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A B S T R A C T 

The presence of Galactic cirrus is an obstacle for studying both faint objects in our Galaxy and low surface brightness extragalactic 
structures. With the aim of studying individual cirrus filaments in Sloan Digital Sky Survey (SDSS) Stripe 82 data, we develop 

techniques based on machine learning and neural networks that allow one to isolate filaments from foreground and background 

sources in the entirety of Stripe 82 with a precision similar to that of the human expert. Our photometric study of individual 
filaments indicates that only those brighter than 26 mag arcsec −2 in the SDSS r band are likely to be identified in SDSS Stripe 82 

data by their distinctive colours in the optical bands. We also show a significant impact of data processing (e.g. flat-fielding, 
masking of bright stars, and sky subtraction) on colour estimation. Analysing the distribution of filaments’ colours with the help 

of mock simulations, we conclude that most filaments have colours in the following ranges: 0.55 ≤ g − r ≤ 0.73 and 0.01 ≤
r − i ≤ 0.33. Our work provides a useful framework for an analysis of all types of low surface brightness features (cirri, tidal 
tails, stellar streams, etc.) in e xisting and future deep optical surv e ys. F or practical purposes, we pro vide the catalogue of dust 
filaments. 

Key words: ISM: clouds – dust, extinction. 
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 I N T RO D U C T I O N  

irrus clouds are dust clouds usually observed at high galactic 
atitudes ( b � 20 ◦). The y hav e filamentary wispy appearance and
isually resemble the cirrus clouds observed in the Earth’s atmo- 
phere. Cirri were identified and studied o v er a wide range of
avelengths: in the infrared (Low et al. 1984 ; Kiss et al. 2001 , 2003 ;
artin et al. 2010 ; Planck Collaboration XXII 2011 ; P ́enin et al.

012 ; Schisano et al. 2020 ), optical (de Vaucouleurs 1955 , 1960 ;
e Vaucouleurs & Freeman 1972 ; Sandage 1976 ; Mattila 1979 ; de
ries & Le Poole 1985 ; Ienaka et al. 2013 ; Miville-Desch ̂ enes et al.
016 ; Rom ́an, Trujillo & Montes 2020 ), and ultraviolet (Haikala
t al. 1995 ; Gillmon & Shull 2006 ; Boissier et al. 2015 ; Akshaya
t al. 2019 ). The cirri manifested in the visual and infrared, as well
s in emission in the molecular CO and H 2 lines, were found to
patially correlate (Weiland et al. 1986 ; de Vries, Heithausen & 

haddeus 1987 ; Gillmon & Shull 2006 ; Ienaka et al. 2013 ; Rom ́an
t al. 2020 ). 
 E-mail: zeleniikot@gmail.com (AAS): s.s.sa vchenko@spb u.ru (SSS) 
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Cirrus clouds are unique objects both from theoretical and practical 
tandpoints. They usually appear as numerous filaments rather than 
 cloud of a particular shape. Various studies (Bazell & Desert
988 ; Falgarone, Phillips & Walker 1991 ; Hetem & Lepine 1993 ;
ogelaar & Wakker 1994 ; Elmegreen & Falgarone 1996 ; S ́anchez,
lfaro & P ́erez 2005 ; Juvela et al. 2018 ; Marchuk et al. 2021 ) of cirrus
eometric properties pro v ed that these clouds have a fractal nature.
he fractal appearance of molecular clouds is thought to be due to the
arious physical processes that structure them: turbulence (Padoan 
t al. 2001 ; Kowal & Lazarian 2007 ; Federrath, Klessen & Schmidt
009 ; Konstandin et al. 2016 ; Beattie, Federrath & Klessen 2019a ;
eattie et al. 2019b ), shock w aves (Ko yama & Inutsuka 2000 ), col-

iding flows (Vazquez-Semadeni et al. 2007 ), and other f actors, lik e
he instability of a self-gravitating sheet (Nagai, ichiro Inutsuka & 

iyama 1998 ) or various instabilities in non-self-gravitating clumps, 
hich arise because of the presence of magnetic fields (Hennebelle 
013 ). 
Considering the internal parts of cirrus, the optical spectrum of 

he diffuse galactic light, measured o v er 92.000 sky spectra from the
loan Digital Sky Survey (SDSS, York et al. 2000 ), is found to be
onsistent with the spectrum of the scattered light (Brandt & Draine
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012 ; Chellew et al. 2022 ) produced by a dust model of Zubko,
wek & Arendt ( 2004 ). Lenaka et al. ( 2013 ) showed that this model

an underestimate the correlation between the diffuse galactic light
nd the emission at 100 μm by up to a factor of 2 if one measures
he spectral properties of individual clouds. 

From a practical standpoint, studies of cirrus are important for
he following reason. With the progress in observ ational po wer and
rocessing methods, it was shown that translucent cirrus clouds and
ther filamentary dusty structures are rather common inhabitants of
k y re gions at both high and low Galactic latitudes (Barrena et al.
018 ; Rom ́an et al. 2020 ; Schisano et al. 2020 ). Thus, they can
nterfere with studies of various extragalactic sources (Cortese et al.
010 ; Davies et al. 2010 ; Rudick et al. 2010 ; Sollima et al. 2010 ;
arrena et al. 2018 ; Duc, Cuillandre & Renaud 2018 ). This problem
as thoroughly discussed in Rom ́an et al. ( 2020 ) in their study of
ptical cirrus based on SDSS Stripe 82 deep images (Abazajian et al.
009 ; Fliri & Trujillo 2016 ). Rom ́an et al. ( 2020 ) identified and
nalysed sixteen clouds in the optical g , r , i , and z bands. One of the
ost important results of their work was that the cirrus clouds differ

rom typical extragalactic sources in terms of the optical colours g
r and r − i . The authors suggested the following criterion, which

llows one to distinguish cirrus filaments from any extragalactic
bjects based on the corresponding colours of specific image pixels: 

 r − i) < 0 . 43 × ( g − r) − 0 . 06 . (1) 

ince criterion ( 1 ) includes only the optical colours, it provides an
pportunity to distinguish the cirrus by means of optical data alone.
ecause various data sets have different resolutions, this criterion can
ecome a valuable tool to identify the cirrus presence in deep optical
mages. It is even more important when there is no complementary
nfrared data available, which is most frequently used to identify the
resence of cirrus. 
Considering the nature of the suggested criterion, we should

mphasize two important facts. First, the cirrus colours that appear
n the inequality, are not the colours of each and ev ery pix el of a
loud. Rather, they are the colours obtained from the linear fitting of
he distribution of fluxes in the ( g , r ) and ( r , i ) planes (or by Gaussian
lus Lorentzian fitting of the actual colour distributions) of a large
ample of pixels. Such an approach implicitly assumes that a whole
loud, spanning several degrees of the sky, can be characterized by
ts unique colour, neglecting the possible variance of the colour o v er
he different parts of the cloud. At the same time, we should note
hat almost every cirrus cloud consists of numerous filaments of
ifferent densities, surface brightnesses, etc. If the colour properties
f the filaments vary too, it is important to verify the degree of their
ariance and the reliability of criterion ( 1 ) as introduced by Rom ́an
t al. ( 2020 ) in this case. 

The second important fact is that the spatial location of cirrus
louds was identified by Rom ́an et al. ( 2020 ) by a visual inspection.
n this work, we opt to take it a step further by using a more
o v el approach. Since cirrus clouds typically have similar wispy
nd filamentary structures, they are potentially good targets for
utomatic selection. F or e xample, in a recent work by Schisano et al.
 2020 ), such structures were identified in Hi-Gal photometric surv e y
ata (Molinari et al. 2010 ) based on their cylindrical-like shape,
hich is estimated using a Hessian matrix. A similar approach was
sed in Planck Collaboration XXXII ( 2016 ) and Soler et al. ( 2022 )
o study the relative orientation between the magnetic field and dust
tructures and between the HI filamentary structures and Galactic
isc, respectively. In earlier works, Men’shchikov ( 2013 ) proposed
o distinguish filaments (specifically those found in Galactic star-
orming regions) using the decomposition of the images o v er a wide
NRAS 519, 4735–4752 (2023) 
ange of spatial scales. In Salji et al. ( 2015 ), authors applied a ridge
etection technique and successfully extracted the filaments consti-
uting a large ‘integral shaped filament’ in Orion A North. Koch &
osolowsky ( 2015 ) suggested a complex approach, consisting of
n arctan transformation of the image, Gaussian smoothing, and
daptive thresholding. 

In this work, we adopt machine learning methods are suitable for
n automatic search of cirrus clouds. Our goal is to test whether or not
achine learning methods are suitable for automatic search of cirrus

louds. By identifying more cirrus clouds, we hope to acquire more
eliable statistics of the cirrus photometric properties o v er different
patial scales. 

The structure of the work is as follows. In Section 2 , we describe
he data and processing steps required for a measurement of cirrus
olours: masking, the removal of the instrumental scattered light, and
he cirrus filaments identification based on their visual appearance
nd the correlation with infrared data. In Section 3 , we further
mpro v e the cirrus filaments identification with the aid of machine
earning methods. Here, we give the details about the setup of the

ethod and the training of our neural network, and compare the
esults of the neural network and human identification. In Section 4 ,
e analyse the general properties of the sample of identified fila-
ents. In Section 5 , we discuss various pitfalls of the photometric

nalysis of the individual filaments and compare different approaches
o the colour measurement using mock simulations. Here, we also
tudy how reliable colours are measured depending on the area and
verage surface brightness of the filament. In Section 6 , we present
he results of our colour measurement for a subsample of identified
laments and briefly discuss the spatial dependence of the colours
n the galactic coordinates. We summarize our results in Section 7 . 

 DATA  

e use the same Stripe 82 deep images as Rom ́an et al. ( 2020 ),
here a large number of cirrus filaments/clouds can be distinguished

imply by eye. The Stripe 82 data (Abazajian et al. 2009 ) consists
f 1100 fields co v ering a thin strip of the sky, 110 ◦ wide ( −50 ◦ <

< 60 ◦) and only 2 . ◦5 in height ( −1 . ◦25 < δ < 1 . ◦25). The original
aw fields were obtained using the 2.5-m Apache Point Observatory
elescope with an exposure time of 1 h and a pixel scale of 0.396
rcsec. The fields were further stacked by Fliri and Trujillo ( 2016 ) and
arefully processed in Rom ́an and Trujillo ( 2018 ), where the residues
f the co-adding process were remo v ed and impro v ed sk y-rectified
mages were obtained. The resulting fields are two magnitudes deeper
han the regular SDSS data. The data from mentioned works is
ublicly available at http:// research.iac.es/ proyecto/stripe82/ . Below
e describe how we further processed the data from Rom ́an and
rujillo ( 2018 ) to identify the cirrus filaments. 

.1 Masking 

mages in the Stripe 82 surv e y contain numerous objects such as
right stars or galaxies, which have to be masked out before one can
roceed with an analysis of Galactic cirri. In Rom ́an et al. ( 2020 ),
egmentation maps were created by running the SE XTRACTOR

ackage (Bertin & Arnouts 1996 ) with various parameters to make
nitial mask images, which were further edited manually to include
mage artefacts. 

To reduce our workload, we decided to use the mask images
reated by Rom ́an et al. ( 2020 ) for a set of Stripe 82 fields to
rain a neural network to generate masks for all Stripe 82 fields.

e use an image-to-image algorithm based on the conditional

http://research.iac.es/proyecto/stripe82/
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Figure 1. Examples of the masks created by a neural network for two 
randomly selected patches of the Stripe 82. Top panels: original images 
in the r band, second row: masks made by Rom ́an et al. ( 2020 ), and third 
row: masks generated by our neural networks. The bottom row shows the 
comparison of original and predicted masks: blue colour – original masks, 
green – predicted, and yellow – o v erlapping area of two masks. 
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dversarial network described in Isola et al. ( 2016 ) as the neural
etwork architecture. In this approach, two networks, a generator 
nd a discriminator, are trained simultaneously. In the setting of our 
roblem, the purpose of the generator is to create a synthetic mask
mage based on a science image, and the goal of the discriminator is to
etermine if a particular mask image was created by a generator or by
om ́an et al. ( 2020 ) (the discriminator also has access to the optical

mages). During the training process, the generator learns to make 
ore realistic masks to fool the discriminator. The discriminator in 

urn learns to more ef fecti vely distinguish between real and synthetic
aps to o v ercome the generator. 
To create a training sample, we use optical images (in the g , r , i ,

nd z bands) and masks for these images provided by Rom ́an et al.
 2020 ), which were randomly cut into 256 × 256 pixels segments
the input size of our networks). During the training process, we feed
uch cutout images to the generator and the discriminator and update 
heir weights until the process converges. After that, the generative 
art of the network can be used to create masks for new (i.e. not
o v ered by previous work) fields. 

The results of the network training applied to a Stripe 82 field
re shown in Fig. 1 : we show an r -band image, an original (the
o-called ground truth) mask, and the prediction of the network for
wo random cutouts. It can be seen that, while the fine details of the
enerated masks differ, they generally co v er all objects that present
n the image. To measure the similarity between the predicted and 
rue mask, we use the intersection o v er union (IoU) metric: 

oU = 

TP 

TP + FP + FN 

, (2) 

here TP is the number of true positive pixel outcomes where the
odel correctly predicts the positive class, FP is the number of false

ositiv e pix el outcomes where the model incorrectly predicts the 
ositive class, FN is the number of false ne gativ e pix el outcomes,
here the model incorrectly predicts the ne gativ e class. F or the

rained network, the IoU median value for all the fields of the test
ample is 0.69. 

It should be noted that the network only deals with targets which
re visible in the image. It is not aware of objects that may be outside
f the image (but whose scattered light is present in the image), so
he fine structure of the mask at the borders can be affected by this
ack of data. For example, the faint wings of a bright star can be
arely distinguishable in the image, but they would be co v ered by
he mask if the centre of the star was visible. If the star is outside
f the image provided to the network, the network is not aware of it
nd can miss the faint wings of the star. To deal with this problem,
e only use central regions of the generated mask, and consider the
ata outside of this region as the context. To cover the whole field,
e slide such a window across it until the full mask for the field is

reated. 

.2 Cirrus segmentation 

 crucial moment in the cirrus analysis is detecting and selecting 
heir locations in these images, i.e. selecting image pixels that are 
ominated by the cirrus scattered light and which do not contain 
ther objects. To do this, we applied the masks from Section 2.1
o the images to co v er all non-cirrus objects and used a threshold
f 29 mag arcsec −2 in the r band (determined as the average 3 σ
imit for all Stripe 82 fields) to create a segmentation map of
aint extended objects. Such segments constitute joint areas with 
he surface brightness abo v e the giv en limit. Hereinafter, we define
laments as such joint areas. Thus, the filaments we identify here can
e considered as separate segments of large cirrus clouds commonly 
tudied in the literature. 

It turned out that even after applying the masks to the background
bjects, some other extended objects (not only cirrus) appeared in 
he image abo v e the specified flux level. Among them are the faint
xtended wings of bright oversaturated stars and the reflections of 
uch stars in the telescope optics, which manifest themselves as faint
 xtended re gions and can not be easily distinguished from cirrus by
ome easy-to-estimate parameter. 

To solve this problem, we decided to manually check every field
y eye and individually select all of the regions that contained cirrus.
e separated this list from that only contained the instrumental 

cattered stellar light. Fig. 2 shows the stages of the manual cirrus
egmentation for one field. The field itself is shown in panel (a),
hile the field regions that are brighter than the 29th isophote on the
 -band are shown in panel (d) (these regions were computed using
he masked version of the image, so do not co v er all visible stars).
anel (e) of the figure shows the same segments separated into the
nes that co v er cirrus regions (black) and the ones that cover image
MNRAS 519, 4735–4752 (2023) 
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M

Figure 2. Different stages of the cirrus segmentation are applied to one Stripe 82 field. Panels are (a) the original field image in the r -band; (b) mask of 
background and foreground objects generated using our neural netw ork; (c) mask ed original image with enhanced low surface brightness structures; (d) image 
segments brighter than 29th isophote in the r band; (e) cirrus/artefacts segmentation results; (f) neural network generated cirrus mask; (g) model of the scattered 
stellar light for bright stars; and (h) original masked image after the stars’ model subtraction. See the text for detailed information on the whole pipeline. 
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rtefacts (grey). We also removed the regions that are close to the
rightest stars (one in the middle of panel (e) to exclude them from
onsideration. To help with the selection, we also compare regions
ith infrared IRIS counterpart (Miville-Desch ̂ enes & Lagache 2005 ),

v ailable with lo wer resolution. In total, we marked about 6.4 deg 2 

f the whole Stripe 82 area as cirrus (which is about 2 per cent of the
urv e y area). 

.3 Removing the scattered stellar light 

s noted by Rom ́an et al. ( 2020 ), the images of Stripe 82 are
ontaminated by the light of the extended wings of the brightest
tars. The point spread functions (PSFs) have different widths in
ifferent passbands (redder passbands have wider faint wings in their
SF), and also the colours of stars are different. The result of these

w o f actors is that different regions of Stripe 82 fields have different
ackground colours depending on the distance to the bright stars,
hich significantly affect the measured cirrus properties. 
To eliminate this problem, we follow the approach of Rom ́an

t al. ( 2020 ) and fit the extended PSF 

1 models into locations of the
rightest stars to subtract them from the images and therefore remo v e
he background colour variations. In this work, we use the TRACTOR

oftware (Lang, Hogg & Mykytyn 2016 ) 2 to fit multiple extended
SF images prepared by Infante-Sainz, Trujillo & Rom ́an ( 2020 ) to

he Stripe 82 fields. In each field, we select all stars brighter than
5th magnitude in the g band, similar to Rom ́an et al. ( 2020 ), and
t them iteratively, starting with the single brightest star and adding

he next brightest star to the model at each step (computationally,
his approach pro v ed stabler than fitting all the stars in one step).
NRAS 519, 4735–4752 (2023) 

 http:// research.iac.es/ proyecto/stripe82/ pages/ advanced- data- products/the 
 sdss- extended- psfs.php 
 ht tp://thet ract or.org/

T  

t
 

t  

v  
uring the fitting, we mask out the regions that were marked as
irrus to exclude the influence of the cirrus on the fitting of the stars
otherwise the cirrus contamination would be included in the model
f the extended PSF wings and removed after the model subtraction).
ig. 2 shows the result of the stellar light modelling and subtraction
or a randomly selected region that contains both cirrus and some
right stars. Panel (g) shows the model of the stellar light. Panel (h)
emonstrates the same region with the model subtracted. 
We note that this crucial step in the cirrus analysis pipeline requires

 good knowledge of the extended PSF wings. This problem is a
ypical obstacle for works in which low surface brightness structures
re analysed (Sandin 2014 ; Trujillo & Fliri 2016 ; Karabal et al. 2017 ),
nd the proper PSF image should be created before proceeding to the
ctual analysis of the data (e.g. Rich et al. 2019 ; Poliakov et al. 2021 ).

 AU TO MATIC  C I R RU S  S E G M E N TAT I O N  

anual annotation of cirrus is very time-consuming for human
xperts. Careful annotation of a single 0.5 × 0.5 deg 2 field in a
emi-automatic approach may take up to 10 min. To investigate if the
rocess of cirrus annotation can be fully automated and if the results
f manual annotation can be further impro v ed, we trained sev eral U-
et (Ronneberger, Fischer & Brox 2015 ) based networks. In general,

he U-Net architecture consists of two symmetrical paths: an encoder
o capture context and a decoder to get precise localization. The en-
oder follows the typical architecture of a convolutional network with
epeating convolution and max-pooling operations. Every step in the
ecoder consists of an upsampling of the feature map followed by a
onvolution. Thus, the decoder increases the resolution of the output.
o get localization, the features from the encoder are combined with

he upsampled features from the decoder via skip connections. 
Originally, U-Net was proposed for biomedical image segmen-

ation. This type of network architecture is successfully applied to
arious scientific and applied tasks such as medical image analysis

art/stac3765_f2.eps
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Figure 3. The encoder–decoder architecture is used in this work. 
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Ching et al. 2018 ; Iglo viko v et al. 2017b ; Ing et al. 2018 ; Andersson,
hlstr ̈om & Kullberg 2019 ; Nazem et al. 2021 ), cell biology (Kandel

t al. 2020 ), and satellite image analysis (Iglo viko v, Mushinskiy &
sin 2017a ). It is also used in astronomical applications such as
enoizing, enhancing astronomical images (Vojtekova et al. 2021 ), 
nd stellar spectrum normalization (R ́o ̇za ́nski et al. 2022 ). In this
ection, we consistently describe these neural network models, 
hrough data sets (Section 3.1 ), network architecture (Section 3.2 ), 
nd training methods (Section 3.3 ). In Section 3.4 , we conduct our
odel analysis and discuss the results. 

.1 Data set for neural network training 

n Section 2.2 , we carried out a manual identification procedure 
or cirrus filaments. Here, we further translate the segmentation 
ata to train an appropriate neural network. It is done in the
ollowing manner. All pixels in Stripe 82 fields were annotated 
nto three categories, in which 90 . 4 per cent of all pixels were
ackground, 2 . 0 per cent were cirrus, and other extended sources the 
emaining 7 . 6 per cent . The annotation for each field is stored in the
orresponding annotation mask file. A value of 0 for a mask’s pixel
enotes background, 1 denotes cirrus, and 2 denotes other extended 
ources. As the field image has a large size (4553 × 4553 pixels),
e employed square windows with smaller sizes for our models. 

t allowed us to decrease the time, memory capacity, and volume of
anually annotated data required for the training of network models. 
To obtain the training, validation, and testing sample, we randomly 

hose three separate groups of fields consisting of 200, 50, and 100
elds, respectively. Here, we briefly provide the main training and 
alidation data pre-processing steps. 

(i) We calculated the common 99.9th percentile values for each 
ptical band ( g , r , i ) separately for all training and validation
elds (250 fields). Then we performed corresponding clipping. This 
oderates the problem of the brightest pixels which reduces the 

mage contrast, and therefore it increases the training efficiency. 
(ii) Next, we applied a natural logarithm transformation followed 

y minimum–maximum normalization to [0: 255] range. 
(iii) Then, we randomly chose n tr square windows ( w × w 

ixels) for each field in the training group and n val for each field in
he validation group. If the size of the obtained windows was too
arge for a current model, we resized each window to the spatial
hape of the model input tensor ( w in , w in ), using cv2.resize
ethod with cv2.INTER LINEAR interpolation. As all considered 

rchitectures take a three-channel image input, the input tensor 
hape is (3, w in , w in ). 

(iv) The corresponding annotation mask’s windows were ob- 
ained from the annotation mask files and resized, using 
v2.INTER AREA interpolation. 
(v) Lastly, during the formation of the input tensor, we were 

pplying minimum–maximum normalization to the [ −1: 1] range 
nd augmenting the data by symmetry group of square. This 
roup consists of π/2 rotations, reflections, and their compositions 
eight elements). Therefore, this procedure increased the number of 
indows by a factor of 8. 

.2 Network ar chitectur e 

o resolve the task of cirrus annotation, we created several models 
ased on the encoder–decoder U-Net-like architecture (Ronneberger 
t al. 2015 ). All our experiments are conducted in the Tensor-
low2.x framework (Abadi et al. 2016 ). The precise manner in 
hich each of these models described in this section is used to solve
he issue of cirrus annotation is publicly available. 3 

Fig. 3 shows a representation of the general architecture used. The
ey difference between the considered architectures is the encoder. 
s the encoder, we used ResNet50V2 (He et al. 2016 ), MobileNetV2

Sandler et al. 2018 ), and the classical U-Net encoder. 
The decoder architecture is identical for all models under 

onsideration and consists of four steps (see Fig. 3 ). Each of these
teps has an upsampling of the feature map carried out with a 2 × 2
ransposed convolution, a concatenation with the corresponding 
eature map from the encoder (skip connection), and two 3 × 3
onvolutions with zero padding, each followed by a ReLU. At the
nal layer, a 3 × 3 transposed convolution with stride = 1 and zero
adding is used to map each 64-component feature vector to the
equired number of classes. 

.3 Training methods 

or each model under consideration, we used a sparse categorical 
ross-entropy loss function derived from the logits output tensor. 
o optimize the loss function, we employed the Adam optimization 
ethod with various learning rates r . 
During the training experiments, we varied some parameters 

hat influence the fitting process and the final model performance: 
he spatial shape of the input tensor ( w in × w in ), the scale factor
 between the window size w and the input tensor spatial size w in 

 w = sw in ), the training strategy (training from scratch, transfer
earning, fine-tuning), number of classes n c , class weights ω c , 
tc. We considered two cases for the number of classes, three
lasses which had been annotated in fields, and 2 classes when the
ackground class was extended by the other extended sources class. 
n the transfer learning strategy, we took a pre-trained ImageNet 
ata set (Deng et al. 2009 ) encoder and froze it before the training
rocess. In fine-tuning strategy, we also used a pre-trained encoder 
ut did not freeze it. 

To train our network models, we used a single NVIDIA GeForce
TX 3060 GPU. Batches consisted of 32 windows or 16 windows

or models with the largest input tensor spatial size ( w in = 448).
e employed 30 epochs in all training experiments, since the lowest

alidation loss is reached in 10–20 epochs. 
MNRAS 519, 4735–4752 (2023) 
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.4 Experimental results and model analysis 

s demonstrated in Fig. 2 (panels e and f), the cirrus map generated by
ur best model is quite similar to the map obtained by human experts,
nd the model can successfully reproduce small cirrus filaments.
o find this model, put the models through various comparative
xperiments. To compare models with each other, we use the IoU
etric for the cirrus class (see equation 2 ), which measures the

imilarity between the predicted and true cirrus. Human annotation
erformance yields a 0.67 IoU for cirrus. This number was achieved
y one expert on 100 random fields annotated by other experts of
ur team. Each of these fields was first annotated by one of the
ember of the group of experts. This annotation is considered as the

round-truth annotation. The annotation of the single expert was then
ompared against this annotation. The annotation procedure itself,
arried out by a single expert, was done in a similar manner as it was
one in Section 2.2 , with the help of IRIS data (Miville-Desch ̂ enes &
agache 2005 ). 
Quantitative results for different models and training methods are

hown in Table A1 . We summarize the results of our experiments as
ollows. 

(i) To find a more appropriate encoder, we conducted several
xperiments with various encoders. As one can see in Table A1 ,
odels with the MobileNetV2 encoder demonstrate the highest

erformance (IoU = 0.576). Furthermore, these models are less
esource-intensive and are more lightweight when compared to the
thers. 
(ii) The fine-tuning strategy demonstrates the highest perfor-
ance, but according to Table A1 , the advantage o v er models trained

rom scratch is insignificant. 
(iii) As one can see in Table A1 , models with moderately large

indows ( w = 224, 448, 896) are better than models with small
indows. We assume that this might be related to the deficiency of

emantic context in small windows relative to large ones. 
(iv) We also analyzed the models with three classes, but, as one

an see in Table A1 , these models do not demonstrate an increase in
erformance when compared with the models with two classes. 
(v) The best of our models yields a 0.576 IoU. Since the advantage

f human annotation is not great (0.67 IoU), it is possible to use this
pproach as either the primary or supporting tool for annotating
ow surface brightness structures in deep astronomical images. It is
emarkable that such an ef fecti ve model was trained on only 250
elds out of 1100. The model makes a cirrus segmentation for one
eld in about 25 s when running prediction on an AMD Ryzen 9
900X 12-Core CPU and about 7 s when running on an NVIDIA
eForce RTX 3060 GPU. 

The fuzzy nature of cirri makes it difficult to translate the achieved
oU value into some transparent quality of the cirri detection. Even
f some algorithm detects all the clouds in the image, the possible
ifference in the boundary threshold level will lead to an IoU value
elow unity. To give some perspective on the performance of our
lgorithm, we note that 89 per cent of the regions larger than 36 arcsec
arked as cirri by humans have positive detections on the neural

etwork inside their boundaries. Therefore, the vast majority of the
irri clouds can be detected by our network in an ‘alert’ regime. 

.5 Correlation with IR and UV data 

he IRIS data which we use to support our identification of cirrus
laments in the optical have a low resolution of 90 arcsec. Therefore,

t is instructive to verify how the fluxes are correlated between
NRAS 519, 4735–4752 (2023) 
ommonly used dust indicators, such as UV and IR, and optical for
istinguished filaments if we consider more accurate data. For this
urpose, we analyse only a single cirrus cloud, through one which
s quite unique. It is located at α ≈ 2 . ◦5, δ ≈ −0 . ◦25, and appears in
oth the Hershel (Viero et al. 2014 ) and GALEX (Martin et al. 2005 )
ata sets. The cloud is one of the richest cirrus clouds in Stripe 82
hat was also studied by Rom ́an et al. ( 2020 ) (their Field#5). 

In Fig. 4 , we present a map of individual filaments for this cloud.
or each of the depicted filaments, we fill its area with the colour
orresponding to the value of the correlation coefficient between
ershel 250 μm and Stripe 82 r -band data (top panel) and between
ALEX far -ultra violet (FUV) and the same r -band (bottom panel)
ata. For each individual filament, a correlation coefficient ρ is
alculated by taking into account the fluxes in pixels within the
rea of the filament: 

= 

∑ n 

i= 1 ( x i − x̄ )( y i − ȳ ) 
√ ∑ n 

i= 1 ( x i − x̄ ) 2 
√ ∑ n 

i= 1 ( y i − ȳ ) 2 
, (3) 

here x i and y i are the fluxes in different bands, and x̄ and ȳ 
re their mean v alues, respecti vely. The summation is carried out
 v er all pix els within the filament area. Thus, each filament is
haracterized by its individual correlation coefficient. All analysed
ata are rebinned to a spatial scale of 12 arcsec to reduce the effect
f the differences in their PSF, as well as possible pixel-scale spatial
hifts of the data sets relative to each other. We also apply a very
 xtensiv e mask, combining our mask produced by the neural network
rom Section 2.1 , the mask for this cloud from Rom ́an et al. ( 2020 ),
nd the mask obtained by cutting the bright sources in the UV and
e gativ e flux es in the optical. Note that the corresponding correlation
oefficients for each of the filaments are obtained using only the
ixels within the area of the corresponding filaments. 
Fig. 4 clearly shows that the dust emission in the IR and the

cattered light in the optical are well-correlated ( ρ > 0.5) for most of
he individual filaments, suggesting that we do indeed identify dust
eatures. We also measured o v erall correlation coefficients using
hree separate sets of pixels: ρall = 0.74 (measured o v er all pix els in
he depicted area), ρfilaments = 0.69 (measured o v er the pix els within
he filaments), and ρrest = 0.52 (measured o v er the pix els that are
utside of the filament boundaries). The fact that the ρrest � 0.5 and
all > ρfilaments may indicate that we miss some part of the cirrus

n the optical. This also clearly follows from the comparison with
he GALEX data (bottom panel of Fig. 4 ). There, ρfilaments = 0.43 is
maller than both ρall and ρrest . Although, as can be seen, for many
laments ρ, is still close to 0.5. At the same time, for some filaments,

here is no correlation with GALEX , although such a correlation is
resent when using the Hershel data for the same filament (see a
ig filament in the lower left-hand corner of both maps marked by a
reen cross). We should note that a qualitatively similar discrepancy
egarding infrared and UV data was noted by Boissier et al. ( 2015 )
n their study of cirrus in the Virgo cluster. The authors found that
ome cirrus regions that appear in the FUV maps are not visible in
he infrared or Planck maps and vice versa. 

The presented comparison with other data sets shows that the
reas which were distinguished as cirrus filaments by our neural
etwork do indeed host dust features. The comparison also indicates
hat we do not identify a portion of the cirrus in the optical. It is
ard to estimate exactly how much of the filaments we miss, but
his is expected because we are limited by the depth of the data and,
herefore, we cannot identify dim filaments which can appear more
rominently in the IR and UV. 
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Figure 4. Colour coded correlation coefficients between Hershel and Stripe 82 r band (top panel) and GALEX and Stripe 82 r band (bottom panel) for filaments 
of the cloud observed at α ≈ 2 . ◦5, δ ≈ −0 . ◦25. White areas correspond to the masked pixels. The green cross marks the filament that appears prominently in the 
IR data while not showing in the UV data. 
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 RESULTING  SAMPLE  O F  FILAMENTS  

he resulting sample of filaments identified by our neural network 
onsists of about 5 × 10 5 spatially separated regions. The total area 
o v ered is about 6.6 deg 2 , which is greater than that obtained via
anual picking by 0.2 de g 2 . F or illustrativ e purposes, we present
ig. 5 , which shows a cirrus rich area at α ≈ 55 ◦−60 ◦ (one of the ends
f Stripe 82). The whole presented area contains about one hundred 
riginal Stripe 82 fields ( ∼5 deg 2 ). The top panel of the figure shows
n intensity map with the masking and source’s subtracting carried 
ut, while the bottom panel shows the areas identified by the neural
etwork as cirrus filaments. In this section, we describe some general 
roperties of the filaments’ sample, as well as some preliminary steps
hat must be taken before analysing the colours of the filaments. 
t  
First of all, at the original pixel scale, the data are dominated
y the noise that ever-present in astronomical images. To facilitate 
he analysis of dust colours, we reduced the noise contribution by
ebinning each field’s images to a spatial resolution of 6 arcsec,
imilarly to Rom ́an et al. ( 2020 ). They decided on that resolution in
hat work as a compromise between optimal spatial resolution and 
mage depth. To make the comparison between the results in Rom ́an
t al. ( 2020 ) and this work clearer, we decided to use the same spatial
esolution in this work. At this step, we assume that if half of the
mall pixels with a scale of 0.396 arcsec (which constitute the large
 arcsec pixel) are initially marked as being dominated by scattered
irrus light, the large pixel should also be marked as dominated by
irrus. In the other case, the large pixel is simply remo v ed from
he analysis. As a result of this procedure, the filaments’ number is
MNRAS 519, 4735–4752 (2023) 
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Figure 5. Cirrus rich area at α = 55 ◦−60 ◦ containing about one hundred of Stripe 82 fields ( ∼5 deg 2 ): intensity map (top panel) and cirrus map created by 
neural network (bottom panel). 
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Figure 6. Distribution of identified filaments across the sky plane. Each small rectangle in this map corresponds to one of the original Stripe 82 fields each with 
an area of about 900 arcmin 2 , while the colour of the rectangle corresponds to the total area within the field marked as dominated by cirrus. 

Figure 7. Left-hand panel: distribution of filaments o v er the av erage surface 
brightness in the g band and the cloud area. Right-hand panel: distributions 
of the correlation coefficients between the fluxes for all filaments (red and 
brown lines) and a subsample of filaments with p -value smaller than 0.01 for 
the measured correlation (blue and green lines). 
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ignificantly reduced to 23 290, while the total marked area does not
hange (the same 6.6 deg 2 ). The decrease in the number of filaments
s explained by the fact that the original sample contains a significant
mount of small features with a spatial scale of only a few pixels.
hen we rebin the images, such features are either remo v ed from

he analysis or merge into a single filament with a larger size. 
Fig. 6 shows the spatial distribution of the filaments o v er Stripe

2 after the rebinning has been carried out, and Fig. 7 presents a
ariety of statistics, such as the distribution of filaments o v er the
verage surface brightness and the area. In the right-hand panel of
he figure, we display the distribution of filaments by the correlation 
etween the ( g , r ) and ( r , i ) pairs of the optical bands. We do not
onsider data in the z band because it is less deep and our observations
howed no correlation at all between the z band and others in many
mall filaments. We also depict the distributions for a subsample of
575 filaments where the correlation is reliably measured, that is the 
ubsample includes only those filaments with p -value smaller than 
 per cent (which means that random data have less than a 1 per cent
hance of resulting such a strong correlation). Below, we present 
he results of the colour measurements for filaments only from this
ubsample. Thus, the total number of analysed filaments is 4575 and 
he total area is about 4.5 deg 2 (70 per cent of the original area). 

The left-hand panel of Fig. 7 emphasizes the difference be- 
ween the current analysis and those e x ecuted previously, such as
n Guhathakurta & Tyson ( 1989 ) and Rom ́an et al. ( 2020 ). In these
orks, authors considered distributions of the fluxes for all pixels 
ithin an area of several or more square degrees. The typical area
f the filaments considered in this work is smaller by an order of
 magnitude. As for the surface brightness, the majority of our 
laments are dim features with 〈 μg 〉 > 27 mag arcsec −2 . These
ifferences imply that special care must be taken if one tries to
easure the colours of such features. We thoroughly discuss this 

roblem in the next section. 
 C O L O U R  MEASUREMENT  

here is a list of factors that can strongly affect the results of the
olour measurements for individual filaments. First of all, at the 
onsidered level of surface brightness, the noise can strongly affect 
he distribution of flux es. Moreo v er, the noise also has its own colour
roperties (due to the differences in band depth), and there is a
ossibility that the measured colours simply reflect the colours of 
he noise. Secondly, some other factors are likely to contribute to the

easured colours, such as an inaccurate subtraction of the scattered 
tellar light in the case of very bright stars or the existence of the
o-called ‘hot’ pixels, which contain emission of some bright, yet 
oorly resolved sources. Another crucial factor is the sky subtraction, 
hich creates background fluctuations affecting the photometry of 

xtremely low surface brightness sources. How all these factors 
umulati vely af fect the dust colours is hard to estimate analytically.
herefore, to estimate the impact of all these factors, we carried out a
eries of mock simulations. The general idea of the simulations is to
nject an artificial source with a priori known colours into Stripe 82
ata and re-measure its colours in a realistic environment where the
ource is affected by noise, residues of stellar light subtraction, etc.
hroughout this work, we used several types of simulations that differ

n the setup of physical parameters. To facilitate the reader, we listed
he details of all simulations in Table 1 . In this particular section, we
iscuss the results only for two of them, which are dedicated to study
ow colour measurement procedures work for individual filaments 
n general. The respective simulations are labelled S1 and S2 in the
able. The rest will be discussed below in Section 6 . 

The general setup all simulations follow includes the following 
teps: 

(i) First, we prepare a sample of mock filaments with random sizes,
urface brightnesses, and optical colour v alues. Belo w we discuss the
esults for two types of samples, one with a real-like distribution of
lament sizes and brightnesses ( S3 and S4 , Section 6 ), and the other
ith a uniform distribution of these properties ( S1 and S2 , this
ection). The distribution of the colours for real filaments is actually
nknown and, therefore, we choose the colours uniformly in some 
redefined range. We consider a rather wide range of colours, for
xample, from 0.1 to 0.8 for g − r (see Table 1 ), because, as we show
elow, real filaments’ colours also tend to have a wide spread. To
implify the analysis, each filament has a square-like shape. As for
he areas, we originally selected them in the following range: from
44 arcsec 2 (four pixels) up to 10 5 arcsec 2 ( ≈ 27 arcmin 2 ). But due
o the mask, some pixels are cut, and, therefore, the actual area of
ach filament slightly varies from the predetermined set of values. 

(ii) Secondly, we inject a square with the selected size, surface 
rightness, and colours from the prepared sample into Stripe 82 data.
he centre of the square is chosen randomly, that is, the square is

ocated at random point of Stripe 82. Next, we add some flux values
MNRAS 519, 4735–4752 (2023) 
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Table 1. Details of the mock simulations used o v er course of this work. The first column shows a simulation ID, columns to thorough five present 
the limits of the physical parameters of the squares representing the cirrus filaments in simulations, namely area, surface brightness, and colours. ‘U’ 
(uniform) and ‘RL’ (real-like) abbre viations, gi ven in brackets, indicate whether the adopted distribution for each particular parameter is a uniform one 
(‘U’) or specifically prepared to resemble the corresponding distribution for the real filaments (‘RL’, see Fig. 7 , left-hand panel). The sixth column 
gives the description of the background into which the squares are injected, while the seventh column gives a short description of the problem, which 
is solved using each particular simulation. 

Name Area (arcsec 2 ) μ (mag/arcsec 2 ) g − r r − i Background Purpose 

S1 10 2 –10 5 (U) 25–29 (U) 0.1–0.8 (U) 0.1–0.8 (U) Stripe 82 fields Comparison of colour measurement procedures 
S2 10 2 –10 5 (U) 25–29 (U) 0.1–0.8 (U) 0.1–0.8 (U) Gaussian noise Estimation of the background effects 
S3 10 2 –10 5 (RL) 26–30 (RL) 0.5–0.7 (U) 0.0–0.2 (U) Stripe 82 fields Estimation of colour spread for a ‘point source’ 
S4 10 2 –10 5 (RL) 26–30 (RL) 0.0–1.5 (U) –0.5–1.0 (U) Stripe 82 fields Finding colours of the real filaments 

Figure 8. Approaches used for measuring the colours of the filaments in this work applied to the largest filament from Fig. 4 . Two left-hand panels: the linear 
fitting method. Two right-hand panels: Gaussian fitting of the colour distributions of the filament pixels. 
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n each band to all the pixels within the square area. The values
re selected so as to have some average value corresponding to the
nitially selected surface brightness value, with a small variance. The
ariance is the same for all filaments and is equal to 20 counts (in
he g band). The value is close to the typical spread of values for
eal filaments. For r and i bands, the fluxes are determined from the
uxes in the g band, assuming the constant value of g − r and r −
 optical colours o v er the square. For each band, we also modify the
istribution of fluxes to take into account the Poisson noise from the
ource. To calculate the number of events for the Poisson statistics,
e assume the following gain values: 3.85, 4.735, and 5.15 for g , r ,

nd i bands, respectively. These values are obtained by averaging
ain values for different camcol parameters of SDSS imaging
amera. 

(iii) Thirdly, we measure the colours in exactly the same way as
e do for real filaments (real cirrus filaments are also masked for

he purpose of simulations). For measurements themselves, we adopt
wo different approaches (see Fig. 8 ): a classical linear correlation
ethod (Guhathakurta & Tyson 1989 ; Sujatha et al. 2010 ; Murthy

014 ; Rom ́an et al. 2020 ) and the method suggested by Rom ́an
t al. ( 2020 ), which is based on the analysis of colour distribution
f individual pixels. We discuss the applicability of both methods to
he measurement of individual filaments below. 

(iv) Finally, we compare the measured colours with their true
alues, and check what factors are important for reliable colour
easurements. 

Here, we briefly discuss the details of the two adopted methods of
olour measurement. 

The essence of the first method is the linear correlation between
he fluxes in different bands. While fitting the linear dependence to
he distribution of flux es, for e xample, in g and r bands, one finds
 linear coefficient, which can be translated into the corresponding
 − r colour value (see Fig. 8 , two left-hand panels). While this
ethod is commonly used for colour measurement, the resulting
NRAS 519, 4735–4752 (2023) 
olours obtained using this method can be significantly affected
y the noise in a low surface brightness regime as we show 

elow. 
The second method, introduced in Rom ́an et al. ( 2020 ), assumes

hat, for a particular cloud, the real distribution of dust colours
hould be close to Gaussian, and the position of the Gaussian
aximum should correspond to the actual colour of the cloud. The

oise contributions are accounted for in this approach through the
imultaneous fitting of the Lorentzian function, which describes the
oise, and Gaussian function, which describes the distribution of
eal dust colours. Testing how this approach works for different
laments, for which the number of pixels is considerably smaller

han in Rom ́an et al. ( 2020 ), we found that a simultaneous fitting of
aussian and Lorentz functions with a full set of free parameters can

ead to degenerate results, or there can be a set of close solutions that
ave different colour values. The problem can be solved by a manual
nalysis of the fitting results and rejecting non-physical results, but an
dentification of the fitting failure for a large number of the filaments
s a complex problem. Thus, we use a more constrained approach,
mitting the Lorentz part and fitting only the Gaussian part. We
ustify such a simplification based on our results from simulations
resented below. We should also note that, originally, we tried to
stimate the Lorentz function parameters from the layer of the pixels
hat are close to the filament, but which do not include it. Then we
ried to fit the Gaussian function along with the Lorentz function,
xing some parameters for both functions (like the Lorentz peak

ocation and its scale, and the Gaussian amplitude). We found that,
or such a setup, the resulting colours are very close to the case when
e fit only a Gaussian part. 
Fig. 9 presents the distribution of real versus measured g − r and

 − i colours for both approaches discussed abo v e. The values were
btained by measuring the colours of 2 × 10 3 squares with uniformly
istributed colours from 0.1 to 0.8 for both g − r and r − i and surface
rightnesses ranging from 25 to 29 mag arcsec −2 in the g band (see
1 simulation from Table 1 ). 
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Figure 9. Comparison of the real and measured g − r (two left-hand panels) and r − i colours (two right-hand panels) for the mock sample of simulated 
squares with fixed colours. In each pair, the left-hand panel shows the colour obtained by the linear correlation method and the right-hand panel shows the results 
obtained by the Gaussian fitting (see the main text). The blue line marks the one-to-one correspondence. 

Figure 10. Probability density function for true minus measured colours 
obtained via Gaussian fitting for simulated filaments. Blue and green vertical 
lines mark one, two, and three sigma limits for the corresponding distributions. 
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Figure 11. Dependence of the colour measurement error on surface bright- 
ness of the simulated filaments in the g band (top panel) and their area (bottom 

panel). In both plots, green lines mark the location of the most probable value, 
while the error bars correspond to 1 σ limits. 
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As can be clearly seen from Fig. 9 , for both g − r and r − i , there
s no consistency between real and measured colours if the colours 
re obtained using the fluxes correlation method ( r − i colours are
ystematically greater on average). At the same time, there is much 
esired one-to-one correspondence for most of the filaments if we 
easure the colours by fitting the Gaussian function to the colour 

istribution. Our results show that the mode of the colour distribution
s a more stable parameter than the coefficient of the linear correlation 
n the case of a significant noise contribution to the fluxes. We also
ote that we apply linear correlation method without introducing 
ome limiting surface brightness value like in Rom ́an et al. ( 2020 ),
ince the vast majority of our filaments have a very low surface
rightness and insufficient to make such cuts. Based on the results,
e conclude that the linear correlation method is unreliable for colour 
easurement of individual filaments, while our second method 

llows one to retrieve the actual colours for most of the clouds. 
The probability density function of the true minus measured 

olours obtained via Gaussian fitting is presented in Fig. 10 . We
lso mark three limits: 0.08, 0.31, 0.90 for g − r and 0.10, 0.40, 1.20
or r − i . Within these limits lie 68.27, 94.45, and 99 . 73 per cent of all
laments, respecti vely. The v alues gi ve a qualitati ve understanding
f what errors one should expect from the measurement of real 
laments. It also shows that, unfortunately, for individual filaments 

he errors can be quite large, up to 1.0. With such an error, any
hysical comparison with other sources is essentially meaningless. At 
he same time, if one considers a large sample, there should be many
laments for which the colours are measured with an acceptable 
rror of 0.1 −0.2 (in absolute units, that is, mag). We exploit this fact
elow when interpreting the observed distribution of the colours of 
eal filaments. 

To facilitate future studies of dust colour o v er small spatial scales,
e verify how the difference between true and measured colours 
epends on filament area and surface brightness. Fig. 11 presents 
MNRAS 519, 4735–4752 (2023) 
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Figure 12. Same as Fig. 11 , but for simulated filaments with wider ranges 
of area and surface brightness and inserted into a clean field, where only 
Gaussian noise presents without other sources, mask, etc. 
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Figure 13. Distribution of the cirrus colours (red points) from this work and 
Rom ́an et al. ( 2020 ) (green points). The blue line ( r − i ) = 0.43 × ( g −
r ) − 0.06 should separate the cirrus colours and the colours of extragalactic 
sources, as suggested by Rom ́an et al. ( 2020 ). The light blue rectangle marks 
the estimated dispersion of true cirrus colours (see the main text). Blue bars 
mark 3 σ limits of the corresponding distributions. 
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he mentioned dependencies for g − r (for r − i all presented
ependencies are qualitatively the same). As one naturally expects,
he surface brightness is important and, as the surface brightness
ncreases, the colour measurement error decreases. As can be seen
rom the figure, for most filaments of 26 mag/arcsec 2 and brighter,
he error of colour measurement is smaller than 0.05. Such bright
laments are most likely to be identified by their true colours in
tripe 82. For dim filaments, the error increases rapidly after 26.5
ag/arcsec 2 , reaching about 0.10 at 27 mag/arcsec 2 and about 0.20

t 28 mag/arcsec 2 . As mentioned abo v e, such a large error makes it
ard to distinguish the filaments from other sources by their colours
n practice. As shown in the lower panel of Fig. 11 , increasing the
rea of the filaments certainly helps too, although the effect is not
hat prominent when compared to the case of surface brightness. 

As an additional test, we performed similar simulations inserting
ock filaments into the artificial field with only noise present

no other sources, no mask, etc.). This simulation is labelled S2
n Table 1 . The only difference between this simulation and the
reviously considered S1 is the background into which the squares
re injected. In the case of S1 , the background is Stripe 82 fields,
hile for S2 , the background consists only of artificially created
oise. The noise characteristics were selected to reflect g and r Stripe
2 depth limits, which are μg , lim 

= 29.2 mag arcsec −2 and μr , lim 

=
8.7 mag arcsec −2 , respectively, measured over boxes of 10 arcsec.
s can be seen from Fig. 12 , in the ‘ideal’ situation with only the
oise present, one should retrieve the colours of the filaments with
 much higher degree of accuracy than the filaments from the actual
tripe 82 data show. 
NRAS 519, 4735–4752 (2023) 
The top panel of Fig. 12 shows that the error in colours of very
aint filaments with μ ≈ 31 mag arcsec −2 is small ( � 0.1 mag),
espite the fact that such surface brightnesses are clearly below
he surface brightness limits introduced earlier. There is actually
o contradiction because the limiting surface brightness values are
hose typically defined in 10 × 10 arcsec 2 . Ho we ver, the simulated
laments have areas that are orders of magnitude larger than the area

n which the surface brightnesses limits are defined. This is clearly
een in the bottom panel of Fig. 12 , where the main limiting factor is
n fact the area of the filaments. Since the filaments have such a large
ize, the limiting surface brightnesses in this extremely large area
ange are very high. For example, the limiting surface brightness of
DSS Stripe 82 at 10 × 10 arcsec 2 is 29.2 mag arcsec −2 in the g
and, which translates to 31.2 mag arcsec −2 at 1 × 1 arcmin 2 , typical
xplored area of the filaments. This surface brightness value is at the
pper limit of the magnitudes considered in our tests. 
Overall, the comparison of Figs 11 and 12 indicates that a

ignificant portion of error in colour measurement comes from
he background into which the squares are injected. Ideally, if the
ackground is processed accurately, this should not be the case. This
ndicates that the data processing itself is a very important factor for
olour measurements. There are many steps to it, including those
arried out not in this w ork, lik e flat-fielding and sky subtraction. It
ould be an interesting problem to consider how much each of these

teps contribute to the o v erall error, but we do not go further in this
irection in this work. 

 RESULTS  

he 2D distribution of the g − r and r − i colours for the filaments
dentified in Stripe 82 are presented in Fig. 13 . The colours are

easured using the Gaussian fitting method described in the previous
ection. In the same figure, we also depict the results of Rom ́an et al.
 2020 ) for their sixteen fields, and the line ( r − i ) = 0.43 × ( g

r ) − 0.06, which should separate the colours of cirrus filaments
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Figure 14. Same as Fig. 13 , but for a sample of simulated filaments, the true 
colours of which are uniformly distributed within the area marked by a light 
blue square. 
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nd other extragalactic sources, as Rom ́an et al. ( 2020 ) suggested. In
ubpanels of the figure, we plot individual distributions of the colours, 
heir respective Gaussian approximations (magenta lines), and 3 σ
imits (thick blue rectangles). From the figure, one can indicate two 
mportant properties of the colour distribution. First, there is a peak 
f the density contours at about g − r ≈ 0.6 and r − i ≈ 0.2. Secondly,
here is a large spread of values in both g − r and r − i colours, σ is
bout 0.3 for g − r and 0.4 for r − i . 

We note that peak locations of the 1D distributions, displayed in 
he side panels of Fig. 13 , can be somewhat misleading. For example,
he Gaussian of r − i colours has the peak located at r − i = 0.59.
his is significantly greater than the corresponding r − i ≈ 0.2 of the
D peak. The reason for this is that, for different r − i values, g −
 values are also distributed differently. In the upper part of the plot
 r − i � 0.3–0.4), g − r colour are distributed sparsely for a fixed
alue of r − i and, thus, no density peak is observ ed. F or r − i �
.3–0.4, g − r are clustered very closely and there is a density peak.
 or a fix ed value of r − i (for example, for r − i ≈ 0.6 and r − i ≈
.4), the total number of filaments is nearly the same in both cases. 
In the previous section, we concluded that the colours of dim 

laments are significantly affected by various contaminating factors 
noise, masking residues, etc). Therefore, it is only natural to ask 
o what degree the observed spread of the values corresponds to 
he real dispersion of the cirrus colours. To answer this question, 
e consider a sample of mock filaments (squares) with the sizes

nd surfaces brightnesses distributed according to the distribution 
f these properties for real filaments, presented in the left-hand 
anel of Fig. 7 (in contrast to a sample considered in Section 5 ,
here these properties were uniformly distributed). This simulation 

s labelled S3 in Table 1 . We carry out the simulation for such a
ample in the same manner as it was done in Section 5 comparing
eal and measured colours. For the original colours, we select a 
niform distribution within the following limits: 0.5 ≤ g − r ≤ 0.7 
nd 0.0 ≤ r − i ≤ 0.2. Fig. 14 shows the resulting colours for the
ample. The light blue square marks the limits of the original colours.
he obtained distribution is qualitatively similar to that for the real 
laments. Again, there is a clear density peak at g − r = 0.60, r

i = 0.10 (average of the originally selected values), and rather 
xtended wings (see blue rectangles). These wings lie outside of the
quare of the original colours. This means that the wings arise due to
ontamination factors and, therefore, do not reflect the real dispersion 
f the originally selected colours. For the real filaments, we assume
hat the situation should be qualitatively the same. The large spread
f colours displayed in Fig. 13 should be due to contamination factors
iscussed in Section 5 , and does not reflect the real difference in the
irrus colours. The real variation of cirrus colour should manifest 
tself in the structure of the densest part of the distribution. 

Since the distributions for real and simulated filaments are still 
ualitatively similar (the dense part plus the wings), one can try to
dentify the real dispersion of cirrus colours applying some kind of
deconvolution’ procedure. We use the following approach. First, we 
xpand our simulations and consider a sample of mock filaments 
ith the colours initially distributed uniformly in a wide range, 0.0
g − r ≤ 1.5 and −0.5 ≤ r − i ≤ 1.0 (simulation S4 in Table 1 ).

hen we construct a specific function, the purpose of which is to
roduce 2D density maps of the filament colours on the ( g − r , r −
 ) plane based on the true colours of the filaments. The details are as
ollows: 

(i) First, the function accepts some colour ranges as arguments and 
nds the filaments in the simulated sample with the original colours
ithin the originally selected limits (Fig. 15 , left-most panel). For

implicity, the selected area has a rectangular shape. 
(ii) Secondly, the function assesses the measured colours, which 

iffer from thier true colours, and which are distributed in a manner
imilar to that shown in Figs 13 and 14 . From the distribution, a
mooth density profile is created via the kernel density estimation 
rocedure from the python package sklearn (Fig. 15 , second 
eft-hand panel). The resolution of the prepared map is 0.05 along
oth axes. 
(iii) Thirdly, we prepare a similar smooth density map for real 

laments (Fig. 15 , third left-hand panel). 
(iv) At the last step, we find an optimal range of the colours which
inimizes the sum of square differences between the density map for

imulated filaments and the similar map for real filaments. A typical
esidual map is presented in the right-most panel of Fig. 15 . 

As a result of the analysis, we find that the closest to real observable
istribution is produced by filaments with colours in the following 
anges: 0.55 ≤ g − r ≤ 0.73 and 0.01 ≤ r − i ≤ 0.33. We marked
his area by a light blue rectangle in Fig. 13 . As can be seen, almost
ll clouds from Rom ́an et al. ( 2020 ) have the colours within these
imits, except for two of them, which are outside of the region. Thus,
or most filaments from our sample, the colours are consistent with
hose measured by Rom ́an et al. ( 2020 ), that is, when the colour is
v eraged o v er large spatial areas in Stripe 82. As for criterion ( 1 ),
uggested by Rom ́an et al. ( 2020 ), the most part of the rectangle
s located below the separating line, although there is also a slight
rea abo v e it. Does this mean that the condition is violated? The
orrect answer is that, given the accuracy for colour estimation for
ndividual filaments (which should be about 0.1 for most filaments, 
ee Fig. 10 ), it is impossible to say whether this is really the case.
oreo v er, our approach to identify the real colours assumes that the

olours of filaments are distributed uniformly, which is, of course, a
assive simplification. Thus, we conclude that more precise data are 

equired to verify whether condition ( 1 ), suggested by Rom ́an et al.
 2020 ), holds on a spatial scale of individual filaments. 

An additional argument to support the consistency between our 
esults and those of by Rom ́an et al. ( 2020 ) comes from the analysis
f the filament colours depending on the average surface brightness 
nd the area of the filaments. Fig. 16 shows the corresponding
MNRAS 519, 4735–4752 (2023) 
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Figure 15. Finding the dispersion of the colours for the real filaments. Left-most panel: an initial uniform distribution of colours for mock filaments and 
a selection of a smaller area (the magenta rectangle) to find an optimal colour range for the real filaments. Second left-hand panel: a smoothed map of the 
colour distribution produced by the filaments from the magenta square marked in the leftmost panel. Third left-hand panel: a similar smoothed map for the real 
filaments. Right-most panel: the residue between the map for real filaments and the best-fitting map for the mock filaments. The residual values correspond 
to the difference between the probability density functions, obtained by properly normalizing both maps. Thus, the units of the colourbar are the units of the 
probability density function, 1/(mag × mag). 

Figure 16. 2D distributions of surface brightness (left-hand panel) and area (right-hand panel) depending on the cirrus colours. 
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istributions. As can be seen, the larger and brighter the filament,
he likelier its colours fall within the limits determined by Rom ́an
t al. ( 2020 ). 

It is also worthwhile to consider the distribution of the cirrus
olours o v er galactic coordinates. In Fig. 17, we present the distribu-
ion of the cirrus colours for all filaments o v er galactic latitude and
ongitude (left- and right-hand columns, respectively). Each even
o w sho ws the distribution as is, while each odd row shows the
orresponding 2D histogram by the number of filaments with a bin
ize of o v er 1 o along the x -axis and a bin with a colour of 0.05.
s can be seen, there is almost no dependence on the coordinates,
hich is consistent with the results of Rom ́an et al. ( 2020 ), thus
e confirm the result for individual filaments. One exception is a

lear trend at l ≈ 180 o , where the cirrus clouds become redder.
his is connected with an increase of the dust column density in the

egion, as shown in Fig. 18 , where we present the distribution of the
olours depending on the average far IR emission in the 100- μm
RIS band. A similar tendency was found by Rom ́an et al. ( 2020 )
or their clouds, and we confirm their result for individual filaments.
he density maps presented in Fig. 17 , also show that the peaks of
laments’ distribution appear near the values measured by Rom ́an
t al. ( 2020 ). 
NRAS 519, 4735–4752 (2023) 

s  
 C O N C L U S I O N S  

n this work, we studied the colour properties of the optical cirrus
n Stripe 82 data. The work is inspired by study of Rom ́an et al.
 2020 ), where the cirrus colour properties were investigated using
he same Stripe 82 data, but only for the largest cirrus clouds. Rom ́an
t al. ( 2020 ) manually selected some areas of Stripe 82 that contain
irrus clouds and analysed the distribution of the fluxes and colours
f all the pixels in those selected areas, then filtered them from all
on-cirrus sources of light. Here, we adopted a different approach
nd tried to identify individual cirrus filaments under the assumption
hat they can be described as extended objects, the surface brightness
f which is greater in each pixel than some specific value determined
rom the value of background noise (29 mag arcsec −2 in the r band
or our data). Such a definition of filaments allows one to track the
tructure of the clouds more accurately, and in particular, measure
he colour variance o v er filaments that constitute the same cloud, for
nstance. 

To identify filaments in Stripe 82, we carried out a masking
rocedure, then selected all sources with μr < 29 mag arcsec −2 and
isually inspected each of these sources to verify whether or not they
ppear due to the cirrus scattered light. The latter step is required
ince the data are contaminated by various sources and extended
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Figure 17. Distributions of the cirrus colours g − r (the first two rows) and r − i (the third and fourth rows) colours depending on the galactic longitude 
(left-hand column) and latitude (right-hand column). First and third rows show the usual scatter plots. Second and fourth rows show the corresponding 2D 

histogram by the number of filaments. 

Figure 18. Distributions of the cirrus colours depending on the average far IR emission in the 100- μm IRIS band. Green points mark the filaments, which are 
observed in the region with l < 180 ◦, while red points mark those that have l ≥ 180 o . 
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ings of the PSF. As a result, we marked about 6.4 deg 2 of the whole
tripe 82 area as the area dominated by the cirrus scattered light. 
Since the annotation process of the cirrus is so time-consuming, 

e tested the possibility of optimizing it using machine learning 
ethods. We trained a suitable neural network using the results of
anual cirrus annotation as a training sample and analysed how 

he training setup (encoder model, training strategy, window size, 
tc.) affects the results of annotation. We found that models with
he MobileNetV2 encoder demonstrate the highest performance 
nd intersection o v er union metric value IoU = 0.576, which is
MNRAS 519, 4735–4752 (2023) 
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omparable to the IoU achieved by a human expert (one of the
uthors). This pro v es that machine learning methods can be used
o solve the problem of cirrus identification. In particular, creating
atalogues of cirrus filaments such as those presented by Schisano
t al. ( 2020 ). 

The resulting sample of identified filaments consists of mostly
im and small features with typical surface brightness about μg ≈ 27
ag/arcsec 2 and area of about 1 arcmin 2 . Since the values differ by

n order of a magnitude from those typically considered in previous
orks, we pay special attention to measuring the optical colours of

uch features. To this end, we carried out a series of mock simulations,
njecting artificial extended sources with a priori known colours into
tripe 82 data. We compared true versus measured colours for such
ources and studied the dependence of the measurement error on the
urface brightness and area of the filament. As a result, we identified
everal pitfalls in the analysis of individual filaments, which should
e accounted for in future studies of very faint extended objects
including low surface brightness features around galaxies): 

(i) The linear fitting method for colour estimation does not allow
ne to retrieve the actual colours of the filaments. Instead, one should
se Gaussian fitting suggested by Rom ́an et al. ( 2020 ). 
(ii) There is a clear dependence of the colour measurement error

n the surface brightness, which is rather expected. Ho we ver, it is
mportant that the dependence works in an average way, that is, even
or bright filaments, some may still have large errors on colours,
reater than 0.1 −0.2. At the same time, for most filaments of 26
ag/arcsec 2 and brighter, the error of colour measurement is smaller

han 0.05. Such bright filaments are most likely to be identified by
heir true colours in Stripe 82. For dim filaments, the error increases

onotonically up to about 0.2 at 28 mag/arcsec 2 . 
(iii) Comparing the colours measured for fields where only noise

resents and the actual Stripe 82 data, we found that the colour
easurement error should arise mostly from other factors, not due

he noise (flat-fielding, background subtraction, etc.). 

As for the optical colours of the filaments distinguished in Stripe
2 data, we found the following. The observed as is, the distribution
f the g − r and r − i colours shows a large spread of values
rising due to large errors from the contaminating factors, not from
he real dispersion of the filaments’ colours. At the same time, for

ost filaments, their colours cluster at some specific values. The
omparison of the results of the mock simulations and the data for
eal filaments indicates that the real colours of the identified filaments
hould occupy the following ranges: 0.55 ≤ g − r ≤ 0.73 and 0.01 ≤ r

i ≤ 0.33. These ranges are mostly consistent with those previously
ound in Rom ́an et al. ( 2020 ). The colours of the filaments also show
he tendency to become close to the values measured by Rom ́an et al.
 2020 ) as surface brightness or filament area increases. 

Overall, this work provides a useful framework for a future
nalysis of the upcoming deep optical surv e ys like Euclid (Laureijs
t al. 2011 ) or the Vera C. Rubin Observatory (former LSST, LSST
cience Collaboration et al. 2009 ). We expect that Galactic cirrus
laments can be identified and studied in these surv e ys using similar

echniques to those developed in this work. 
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Table A1. Results gathered on the conducted training experiments. It lists the encoder model (MobileNetV2, ResNet50V2, U-Net), training strategy 
(training from scratch, transfer learning, and fine-tuning), window size, input tensor spatial size, number of annotated classes, class weights for 
background, cirrus and other extended sources if three classes are considered, learning rate and IoU, precision, recall for all tests fields for cirrus class. 
Bold font indicates the maximum values of IoU, precession, and recall for all considered models. To train all models, we selected 200 square windows 
from each of the 200 training fields and 100 windows from each of the 50 validation fields. 

Encoder model Training strategy w (pixel), w in (pixel) n c ω c r IoU Precision recall 

MobileNetV2 Training from scratch 128 128 2 (1, 1) 0.001 0.261 0.846 0.274 
MobileNetV2 Training from scratch 128 128 2 (1, 2) 0.001 0.437 0.702 0.536 
MobileNetV2 Training from scratch 128 128 2 (1, 4) 0.001 0.416 0.64 0.543 

MobileNetV2 Training from scratch 224 224 2 (1, 1) 0.001 0.44 0.626 0.597 
MobileNetV2 Training from scratch 224 224 2 (1, 2) 0.001 0.451 0.619 0.624 
MobileNetV2 Training from scratch 224 224 2 (1, 4) 0.001 0.441 0.623 0.601 

MobileNetV2 Training from scratch 448 448 2 (1, 1) 0.001 0.554 0.721 0.706 
MobileNetV2 Training from scratch 448 448 2 (1, 2) 0.001 0.559 0.678 0.761 
MobileNetV2 Training from scratch 448 448 2 (1, 4) 0.001 0.48 0.552 0.788 

MobileNetV2 Training from scratch 4 × 224 224 2 (1, 1) 0.001 0.482 0.774 0.561 
MobileNetV2 Training from scratch 4 × 224 224 2 (1, 2) 0.001 0.513 0.674 0.683 
MobileNetV2 Training from scratch 4 × 224 224 2 (1, 4) 0.001 0.498 0.806 0.566 

MobileNetV2 Training from scratch 448 448 3 (1, 1, 1) 0.001 0.538 0.617 0 . 807 
MobileNetV2 Training from scratch 448 448 3 (1, 2, 1) 0.001 0.559 0.649 0.802 
MobileNetV2 Training from scratch 448 448 3 (1, 4, 1) 0.001 0.543 0.637 0.786 

MobileNetV2 Fine-tuning 448 448 2 (1, 1) 0.001 0.512 0.682 0.673 
MobileNetV2 Fine-tuning 448 448 2 (1, 1) 0.0005 0.551 0.668 0.758 
MobileNetV2 Fine-tuning 448 448 2 (1, 1) 0.000 25 0.47 0 . 875 0.504 
MobileNetV2 Fine-tuning 448 448 2 (1, 2) 0.001 0.548 0.739 0.68 
MobileNetV2 Fine-tuning 448 448 2 (1, 2) 0.0005 0 . 576 0.676 0.796 
MobileNetV2 Fine-tuning 448 448 2 (1, 2) 0.000 25 0.463 0.762 0.542 
MobileNetV2 Fine-tuning 448 448 2 (1, 4) 0.001 0.541 0.694 0.711 
MobileNetV2 Fine-tuning 448 448 2 (1, 4) 0.0005 0.573 0.701 0.758 
MobileNetV2 Fine-tuning 448 448 2 (1, 4) 0.000 25 0.458 0.606 0.653 

MobileNetV2 Transfer learning 448 448 2 (1, 1) 0.001 0.414 0.621 0.554 
MobileNetV2 Transfer learning 448 448 2 (1, 1) 0.0005 0.397 0.604 0.537 
MobileNetV2 Transfer learning 448 448 2 (1, 1) 0.000 25 0.415 0.622 0.554 

ResNet50V2 Training from scratch 448 448 2 (1, 1) 0.001 0.55 0.683 0.738 
ResNet50V2 Training from scratch 448 448 2 (1, 2) 0.001 0.57 0.749 0.706 
ResNet50V2 Training from scratch 448 448 2 (1, 4) 0.001 0.54 0.66 0.748 

U-Net Training from scratch 448 448 2 (1, 4) 0.001 0.155 0.773 0.163 
U-Net Training from scratch 448 448 2 (1, 8) 0.001 0.415 0.684 0.514 
U-Net Training from scratch 448 448 2 (1, 16) 0.001 0.388 0.474 0.681 
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