\in \scrR .(2.3)

Finally, the constitutive relations of the energy-storing elements are specified by a
Hamiltonian H : \scrX \rightarrow \BbbR , where the state space \scrX is equal to \scrF x. Thus the total
energy while at state x is given as H(x). This defines the following constitutive
relations between the state variables x and the flow and effort vectors (fx, ex) of the
energy-storing elements:3

\.x= - fx and ex =
\partial H

\partial x
(x).(2.4)

Definition 2.3. Consider a Dirac structure (2.2), a Hamiltonian H : \scrX \rightarrow \BbbR ,
and an energy-dissipating relation \scrR \subset \scrF R \times \scrE R as above. Then the dynamics of the
corresponding port-Hamiltonian system on \scrX is given as

(2.5a)

\biggl( 
 - \.x(t), fP (t), - fR(t),

\partial H

\partial x

\bigl( 
x(t)

\bigr) 
, eP (t), eR(t)

\biggr) 
\in \scrD ,

(2.5b) (fR(t), eR(t))\in \scrR 
at (almost) all time instants t.

Equation (2.4) immediately implies the energy balance d
dtH = \partial H

\partial xT (x) \.x= - eTx fx.
Furthermore, the composition

\scrD \rightleftarrows \scrR := \{ (fx, fP , ex, eP )\in \scrF x \times \scrF P \times \scrE x \times \scrE P | 

\exists (fR, eR)\in \scrR s.t. (fx, fP , - fR, ex, eP , eR)\in \scrD \} (2.6)

satisfies by the power-conserving property (2.1) of the Dirac structure and by (2.3)

eTx fx + eTP fP = eTRfR \geqslant 0(2.7)

3Throughout this paper the vector \partial H
\partial x

(x) denotes the column vector of partial derivatives; the

corresponding row vector is denoted as \partial H
\partial xT (x).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY 2197

for all (fx, fP , ex, eP )\in \scrD \rightleftarrows \scrR . Taken together this implies

d

dt
H(x(t))\leqslant eTP (t)fP (t),(2.8)

showing cyclo-passivity4 of any port-Hamiltonian system, and passivity if H :\scrX \rightarrow \BbbR +

[2].
The basic idea in the definition of an incrementally port-Hamiltonian system, as

first introduced in [11], is to replace the composition \scrD \rightleftarrows \scrR of a Dirac structure \scrD 
and an energy-dissipating relation \scrR by a monotone relation \scrM .

3. (Maximal) (cyclically) monotone relations. In this section we provide
the necessary preliminaries about monotone relations; see [9] for further discussion.

Definition 3.1. A relation \scrM \subset \scrF \times \scrE is said to be
\bullet monotone if

\langle e1  - e2 | f1  - f2\rangle \geqslant 0

for all (fi, ei)\in \scrM with i\in \{ 1,2\} ;
\bullet cyclically monotone if

\langle e0 | f0  - f1\rangle + \langle e1 | f1  - f2\rangle + . . .+ \langle em - 1 | fm - 1  - fm\rangle + \langle em | fm  - f0\rangle \geqslant 0

for all m\geqslant 1 and (fi, ei)\in \scrM with i\in \{ 0,1, . . . ,m\} .
Since \langle e0 | f0  - f1\rangle + \langle e1 | f1  - f0\rangle = \langle e0  - e1 | f0  - f1\rangle for all e0, f0, e1, f1, every

cyclically monotone relation is automatically monotone.
A simple example of a monotone relation \scrM \subset \BbbR \times \BbbR is the graph of a monotone

(i.e., nondecreasing), possibly discontinuous, function. For example, the graph of the
discontinuous function \theta :\BbbR \rightarrow \BbbR given by

\theta (x) =

\Biggl\{ 
 - 1 if x< 0,

1 if x\geqslant 0
(3.1)

is a monotone relation. This example motivates the following strengthened definition
of a maximal monotone relation.

Definition 3.2. A relation \scrM \subset \scrF \times \scrE is called maximal (cyclically) monotone
if it is (cyclically) monotone and the implication

\scrM \prime is (cyclically) monotone and \scrM \subset \scrM \prime =\Rightarrow \scrM =\scrM \prime 

holds.

The graph of the discontinuous function \theta in (3.1) is monotone, but not maximal
monotone. In fact, its graph can be enlarged so as to obtain the following maximal
monotone relation:

\scrM =

\left\{     (x, y) | y \in 

\left\{     
\{  - 1\} if x< 0,

[ - 1,1] if x= 0,

\{ 1\} if x> 0

\right\}     .(3.2)

4Cyclo-passivity is a weakened form of passivity where the storage function, in this case denoted
by H, is not required to be nonnegative [2]. (NB: ``cyclo"" has nothing to do with ``cyclically."")

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2198 M. K. CAMLIBEL AND A. J. VAN DER SCHAFT

Note that the function \theta in (3.1) can be regarded as the description of a relay, while
its closure given by the maximal monotone relation \scrM defined in (3.2) defines, for
example, an ideal Coulomb friction characteristic.

A few well-known facts are noteworthy. For continuous functions, monotonicity
of the graph implies maximal monotonicity (see, e.g., [9]). Also, every maximal mono-
tone relation on \BbbR \times \BbbR is maximal cyclically monotone. (Hence the above Coulomb
friction characteristic in (3.2) is maximal cyclically monotone.) In higher dimensions,
however, not every maximal monotone relation enjoys the cyclical monotonicity prop-
erty. Indeed, for example the relation given by\biggl\{ \biggl( \biggl[ 

x
y

\biggr] 
,

\biggl[ 
 - y
x

\biggr] \biggr) 
| x, y \in \BbbR 

\biggr\} 
\subset \BbbR 2 \times \BbbR 2

is maximal monotone but not cyclically monotone. More generally, later on (Proposi-
tion 5.4) we will see that Dirac structures are maximal monotone, but not cyclically
monotone if they are the graph of a nonzero map.

The importance of maximal cyclically monotone relations \scrM lies in the fact that
they correspond to extended real-valued convex functions. This will be briefly re-
viewed next; for more details we refer the reader to [9]. Let \phi : \scrF \rightarrow ( - \infty ,+\infty ] be a
proper5 convex function. Its effective domain is defined by

dom \phi := \{ f \in \scrF | \phi (f)<+\infty \} ,

its subdifferential of \phi at f by

\partial \phi (f) :=

\Biggl\{ 
\{ e\in \scrE | \phi ( \=f)\geqslant \phi (f) + \langle e | \=f  - f\rangle \forall \=f \in \scrF \} if f \in dom (\phi ),

\varnothing otherwise,
(3.3)

and its conjugate \phi  \star : \scrE \rightarrow ( - \infty ,+\infty ] by

\phi  \star (e) := sup\{ \langle e | f\rangle  - \phi (f) | f \in \scrF \} .(3.4)

The conjugate \phi  \star is also convex, while if \phi is lower semicontinuous, then \phi = (\phi  \star ) \star 

and

e\in \partial \phi (f) \Leftarrow \Rightarrow f \in \partial \phi  \star (e).(3.5)

It turns out (see [9, Thm. 12.25]) that a relation \scrM \subset \scrF \times \scrE is maximal cyclically
monotone if and only if there exists a proper lower semicontinuous convex function \phi 
such that

\scrM = \{ (f, e) | e\in \partial \phi (f)\} = \{ (f, e) | f \in \partial \phi  \star (e)\} .(3.6)

In this case, we say that \scrM is generated by \phi , or that \phi is a generating function of the
relation \scrM . Note that \phi is determined by \scrM uniquely up to an additive constant.

As an example, consider the relation given by (3.2). One easily verifies that \scrM 
is generated by the convex function \phi (x) given by x \mapsto \rightarrow | x| . Furthermore,

\phi  \star (y) =

\Biggl\{ 
0 if y \in [ - 1,1],

+\infty if y \not \in [ - 1,1].

5A convex function is called proper if it never takes on the value  - \infty and also is not identically
equal to +\infty .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

1/
24

 to
 1

29
.1

25
.1

48
.2

47
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY 2199

For later purposes we also need the following extension of (3.6); cf. [9, Example 12.27].
Consider a function \psi : \BbbR n \times \BbbR m \rightarrow \BbbR , written as \psi (y, z), y \in \BbbR n, z \in \BbbR m. Suppose
that for every z \in \BbbR m and y \in \BbbR n, the functions \psi (\cdot , z) and \psi (y, \cdot ) are proper lower
semicontinuous extended real-valued convex and concave, respectively, functions. Let
\partial y and \partial z denote the partial subdifferentials (as in (3.3)) with respect to y and z, for
fixed z, respectively, fixed y. Then, the relation

\scrM := \{ (y, z, y\ast , z\ast ) | y\ast \in \partial y\psi ,z\ast \in \partial z( - \psi )\} (3.7)

is maximal monotone.

4. Incrementally port-Hamiltonian systems. In [11] we introduced incre-
mentally port-Hamiltonian systems by replacing in the definition of port-Hamiltonian
systems the composition \scrD \rightleftarrows \scrR by a (maximal) monotone relation \scrM . The definition
of [11] is now extended as follows.

Definition 4.1. Consider a (maximal) (cyclically) monotone relation

\scrM \subset \scrF x \times \scrF P \times \scrE x \times \scrE P ,

and a Hamiltonian H : \scrF x \rightarrow \BbbR . Then the dynamics of the corresponding (maximal)
(cyclically) monotone port-Hamiltonian system is given by the requirement\biggl( 

 - \.x(t), fP (t),
\partial H

\partial x
(x(t)) , eP (t)

\biggr) 
\in \scrM (4.1)

for (almost) all time instants t.

Remark 4.2. Throughout this paper we use the terminology incrementally port-
Hamiltonian system as shorthand for all systems defined with respect to monotone
relations \scrM . Whenever we need to be more precise about the properties of the
monotone relation \scrM we will refer to the system as a (maximal) (cyclically) monotone
port-Hamiltonian system.

Since \langle e1x  - e2x | f1x  - f2x\rangle + \langle e1P  - e2P | f1P  - f2P \rangle \geqslant 0 for all (f ix, f
i
P , e

i
x, e

i
P ) \in \scrM , i=

1,2, it follows by substituting f ix = - \.xi, e
i
x =

\partial H
\partial x (xi) that the dynamics of any incre-

mentally port-Hamiltonian system satisfies the incremental dissipation inequality\biggl\langle 
\partial H

\partial x

\bigl( 
x1

\bigr) 
 - \partial H

\partial x

\bigl( 
x2

\bigr) 
| 
\biggr\rangle 
\.x1  - \.x2 \leqslant \langle e1P  - e2P | f1P  - f2P \rangle (4.2)

for all quadruples (xi, \.xi, f
i
P , e

i
P ) satisfying

\bigl( 
 - \.xi, f

i
P , ,

\partial H
\partial x

\bigl( 
xi
\bigr) 
, eiP

\bigr) 
\in \scrM , i= 1,2. The

consequences of this dynamical inequality, and especially the relation with equilibrium
independent, incremental, and differential passivity, will be discussed in section 8.

Remark 4.3. Note that in case of linear monotone relations and linear energy-
dissipating relations the notions of port-Hamiltonian and incrementally port-Hamiltonian
systems basically coincide. For more information regarding linear maximal monotone
relations, see [18, 19].

4.1. Subclasses of incrementally port-Hamiltonian systems. An appeal-
ing subclass of maximal cyclically monotone port-Hamiltonian systems is defined as
follows. Consider any Hamiltonian H : \scrX \rightarrow \BbbR on the linear state space \scrX , and any
proper convex function K : \scrX \ast \times \scrY \ast \rightarrow \BbbR , with \scrY the linear space of outputs and
\scrU :=\scrY the linear space of inputs. Denote \nabla H(x) := \partial H

\partial x (x). Then the system

\.x\in  - \partial eK(\nabla H(x), u), x\in \scrX , e=\nabla H(x)\in \scrX \ast , u\in \scrY \ast ,

y \in \partial uK(\nabla H(x), u), y \in \scrY ,(4.3)
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2200 M. K. CAMLIBEL AND A. J. VAN DER SCHAFT

is a maximal cyclically monotone port-Hamiltonian system, defined with respect to the
maximal cyclically monotone relation\scrM \subset \scrX \ast \times \scrY \ast \times \scrX \times \scrY given as\scrM = graph (\partial K).

Of course, in case K is differentiable, (4.3) reduces to the ordinary input-state-
output system

\.x= - \partial K
\partial x

(\nabla H(x), u),

y=
\partial K

\partial u
(\nabla H(x), u).(4.4)

A special case occurs if the convex function K(e,u) is of the form

K(e,u) = P (e) - eTBu+
1

2
uTDu,(4.5)

where P is a differentiable convex function of e, B is an n\times m matrix, and the matrix
D=DT > 0 is large enough such that K is convex. This yields the system class

\.x= - \partial P
\partial e

(\nabla H(x)) +Bu,

y= - BT\nabla H(x) +Du.(4.6)

With the help of (3.7) we can furthermore consider the case (4.5) for D = 0, i.e.,
K(e,u) = P (e) - eTBu. Indeed, since P is convex, K is convex in e for fixed u, as
well as concave in u for fixed e, and thus the relation

\scrM =

\biggl\{ 
(e,u, f, y) | f =

\partial P

\partial e
(e) - Bu,y=BT e

\biggr\} 
(4.7)

is maximal monotone. Hence

\.x= - \partial P
\partial e

(\nabla H(x)) +Bu,

y=BT\nabla H(x)(4.8)

is a maximal monotone port-Hamiltonian system (although not cyclically monotone).
Note that the (multidimensional) nonlinear integrator

\.x= u, y=\nabla H(x)(4.9)

is an example of this.
Finally an extended version of (4.8) can be defined as

\.x= J\nabla H(x) - \partial P

\partial e
(\nabla H(x)) +Bu,

y=BT\nabla H(x),(4.10)

where J is a skew-symmetric matrix, and P a convex function as above. It will follow
from Proposition 5.4 that if J \not = 0, then the underlying maximal monotone relation
is not derivable from a convex function, and the system is maximal monotone port-
Hamiltonian but not cyclically monotone port-Hamiltonian.

We will see in the next two subsections that systems of the forms (4.3), (4.4),
(4.5), (4.6), (4.8) arise naturally, both in physical systems modeling and in convex
optimization.
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PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY 2201

4.2. Examples from physical systems. Incrementally port-Hamiltonian sys-
tems are ubiquitous in physical systems modeling, as illustrated by the following
examples.

Example 4.4 (mechanical systems with friction). Consider a mechanical system
subject to friction. The friction characteristic is given by a relation between the
power variables fR (velocity) and eR (friction force). In the case of a scalar friction
characteristic eR =R(fR) the system is port-Hamiltonian if the graph of the function
R : \BbbR \rightarrow \BbbR is contained in the first and the third quadrant. On the other hand, it
is maximal cyclically monotone port-Hamiltonian if the function R is monotonically
nondecreasing and moreover continuous, or otherwise the graph of R is extended by
the interval between the left- and right-limit values at its discontinuities. (A typical
example of the latter is Coulomb friction as mentioned above.)

Mechanical systems without potential energy and with friction derivable from a
Rayleigh function are given in the form (4.8), with x the vector of momenta, e=M - 1p
the vector of velocities (derivable from the quadratic Hamiltonian H(x) = 1

2x
TM - 1x

with mass matrix M), and Rayleigh dissipation function P .

Example 4.5 (systems with constant sources). Physical systems containing non-
zero constant sources are generally incrementally port-Hamiltonian, but need not be
port-Hamiltonian. In order to obtain a port-Hamiltonian formulation the constant
forcing needs to be incorporated into an adapted Hamiltonian. However, this is not
always possible as already illustrated by the nonlinear integrator \.x= u+d, y= dH

dx (x)
for constant d (for instance, a mass moving under the influence of a control force
u and a constant external force d). Precise conditions when this is possible can be
found in [2, pp. 138--139].

Example 4.6 (Van der Pol oscillator). Consider an electrical LC circuit with
(possible nonlinear) capacitors and inductors, together with a single conductor with
current fR = I and voltage eR = V . In case of a linear conductor I =GV,G > 0, the
system is both port-Hamiltonian and maximal monotone port-Hamiltonian. In case
of a nonlinear conductor I =\Phi (V ), the system is port-Hamiltonian if and only if the
graph of the function \Phi is in the first and the third quadrant, while it is maximal
monotone port-Hamiltonian if G is monotonically nondecreasing and continuous, or
otherwise the graph of G is extended by the interval between the left- and right-
limit values at its discontinuities. For example, the conductor characteristic I =
\Phi (V ) := \gamma V 3  - \alpha V , with \alpha ,\gamma > 0, defines a system which is port-Hamiltonian but
not monotone port-Hamiltonian, since the function \Phi is not monotone. On the other
hand, by adding a constant source voltage V0 and constant source current I0 with
V0, I0 such that the resulting tunnel diode characteristic

I =\Phi (V  - V0) + I0

passes through the origin of the (I,V )-plane, we obtain the Van der Pol oscillator.
This system is not port-Hamiltonian, since close to the origin the tunnel diode char-
acteristic is in the second and the fourth quadrant. Furthermore, the Van der Pol
oscillator is also not incrementally port-Hamiltonian since the tunnel diode charac-
teristic is not monotone.

Example 4.7 (nonlinear RC electrical circuits with terminals). Another physical
example of the form (4.3) is the following. Consider an RC electrical circuit, with
nonlinear conductors at the edges and grounded nonlinear capacitors at part of the
nodes, while the remaining nodes are the boundary nodes (terminals). Let the circuit
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2202 M. K. CAMLIBEL AND A. J. VAN DER SCHAFT

graph be defined by an incidence matrix D, which is decomposed, according to the
splitting of the capacitor (``c"") and boundary nodes (``b""), as

D=

\biggl[ 
Dc

Db

\biggr] 
.(4.11)

Furthermore, let the conductors at the edges be given as Ij =Gj(Vj), where Ij , Vj is
the current through, respectively, voltage across, the jth edge, j = 1, . . . ,m. Assume
that the conductance functions Gj are all monotone (although not necessarily in the

first and the third quadrant). This means that there exist convex functions \widehat Kj such

that Gj(Vj) =
d \widehat Kj

dVj
(Vj) (for simplicity, assuming that the functions Gj are continuous

and that \widehat Kj are differentiable). Define the convex functions

\widehat K(V1, . . . , Vm) :=

m\sum 
j=1

\widehat Kj(Vj), K(\psi ) := \widehat K(DT\psi ),(4.12)

where \psi is the vector of nodal voltage potentials. (Recall that by Kirchhoff's voltage
law V = DT\psi .) Then \partial K

\partial \psi is the vector of nodal currents (entering the circuit at
the nodes), which can be split into the nodal currents Ic at the capacitor nodes and
the nodal currents Ib at the boundary nodes. Denoting the vector of charges of
the grounded capacitors by Q, it follows by Kirchhoff's current laws that \.Q =  - Ic.
Furthermore it can be checked that

\partial K

\partial \psi 
=D

\partial \^K

\partial V
(DT\psi ).

Hence the dynamics of the nonlinear RC circuit is given by

\.Q= - Dc
\partial \^K

\partial V
(DT\psi ),

Ib =Db
\partial \^K

\partial V
(DT\psi ).(4.13)

According to the splitting of the nodes in capacitor and boundary nodes write \psi =\Bigl[ 
\psi c

\psi b

\Bigr] 
. Then by specifying the nonlinear grounded capacitors by a Hamiltonian func-

tion H(Q), it follows that \psi c =
\partial H
\partial Q (Q), while the remaining nodal voltage potentials

\psi b can be considered to be the inputs to the system. Hence (4.13) is a maximal
cyclically monotone port-Hamiltonian system of the form (4.3), with state vector Q,
input vector \psi b, and outputs Ib. The generating function of its maximal cyclically
monotone relation is given by the convex function K(\psi c,\psi b).

Same equations hold for a mechanical network with masses at the nodes and
nonlinear dampers at the edges. In this case the state vector Q should be replaced
by the vector of momenta of the masses, while \psi b and Ib are replaced by input
forces applied to the boundary masses and velocities of these boundary masses. The
difference is that in this case the Hamiltonian is necessarily quadratic (kinetic energy).

4.3. Examples from convex optimization. It is well known that convex op-
timization algorithms can be reformulated as zero-finding problems of (cyclically)
monotone relations (see, e.g., [20]). An example of a maximal cyclically monotone
port-Hamiltonian system in the form (4.4) that is not stemming from physical systems
modeling, but instead from optimization, is the following.

Example 4.8 (gradient algorithm in continuous time). Consider the problem of
minimizing a strongly convex function P : \BbbR n \rightarrow \BbbR , that is, the function x \mapsto \rightarrow P (x) - 
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PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY 2203

\sigma 
2 \| x\| 

2
is convex for some \sigma > 0. Suppose that P is twice differentiable. Then, the

Hessian of P satisfies

\nabla 2P (x)\geqslant \sigma I(4.14)

for all x\in \BbbR n. The gradient algorithm in continuous time is given as

\tau \.q= - \partial P
\partial q

(q),(4.15)

where \tau is a positive definite matrix determining the time-scales of the algorithm. This
defines a maximal cyclically monotone port-Hamiltonian system with state vector
x := \tau q, quadratic Hamiltonian H(x) = 1

2x
T \tau  - 1x, and maximal cyclically monotone

relation

\scrM =

\biggl\{ 
(f, e) | f =

\partial P

\partial e
(e)

\biggr\} 
,(4.16)

where e = \partial H
\partial x (x) = \tau  - 1x = q. This can be extended to include inputs and outputs

(e.g., if the gradient algorithm is carried out in a distributed fashion) by consider-
ing the function K(q,u) = P (q)  - qTBu + 1

2u
TDu with D = DT > 0. Thanks to

strong convexity of P (4.14), K is convex for D large enough. The resulting maximal
cyclically monotone port-Hamiltonian system is given as

\.x= - \partial P
\partial q

(q) +Bu, q= \tau  - 1x,

y= - BT q+Du,(4.17)

with maximal cyclically monotone relation

\scrM =

\biggl\{ 
(f, q, y,u) | f =

\partial P

\partial q
(q) - Bu, y= - BT q+Du

\biggr\} 
.(4.18)

In case D = 0 (or any D such that K is convex in q and concave in u) we can
alternatively consider the maximal monotone port-Hamiltonian system (cf. (4.8))

\.x= - \partial P
\partial q

(q) +Bu, q= \tau  - 1x,

y=BT q.(4.19)

Example 4.9 (primal-dual gradient algorithm [21]). Consider the constrained op-
timization problem

min
q;Aq=b

P (q),(4.20)

where P : \BbbR n \rightarrow \BbbR is a convex function, and Aq = b are affine constraints for some
k\times n matrix A and vector b\in \BbbR k. The resulting Lagrangian function is defined as

L(q,\lambda ) := P (q) + \lambda T (Aq - b), \lambda \in \BbbR k,(4.21)

which is convex in q and concave in \lambda . The primal-dual gradient algorithm for solving
the optimization problem in continuous time is given as

\tau q \.q= - \partial L
\partial q

(q,\lambda ) = - \partial P
\partial q

(q) - AT\lambda ,

\tau \lambda \.\lambda =
\partial L

\partial \lambda 
(q,\lambda ) =Aq - b,(4.22)
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2204 M. K. CAMLIBEL AND A. J. VAN DER SCHAFT

where \tau q, \tau \lambda are positive-definite matrices determining the time-scales of the algorithm.
Again, an input vector Bu \in \BbbR n with conjugate output can be added in order to
represent possible interaction with other algorithms or dynamics. Consider thereto the
function K(q,u) = P (q) - qTBu, which is convex in q and concave in u. Furthermore,

consider the skew-symmetric matrix J =
\Bigl[ 

0  - AT

A 0

\Bigr] 
. Together this defines a maximal

monotone port-Hamiltonian system (4.10), with state vector x= (xq, x\lambda ) := (\tau qq, \tau \lambda \lambda ),
quadratic Hamiltonian

H(x) =
1

2
xTq \tau 

 - 1
q xq +

1

2
x\lambda \tau 

 - 1
\lambda x\lambda ,(4.23)

and maximal monotone relation

\scrM =

\Biggl\{ 
(f, e, y, u) | f =

\Biggl[ 
0 AT

 - A 0

\Biggr] 
e - 

\Biggl[ 
\partial P
\partial q (q)

b

\Biggr] 
 - 

\Biggl[ 
B

0

\Biggr] 
u, y=

\bigl[ 
BT 0

\bigr] 
e

\Biggr\} 
,(4.24)

where

e=\nabla H(x) =

\biggl[ 
\tau  - 1
q xq
\tau  - 1
\lambda x\lambda 

\biggr] 
=

\biggl[ 
q
\lambda 

\biggr] 
.(4.25)

For an application, see the optimization of social welfare in a dynamic pricing algo-
rithm for power networks in [22].

5. Monotonicity of Dirac structures and of energy-dissipating relations.
In this section we investigate the (maximal) (cyclical) monotonicity of two building
blocks of the definition of a port-Hamiltonian system: Dirac structure and energy-
dissipating relation. First we show that every Dirac structure is a maximal monotone
relation, which moreover is maximal cyclically monotone if and only if it belongs to a
special subclass of Dirac structures. This special subclass is defined and characterized
as follows [23].

Definition 5.1. A Dirac structure \scrD \subset \scrF \times \scrE is separable if

\langle ea | fb\rangle = 0 for all (fa, ea), (fb, eb)\in \scrD .(5.1)

Separable Dirac structures have the following simple geometric characterization
[23].

Proposition 5.2. Any separable Dirac structure \scrD \subset \scrF \times \scrE can be written as

\scrD =\scrK \times \scrK \bot (5.2)

for some subspace \scrK \subset \scrF , where \scrK \bot = \{ e \in \scrE | \langle e | f\rangle = 0 \forall f \in \scrK \} . Conversely, any
subspace \scrD as in (5.2) for some \scrK \subset \scrF is a separable Dirac structure.

Remark 5.3. A typical example of a separable Dirac structure is provided by
Kirchhoff's current and voltage laws of an electrical circuit. Indeed, take, e.g., \scrF to
be the space of currents, and \scrK the space of currents satisfying Kirchhoff's current
laws. Then \scrE =\scrF \ast is the space of voltages, and \scrK \bot defines Kirchhoff's voltage laws.
Moreover, \langle ea | fb\rangle = 0 for all (fa, ea), (fb, eb)\in \scrK \times \scrK \bot expresses Tellegen's law.

Proposition 5.4. Every Dirac structure \scrD \subset \scrF \times \scrE is maximal monotone. It
is maximal cyclically monotone if and only if \scrD is separable. If \scrD is the graph of a
mapping J : \scrE \rightarrow \scrF or J :\scrF \rightarrow \scrE , then \scrD is cyclically monotone if and only if J = 0.
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PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY 2205

Proof. Let \scrD \subset \scrF \times \scrE be a Dirac structure. Let (fi, ei) \in \scrD with i = 1,2. Since
\langle e | f\rangle = 0 for all (f, e)\in \scrD due to (2.1) in Remark 2.2, we obtain by linearity

\langle e1  - e2 | f1  - f2\rangle = 0.

Therefore, \scrD is monotone on \scrF \times \scrE . Let \scrD \prime be a monotone relation on \scrF \times \scrE such
that \scrD \subseteq \scrD \prime . Let (f \prime , e\prime ) \in \scrD \prime and (f, e) \in \scrD . Since \scrD \prime is monotone, \scrD is a subspace,
and \scrD \subseteq \scrD \prime , we have

0\leqslant \langle e\prime  - \alpha e | f \prime  - \alpha f\rangle = \langle e\prime | f \prime \rangle  - \alpha (\langle e\prime | f\rangle + \langle e | f \prime \rangle )

for any \alpha \in \BbbR . This means that \langle e\prime | f\rangle + \langle e | f \prime \rangle = 0, and hence (f \prime , e\prime ) \in \scrD \bot \bot = \scrD .
Therefore, we see that \scrD \prime \subseteq \scrD , and thus \scrD \prime = \scrD . Consequently, \scrD is maximal
monotone.

Next, let \scrD be separable, i.e., \langle ea | fb\rangle = 0 for all (fa, ea), (fb, eb) \in \scrD . Then it
immediately follows from Definition 3.1 that \scrD is cyclically monotone. Conversely,
let \scrD be cyclically monotone. Then take any (fi, ei) \in \scrD with i \in \{ 0,1,2\} . It follows
from Definition 3.1 that

\langle e0 | f0  - f1\rangle + \langle e1 | f1  - f2\rangle + \langle e2 | f2  - f0\rangle \geqslant 0.

Since \langle e | f\rangle = 0 for all (f, e)\in \scrD due to Remark 2.2, we see that

\langle e0 |  - f1\rangle + \langle e1 |  - f2\rangle + \langle e2 |  - f0\rangle \geqslant 0.(5.3)

As \scrD is a subspace, ( - f0, - e0)\in \scrD . Therefore, we see from (5.3) that

\langle  - e0 |  - f1\rangle + \langle e1 |  - f2\rangle + \langle e2 | f0\rangle \geqslant 0.

By summing this inequality and (5.3), we obtain \langle e1 |  - f2\rangle \geqslant 0. By using the fact
that \scrD is a subspace, we see that \langle e1 | f2\rangle = 0, and thus \scrD is separable.

Finally, let \scrD be the graph of a mapping J : \scrE \rightarrow \scrF . Since \scrD is a Dirac structure,
necessarily J is skew-symmetric. Take again any (fi, ei) \in \scrD with i \in \{ 0,1,2\} , where
now fi = Jei. Then if \scrD is cyclically monotone,

\langle e0 | J(e0  - e1)\rangle + \langle e1 | J(e1  - e2)\rangle + \langle e2 | J(e2  - e0)\rangle \geqslant 0.

Using \langle ei | Jei\rangle = 0 by skew-symmetry of J this yields \langle e1 | Je2\rangle \geqslant 0 for all e1, e2,
which clearly implies J = 0. The proof for the case J :\scrF \rightarrow \scrE follows the same line of
reasoning.

Remark 5.5. As mentioned before, a typical example of a separable Dirac struc-
ture is provided by Kirchhoff's current and voltage laws. In particular, it follows that
for any electrical circuit there exists a convex function specifying Kirchhoff's current
and voltage laws. Indeed, let the circuit graph be given by its incidence matrix D.
Identify as above \scrF with the set of currents f = I through the edges, and \scrE =\scrF \ast with
the set of voltages e= V across the edges. Then Kirchhoff's current laws are given as
DI = 0 and Kirchhoff's voltage laws as V \in im DT . The convex function generating
the resulting separable Dirac structure is given by (see the proof of the subsequent
Proposition 5.6 for similar arguments)

\phi (f) =

\Biggl\{ 
0 if f \in kerD,

+\infty otherwise.
(5.4)
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An arbitrary energy-dissipating relation need not be a (maximal) monotone re-
lation, as was illustrated by some of the examples in the previous section. A special
type of energy-dissipating relation that is a maximal cyclically monotone relation is
that of a linear energy-dissipating relation which is of maximal dimension. Such an
energy-dissipating relation in the port-variables (f, e) \in \scrF \times \scrE can be represented as
a subspace

\scrR = \{ (f, e)\in \scrF \times \scrE | Rff  - Ree= 0\} ,(5.5)

where the matrices Rf ,Re satisfy the property

RfR
T
e =ReR

T
f \geqslant 0,(5.6)

together with the dimensionality condition

rank
\bigl[ 
Rf Re

\bigr] 
=dim\scrF .(5.7)

First, this is seen to define an energy-dissipating relation as follows. By the dimen-
sionality condition (5.7) and the equality in (5.6) we can equivalently rewrite the
kernel representation (5.5) as an image representation

f =RTe \lambda , e=RTf \lambda .(5.8)

That is, any pair (f, e) satisfying (5.5) also satisfies (5.8) for some \lambda , and conversely,
every (f, e) satisfying (5.8) for some \lambda also satisfies (5.5). Hence by (5.6) for all (f, e)
satisfying (5.5),

eT f =
\bigl( 
RTf \lambda 

\bigr) T
RTe \lambda = \lambda TRfR

T
e \lambda \geqslant 0.(5.9)

A subspace \scrR \subset \scrF \times \scrE as in (5.5) where Rf ,Re satisfy (5.6) and (5.7) is called a linear
resistive structure. A linear resistive structure can be regarded as a geometric object
having properties which are opposite to those of a Dirac structure, in the sense that a
Dirac structure can be regarded as the generalization of a skew-symmetric map, while
a linear resistive relation is the generalization of a positive semidefinite symmetric
map. (Geometrically \scrR defines a Lagrangian subspace of the linear space \scrF \times \scrE .)

It turns out that every linear resistive structure \scrR \subset \scrF \times \scrE is maximal cyclically
monotone. To elaborate further, note that there exists R=RT \geqslant 0 such that

ReRR
T
e =ReR

T
f(5.10)

due to [24, Thm. 2.5]. In general, R is not unique, but the matrix RRTe does not
depend on the choice of R = RT \geqslant 0 satisfying (5.10). Now, define the extended
real-valued convex function

\phi \scrR (f) =

\Biggl\{ 
1
2f

TRf if f \in im RTe ,

+\infty otherwise.
(5.11)

With these preparations, we obtain

Proposition 5.6. Let \scrR \subset \scrF \times \scrE be a linear resistive structure. Then \scrR is
generated by \phi \scrR and hence is maximal cyclically monotone.
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PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY 2207

Proof. Clearly, \phi \scrR is a proper lower semicontinuous function with dom \phi = im RTe
and

\partial \phi \scrR (f) =

\Biggl\{ 
Rf +kerRe if f \in im RTe ,

\varnothing otherwise.
(5.12)

Now, we claim that \scrR is generated by \phi \scrR and hence maximal cyclically monotone.
To verify this claim, one needs to show that

\scrR = \{ (f, e) | e\in \partial \phi \scrR (f)\} .(5.13)

To see this, first let (f, e) \in \scrR . Then, we see from (5.8) that f = RTe \lambda and e = RTf \lambda 
for some \lambda . Note that

im (RRTe  - RTf )\subseteq kerRe(5.14)

due to (5.10). As such there must exist \mu \in kerRe such that RTf \lambda = RRTe \lambda + \mu .
Therefore, it follows from (5.12) that e\in \partial \phi \scrR (f). This proves that

\scrR \subseteq \{ (f, e) | e\in \partial \phi \scrR (f)\} .(5.15)

To see that the reverse inclusion also holds, let (f, e) be such that e\in \partial \phi \scrR (f). From
(5.12), we see that there exist \lambda and \mu \in kerRe such that f =RTe \lambda and e=RRTe \lambda +\mu .
Since kerRe \subseteq RTf kerRTe due to (5.5) and (5.8), it follows from (5.14) that e =

RTf (\lambda + \theta ), where \theta \in kerRTe . Note that f =RTe \lambda =RTe (\lambda + \theta ). Consequently, we see
that

\{ (f, e) | e\in \partial \phi \scrR (f)\} \subseteq \scrR ,(5.16)

which, together with (5.15), proves (5.13).

Of course, apart from linear resistive structures, there are also nonlinear energy-
dissipating relations that are maximal monotone or even maximal cyclically monotone.
In the latter case, the energy-dissipating relation \scrR is given as

\scrR = \{ (f, e) | e\in \partial P (f)\} (5.17)

for some extended convex function P (f). In a mechanical system context such func-
tions are often referred to as Rayleigh dissipation functions.

One of the consequences of Theorem 6.2 in the next section will be that the com-
position of a Dirac structure with a linear resistive structure (or, under technical con-
ditions, with a maximal monotone energy-dissipating relation) is maximal monotone,
and consequently the corresponding port-Hamiltonian system is a maximal monotone
port-Hamiltonian system as well; cf. Proposition 6.4.

6. Composition of monotone relations. A cornerstone of port-Hamiltonian
systems theory is the fact that the power-conserving interconnection of port-
Hamiltonian systems defines again a port-Hamiltonian system. This in turn is based
on the fact that the composition of Dirac structures is again a Dirac structure. In this
section we will show that the same property holds for incrementally port-Hamiltonian
systems. This follows from the corresponding compositionality property of (maximal)
(cyclically) monotone relations.
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2208 M. K. CAMLIBEL AND A. J. VAN DER SCHAFT

Let us start by considering two monotone relations \scrM a \subset \scrF a \times \scrF \times \scrE a \times \scrE and

\scrM b \subset \scrF b\times \scrF \times \scrE b\times \scrE . Define the composition of \scrM a and \scrM b, denoted as \scrM a

\scrF \times \scrE 

\leftrightarrows \scrM b,
as before, by

\scrM a

\scrF \times \scrE 

\rightleftarrows \scrM b := \{ (fa, fb, ea, eb)\in \scrF a \times \scrF b \times \scrE a \times \scrE b | 
\exists (f, e)\in \scrF \times \scrE s.t. (fa, f, ea, e)\in \scrM a, (fb, - f, eb, e)\in \scrM b\} .(6.1)

Thus the composition of \scrM a and \scrM b is obtained by imposing the interconnection
constraints

f1 = - f2, e1 = e2(6.2)

on the vectors (fa, f1, ea, e1)\in \scrM a and (fb, f2, eb, e2)\in \scrM b and looking at the resulting
vectors (fa, fb, ea, eb)\in \scrF a \times \scrF b \times \scrE a \times \scrE b.

Whenever interconnection flow and effort spaces \scrF and \scrE are clear from the
context, we will simply write \scrM a\leftrightarrows \scrM b. The following result is straightforward.

Proposition 6.1. Let \scrM a \subset \scrF a \times \scrF \times \scrE a \times \scrE and \scrM b \subset \scrF b \times \scrF \times \scrE b \times \scrE be
(cyclically) monotone relations. Then, \scrM a\rightleftarrows \scrM b \subset \scrF a \times \scrF b \times \scrE a \times \scrE b is (cyclically)
monotone.

Proof. Suppose that both \scrM a and \scrM b are monotone relations. Let

(fa, fb, ea, eb), ( \=fa, \=fb, \=ea, \=eb)\in \scrM a\rightleftarrows \scrM b.

Then, there exist (f, e), ( \=f, \=e) \in \scrF \times \scrE such that (fa, f, ea, e), ( \=fa, \=f, \=ea, \=e) \in \scrM a and
(fb, - f, eb, e), ( \=fb, - \=f, \=eb, \=e)\in \scrM b. From monotonicity of \scrM a and \scrM b, we have\biggl\langle \biggl[ 

ea  - \=ea
e - \=e

\biggr] 
| 
\biggl[ 
fa  - \=fa
f  - \=f

\biggr] \biggr\rangle 
\geqslant 0 and

\biggl\langle \biggl[ 
eb  - \=eb
e - \=e

\biggr] 
| 
\biggl[ 
fb  - \=fb
 - f + \=f

\biggr] \biggr\rangle 
\geqslant 0.

By adding these left-hand sides of these inequalities, we obtain\biggl\langle \biggl[ 
ea  - \=ea
eb  - \=eb

\biggr] 
| 
\biggl[ 
fa  - \=fa
fb  - \=fb

\biggr] \biggr\rangle 
\geqslant 0.

This means that \scrM a \rightleftarrows \scrM b is monotone. The cyclical monotone case follows in a
similar fashion.

Also the composition of two maximal monotone relations turns out to be maximal
monotone, provided certain (mild) regularity conditions are met. To elaborate on this,
we first introduce some nomenclature and review some known facts about maximal
monotone relations.

For a set S \in \scrF , cl S denotes its closure. The relative interior of a convex set
C \subseteq \scrF is denoted by rint C. A set S \subseteq \scrF is said to be nearly convex if there exists a
convex set C \subseteq \scrF such that C \subseteq S \subseteq cl C. For a nearly convex set S, in general, there
can be multiple convex sets C satisfying C \subseteq S \subseteq cl C. For any such set C, however,
we have that cl C = cl S. As such, cl S is convex if S is nearly convex. Based on this
observation, one can extend the notion of relative interior to nearly convex sets by
defining rint S = rint (cl S).

Let S \subseteq \scrF 1\times \scrF 2\times \scrE 1\times \scrE 2. The projection of S on \scrF 1\times \scrF 2, denoted by \Pi (S,\scrF 1\times \scrF 2),
is defined as

\Pi (S,\scrF 1 \times \scrF 2) := \{ (f1, f2) | \exists (e1, e2)\in \scrE 1 \times \scrE 2 s.t. (f1, f2, e1, e2)\in S\} .

We define projections of S on \scrE 1 \times \scrE 2, \scrF 1 \times \scrE 2, \scrF 1, and \scrE 2 in a similar fashion.
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PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY 2209

Let S \subseteq \scrF \times \scrG be a nearly convex set. Then, both \Pi (S,\scrF ) and \Pi (S,\scrG ) are nearly
convex sets. Furthermore, one can show that

rint S = \{ (f, g) | f \in rint \Pi (S,\scrF ) and g \in rint \Pi (S \cap (\{ f\} \times \scrG ),\scrG )\} .(6.3)

Let \scrM \subset \scrF \times \scrE be a maximal monotone relation. Then, the projections \Pi (\scrM ,\scrF )
and \Pi (\scrM ,\scrE ) are nearly convex sets [9, Thm. 12.41].

Let L : \scrG \rightarrow \scrH be a linear map, and let L\ast : \scrH \ast \rightarrow \scrG \ast denote its adjoint. For
maximal monotone relations \scrM \subseteq \scrH \times \scrH \ast and \scrN \subseteq \scrG \times \scrG \ast , define \scrM L \subseteq \scrG \times \scrG \ast and

L\scrN \subseteq \scrH \times \scrH \ast by

\scrM L = \{ (g,L\ast h\ast ) | (Lg,h\ast )\in \scrM \} ,
L\scrN = \{ (Lg,h\ast ) | (g,L\ast h\ast )\in \scrN \} .

From [9, Thm. 12.43], we know that \scrM L is maximal monotone if

im L\cap rint \Pi (\scrM ,\scrH ) \not =\varnothing ,(6.4)

and that L\scrN is maximal monotone if

im L\ast \cap rint \Pi (\scrN ,\scrG \ast ) \not =\varnothing .(6.5)

Furthermore, if \scrM is generated by \phi :\scrH \rightarrow ( - \infty ,+\infty ] and

im L\cap rint dom (\phi ) \not =\varnothing ,(6.6)

then \scrM L is generated by \phi \circ L given by h \mapsto \rightarrow \phi (Lh). Dually, if \scrN is generated by
\psi : \scrG \rightarrow ( - \infty ,+\infty ] and

im L\ast \cap rint dom (\psi  \star ) \not =\varnothing ,(6.7)

then L\scrN is generated by the function (\psi  \star \circ L\ast ) \star .

Theorem 6.2. Let \scrM a \subset \scrF a\times \scrF \times \scrE a\times \scrE and \scrM b \subset \scrF b\times \scrF \times \scrE b\times \scrE be maximal
monotone relations. Let

Cf = \{ (f1, f2) | f1 \in \Pi (\scrM a,\scrF ) and f2 \in \Pi (\scrM b,\scrF )\} 

and

Ce = \{ (e1, e2) | \exists f s.t. (f, e1)\in \Pi (\scrM a,\scrF \times \scrE ) and ( - f, e2)\in \Pi (\scrM b,\scrF \times \scrE )\} .

Suppose that there exists ( \=f, \=e)\in \scrF \times \scrE such that
(i) ( \=f, - \=f)\in rint Cf and
(ii) (\=e, \=e)\in rint Ce.

Then, \scrM a\rightleftarrows \scrM b \subset \scrF a \times \scrF b \times \scrE a \times \scrE b is a maximal monotone relation.

Proof. First, we give an alternative characterization of \scrM a \rightleftarrows \scrM b. Let \scrM \subset 
\scrF a \times \scrF \times \scrF b \times \scrF \times \scrE a \times \scrE \times \scrE b \times \scrE be defined by

\scrM := \{ (fa, f1, fb, f2, ea, e1, eb, e2) | (fa, f1, ea, e1)\in \scrM a and (fb, f2, eb, e2)\in \scrM b\} .

Since \scrM a and \scrM b are both maximal monotone, so is \scrM . Let A : \scrF a \times \scrF \times \scrF b \rightarrow 
\scrF a \times \scrF \times \scrF b \times \scrF be the linear map given by

(fa, f, fb) \mapsto \rightarrow (fa, f, fb, - f),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2210 M. K. CAMLIBEL AND A. J. VAN DER SCHAFT

and let B :\scrF a \times \scrF \times \scrF b\rightarrow \scrF a \times \scrF b be the linear map given by

(fa, f, fb) \mapsto \rightarrow (fa, fb).

Note that A\ast : \scrE a \times \scrE \times \scrE b \times \scrE \rightarrow \scrE a \times \scrE \times \scrE b is given by

(ea, e1, eb, e2) \mapsto \rightarrow (ea, e1  - e2, eb)

and B\ast : \scrE a \times \scrE b\rightarrow \scrE a \times \scrE \times \scrE b is given by

(ea, eb) \mapsto \rightarrow (ea,0, eb).

Now, we claim that

\scrM a\rightleftarrows \scrM b =B (\scrM A).

To see this, note that

\scrM A = \{ (fa, f, fb, ea, e1  - e2, eb) | (fa, f, fb, - f, ea, e1, eb, e2)\in \scrM \} 
= \{ (fa, f, fb, ea, e1  - e2, eb) | (fa, f, ea, e1)\in \scrM a

and (fb, - f, eb, e2)\in \scrM b\} 

and

B(\scrM A) = \{ (fa, fb, ea, eb) | \exists f \in \scrF s.t. (fa, f, fb, ea,0, eb)\in \scrM a\} 
= \{ (fa, fb, ea, eb) | \exists (f, e)\in \scrF \times \scrE s.t. (fa, f, ea, e)\in \scrM a

and (fb, - f, eb, e)\in \scrM b\} 
=\scrM a\rightleftarrows \scrM b.(6.8)

where A :\scrF a\times \scrV a\times \scrF b\times \scrV b\rightarrow \scrF a\times \scrV a\times \scrV c\times \scrV d\times \scrF b\times \scrV b is the linear map given by

(fa, va, fb, vb) \mapsto \rightarrow (fa, va, va, vb, fb, vb).

Since \scrM is maximal monotone, we see from (6.4) that \scrM A is maximal monotone if

im A\cap rint \Pi (\scrM ,\scrF a \times \scrF \times \scrF b \times \scrF ) \not =\varnothing .(6.9)

From (6.3), it follows that

rint SA = \{ (fa, f1, fb, f2) | (f1, f2)\in rint \Pi (SA,\scrF \times \scrF )

and (fa, fb)\in rint \Pi (SA \cap (\scrF a \times \{ f1\} \times \scrF b \times \{ f2\} ),\scrF a \times \scrF b)\} ,

where SA =\Pi (\scrM ,\scrF a\times \scrF \times \scrF b\times \scrF ). By observing that \Pi (SA,\scrF \times \scrF ) =\Pi (\scrM ,\scrF \times \scrF ) =
Cf , we see that the condition (6.9) is equivalent to the existence of \=f \in \scrF such that
( \=f, - \=f)\in rint Cf . Therefore, \scrM A is maximal monotone due to (i). As such, it follows
from (6.5) that B(\scrM A), and thus \scrM a\rightleftarrows \scrM b, is maximal monotone if

im B\ast \cap rint \Pi (\scrM A,\scrE a \times \scrE \times \scrE b) \not =\varnothing .(6.10)

To verify this condition, let SB =\Pi (\scrM A,\scrE a \times \scrE \times \scrE b), and note that

rint SB = \{ (ea, e, eb) | e\in rint \Pi (SB ,\scrE )
and (ea, eb)\in rint \Pi (SB \cap (\scrE a \times \{ e\} \times \scrE b))\} .
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PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY 2211

Therefore, (6.10) holds if and only if 0\in rint \Pi (SB ,\scrE ). Note that

\Pi (SB ,\scrE ) = \{ e | \exists (e1, e2) s.t. e= e1  - e2\} .

As such, (ii) is equivalent to 0\in rint \Pi (SB ,\scrE ) and hence (6.10). Consequently, \scrM a\rightleftarrows 
\scrM b is maximal monotone.

Example 6.3. Consider an incrementally port-Hamiltonian system with maximal
monotone relation \scrM . Let us split fP into a vector u and a vector z, and correspond-
ingly eP into a vector y and w. Then ``terminate"" the equally dimensioned vectors z
and w on a maximal monotone relation \scrM \prime by imposing the constraint ( - z,w)\in \scrM \prime .
Under the assumptions specified in Theorem 6.2 the resulting system is again an in-
crementally port-Hamiltonian system with respect to the maximal monotone relation
that is determined by \scrM and \scrM \prime . This is very similar to the setting in [12], where
the interconnection of a linear passive system to a maximal monotone relation was
considered.

Of course, by repeated application of Theorem 6.2 it can be shown that the in-
terconnection of multiple maximal monotone relations is also maximal monotone.
Furthermore, Theorem 6.2 can be extended to certain interconnections other than
the standard interconnection f1 =  - f2, e1 = e2 in (6.2). Especially the extension to
the ``feedback"" interconnection

f1 = e2 and e1 = - f2(6.11)

of maximal monotone relations \scrM a and \scrM b is of interest. Denote the variables
associated with \scrM a by fa, ea, f1, e1, and those of \scrM b by fb, eb, f2, e2. Then the inter-
connection (6.11) can be realized by first defining the auxiliary system (``symplectic
gyrator"")

f \prime 1 = - e\prime 2, e\prime 1 = f \prime 2,(6.12)

which obviously defines a maximal monotone relation (in fact, a Dirac structure), and
then interconnecting this auxiliary system to \scrM a and \scrM b by the standard intercon-
nections

f1 = - f \prime 1, e1 = e\prime 1,  - f2 = f2, e
\prime 
2 = e2.

Hence maximal monotonicity is also preserved under the ``feedback"" interconnection
(6.11).

Finally, an important consequence of Theorem 6.2 is that a port-Hamiltonian
system with Dirac structure \scrD and energy-dissipating relation\scrR is maximal monotone
port-Hamiltonian provided that \scrD \rightleftarrows \scrR is maximal monotone. In particular we have
the following result.

Proposition 6.4. Let \scrR \subset \scrF \times \scrE be a linear resistive structure and \scrD \subset 
\scrF \prime \times \scrF \times \scrE \prime \times \scrE be a Dirac structure. Then, the composition \scrD \rightleftarrows \scrR is maximal
monotone. Therefore port-Hamiltonian systems with linear resistive structures are
maximal monotone.

Proof. Note first that\scrR is maximal monotone. Since both \scrD and\scrR are subspaces,
the sets \Pi (\scrD ,\scrF ), \Pi (\scrR ,\scrF ), \Pi (\scrD ,\scrF \times \scrE ), and \Pi (\scrR ,\scrF \times \scrE ) =\scrR are all subspaces. As
such, the conditions (i) and (ii) of Theorem 6.2 are trivially satisfied by the choices
\=f = 0= \=e. Consequently, the composition \scrD \rightleftarrows \scrR is maximal monotone.
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2212 M. K. CAMLIBEL AND A. J. VAN DER SCHAFT

Remark 6.5. Monotonicity is closely related to contraction. Consider a monotone
relation \scrM \subset \scrF \times \scrE in the vectors f \in \scrF and e\in \scrE . Define now the scattering vectors
v, z by

f =
1\surd 
2
(v - z), e=

1\surd 
2
(v+ z).

Then the monotonicity property \langle e1  - e2 | f1  - f2\rangle \geqslant 0 is immediately seen to be
equivalent to the contraction property

\| z1  - z2\| 2 \leqslant \| v1  - v2\| 2.

Furthermore, the interconnection constraints f1 =  - f2, e1 = e2 of two monotone
relations translate into the constraints v2 = z1, v1 = z2 for the corresponding scattering
vectors, and the resulting composition into the Redheffer star product of the two
contractions; cf. [25] for similar developments in the context of composition of Dirac
structures.

Not only is maximal monotonicity preserved under composition by Theorem 6.2,
but the same holds for maximal cyclical monotonicity, as stated in the following the-
orem. Furthermore, the generating function of the composition can be computed on
the basis of the generating functions of the constitutive maximal cyclically monotone
relations.

Theorem 6.6. Let \scrM a \subset \scrF a \times \scrF \times \scrE a \times \scrE and \scrM b \subset \scrF b \times \scrF \times \scrE b \times \scrE be maxi-
mal cyclically monotone relations that are generated by proper lower semicontinuous
convex functions \phi a :\scrF a\times \scrF \rightarrow ( - \infty ,+\infty ] and \phi b :\scrF b\times \scrF \rightarrow ( - \infty ,+\infty ], respectively.
Let

Cf = \{ (f1, f2) | f1 \in \Pi (dom \phi a,\scrF ) and f2 \in \Pi (dom \phi a,\scrF )\} 

and

Ce = \{ (e1, e2) | \exists f s.t. (f, e1)\in dom \phi a and ( - f, e2)\in dom \phi b\} .

Suppose that there exists ( \=f, \=e)\in \scrF \times \scrE such that
(i) ( \=f, - \=f)\in rint Cf and
(ii) (\=e, \=e)\in rint Ce.

Then, \scrM a\rightleftarrows \scrM b \subset \scrF a \times \scrF b \times \scrE a \times \scrE b is a maximal cyclically monotone relation that
is generated by \theta  \star :\scrF a \times \scrF b\rightarrow ( - \infty ,+\infty ], where \theta : \scrE a \times \scrE b\rightarrow ( - \infty ,+\infty ] is given by

\theta (ea, eb) = \phi  \star (ea,0, eb)

and \phi :\scrF a \times \scrF \times \scrF b\rightarrow ( - \infty ,+\infty ] is given by

\phi (fa, f, fb) = \phi a(fa, f) + \phi b(fb, - f).

Proof. Let \scrM , A, B, \scrM A, and B(\scrM A) be as in the proof of Theorem 6.2. Note
that \scrM is generated by the proper lower semicontinuous convex function \phi ab : \scrF a \times 
\scrF \times \scrF b \times \scrF \rightarrow ( - \infty ,+\infty ] given by

\phi ab(fa, f1, fb, f2) = \phi a(fa, f1) + \phi b(fb, f2).
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PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY 2213

For a proper convex function \Psi : \scrG \rightarrow ( - \infty ,+\infty ] and a linear map L : \scrH \rightarrow \scrG , let
\psi \circ L :\scrH \rightarrow ( - \infty ,+\infty ] denote the function given by h \mapsto \rightarrow \psi (Lh). It follows from the
definition of \scrM A that (fa, f, fb, ea, e, eb) if and only if

(ea, e, eb)\in A\ast \partial \phi ab
\bigl( 
A(fa, f, fb)

\bigr) 
.(6.13)

Arguments similar to those employed in the proof Theorem 6.2 show that (i) is equiv-
alent to

im A\cap rint dom \phi ab \not =\varnothing .

Then, it follows from [26, Prop. 5.4.5] that A\ast \partial \phi ab(Ax) = \partial (\phi ab \circ A)(x) for all
x\in \scrF a\times \scrF \times \scrF b. Since \phi ab is lower semicontinuous, so is \phi ab \circ A. As such, we see from
(6.13) that \scrM A is maximal cyclically monotone and generated by \phi = \phi ab\circ A. Now, it
follows from (6.8), the definition of B(\scrM A), and (3.5) that (fa, fb, ea, eb)\in \scrM a\rightleftarrows \scrM b

if and only if

(fa, fb)\in B\partial \phi  \star 
\bigl( 
B\ast (ea, eb)

\bigr) 
(6.14)

One can show that (ii) is equivalent to

im B\ast \cap rint dom \phi  \star \not =\varnothing 

by employing arguments similar to those in the proof of Theorem 6.2. Then, it follows
from [26, Prop. 5.4.5] that B\partial \phi  \star (B\ast y) = \partial (\phi  \star \circ B\ast )(y) for all y \in \scrF a\times \scrF b. Since \phi  \star is
lower semicontinuous, so is \phi  \star \circ B\ast . Consequently, (6.14) and (3.5) imply that \scrM a\rightleftarrows 
\scrM b is maximal cyclically monotone and generated by (\phi  \star \circ B\ast ) \star . Since \theta = \phi  \star \circ B\ast ,
this concludes the proof.

Example 6.7. Consider two gradient algorithms in continuous time with external
forcing terms, as given in (4.17):

\tau i \.qi = - \partial Pi
\partial qi

(qi) +Biui,

yi = - BTi qi +Diui, i= 1,2.(6.15)

Consider the coupled gradient algorithm that results from the interconnection y1 =
y2, u1 = - u2 := u. According to Theorem 6.6 the interconnection is again a maximal
cyclically monotone port-Hamiltonian system, whose generating function K(q1, q2)
can be computed on the basis of the generating functions

Ki(qi, ui) = Pi(qi) - qTi Biui +
1

2
uTi Diui, i= 1,2,

of the two gradient algorithms. In fact, following Theorem 6.6 we consider

\phi (q1, u, q2) :=K1(q1, u) +K2(q2, - u)

= P1(q1) + P2(q2) - qT1 B1u+ qT2 B2u+
1

2
uT1D1u1 +

1

2
uT2D2u2,

compute its conjugate, substitute y = 0 (with y the vector dual to u), and then take
the conjugate K(q1, q2) of the resulting convex function. A direct computation yields

K(q1, q2) = P1(q1) + P2(q2) - 
1

2

\bigl( 
qT1 B1  - qT2 B2

\bigr) 
(D1 +D2)

 - 1
\bigl( 
BT1 q1  - BT2 q2

\bigr) 
.

Hence the coupling of the two gradient algorithms computes the minimum ofK(q1, q2).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

1/
24

 to
 1

29
.1

25
.1

48
.2

47
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



2214 M. K. CAMLIBEL AND A. J. VAN DER SCHAFT

7. Steady-state analysis of incrementally port-Hamiltonian systems. In
this section we utilize the theory from the previous section to analyze the set of steady
states of an incrementally port-Hamiltonian system, as well as the equilibria of the
interconnection of incrementally port-Hamiltonian systems. For simplicity of exposi-
tion, we will denote throughout this section \scrY := \scrF P ,\scrU := \scrE P , and correspondingly
set y= fP , u= eP .

7.1. The steady-state input-output relation. First recall the notion of steady-
state input-output relation of an input-state-output system

\Sigma :
\.x = f(x,u), x\in \BbbR n, u\in \BbbR m,

y = h(x,u), y \in \BbbR m.
(7.1)

Consider any constant input vector \=u for which there exists an \=x\in \BbbR n with 0 = f(\=x, \=u),
and denote \=y= h(\=x, \=u). Then the set of all such pairs (\=y, \=u), i.e.,

\scrG = \{ (\=y, \=u) | \exists \=x, 0 = f(\=x, \=u), \=y= h(\=x, \=u)\} ,(7.2)

is called the steady-state input-output relation of \Sigma ; cf. [2].
In the case of an incrementally port-Hamiltonian system more can be said about

\scrG . First we note the following direct applications of Theorems 6.2 and 6.6.

Corollary 7.1. Consider an incrementally port-Hamiltonian system with un-
derlying maximal monotone relation \scrM \subset \scrF \times \scrY \times \scrE \times \scrU . Assume \scrM satisfies

0\in rint \Pi (\scrM ,\scrF )(7.3)

and there exists \=e such that

\=e\in rint \{ e | (0, e)\in \Pi (\scrM ,\scrF \times \scrE )\} .(7.4)

Then

\scrM s := \{ (y,u) | \exists e such that (0, y, e, u)\in \scrM \} (7.5)

is a maximal monotone relation. Furthermore, if the maximal monotone relation is
cyclically monotone, and thus is given as the graph of the subdifferential of some
convex function K(e,u), then

\scrM s = graph (\partial Ks),(7.6)

where the convex function Ks : \scrU \rightarrow \BbbR is given as

Ks(u) =K \star (0, u),

with K \star (f,u) the partial conjugate of K(e,u) with respect to e, i.e.,

K \star (f,u) := sup
e

\langle f | e\rangle  - K(e,u).(7.7)

Proof. First note that \scrM s is the composition of \scrM with the trivial maximally
monotone relation \{ (0, e) | e \in \scrE \} . Thus in order to apply Theorem 6.2 we need to
show that there exists ( \=f, \=e)\in \scrF \times \scrE such that (following the notation of Theorem 6.2)

(i) ( \=f, - \=f)\in rint \scrD f ,

(ii) (\=e, \=e)\in rint \scrD e,
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PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY 2215

where \scrD f = \Pi (\scrM ,\scrF ) \times 0 and \scrD e = \{ (e1, e2) | (0, e1) \in \Pi (\scrM ,\scrF \times \scrE )\} . It is easily
seen that conditions (i), (ii) reduce to (7.3), (7.4). The rest of the proof follows from
Theorem 6.6.

It is directly seen that the steady-state input-output relation \scrG of the incremen-
tally port-Hamiltonian system with maximal monotone relation \scrM is contained in
the maximal monotone relation \scrM s. Indeed, if (\=y, \=u) \in \scrG , then there exists \=x such
that (0, \=y, \partial H\partial x (\=x), \=u) \in \scrM , and thus (\=y, \=u) \in \scrM s. Consequently, \scrG is always mono-
tone. However \scrM s may be larger than \scrG , since there may not exist for every e such
that (0, e, \=y, \=u) \in \scrM an \=x such that e = \partial H

\partial x (\=x). A simple example is provided by
the nonlinear integrator (cf.(4.9)) \.x = u, y = \partial H

\partial x (x). This is a maximal monotone
port-Hamiltonian system with

\scrM = \{ (f, y, e, u) | f = - u, y= e\} ,

and thus \scrM s = \{ (y,u) | u = 0\} . If H is such that the mapping x \mapsto \rightarrow \partial H
\partial x (x) is not

surjective, then \scrG is strictly contained in \scrM s. (The condition \scrG = \scrM s shows up
in the definition of maximal equilibrium independent passivity as given in [13]; see
section 8.1.)

7.2. Determination of the equilibria of interconnected incrementally
port-Hamiltonian systems. In this subsection we analyze how the equilibria of
the interconnection of maximal cyclically monotone port-Hamiltonian systems can be
computed, by solving a convex optimization problem. This subsection is motivated
by some of the developments in [13].

Consider k maximal monotone port-Hamiltonian systems with input and output
vectors ui \in \BbbR mi , yi \in \BbbR mi , and maximal monotone relations \scrM i, i= 1, . . . , k. Let, as
before, \scrM s

i \subset \BbbR mi \times \BbbR mi , i= 1, . . . , k, be maximal monotone relations. Additionally,
assume that \scrM s

i , i= 1, . . . , k, are maximal cyclically monotone, and thus given as the
graphs of subdifferentials of convex functions Ki(ui), i= 1, . . . , k.

Consider now an interconnection of the following general type. For any subset
\pi \subset \{ 1, . . . , k\} define

fi := ui, i\in \pi , fi := yi, i /\in \pi ,

ei := yi, i\in \pi , ei := ui, i /\in \pi .
(7.8)

Furthermore, consider any subspace \scrC of the linear space of variables (f1, . . . , fk) \in 
\BbbR m1 \times . . .\times \BbbR mk , and define interconnection constraints

(f1, . . . , fk)\in \scrC , (e1, . . . , ek)\in \scrC \bot .(7.9)

Define the convex function K :\BbbR m1 \times . . .\times \BbbR mk \rightarrow \BbbR \cup \{ \infty \} given as

K(f1, . . . , fk) :=
\sum 
i\in \pi 

Ki(ui) +
\sum 
i/\in \pi 

K \star 
i (yi),(7.10)

where as before (see (3.4)) K \star 
i (yi) denotes the conjugate of Ki(ui). Now consider the

minimization

min
(f1,...,fk)\in \scrC 

K(f1, . . . , fk),(7.11)
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2216 M. K. CAMLIBEL AND A. J. VAN DER SCHAFT

and write \scrC = kerC for some constraint matrix C with rows C1, . . . ,Ck. Then the
minimization is equivalent to the unconstrained minimization

min
f,\lambda 

K(f1, . . . , fk) - 
s\sum 
i=1

\lambda Ti Cifi,(7.12)

where \lambda is a vector of Lagrange multipliers. This yields the first-order optimality
conditions

0\in \partial Ki

\partial ui
(ui) - CTi \lambda , i\in \pi ,

0\in \partial K \star 
i

\partial yi
(yi) - CTi \lambda , i /\in \pi .

(7.13)

Consider a solution ( \=f1, . . . , \=fk) \in \scrC of these first-order optimality conditions. Hence

there exist \=ei = \=yi \in \partial Ki

\partial ui
(\=ui), i \in \pi , and \=ei = \=ui \in \partial K \star 

i

\partial yi
(\=yi), i /\in \pi , such that \=e \in im CT ,

which is nothing else than \=e\in \scrC \bot . This is summarized in the following theorem.

Theorem 7.2. Consider k maximal cyclically monotone port-Hamiltonian sys-
tems with input and output variables u1, . . . , uk, y1, . . . , yk, where ui \in \BbbR mi , yi \in \BbbR mi , i=
1, . . . , k. Let the maximal cyclically monotone relations \scrM s

i \subset \BbbR mi \times \BbbR mi be given
as the graphs of subdifferentials \partial Ki for convex functions Ki, i = 1, . . . , k. Fur-
thermore, let \pi \subset \{ 1, . . . , k\} be an index set and consider any constraint subspace
\scrC \subset \BbbR m1 \times . . .\times \BbbR mk leading to the interconnection

(f1, . . . , fk)\in \scrC , (e1, . . . , ek)\in \scrC \bot .

Then if ( \=f1, . . . , \=fk)\in \scrC is a solution of the minimization

min
(f1,...,fk)\in \scrC 

K(f1, . . . , fk),

then there exists (\=e1, . . . , \=ek)\in \scrC \bot .

Note that once we have computed (\=e1, . . . , \=ek) and there exists (\=x1, . . . , \=xk) such
that \partial Hi

\partial xi
(\=xi) = \=ei, i= 1, . . . , k, then (\=x1, . . . , \=xk) is an equilibrium of the interconnected

system (unique if Ki are strictly convex). Furthermore, if we additionally assume that
the Hamiltonians Hi are strictly convex, then this equilibrium is stable.

Finally, note that the interconnection constraints can be equivalently formulated
as the solution of the dual minimization problem

min
(e1,...,ek)\in \scrC \bot 

K \star (e1, . . . , ek),(7.14)

where

K \star (e1, . . . , ek) :=
\sum 
i\in \pi 

K \star 
i (yi) +

\sum 
i/\in \pi 

Ki(ui).(7.15)

8. Connections with passivity notions. As already noted, any incrementally
port-Hamiltonian system satisfies the incremental dissipation inequality (4.2). This
suggests close links with some form of passivity. In this section it is shown how this
can be substantiated under extra conditions on the Hamiltonian H, extending the
discussion given before in [11].
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PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY 2217

8.1. Relation with equilibrium independent passivity. Up to now, in the
definition of an incrementally port-Hamiltonian system no conditions were imposed on
the HamiltonianH. If it is assumed thatH is strictly convex (as well as differentiable),
then for every \=x the function H\=x :\scrX \rightarrow \BbbR defined as

H\=x(x) :=H(x) - \partial H

\partial xT
(\=x)(x - \=x) - H(\=x)(8.1)

(as a function of x and \=x called the Bregman divergence of H [27], or as a function
of x alone for fixed \=x called the shifted Hamiltonian [2]) has a strict minimum at \=x,
and is again strictly convex. Furthermore,

\partial H\=x

\partial x
(x) =

\partial H

\partial x
(x) - \partial H

\partial x
(\=x).

Hence for any (\=u, \=y) in the steady-state input-output relation of an incrementally
port-Hamiltonian system one verifies

d

dt
H\=x =

\partial H\=x

\partial xT
(x) \.x=

\biggl( 
\partial H

\partial xT
(x) - \partial H

\partial xT
(\=x)

\biggr) 
( \.x - 0)\leqslant (y - \=y)T (u - \=u),(8.2)

implying passivity with respect to the shifted passivity supply rate (y  - \=y)T (u - \=u).
This was called shifted passivity in [2], while the property that this holds for any
steady-state values (\=u, \=x, \=y) was coined as equilibrium independent passivity in [14].
This is summarized as follows.

Proposition 8.1. Consider an incrementally port-Hamiltonian system with max-
imal monotone relation

\scrM \subset \BbbR n \times \BbbR n \times \BbbR m \times \BbbR m,

with a strictly convex differentiable Hamiltonian H : \BbbR n \rightarrow \BbbR . Then the system is
equilibrium independent passive, with static input-output relation given by the mono-
tone relation \scrG \subset \scrM s, and with storage functions H\=x having a strict minimum at \=x.
If H is such that for every \=e there exists an \=x with \=e= \partial H

\partial x (\=x), then \scrG =\scrM s.

The case \scrG = \scrM s was called maximal equilibrium independent passivity in [13].
(Maximal) equilibrium independent passivity is a desirable property for showing sta-
bility of the steady-state values of a port-Hamiltonian system for different constant
input values, since by (8.2) the shifted Hamiltonians can be employed as Lyapunov
functions for u= \=u.

8.2. Relation with incremental and differential passivity. In this subsec-
tion it is shown how the notion of incrementally port-Hamiltonian systems is closely
related to incremental passivity and differential passivity , at least in the case when the
Hamiltonian is nonnegative and quadratic-affine. Thus let H(x) = 1

2x
TQx+Ax+ c

for some symmetric positive semidefinite matrix Q, matrix A, and constant c. In this
case, the inequality (4.2) reduces to

\langle Q(x1  - x2) | \rangle \.x1  - \.x2 \leqslant \langle e1P  - e2P | f1P  - f2P \rangle ,(8.3)

which is equivalent to

d

dt

1

2
(x1(t) - x2(t))

TQ(x1(t) - x2(t))\leqslant (e1P (t) - e2P (t))
T (f1P (t) - f2P (t)).(8.4)
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2218 M. K. CAMLIBEL AND A. J. VAN DER SCHAFT

Recall [5, 28, 29] that a system \.x= f(x,u), y= h(x,u) with x\in \BbbR n, u, y \in \BbbR m is called
incrementally passive if there exists a nonnegative function V : \BbbR n \times \BbbR n \rightarrow \BbbR such
that

d

dt
V (x1, x2)\leqslant (u1  - u2)

T (y1  - y2)(8.5)

for all (xi, ui, yi), i = 1,2, satisfying \.x = f(x,u), y = h(x,u). We immediately obtain
the following result.

Proposition 8.2. Any incrementally port-Hamiltonian system with nonnegative
quadratic-affine Hamiltonian H(x) = 1

2x
TQx+Ax+ c is incrementally passive.

Proof. The function V (x1, x2) =
1
2 (x1  - x2)

TQ(x1  - x2) defines an incremental
storage function for incremental passivity.

Recall furthermore from [30, 31, 32] the following definition of differential passiv-
ity.

Definition 8.3. Consider a nonlinear control system \Sigma with state space \scrX , affine
in the inputs u, and with an equal number of outputs y, given as

\Sigma :
\.x= f(x) +

m\sum 
j=1

ujgj(x) ,

yj =Hj(x) , j = 1, . . . ,m ,

(8.6)

The variational system along any input-state-output trajectory

t\in [0, T ] \mapsto \rightarrow (x(t), u(t), y(t))

is given by the following time-varying system (cf. [33]):

\.\delta x(t) = \partial f
\partial x (x(t))\delta x(t)

+
\sum m
j=1 uj(t)

\partial gj
\partial x (x(t))\delta x(t) +

\sum m
j=1 \delta ujgj(x(t)),

\delta yj(t) =
\partial Hj

\partial x (x(t))\delta x(t) , j = 1, . . . ,m ,

(8.7)

with state \delta x \in n, where \delta u = (\delta u1, . . . , \delta um), \delta y = (\delta y1, . . . , \delta ym) denote the inputs
and the outputs of the variational system. Then \Sigma is called differentially passive
if the system together with all its variational systems is dissipative with respect to
the supply rate \delta uT \delta y, that is, if there exists a function P : T\scrX \rightarrow \BbbR + (called the
differential storage function) satisfying

d

dt
P \leqslant \delta uT \delta y(8.8)

for all x,u, \delta u.

Similar to incremental passivity we obtain the following proposition.

Proposition 8.4. A monotone port-Hamiltonian system with nonnegative quadratic-
affine Hamiltonian H(x) = 1

2x
TQx+Ax+ c is differentially passive.

Proof. Consider the infinitesimal version of (4.2). In fact, let (f1P , e
1
P , x1) and

(f2P , e
2
P , x2) be two triples of system trajectories arbitrarily near each other. Taking

the limit we deduce from (4.2)

\delta xT
\partial 2H

\partial x2
(x)\delta \.x\leqslant \delta eTP \delta fP ,(8.9)
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PORT-HAMILTONIAN SYSTEMS THEORY AND MONOTONICITY 2219

where \delta x denotes the variational state, and \partial fP , \partial eP the variational inputs and out-
puts. If the Hamiltonian H is a quadratic function H(x) = 1

2x
TQx+Ax+ c, then the

left-hand side of the inequality (8.9) is equal to d
dt

1
2\delta x

TQ\delta x, and hence amounts to
the differential dissipativity inequality

d

dt

1

2
\delta xTQ\delta x\leqslant \delta eTP \delta fP ,(8.10)

implying that the monotone port-Hamiltonian system is differentially passive, with
differential storage function 1

2\delta x
TQ\delta x.

Remark 8.5. Note that the Hamiltonians in the examples stemming from opti-
mization algorithms (cf. (4.17), (4.19), (4.22)) are all positive quadratic. Thus the
corresponding incrementally port-Hamiltonian systems are all incrementally and dif-
ferentially passive. The same holds, e.g., for the nonlinear RC circuit of Example 4.7
or mechanical systems without potential energy (Hamiltonian equal to kinetic energy).

Of course, the assumption of a quadratic-affine Hamiltonian in order to let the
monotone port-Hamiltonian system be incrementally and differentially passive is re-
strictive. On the other hand, it is known from the literature [4, 34] that for ``uncon-
ditional"" incremental properties such an assumption may be necessary as well. For
example, we can formulate the following simple result. Consider a scalar nonlinear
integrator system (cf. (4.9))

\.x= u, y=
dH

dx
(x).(8.11)

As noted before, this is a maximal monotone port-Hamiltonian system. In order to
evaluate its incremental properties consider two copies

\.x1 = u1, \.x2 = u2, y1 =
dH

dx1
(x1), y2 =

dH

dx2
(x2).(8.12)

Then the system (8.11) is incrementally passive if and only if there exists S(x1, x2)\geqslant 0
satisfying

\partial S

\partial x1
(x1)u1 +

\partial S

\partial x2
(x2)u2 \leqslant (u1  - u2)

\biggl( 
dH

dx1
(x1) - 

dH

dx2
(x2)

\biggr) 
(8.13)

for all x1, x2, u1, u2 related by (8.12). This is equivalent to

\partial S

\partial x1
(x1, x2) =

dH

dx1
(x1) - 

dH

dx2
(x2) = - \partial S

\partial x2
(x1, x2)(8.14)

for all x1, x2. Differentiation of the first equality with respect to x2, and of the second
equality with respect to x1, yields

 - d
2H

dx22
(x2) =

\partial 2S

\partial x1\partial x2
(x1, x2) = - d

2H

dx21
(x1),(8.15)

implying that d2H
dx2 (x) is a constant; i.e., H(x) must be a quadratic-affine function

H(x) = 1
2qx

2 + ax + c, for some constants q, a, c. Hence the (8.11) is incrementally
passive if and only if H is quadratic-affine with q > 0 (in which case the integrator is
actually linear). This example is easily extendable to more general situations, basically
implying that unconditional incremental passivity implies a nonnegative quadratic-
affine storage function.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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9. Conclusions. The notion of an incrementally port-Hamiltonian system was
first introduced in [11], by replacing in the definition of port-Hamiltonian systems the
composition of a Dirac structure and an energy-dissipation relation by a (maximal)
monotone relation. The present paper discusses the properties of incrementally port-
Hamiltonian systems in much more detail, including a wealth of examples and the
formulation of specific system subclasses. In particular, the class of maximal cycli-
cally monotone port-Hamiltonian systems and its connection to convex generating
functions is studied. A key mathematical contribution of the present paper is the
detailed treatment of composition of maximal (cyclically) monotone relations, and its
implications for the interconnection of incrementally port-Hamiltonian systems. In
particular, it is shown how under mild technical conditions the composition of maxi-
mal (cyclically) monotone relations defines a maximal (cyclically) monotone relation.

In addition to the abundance of physical examples, this paper relates incremen-
tally port-Hamiltonian systems to convex optimization as well. Such relations are
multifaceted---from the formulation of gradient and primal-dual gradient algorithms
in continuous time as incrementally port-Hamiltonian systems to the computation of
the equilibria of interconnected incrementally port-Hamiltonian systems via convex
optimization. Furthermore, apart from the convex generating functions of maximal
cyclically monotone relations, another use of convexity in this incrementally port-
Hamiltonian framework is the consideration of convex Hamiltonians. The use of the
shifted Hamiltonian (or Bregman divergence) of a convex function turns out to be
natural in establishing equilibrium independent passivity and assessing the stability
of equilibria of (interconnected) incrementally port-Hamiltonian systems. Still, many
more connections between port-Hamiltonian theory and convex analysis are to be
explored.

The precise dynamical properties of incrementally port-Hamiltonian systems re-
main somewhat elusive. The dynamical implications of the key inequality (4.2) are
only fully clear if the Hamiltonian H is a quadratic-affine function. Indeed, in this
case the incrementally port-Hamiltonian system with nonnegative Hamiltonian is in-
crementally and differentially passive. On the other hand, as shown in [34] and in
the example of a scalar integrator discussed at the end of the previous section, un-
conditional incremental properties are typically very demanding (see also the theory
of contractive systems [35]), and one could argue that the notion of incrementally
port-Hamiltonian systems is less restrictive.
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