
 

 

 University of Groningen

Multi-institutional PET/CT image segmentation using federated deep transformer learning
Shiri, Isaac; Razeghi, Behrooz; Vafaei Sadr, Alireza; Amini, Mehdi; Salimi, Yazdan; Ferdowsi,
Sohrab; Boor, Peter; Gündüz, Deniz; Voloshynovskiy, Slava; Zaidi, Habib
Published in:
Computer Methods and Programs in Biomedicine

DOI:
10.1016/j.cmpb.2023.107706

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2023

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Shiri, I., Razeghi, B., Vafaei Sadr, A., Amini, M., Salimi, Y., Ferdowsi, S., Boor, P., Gündüz, D.,
Voloshynovskiy, S., & Zaidi, H. (2023). Multi-institutional PET/CT image segmentation using federated
deep transformer learning. Computer Methods and Programs in Biomedicine, 240, Article 107706.
https://doi.org/10.1016/j.cmpb.2023.107706

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 24-06-2024

https://doi.org/10.1016/j.cmpb.2023.107706
https://research.rug.nl/en/publications/b0aa3917-00af-43ba-9299-d2bfe473b50d
https://doi.org/10.1016/j.cmpb.2023.107706


Computer Methods and Programs in Biomedicine 240 (2023) 107706

Available online 12 July 2023
0169-2607/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Multi-institutional PET/CT image segmentation using federated deep 
transformer learning 

Isaac Shiri a, Behrooz Razeghi b, Alireza Vafaei Sadr c,d, Mehdi Amini a, Yazdan Salimi a, 
Sohrab Ferdowsi b, Peter Boor c, Deniz Gündüz e, Slava Voloshynovskiy b, Habib Zaidi a,f,g,h,* 

a Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland 
b Department of Computer Science, University of Geneva, Geneva, Switzerland 
c Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany 
d Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA 
e Department of Electrical and Electronic Engineering, Imperial College London, UK 
f Geneva University Neurocenter, University of Geneva, Geneva, Switzerland 
g Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen, The Netherlands 
h Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark   

A R T I C L E  I N F O   

Keywords: 
PET/CT 
Segmentation 
Federated learning 
Deep transformers 
Privacy 

A B S T R A C T   

Background and Objective: Generalizable and trustworthy deep learning models for PET/CT image segmentation 
necessitates large diverse multi-institutional datasets. However, legal, ethical, and patient privacy issues chal
lenge sharing of datasets between different centers. To overcome these challenges, we developed a federated 
learning (FL) framework for multi-institutional PET/CT image segmentation. 
Methods: A dataset consisting of 328 FL (HN) cancer patients who underwent clinical PET/CT examinations 
gathered from six different centers was enrolled. A pure transformer network was implemented as fully core 
segmentation algorithms using dual channel PET/CT images. We evaluated different frameworks (single center- 
based, centralized baseline, as well as seven different FL algorithms) using 68 PET/CT images (20% of each 
center data). In particular, the implemented FL algorithms include clipping with the quantile estimator (ClQu), 
zeroing with the quantile estimator (ZeQu), federated averaging (FedAvg), lossy compression (LoCo), robust 
aggregation (RoAg), secure aggregation (SeAg), and Gaussian differentially private FedAvg with adaptive 
quantile clipping (GDP-AQuCl). 
Results: The Dice coefficient was 0.80±0.11 for both centralized and SeAg FL algorithms. All FL approaches 
achieved centralized learning model performance with no statistically significant differences. Among the FL 
algorithms, SeAg and GDP-AQuCl performed better than the other techniques. However, there was no statisti
cally significant difference. All algorithms, except the center-based approach, resulted in relative errors less than 
5% for SUVmax and SUVmean for all FL and centralized methods. Centralized and FL algorithms significantly 
outperformed the single center-based baseline. 
Conclusions: The developed FL-based (with centralized method performance) algorithms exhibited promising 
performance for HN tumor segmentation from PET/CT images.   

1. Introduction 

1.1. PET/CT-based management of head and neck cancer 

Positron emission tomography (PET) and computed tomography 
(CT) are widely used imaging modalities in cancer diagnosis, staging and 
restaging, monitoring of treatment response, and radiation treatment 

planning [1]. Complementary metabolic and anatomical information 
captured by multimodality PET and CT images, respectively, is 
commonly used for malignant disease detection, gross tumor volume 
(GTV), and biological tumor volume (BTV) delineation for radiation 
therapy planning (RT) [1]. RT plays a major role in the treatment of 
head and neck (HN) cancer patients, which requires GTV delineation. In 
addition, tumor delineation is an essential step toward semi-quantitative 
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and quantitative analysis of PET images for staging and response 
assessment of cancer patients. However, the delineation of GTV on 
PET/CT images is labor intensive, prone to inter/intra-observer vari
ability, and remains a time-consuming process which involves switching 
between PET and CT images [2]. 

The low resolution and noisy nature of PET images and partial vol
ume effects on one hand, and the diverse anatomical variability in the 
HN region and the presence of highly active lymph nodes and lumen of 
the airway, on the other hand, challenge the deployment of semi- 
automated and fully automated PET segmentation algorithms in the 
clinic [2]. More recently, deep learning (DL) algorithms have been 
developed for medical image segmentation and, specifically, PET image 
segmentation [3]. While PET signal is essential for developing DL auto 
segmenting models for HN patients, anatomical modalities such as CT 
and MRI can be beneficial for their high resolution and helps the models 
to better identify the subtle details and accurately delineate boundaries 
of the tumor. 

1.2. HN tumor segmentation from PET/CT images 

Andrearczyk et al. [4] proposed fully convolutional 2D and 3D V-Net 
models for automatically delineating the hepatocellular carcinoma 
(HCC) tumors and nodal metastases on single- and multi-modality 
18F-FDG-PET and CT images. Manually segmented ROI of 202 HCC 
patients were used as ground truth. They used two approaches for 
multi-modality modeling; They fed PET and CT images as multiple input 
channels, or alternatively, in a late fusion approach, averaged the 
voxel-wise probability outcomes of individual PET and CT models. They 
achieved a Dice score of 0.48, 0.58, and 0.60 for CT, PET, and late fusion 
PET/CT models. Also, their model performed better on a 2D basis 
compared to a similar 3D design. Zhao et al. [5] presented a fully con
volutional network with auxiliary paths for automatic segmentation of 
Nasopharyngeal Carcinoma (NPC) from PET/CT images. They applied 
their proposed model on 30 patients enrolled from two centers and, with 
threefold cross-validation, achieved a mean dice score of 0.87. In a study 
by Guo et al. [6], proposed a DL GTV segmentation framework based on 
3D convolution with dense connections based on multi-modality 
PET/CT images. They split a dataset of 250 HN patients into 140 pa
tients for training, 35 for validation, and 75 patients for testing the 
proposed model. They compared their proposed model with a 3D U-Net 
network as the reference model. Their proposed PET/CT Dense-Net 
showed superior outcomes compared to the 3D U-Net network (Dice 
0.73 vs. 0.71) while having fewer parameters to train. The HECKTOR 
(HEad and neCK TumOR) segmentation challenges are being held in 
2020–2022 and continuing in 2023 to address segmentation challenge 
([7,8]) in HN patients using PET/CT images. In the second edition 
(2021) of the HECKTOR challenge, 22 eligible teams participated ([7, 
8]). A total number of 325 PET/CT images of HN cancer patients from 
six centers were split into 224 patients for training and 101 for testing. 
Models developed by the participants were with the Dice score ranging 
from 0.63 to 0.78 and the median Hausdorff Distance95% from 6.37 to 
3.09. The winner of the challenge [9] achieved an average DSC of 0.78 
and a median HD95 of 3.09. 

In CNN-based models including Encoder-Decoder explicit long-range 
and global relation modeling is a major challenge because of the locality 
of convolution operations [10]. These challenges lead to suboptimal 
accuracy because of large inter/intra-patient variabilities in HN tumor 
segmentation using PET/CT images. Transformers that have been suc
cessfully used in natural language processing (NLP) and machine 
translation tasks [11] have recently been shown to outperform CNNs in 
some image processing tasks ([10,12]). A number of studies imple
mented the transformer architecture in a variety of learning tasks. For 
instance, the vision transformer, data-efficient image transformer, and 
hierarchical Swin transformer have all been successfully used in image 
classification, image-to-image translation, and image segmentation, 
respectively ([10,12]). More recently, Swin-U-Net [12], a U-Net-like 

pure transformer, has been proposed for medical image segmentation 
and was shown to outperform CNN-based or combination of CNN and 
transformer (Trans-U-Net) counterparts [10]. The main challenges in 
transformers are needing large data sets for training and many training 
parameters in their architecture. 

1.3. FL in medical imaging 

DL models developed based on single-center datasets face the chal
lenge of model generalizability and result in poor performance for un
seen data with the different acquisition, reconstruction, and scanner 
settings from different centers ([13,14]). In centralized model training, 
data owners are mandated to pool their data to third-party servers. 
However, this approach causes ethical and legal concerns as medical 
data contains highly sensitive private personal information. Federated 
learning (FL) has been proposed for distributed training without sharing 
data between different institutions ([13,14]). FL algorithms have been 
applied to medical image analysis for different tasks, including classi
fication, prognostication, and segmentation ([13,14]). Dayan et al. [15] 
built a predictive model called EXAM (electronic medical record (EMR) 
chest X-ray AI model) in COVID-19 patients using chest X-ray images 
and FL across 20 centers. The comparison between FL and center-based 
model revealed 16% and 38% enhancement in the mean area under the 
curve (AUC) and generlizablity of the FL model, respectively. 

Sheller et al. [16] studied the feasibility of brain tumor segmentation 
using MR images using FL. They reported identical results for FL with 
centralized training in multi-modal brain tumor segmentation (Dice 
score of 0.85 vs 0.86). They implemented two collaborative learning 
approaches, institutional incremental learning (IIL) and cyclic institu
tional incremental learning (CIIL), which failed to reach FL perfor
mance, and reported that FL outperformed existing collaborative 
learning approaches. Bercea et al. [17] proposed unsupervised brain 
pathology (multiple sclerosis and Glioblastoma) segmentation using 
disentangled FL. They proposed a method that disentangles model 
parameter spaces into a shape space as they assumed that the brain’s 
anatomical structure is similar across centers. They used open source 
and in-house datasets for model training and a reported Dice score of 
0.38, thus outperforming auto-encoder (42%) and state-of-the-art 
(SOTA) FL method (11%). In Sarma et al. [18], implemented 
multi-center whole prostate T2-weighted MR image segmentation using 
3D anisotropic hybrid network. They reported that FL-based models 
result in superior and generalizable performance with respect to single 
center-based models. Dice scores of 0.81, 0.83, and 0.87 were reported 
for three single center-based models. However, for FL models, they 
achieved a Dice score of 0.88. Li et al. [19] developed a 
privacy-preserving FL for brain tumor segmentation, which identified a 
trade-off between performance and cost of privacy. Yang et al. [20] 
presented a semi-supervised learning-based segmentation for COVID-19 
pneumonia using multinational chest CT data from three countries. They 
reported the effectiveness of the proposed method compared to super
vised methods with data sharing. In a recent study, [21], an 
image-to-image translation task for PET image attenuation correction 
and scatter compensation was performed using deep FL. Dataset of six 
different centers (50 patients per center) enrolled and two sequential 
and parallelled FL algorithms compared with CeBa and CeZe algorithms. 
Moreover, they reported higher and comparable performance compared 
to FL algorithms compared to CeBa and CenZe learning algorithms, 
respectively. 

Most recently, Shiri et al. [22] evaluated PET-only image segmen
tation using FL. Their study enrolled 405 HN cancer patient images from 
nine different centers. The models were built on cropped PET images 
using an R2U-Net network. They reported identical performance with a 
Dice score of 0.84±0.06 vs 0.84±0.05 for FL and centralized ap
proaches, respectively, with no statistically significant differences. In 
terms of PET parameters, almost zero% relative error (RE%) was re
ported for both algorithms in SUVmax, SUVpeak, and in SUVmean RE% of 
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6.43±4.72 vs 6.61±5.42 were reported for centralized, and FL ap
proaches, respectively. Isik-Polat et al. [23] evaluated different aggre
gation techniques and hyperparameter values for FL in brain tumor 
segmentation. They reported higher performance for FedAvgM (feder
ated averaging with server momentum) compared to FedAvg and Fed
Nov (normalized averaging method). In addition, adaptive epochs 
resulted in faster convergence and higher performance. They concluded 
that different combinations of hyperparameters may result in lower 
performance as one parameter may decrease the effectiveness of others. 
Recently, the Federated Tumor Segmentation (FeTS) challenge, which 
uses MR images from the BraTS challenge [24], was introduced. FeTS 
aims to identify optimal weight aggregation and build generalizable 
models. In a more recent study [25] FL implemented to build a model 
using 71 site images for detection of the rare disease of glioblastoma, 
and they reported 33 and 23% improvement in the delineation of sur
gical targetable tumor and the complete tumor extent, respectively [25]. 

Although various approaches to FL have been developed to address 
different issues, including data partition, communication bottleneck, 
data heterogeneity, and privacy. There is no one-fit-all FL solution that 
can address all FL challenges ([13,14]). In the current study, we employ 
different FL approaches for PET/CT image segmentation that have been 
designed to address different issues and compare them with the 
centralized benchmark. Considering the pros and cons of each method 
and client’s preferences, one of these approaches can be implemented to 
train a generalizable model using multicentric data. 

The contributions of this research are summarized in the following:  

• We provided the integration of purely attention-based transformers 
and FL algorithms for PET/CT Image segmentation in HN Cancer 
patients.  

• We applied the FL framework for the PET/CT image segmentation, 
which provides a more generalizable model development in multi- 
center settings.  

• Different FL frameworks are implemented in which each algorithm 
addresses different challenges of a FL model, including different 
learning paradigms, aggregation, robustness, privacy, and commu
nication efficiency.  

• A comprehensive comparison is performed between center-based, 
centralized, and FL frameworks.  

• A comprehensive quantitative analysis is performed in PET images 
toward clinical evaluation of segmentation algorithms. 

2. Methods 

2.1. PET/CT data acquisition and description 

In the current study, we enrolled PET/CT images of 328 histologi
cally proven HN cancer patients from six different centers. The number 
of included patients (after reviewing all patient’s PET and CT images in 
terms of noise and artifacts in all centers) was 23, 32, 34, 59, 81, and 99 
from centers 1 to 6, respectively. Different centers acquired and recon
structed 18F-FDG PET/CT images using different scanners and pro
tocols. Detailed information about each center’s data (demographic, 
PET, and CT image acquisition and reconstruction) is provided in 
Table 1, and more information could be found in ([3,22,26-32]). Ethics 
approval and consent to participate were unnecessary since the study 
was performed on open access online dataset. We split the data from 
each center into a train/validation set (70/10% patients, in total 234/26 
patients), and a test set (20% patients, in total 68 patients) with strati
fication based on centers. 

2.2. Manual image segmentation and pre-processing 

Manual segmentation of primary tumors performed separately for 
each center on PET/CT images was used as standard of reference for 
evaluation. An experienced nuclear medicine physician evaluated and 
checked all PET/CT segmentations and edited/modified them to offset 
plausible errors (i.e., missing slices, including lymph nodes, and 
including the lumen of the airway). PET and CT images were converted 
to standardized uptake value (SUV) maps and Hounsfield Unit (HU) 
values. Metal artifacts in CT images were corrected using the iterative 
metal artifact reduction (iMAR) algorithm [33]. In order to render the 
computations tractable and to preserve the image resolution, all images 
were cropped to the HN region with the aid of an automatic CT lung 
segmentation and body contour extractor [34]. Cropped images were 
subsequently resized to 200 × 200 with an isotropic voxel size of 1 × 1 
× 1mm3. CT images were clipped to the range [ − 1024, 1200] HU to 
include all HN tissues, and along intact SUV maps were normalized to 
the range [0,1] for model development. All pre- and post-processing 
steps were fully automated to ensure fully automated PET/CT image 
segmentation in a clinical setting. 

Table 1 
Summary of data description including patient demographics, PET and CT image acquisition, and reconstruction setting for the different centers.  

Information Center 1 Center 2 Center 3 Center 4 Center 5 Center 6 

Number of patients 23 32 34 59 81 99 
Sex(M/F/NA) 18/5 30/2 25/9 44/15 59/16/6 70/29 
Age (mean ± sd) 61 ± 10 55 ± 8 66 ± 9 64 ± 9 61 ± 10 64 ± 10 
Weight (Kg) 80.3 ± 15 52.78 ± 14.54 74.57 ± 22.53 76.85 ± 12.10 77.15 ± 17.18 75.88 ± 19.01 
N-status (N0/N1/N2/N3/NA) 2/6/13/2 2/7/23/0 3/2/25/4 4/8/40/7 12/13/47/3/6 37/9/50/3 
TNM (I, II, III, IV, NA) 2/4/3/14/0 0/0/8/24/0 0/3/2/29/0 0/2/6/50/1 1/5/20/49/0/6 3/18/20/58/0 
Chemotherapy (True/False/ 

NA) 
23/0/0 0/0/32 17/1/16 52/4/3 51/4/26 54/18/27 

Locoregional invasion (True/ 
NA) 

0/0/23 4/28/0 6/26/2 4/13/12 9/54/18 14/81/4 

PET/CT Scanner Siemens 
Biograph 

GE-Discovery GE-Discovery GE-Discovery ST, Phillips Guardian 
Body 

GE-Discovery 
ST 

Phillips Guardian 
Body 

kVp 120 120 120,140 120 120,140 120,140 
Average Tube Current 234.1 ± 31.9 253.2 ± 80.1 191.2 ± 121.6 178.2 ± 96.1 203.2 ± 104.5 384.3 ± 36.2 
Matrix Size 512×512 512×512 512×512 512×512 512×512 512×512 
Injected Activity (MBq) 405.25±87.02 595.74 ±

119.81 
478.01 ±
167.11 

372.31 ± 364.76 573.77 ± 71.06 324.33 ± 78.22 

Time to Scan (min) 63.35 ± 20.08 93.35 ± 22.08 90.46 ± 18.46 118.25 ± 23.79 102.64 ± 16.46 102.42 ± 15.09 
Time Per Bed (min) 2.5 ± 0.15 3.03 ± 0.17 4.87 ± 1.41 4.77 ± 0.72 5.43 ± 1.37 2.49 ± 0.05 
Reconstruction OSEM OSEM OSEM OSEM OSEM LOR-RAMLA 
Matrix Size 168×168 128×128 128×128 128×128, 144 × 144 128×128 144×144 
Slice Thickness (mm) 3 3.27 3.27 3.75 ± 0.35 3.27 4  
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2.3. FL framework 

In general, neural network training methods can be categorized into 
(i) center-based training framework, (ii) centralized training framework, 
(iii) distributed training framework, (iv) decentralized training frame
work, and (v) FL framework. The main difference between these 
learning frameworks is the way the training data is distributed among 
the various nodes in the network. Below, we briefly review these 
training frameworks. 

Center-Based (CeBa) Training Framework. In the center-based training 
framework, each party (node) trains its own ML model using its local 
training dataset, independently of the other centers, and holds the entire 
control over the functionality of the model. This training framework 
faces the inability to adapt properly to unseen data. 

Centralized (CeZe) Training Framework. In a centralized training 
framework, the participating parties (nodes) send their local data to a 
centralized server to build and train a global ML model. That is, in a 
centralized learning framework, all of the training data are stored on a 
single node (centralized server), and the other nodes in the network must 
access these data to train their models. This training framework is a 
traditional data science pipeline, however, it cannot ensure the privacy 
and security of the participating data owners. 

Distributed Training Framework. In the distributed training framework, 
participating parties independently train ML models using their local 
datasets and share their local model updates with a server to build the 
global model. In this learning framework, the training data are divided 
among multiple nodes, and each node trains its own model using the 
data it has access to. 

Decentralized Training Framework. In a decentralized training frame
work, there is no central node and each node trains its own model using 
the data it has locally. Therefore, in this learning framework, there is no 
server to train a model (like a centralized training framework) or to 
aggregate the local model updates (like distributed training framework). 
Instead, the computation process is distributed across all the partici
pating parties. 

Federated Learning Framework. In a FL framework, the training data 
remains decentralized and is not shared among the nodes, but the nodes 
can still collaborate and share their model updates with each other in 
order to improve the overall performance of the network. In other 
words, the FL framework is introduced based on a centralized model 
which uses decentralized model training. That is, the participating 
parties have their own data, and the ML models are trained indepen
dently on the local datasets. Once the local model is trained, each party 
sends model updates to a central server. Finally, the central server ag
gregates the model updates to build a global model. Note that, in a 
distributed training framework [35], we have centralized data and 
distribute it to computing servers (i.e., workers) for efficient and fast 
training, while in the FL framework, we have decentralized data and aim 
to train a global model with the help of a parameter server. In this 
research, we implement and compare single center training, centralized 

training, and different FL frameworks (Fig. 1). 

2.3.1. Federated deep learning framework 
Let θ ∈ Rd denote the parameters of a DL model. Consider F(θ) as an 

overall loss function. Typically, F(θ) is a non-negative real-valued 
function computed empirically using available data samples with 
respect to the model parameters θ. Suppose we have K data centers 
(owners) that are eager to participate in training a global DL model. Let 
each of these data centers have a collection of Nk data samples, k ∈ {1, 2, 
…, K}. The local data samples at the k-th center are denoted by D k =

{xi, yi}
Nk
i=1, where xi and yi are the feature vector and the ground-truth 

label vector, respectively. Let Fk(θ) denote the local aggregated loss 
corresponding to θ and all the data samples at the k-th data center 
(owner). Typically, we take Fk(θ) as follows: 

Fk(θ) =
1

Nk

∑

i∈D k

L (θ; (xi, yi)), (1)  

where L (θ; (xi, yi)) is the loss of the model parameters θ for sample (xi, 
yi). The distributed learning model objective can then be formulated as 
the following minimization problem: 

min
θ∈Rd

F(θ)
Δ
=

∑K

k=1

Nk

N
Fk(θ), (2)  

where N =
∑K

k=1 Nk denotes the total number of data samples across K 
centers. Once the parameter server (possibly a trusted data center) 
collects the local gradients from the data centers, it updates the global 
model parameters using the iterative stochastic gradient descent (SGD) 
algorithm given as: 

θt+1 = θt − η
∑K

k=1

Nk

N
∇fk(θt), (3)  

where η is the learning rate, and ∇fk(θt) is the average gradient at center 
k, computed using the local data samples D k and the current model 
parameter θt. The above iterative distributed SGD approach is also known 
as weighted averaging in literature. 

In FL, the aggregation method refers to the way the models trained 
on individual nodes are combined to produce a global model. There are 
different ways to aggregate the models, and the choice of a method can 
affect the accuracy and convergence of the global model. In [36], 
federated averaging (FedAvg) was proposed to optimize the 
communication-efficiency compared with the naïve distributed SGD 
method. In FedAvg, firstly, the server initializes a global model param
eter and then shares it with a subset of participating data owners, chosen 
randomly and independently. Next, each data owner performs several 
epochs of SGD using its local data samples and sends the updated model 
back to the server. Finally, the server updates the global model param
eters as the weighted average of the received local model parameters. 
This process is repeated for a number of iterations, and the global model 

Fig. 1. Visual illustration of (a) center-based training, (b): centralized training, (c): federated learning frameworks; (d) our network architecture.  
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is updated with each iteration. Similarly to Eq. (3), the weighting co
efficients are proportional to the size of the data samples of each data 
owner. The difference between weighted averaging and federated 
averaging approaches is that in the latter multiple SGD iterations are 
performed locally before sending the model differences to the server. 

Practical FL systems face several challenges, most prominently i) 
robustness, (ii) privacy preservation, and (iii) communication- 
efficiency. Below, we briefly review these fundamental challenges 
related to our research. In previous sections, we introduced CeBa, CeZe, 
and FedAvg approaches. In what follows, we introduce the techniques 
we explor in this work, namely, robust aggregation (RoAg), secure ag
gregation (SeAg), clipping with the quantile estimator (ClQu), zeroing 
with adaptive quantile estimator (ZeQu), Gaussian differentially private 
federated averaging with adaptive quantile clipping (GDP-AQuCl), and 
lossy compression (LoCo). 

2.3.2. Robustness in fl 
The aggregation of the updates from the participating centers in the 

training phase significantly impacts the learned model’s performance. It 
is desirable to reduce the model’s sensitivity to corrupted updates 
caused by a failure in hardware or manipulated by potential adversaries. 
Robustness in FL refers to the ability of the learning system to perform 
well despite the various challenges, such as malicious attacks, non-i.i.d. 
data, and communication constraints. Robustness is also important in FL 
because it helps to protect the system against malicious attacks. In FL, 
the training data is distributed among multiple nodes, and each node 
trains its own model using the data it has locally. This can make the 
system vulnerable to attacks in which malicious nodes try to manipulate 
the training data or the model parameters in order to cause the global 
model to perform poorly. Several techniques can be used to improve the 
robustness of FL systems, including:  

• Robust Aggregation: Robust aggregation is a variant of federated 
averaging that is designed to be more resistant to malicious attacks.  

• Federated Transfer Learning: Federated transfer learning is a 
technique that involves pre-training a model on a centralized dataset 
and then fine-tuning the model on decentralized data from multiple 
nodes. This can help improving the performance of the model in non- 
iid settings.  

• Outlier Detection and Removal: Outlier detection and removal is a 
technique that involves identifying and removing data points that 
are significantly different from the majority of the data in order to 
improve the performance and robustness of the model.  

• Data Perturbation: Data perturbation is a technique that involves 
adding noise to the training data at each node in order to protect the 
privacy of the data and improve the robustness of the model. 

The standard aggregation scheme in FL, i.e., arithmetic mean aggre
gation, is not robust to data corruption. One possible solution is to use an 
approximate geometric median instead of the weighted arithmetic mean 
to increase the robustness to update corruption [37]. Alternative pop
ular solutions include zeroing and clipping techniques. Zeroing (Ze) refers 
to replacing the components larger than a predefined threshold with 
zeros. The main objective of the zeroing approach is to increase the 
robustness of the whole learning model towards data corruption by 
faulty clients. The most popular zeroing approach in the literature is 
adaptive zeroing with the quantile estimator. In the clipping (Cl) 
approach [38], we bound the L2 norm of client updates by projecting 
larger updates onto the L2 ball of radius C centered at the origin. The 
clipping function Clip : Rd × R→Rd is defined as follows: 

Clip(θ,C) = θ
/

max
(

1,
‖ θ‖2

C

)

. (4) 

The hyper-parameter C has a significant role in the utility of the DL 
algorithm. If C is set too high, it entails the addition of more noise. If C is 

set too small, it can cause high bias in the gradient estimation since we 
lose the information on the magnitude of the original gradient, which 
may cause non-accurate training and worse generalization performance. 

2.3.3. Privacy preservation in FL 
Privacy preservation in FL refers to the ability of the learning model 

to protect the privacy of the training data while still allowing for 
effective model training. In FL, since the data centers (owners) avoid 
transmitting their local data to an external party, it was initially pro
moted as a private distributed learning algorithm. However, it has been 
shown that participant’s training data may leak via the communicated 
model updates or the final shared model ([39,40]). To avoid information 
leakage, the typical solution is to use secure aggregating methods [41] 
such as homomorphic encryption, and differential privacy (DP) mecha
nisms in FL. Furthermore, the aggregation schemes based on averaging 
are vulnerable to adversarial attacks, e.g., a malicious participant may 
impose undesired behavior into the global model. Robust aggregation 
approaches try to address model integrity attacks ([37,42]). The two 
popular aggregation approaches are federated averaging [36] and secure 
aggregation [43]. In this research, we compare our results considering 
both of these approaches.  

• Secure Aggregation: Secure aggregation (SeAg) is a method for 
aggregating models in FL designed to protect the privacy of the 
training data. In secure aggregation, each node trains its own model 
using local data and then sends encrypted model parameters to a 
central server. The server uses a secure aggregation protocol to 
combine the encrypted model parameters from the nodes and pro
duce a global model. This global model is then sent back to the nodes 
for further training. Although SeAg is primarily aimed to protect the 
privacy of the training data, it can also improve the robustness of FL 
model. The goal of secure aggregation is to prevent the server from 
observing the individual local updates while being able to compute 
their aggregate. It also protects the final model from a possible 
integrity attack. It is mainly inspired by secure multi-party computa
tion (SMC) protocols ([44,45]). In the secure aggregation approach, 
each participant masks its local model update using pairwise random 
keys and sends it to the parameter server. Two scenarios can be 
considered for the parameter server: (i) honest‑but-curious (passive) 
model, and (ii) active adversary model. In our experiments, we 
consider the former. In [44], the authors addressed two masking 
schemes: (i) masking with one-time-pads and (ii) double-masking 
approaches. The masking approach with a one-time pad has two 
shortcomings: (i) it requires quadratic communication overhead, and 
(ii) there is no tolerance for a participant (data owner) failing to 
complete the protocol [43]. In our experiments, we use the 
double-masking approach as described in the following. Let each pair 
of data owners k, k′ ∈ {1, ⋅⋅⋅, K}, k ∕= k′, agree on some random seed 
(vector) st

k,k′ at global iteration t. The pairwise random key st
k,k′ can be 

generated using a key exchange protocol [46]. In addition, simul
taneously, each data center k ∈ {1, ⋅⋅⋅, K} samples (generates) a 
random seed sk. Next, the data owner k computes a masked version of 
its local model parameters as follows: 

wt
k = θt

k + PRG(sk)

+
∑

k:k<k′

PRG
(

st
k,k′

)
−

∑

k:k>k′

PRG
(

st
k,k′

)
, (5)   
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where PRG is a secure pseudo-random generator whose output space is 
[0, R)d. Finally, the data owner sends its masked model parameters to 
the server. The data owner k uses the Shamir’s N2-out-of-N secret sharing 
protocol [47] to share {st

k,k′} and sk with other data owners. Note that the 
operations in [5] are carried out in a finite field of integers1 modulo a 
prime R, where [0, R) denotes the range of both model parameters and 
their summation.  

• Homomorphic Encryption: In the cryptographic methods, which are 
mostly based on homomorphic encryption, the data owner sends an 
encrypted version of the data to the parameter server, and the signal 
processing is performed in the encrypted domain. Homomorphic 
encryption was initially introduced under the notion of privacy ho
momorphism in 1978 [48]. Since this seminal work, several homo
morphic encryption techniques have been proposed, which are only 

able to process the encrypted data with one kind of operator, e.g., 
multiplication or addition operations, for a limited number of times 
[49]. The first fully homomorphic encryption (FHE) scheme has been 
proposed by Gentry [50], which allows an unlimited number of 
arithmetic operations in the encrypted domain. Recently, researchers 
try to use a Homomorphic encryption scheme in machine learning 
models, with possible application in medicine and biometrics ([51, 
52]). We can use homomorphic encryption for the aggregation stage 
of an FL system, as it involves only the addition operation. Alterna
tively, one can use homomorphic encryption to train the local models 
in an encrypted domain using FHE. The study and analysis of privacy 
homomorphism are beyond the scope of this paper.  

• Differential Privacy (DP) DP is the most popular context-free notion 
of privacy, which is inspired by the stability of likelihood ratios ([53, 
54]). DP adds noise to the model parameters during training and 
aggregation in order to protect the privacy of the training data. It is 
widely used in deep learning models ([38,55-58]). Informally, a 
randomized computation over a database D is differentially private 
if the sensitive data of individuals contributing to D is protected 
against arbitrary adversaries with query access to D [59]. Although 
DP is primarily designed to protect the privacy of the training data, it 
can also improve the robustness of FL model. 

Definition 1. Let ε ≥ 0 and 0 ≤ δ ≤ 1; a randomized algorithm M is said 
to be (ε, δ)-differentially private [59] if for any two neighbouring inputs 
(datasets) D 1 and D 2 and for every event E ⊆ R, its output distributions are 
(eε,δ)-close, i.e., for every event E: 

Pr[M (D 1) : E] ≤ eϵ Pr[M (D 2) : E] + δ, (6)  

where Pr[M (D 1) : E] denotes the probability of event E in the distri
bution obtained by running the algorithm M on dataset D 1, ε is the 
privacy budget, and δ denotes the probability of information leakage. 
The δ = 0 refers to pure DP, while δ > 0 refers to approximate DP. When 
δ = 0, the (ε, δ)-DP mechanism M relaxed to ε-DP mechanism. 

The intuition behind the definition of DP is that an individual has 
little incentive to participate in a statistical study, as the individual’s 
data has limited effect on the outcome [60]. The Laplace and Gaussian 
noise mechanisms are the two most widely used practical mechanisms to 
achieve DP. 

Let f ∈ D →Rd be function with L2-sensitivity 
ψ f

Δ
=

maxD 1 ,D 2∈D ,D 1∼D 2‖ f(D 1) − f(D 2)‖2, where D 1 ∼ D 2 denotes 
that D 1 and D 2 are two neighbouring data sets. The Gaussian noise 
mechanism is defined as follows: 

M (D )
Δ
=

f (D ) + N

(
0, σ2ψ2

f ⋅Id

)
, (7)  

where N (0, σ2ψ2
f ⋅Id) is a zero-mean multivariate Gaussian noise vector. 

Using the Gaussian mechanism, each data owner adds Gaussian noise to 
its local model parameter before forwarding to the server. The param
eter σ is chosen based on ψ2

f and δ [38]. Note that the clipping (Cl) 
approach, described in Section 2.3.2, also bounds the L2 sensitivity of 

Table 2 
Summary of the Different FL Algorithm Properties.  

Algorithm Overcome Client 
Drifting 

Adaptive Learning 
rate 

Cross-device 
Compatible 

Robust to 
Outliers 

Communication 
Efficient 

Address Client 
Heterogeneity 

Ensure 
Privacy 

ClQu ⨯ ✓ ✓ ✓ ✓ ✓ ⨯ 
ZeQu ⨯ ✓ ✓ ✓ ✓ ✓ ⨯ 
FedAvg ⨯ ✓ ✓ ⨯ ⨯ ⨯ ⨯ 
LoCo ⨯ ✓ ✓ ✓ ✓ ✓ ⨯ 
RoAg ✓ ✓ ✓ ✓ ✓ ✓ ⨯ 
SeAg ⨯ ✓ ✓ ✓ ✓ ⨯ ✓ 
GDP- 

AQuCl 
⨯ ✓ ✓ ✓ ✓ ✓ ✓  

Fig. 2. 3D views of PET/CT segmentation obtained from manual (red) and 
different algorithms on representative patients from different centers.(1–6 from 
left to right): center-based (CeBa), centralized (CeZe), clipping with the quan
tile estimator (ClQu), zeroing with the quantile estimator (ZeQu), federated 
averaging (FedAvg), lossy compression(LoCo), robust aggregation (RoAg), 
secure aggregation (SeAg), Gaussian differentially private federated averaging 
with adaptive quantile clipping (GDP-AQuCl). 

1 The model parameters can be mapped to integers on the range [0, R) using a 
linear transform followed by a non-linearity, e.g., clipping and quantization. 
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the model parameter aggregate with respect to the removal or addition 
of data samples of one participant (data owner). Therefore, we can add 
Gaussian noise to the clipped model parameters to obtain a central DP 
guarantee. Gaussian noise can be added (i) during local training, (ii) to 
the aggregated local model parameters before forwarding to the server, 
or (iii) to the global model parameter at the server side before sharing 
with the participants. A combination of DP and secure aggregation is 
employed for medical image FL in [41]. 

In [61], the authors proposed a private adaptive strategy for tuning 
the clipping threshold C to approximate it at a specified quantile of the 
update norm distribution, which can be viewed as minimizing the 
clipping probability. In this research, we utilize the Gaussian differen
tially private federated averaging with adaptive quantile clipping approach 
[61], which we refer to it as GDP-AQuCl. Moreover, we applied the 

proposed quantile scheme to the fixed zeroing and fixed clipping ap
proaches described in Section 2.3.2, which results in (i) zeroing with 
adaptive quantile estimator (ZeQu), and (ii) clipping with the quantile esti
mator (ClQu) approaches. We compare all these SOTA approaches in our 
experiments. 

2.3.4. Communication efficiency in FL 
Communication efficiency in FL refers to the ability of the learning 

model to minimize the amount of communication required among the 
participating nodes in order to train the global model. In the literature, 
several strategies have been proposed [62–65] to optimize the 
communication-efficiency compared with the naïve SGD method. The 
communication between participants (data owners) and the parameter 
server is a fundamental stage for the FL frameworks. The proposed 

Fig. 3. 2D views of PET/CT segmentations obtained manually in three different cases: Red. CeBa: Green, CeZe: blue, ClQu: Brown, ZeQu: Olive, FedAvg: Orange, 
LoCo: Cyan, RoAg: Pink, SeAg: Linen, GDP-AQuCl: Yellow. 
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solutions in the literature to reduce the communication costs in FL are to 
reduce (i) the model parameter update size (including model compres
sion and/or pruning and/or quantization and/or sparsification tech
niques), (ii) the number of participating data owners, and (iii) the total 
number of updates performed by each data owner. They are mainly 
based on lossy compression techniques, such as quantization and spar
sification. Model compression is a technique that involves reducing the 
size of the model parameters in order to reduce the amount of data that 
needs to be transmitted during training and aggregation. Pruning is a 
technique that involves removing redundant or unnecessary connections 
from the model in order to reduce the size of the model and the amount 
of data that need to be transmitted. Quantization is a technique that 
involves representing the model parameters using a smaller number of 
bits to reduce the model size and the amount of data that need to be 
transmitted. 

Lossy Compression (LoCo) Approach. A common solution to reduce the 
communication costs in the FL framework is to utilize lossy compression 
techniques on the global model sent from the server to participating 
parties ([66,67]). Lossy compression techniques are commonly studied 
through the rate-distortion theory framework. Shannon’s work laid the 
groundwork for digital circuit design and made the current digital era 
possible. Since then, abundant research done on designing the lossy 
compression schemes [68–71]. It is worth mentioning that lossy 
compression meets privacy from the lens of information theory [72–79]. 
In this paper, we use simple probabilistic uniform quantization, which is 
parameterized by the number of quantization bits (q) and the 
compression threshold. For a vector θ = [θ1,⋅⋅⋅, θd]T, we denote its 

minimum and maximum components by θmin = minj{θj}
d
j=1 and θmax =

maxj{θj}
d
j=1, respectively. For a probabilistic uniform binary (1-bit) 

quantization, one can replace every element θj by θmax with probability 
θj − θmax

θmax − θmin
, and by θmin otherwise [80]. That is, the quantized value for each 

coordinate j is generated as follows: 

Q
(
θj
)
=

⎧
⎪⎨

⎪⎩

θmax , with probability
θj − θmax

θmax − θmin

θmin , otherwise
(8) 

Now, we can generalize the above stochastic 1-bit uniform quanti
zation to stochastic q-bit uniform quantization. The process is based on 
equally dividing [θmin,θmax] into k = 2q intervals, and defining a new 
interval bounded by θ′ and θ′′ which plays a role of θmin and θmax in the 
above simple 1-bit uniform quantization method. More precisely, let us 
partition the interval [θmin,θmax] into sub-intervals Il

Δ
=
(Bk(l),Bk(l + 1)], l 

∈ {0, ⋅⋅⋅, k − 1}, where Bk(l) are given as: 

Bk(l)
Δ
=

θmin + l
S

k − 1
, ∀l ∈ {0,…, k − 1}, (9)  

where S satisfies θmin + S ≥ θmax. Now we assign each coordinate of θ 
into one of Bk(l)’s stochastically. To do this, for θj ∈ (Bk(l),Bk(l + 1)] we 
quantize it as follows: 

Fig. 4. Comparison of the performance of the different frameworks in terms of quantitative segmentation metrics of Dice similarity coefficient, Jaccard similarity 
coefficient, false-negative rate (1-Specificity), false-positive rate (1-Sensitivity), mean and standard deviation (SD) of surface distance as well as Hausdorff distance, 
average Hausdorff distance. 
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Q
(
θj
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l + 1 , with probability
θj − Bk(l)

Bk(l + 1) − Bk(l)

l , with probability
Bk(l + 1) − θj

Bk(l + 1) − Bk(l)

. (10) 

In our experiments, we set q = 8 and consider the natural choice S =
θmax − θmin. 

A comparison of the different utilized FL algorithm properties is 
summarized in Table 2. 

2.4. Deep neural network transformers 

In this study, we implemented a purely attention-based transformer 
without convolutions, inspired by work reported in [12,81], as a 

modified version of ([12,81]). This follows a very active line of research 
pioneered by [82], which is motivated by the significant success of the 
transformer structures [11] within the NLP domains and aims to bring 
the power of the self-attention mechanism of the transformers into the 
image-based and vision-based applications. The architecture consists of 
an encoder, a bottleneck block, a decoder, and skip-connections [12], 
and is based primarily on the Swin-transformer (Shifted windows) 
block, which was originally proposed in [81]. The images are first split 
into non-overlapping blocks of dimension 4 × 4, followed by a linear 
projection to form the input sequences to the network. The encoder 
consists of patch-merging blocks for signal down-sampling, followed by 
Swin-transformer blocks responsible for representation learning. This 
forms a hierarchical representation, where, similar to the U-shaped 
structure of the U-Net, has a symmetric decoder layer that consists of 

Table 3 
Summary of Quantitative Image Segmentation Performance Metrics (Mean ± Sd and CI95%) for different algorithms.   

Model Dice 
Score 

Jaccard 
Coefficient 

False Negative 
rate 

False Positive 
rate 

Mean Surface 
Distance 

Std Surface 
Distance 

Hausdorff 
Distance 

avgHausdorff 
Distance 

Mean ±
Sd 

CeBa 0.69 ±
0.17 

0.55 ± 0.18 0.30 ± 0.21 0.25 ± 0.21 1.43 ± 3.23 3.62 ± 4.44 27.6 ± 23.3 2.49 ± 6.96  

CeZe 0.80 ± 
0.11 

0.68 ± 0.13 0.22 ± 0.15 0.14 ± 0.12 0.37 ± 0.37 1.04 ± 1.02 8.71 ± 7.30 0.48 ± 0.65  

ClQu 0.79 ±
0.10 

0.66 ± 0.13 0.14 ± 0.13 0.23 ± 0.14 0.37 ± 0.32 0.96 ± 0.85 8.19 ± 6.46 0.41 ± 0.48  

ZeQu 0.79 ±
0.10 

0.67 ± 0.13 0.14 ± 0.13 0.23 ± 0.14 0.36 ± 0.32 0.96 ± 0.86 8.14 ± 6.58 0.41 ± 0.49  

FedAvg 0.79 ±
0.10 

0.66 ± 0.13 0.14 ± 0.13 0.23 ± 0.15 0.37 ± 0.32 0.96 ± 0.85 8.19 ± 6.48 0.41 ± 0.49  

LoCo 0.79 ±
0.11 

0.67 ± 0.13 0.14 ± 0.13 0.24 ± 0.15 0.36 ± 0.32 0.96 ± 0.85 8.18 ± 6.46 0.41 ± 0.48  

RoAg 0.79 ±
0.11 

0.66 ± 0.13 0.14 ± 0.14 0.24 ± 0.15 0.36 ± 0.31 0.94 ± 0.82 7.85 ± 6.16 0.41 ± 0.47  

SeAg 0.80 ± 
0.11 

0.67 ± 0.13 0.16 ± 0.15 0.20 ± 0.14 0.40 ± 0.52 1.18 ± 1.48 11.81 ± 15.51 0.53 ± 0.91  

GDP- 
AQuCl 

0.79 ±
0.10 

0.67 ± 0.12 0.15 ± 0.14 0.22 ± 0.14 0.36 ± 0.30 0.93 ± 0.81 7.78 ± 5.98 0.40 ± 0.46 

CI95% CeBa 0.65 to 
0.74 

0.51 to 0.60 0.25 to 0.35 0.20 to 0.30 0.66 to 2.20 2.57 to 4.67 22.06 to 33.13 0.83 to 4.14  

CeZe 0.77 to 
0.82 

0.64 to 0.71 0.19 to 0.26 0.12 to 0.17 0.28 to 0.46 0.80 to 1.28 6.97 to 10.44 0.32 to 0.63  

ClQu 0.77 to 
0.82 

0.64 to 0.69 0.11 to 0.17 0.20 to 0.27 0.29 to 0.44 0.76 to 1.16 6.65 to 9.72 0.30 to 0.53  

ZeQu 0.77 to 
0.82 

0.64 to 0.70 0.11 to 0.17 0.19 to 0.26 0.29 to 0.44 0.75 to 1.16 6.58 to 9.71 0.30 to 0.53  

FedAvg 0.77 to 
0.82 

0.63 to 0.69 0.11 to 0.17 0.20 to 0.27 0.29 to 0.44 0.76 to 1.16 6.65 to 9.73 0.30 to 0.53  

LoCo 0.77 to 
0.82 

0.64 to 0.70 0.10 to 0.17 0.20 to 0.27 0.29 to 0.44 0.76 to 1.16 6.65 to 9.72 0.30 to 0.53  

RoAg 0.76 to 
0.81 

0.63 to 0.69 0.10 to 0.17 0.20 to 0.27 0.29 to 0.44 0.75 to 1.14 6.39 to 9.31 0.30 to 0.52  

SeAg 0.77 to 
0.82 

0.64 to 0.70 0.13 to 0.20 0.17 to 0.23 0.28 to 0.52 0.83 to 1.53 8.12 to 15.5 0.31 to 0.75  

GDP- 
AQuCl 

0.77 to 
0.82 

0.64 to 0.70 0.12 to 0.19 0.18 to 0.25 0.28 to 0.43 0.74 to 1.12 6.35 to 9.20 0.29 to 0.51  

Fig. 5. Comparison of different models (p-values) in terms of different metrics of Dice coefficient, Hausdorff Distance, and Mean Surface Distance. Manual seg
mentation is used as the criterion standard. 
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Swin-transformer layers and patch-expander units. Between the encoder 
and the decoder, skip connections facilitate the signal flow. At the bot
tom of the encoder, a bottleneck consisting of two consecutive 
Swin-transformer blocks without up- or down-sampling provides a 
further connection between the encoder and the decoder. 

As an alternative to the traditional sliding-window approach, the 
Swin-transformer block is based on the idea of shifted-windows [81]. A 
regular partitioning of the patches is used at one layer, while the next 
layer uses a shifted version of them. This provides connections between 
windows with different shapes using self-attention. The 
Swin-transformer block consists of a layer-norm (LN), the multihead 
self-attention (MSA), multi-layer perceptrons (MLP), and several 
skip-connections, such that: 

ẑl
= W-MSA

(
LN

(
zl− 1))+ zl− 1, (11)  

zl = MLP
(
LN

(
ẑl))

+ ẑl
, (12)  

ẑl+1
= SW-MSA

(
LN

(
zl))+ zl, (13)  

zl+1 = MLP
(
LN

(
ẑl+1))

+ ẑl+1
, (14)  

where, ẑl and zl represent the outputs of the (S)W-MSA, and the MLP 
module of the lth block, respectively, and the self-attention mechanism 
of [11] is computed as: 

Attention(Q,K,V) = Softmax
(

QKT
̅̅̅
d

√

)

V, (15)  

where Q, K and V ∈ ℜM2×d denote the query, key and value matrices, with 
M2 representing the number of patches in a window, and d being the 
dimension of the query/key. 

2.5. Training 

We evaluated different frameworks (single-center based, centralized, 
and seven FL algorithms) by using 68 PET/CT images (20% of each 
center’s local data). The training was performed on axial slices, as PET 
and CT images with batch size 32 were fed to models simultaneously 
(dual channel input). During each iteration, stratified mini-batch ap
proaches are used, in which half of the batches with tumor segmentation 
and half without tumors were fed to the model to avoid bias during 
training. All DL models were implemented in the TensorFlow frame
work. FL algorithms were implemented by using TensorFlow Federated 
(TFF). TFF is an open-source framework developed for simulating and 
implementing different FL algorithms. All networks were trained in a 2D 
manner with an Adam optimization with a learning rate starting with 
0.001, as well as a weight decay of 0.0001. Dice loss was used, and 
models trained using 300 epochs and 100 rounds in FL. 

2.6. Quantitative evaluation 

Different evaluation metrics, including standard segmentation 
quantitative metrics, image-derived PET metrics, and radiomics fea
tures, were considered to evaluate and compare the performances of 
different frameworks. Standard segmentation quantitative metrics, 
including the Dice similarity coefficient, Jaccard similarity coefficient, 
false-negative rate (1-Sensitivity), false-positive rate (1-Specificity), 
mean and standard deviation (SD) of surface distance (mm) as well as 
Hausdorff distance, average Hausdorff distance (mm) are considered. 
Image-derived PET metrics for clinical evaluation of the different 
frameworks, including variants of the standardized uptake value (SUV) 
SUVpeak, SUVmean, SUVmedian, SUVmax, metabolic tumor volume (MTV) 
and total lesion glycolysis (TLG, MTV × SUVmean) were also analyzed. 
For radiomics analysis, we extracted intensity, histogram, and shape 
radiomics features using SERA package [83]. All these metrics were 
calculated on test sets (20% of each center data). 

2.7. Statistical analysis 

Percent relative error (RE%) was calculated for PET image metrics 
with respect to manual segmentation. The Kolmogorov-Smirnov test was 
used for normal evaluation and then, based on the distribution paired 
Wilcoxon signed rank test was chosen for evaluation, and p-value < 0.05 
was defined as the threshold for statistical significance. Comparison of 
the different models using various metrics (Dice coefficient, Hausdorff 
Distance, and Mean Surface Distance) was performed using paired 
Wilcoxon signed rank test. All p-values were corrected by Benjamini- 
Hochberg correction, and Intra-class correlation (ICC) ([84,85]) test 
was performed for radiomics feature reproducibility in different ap
proaches with respect to manual segmentation; we classified radiomics 
features based on ICC value into four Groups of poor reproducibility 
(ICC < 0.40), fair reproducibility (0.40 < ICC < 0.59), good reproduc
ibility (0.60 < ICC < 0.74), and excellent reproducibility (0.75 < ICC <
1.00). 

2.8. Code and data availability 

All PET and CT images are available in The Cancer Imaging Archive 
([3,22,26-32]). Different implementations would be available in the 
Authors GitHub repository. 

Table 4 
Summary of Quantitative PET Metrics (Mean ± Sd and CI95%) for different 
algorithms.   

Method SUVmax SUVpeak SUVmean SUVmedian TLG 

Mean 
±Sd 

CeBa 1.28 ±
6.92 

1.53 ±
10.98 

5.14 ±
17.7 

8.91 ±
23.19 

3.70 ±
48.24  

CeZe 0 ± 0 0 ± 0 4.77 ±
10.38 

6.21 ±
13.45 

-3.09 ±
18.12  

ClQu 0 ± 0 0 ± 0 -2.39 ±
11.85 

-3.15 ±
15.41 

12.91 
±

22.93  
ZeQu 0 ± 0 0 ± 0 -2.2 ±

11.74 
-2.90 ±
15.29 

12.35 
±

22.65  
FedAvg 0 ± 0 0 ± 0 -2.58 ±

11.84 
-3.38 ±
15.40 

13.22 
±

23.03  
LoCo 0 ± 0 0 ± 0 -2.86 ±

11.87 
-3.73 ±
15.44 

13.7 ±
23.24  

RoAg 0 ± 0 0 ± 0 -2.86 ±
12.01 

-3.87 ±
15.63 

14.1 ±
23.52  

SeAg 0 ± 0 0 ± 0 1.74 ±
13.48 

1.58 ±
16.88 

9.56 ± 
23.94  

GDP- 
AQuCl 

0 ± 0 0 ± 0 -0.87 ± 
12.02 

-1.24 ± 
15.75 

9.79 ±
22.09 

CI95% CeBa -0.36 to 
2.93 

0.94 to 
9.35 

-1.08 to 
4.14 

3.4 to 
14.42 

-7.77 to 
15.16  

CeZe 0 to 0 0 to 0 2.3 to 
7.24 

3.01 to 
9.41 

-7.4 to 
1.21  

ClQu 0 to 0 0 to 0 -5.2 to 
0.43 

-6.82 to 
0.51 

7.46 to 
18.36  

ZeQu 0 to 0 0 to 0 -4.99 to 
0.6 

-6.54 to 
0.73 

6.97 to 
17.73  

FedAvg 0 to 0 0 to 0 -5.39 to 
0.23 

-7.04 to 
0.28 

7.75 to 
18.7  

LoCo 0 to 0 0 to 0 -5.68 to 
-0.04 

-7.4 to 
-0.06 

8.18 to 
19.23  

RoAg 0 to 0 0 to 0 -5.72 to 
-0.01 

-7.59 to 
-0.16 

8.51 to 
19.69  

SeAg 0 to 0 0 to 0 -1.46 to 
4.95 

-2.44 to 
5.59 

3.86 to 
15.25  

GDP- 
AQuCl 

0 to 0 0 to 0 -3.73 to 
1.98 

-4.99 to 
2.50 

4.54 to 
15.04  
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3. Results 

3.1. Segmentation description 

Fig. 2 depicts, for visual comparison, examples of 3D-rendered vol
umes of segmentation of GTVs from six different clinical centers (col
umns) with manual segmentation (red) as well as single-center-based, 
centralized, and different FL approaches (blue). For a visual comparison 
of different approaches with respect to manual segmentation, Fig. 3 
represents 2D axial views of different patients in both original and 
magnified versions of GTVs. As shown in these figures, segmentation 
provided by different FL approaches are in good agreement with 
centralized and manual segmentations in different textures and sizes of 
GTVs. 

3.2. Quantitative segmentation metrics 

Fig. 4, compares the performance of different models with different 
approaches and a summary of the results is also presented in Table 3. 
Centralized (CeZe) and SeAg models showed the best performance in 
terms of the Dice coefficient (0.80±0.11 versus 0.80±0.11), without any 
significant difference between the two (p-value> 0.05). In terms of the 
false negative rate, ClQu, ZeQu, FedAvg, LoCo and RoAg achieved the 
lowest values of 0.14±0.13 (CI95%: 0.11 to 0.17); however, CeZe 
showed the lowest false positive rate of 0.14±0.12 (CI95%: 0.12 to 
0.17). In terms of Hausdorff distances GDP-AQuCl method achieved the 
lowest value of 7.78±5.98 mm (CI95%: 6.35 to 9.2 mm) followed by 
RoAg with the value 7.85±6.16 mm (CI95%: 6.39 to 9.31 mm). In terms 
of the Hausdorff distance (7.78±5.98 mm), Mean Surface Distance (0.36 

Fig. 6. Bland Altman plots of SUVmean for different frameworks compared to manual segmentation.  

Fig. 7. ICC value of radiomic features for the different frameworks compared to 
manual segmentation. Less than 0.40-poor [1], Between 0.40 and 0.59-fair [2], 
Between 0.60 and 0.74-good [3], and Between 0.75 and 1.00-excellent [4]. 
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±0.30 mm), Std Surface Distance (0.93±0.81 mm), and average Haus
dorff Distance (0.40±0.46 mm), GDP-AQuCl outperformed all feder
ated, single-center, and centralized approaches. Statistical analysis 
showed significant differences (p-value< 0.05) when comparing single 
center-based models with centralized and federated algorithms for 
different quantitative metrics. However, for almost all segmentation 
metrics, statistical tests showed no significant difference (p-value >
0.05) between centralized and different FL approaches and also among 
different FL algorithms. Fig. 5 presents a comparison of different models 
(p-values) in terms of three metrics. 

3.3. PET quantitative metrics ICC and reproducibility 

Results of PET quantitative metrics in terms of RE%, are presented in 
Table 4 for different approaches. SUVmax and SUVpeak values of all 
federated and centralized approaches achieved RE% of zero. However, 
for CeBa, RE% of 1.28±6.92 and 1.53±10.98 were achieved for SUVmax 
and SUVpeak, respectively. Lowest RE% of SUVmean (− 0.87±12.02) and 
SUVmedian (− 1.24±15.75) was achieved by GDP-AQuCl, whereas the 
lowest RE% of TLG (9.79±22.09) was achieved by SeAg. All quantitative 
PET metrics showed excellent repeatability in terms of the ICC analysis 
(ICC> 0.75). Fig. 6 depicts the Bland Altman figure of SUVmean for 
different approaches, which was computed with respect to manual 
segmentation, and shows good agreement between different approaches 
and manual segmentation. Fig. 7 represents the ICC value of different 
radiomic features of different algorithms with respect to manual seg
mentation, and as shown in this figure most features showed excellent 
repeatability (ICC> 0.75). The CeBa approach had fewer repeatable 
features (ICC> 0.75). 

3.4. Center-based analysis 

In addition to centralized and FL-based frameworks, we also 
analyzed training and testing with each center’s data-set separately, and 
the quantitative metrics for these single-center approaches are presented 
in Table 5. In CeBa analysis, results of training and testing of data using 

the same center (for training and testing) were presented. Training on 
one center and testing on other sets (datasets from centers not presented 
in training) showed low generalizability for different centers (mean Dice 
score of 0.56 to 0.72). In Table 6, we present the quantitative PET 
metrics for different centers, and as seen in the table, all metrics showed 
high variability across different centers. In Fig. 8, we present 2D axial 
views of different patients in both original and magnified versions of 
GTVs by training on different centers’ datasets. This figure shows low 
accuracy of segmentation when training on a single center’s dataset and 
testing on another center’s.  

4. Discussion 

PET/CT image segmentation is a crucial step toward quantitative 
analysis in monitoring treatment response and radiation therapy. 
However, it suffers from a number of challenges due to inherent limi
tations in image quality and the high variability in HN regions. Inter- 
observer variability with an average Dice score of 0.57 in CT, 0.61 in 
PET/CT, and 0.69 in PET/CT was reported in previous studies between 
different human observers ([7,86,87]). Various DL algorithms have been 
developed to address these challenges by automating the segmentation 
process. Centralized training on data pooled from multiple centers is 
ideal for building generalizable models. However, this approach faces 
privacy, security, legal, ethical, and ownership challenges. These chal
lenges could be addressed by a shared global model using FL. In the 
current study, we evaluated the performance of different decentralized 
FL frameworks for multi-institutional PET/CT image co-segmentation. 
The HECKTOR challenge was organized to address HN tumor segmen
tation using PET/CT images. Since we used different datasets from those 
used in the HECKTOR challenge, our results are not directly comparable. 
However, compared to models proposed in HECKTOR, our proposed 
centralized (CeZe) and FL (SeAg) models performed better than the 
winner of the challenge (in terms of Dice score 0.80±0.11 vs. 0.78) by 
taking advantage of the transformer architecture. 

We implemented seven different FL algorithms in the current study 
and compared their performance with centralized and single-center- 

Table 5 
Summary of Quantitative Image Segmentation Performance Metrics (Mean ± Sd and CI95%) for the Different Centres.   

Centre Dice 
Score 

Jaccard 
Coefficient 

False Negative 
rate 

False Positive 
rate 

Mean Surface 
Distance 

Std Surface 
Distance 

Hausdorff 
Distance 

Mean Hausdorff 
Distance 

Mean 
±Sd 

Center 
1 

0.56 ±
0.23 

0.42 ± 0.21 0.48 ± 0.27 0.26 ± 0.26 1.92 ± 2.91 4.85 ± 6.45 30.78 ± 31.78 3.78 ± 6.47  

Center 
2 

0.67 ±
0.19 

0.53 ± 0.19 0.26 ± 0.22 0.32 ± 0.24 2.12 ± 4.07 5.42 ± 7.99 32.13 ± 34.6 3.81 ± 9.36  

Center 
3 

0.63 ±
0.19 

0.49 ± 0.18 0.3 ± 0.19 0.34 ± 0.23 2.11 ± 3.5 5.27 ± 6.41 37.6 ± 27.5 3.03 ± 5.39  

Center 
4 

0.72 ±
0.18 

0.58 ± 0.18 0.26 ± 0.21 0.24 ± 0.2 1.23 ± 3.18 3.2 ± 4.05 29.63 ± 20.39 2.04 ± 6.85  

Center 
5 

0.62 ±
0.21 

0.47 ± 0.19 0.43 ± 0.25 0.22 ± 0.23 1.29 ± 2.14 3.06 ± 4.24 21.27 ± 19.06 2.55 ± 6.56  

Center 
6 

0.7 ±
0.17 

0.56 ± 0.18 0.3 ± 0.19 0.23 ± 0.19 1.2 ± 1.55 3.69 ± 4.34 31.84 ± 28.1 1.81 ± 2.76  

CeBa 0.69 ±
0.17 

0.55 ± 0.18 0.3 ± 0.21 0.25 ± 0.21 1.43 ± 3.23 3.62 ± 4.44 27.6 ± 23.3 2.49 ± 6.96 

CI95% Center 
1 

0.5 to 
0.61 

0.37 to 0.47 0.41 to 0.54 0.2 to 0.32 1.23 to 2.61 3.32 to 6.38 23.23 to 38.33 2.24 to 5.31  

Center 
2 

0.62 to 
0.71 

0.48 to 0.57 0.21 to 0.31 0.26 to 0.38 1.16 to 3.09 3.52 to 7.32 23.91 to 40.36 1.58 to 6.03  

Center 
3 

0.59 to 
0.68 

0.44 to 0.53 0.26 to 0.35 0.29 to 0.4 1.28 to 2.94 3.75 to 6.79 31.06 to 44.14 1.75 to 4.31  

Center 
4 

0.67 to 
0.76 

0.54 to 0.62 0.21 to 0.31 0.19 to 0.29 0.47 to 1.98 2.23 to 4.16 24.78 to 34.47 0.41 to 3.67  

Center 
5 

0.57 to 
0.67 

0.43 to 0.52 0.37 to 0.49 0.17 to 0.28 0.78 to 1.8 2.06 to 4.07 16.74 to 25.8 0.99 to 4.11  

Center 
6 

0.65 to 
0.74 

0.51 to 0.6 0.25 to 0.35 0.19 to 0.28 0.83 to 1.57 2.66 to 4.73 25.16 to 38.52 1.16 to 2.47  

CeBa 0.65 to 
0.74 

0.51 to 0.6 0.25 to 0.35 0.2 to 0.3 0.66 to 2.2 2.57 to 4.67 22.06 to 33.13 0.83 to 4.14  
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based approaches for HN GTV segmentation from PET/CT images using 
vision transformers. All FL approaches achieved centralized learning 
model performance with no statistically significant difference. Among 
FL algorithms, SeAg and GDP-AQuCl outperformed other FL algorithms 
considering different quantitative metrics. However, there were no 
statistically significant differences between these FL algorithms. 
Conversely, single-center-based models showed low accuracy and 
generalizability. From all segmentation frameworks, GDP-AQuCl pro
duced the highest number of reproducible radiomic features. Among the 
plausible reasons would be the lowest value of surface distance and 
Hausdorff distance compared to other frameworks and concurrently the 
same value of the Dice score. We conclude that collaboration between 
different centers is highly crucial for generalizable DL model develop
ment. Notwithstanding the variability in PET scanner models, image 
acquisition and reconstruction protocols, and different sizes of datasets 

across different centers, all FL approaches achieved centralized learning 
model performance with no statistically significant difference. 

FL algorithms have some inherent challenges in medical imaging, 
including data partitioning, data distribution, privacy, and security, as 
well as communication and computation capabilities of the infrastruc
ture. Choosing the right data partitioning is an important step toward 
addressing limited sample or feature sizes, or both, resulting in hori
zontal FL (HFL), vertical FL (VFL), or federated transfer learning (FTL), 
respectively ([13,14]). In the current study, we implemented horizontal 
FL algorithms, where there is no overlap between data from different 
centers. However, we used both PET and CT images for DL models. The 
second issue in FL is data distribution, which is a statistical data het
erogeneity challenge due to the decentralized nature of datasets as each 
center generates their local data. As the data is decentralized, the dis
tribution of data across each center could be significantly different, 

Fig. 8. 2D views of PET/CT segmentation obtained in three different cases: from the manual: Red. Center 1: Green, Center 2: Blue, Center 3: Brown, Center 4: Olive, 
Center 5: Orange, Center 6: Cyan. 
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which is known as non-independent and identically distributed (non-
IID) data. Different centers equipped with different scanner models and 
using different image acquisition and processing protocols, employing 
different segmentation techniques, may result in non-IID data in medical 
imaging ([13,14]). To address heterogeneity in our data, we employed 
automated pre-processing, including cropping, metal artifact reduction, 
and resizing to isotropic voxels. In addition, as the sample size of each 
center is different (from 23 to 99), we used stratified mini-batch ap
proaches during each iteration (where half of the batches consisted of 
tumor segmentation while the other half did not include tumors), to 
avoid biased training. In our study, all FL approaches achieved 
centralized method performance in PET/CT image segmentation and 
outperformed single-center-based approaches. Another issue in FL is 
privacy and security, as the number of centers could potentially be 
increased to hundreds and even thousands, in which case all centers 
cannot be considered trustable parties. Different kinds of attacks, 
including membership inference and model inversion attacks, could be 
performed by curious parties to discover whether a specific data sample 
exists within the training set of other centers, or to regenerate training 
sets from the trained model during model training, respectively ([13, 
14]). These attacks result in the leaking of sensitive information about 
patients during decentralized training, which can be a serious concern 
impeding the adoption of FL techniques in large-scale medical applica
tions. Different methods, such as data perturbation or encryption, can be 
implemented for data privacy and security purposes. Controlled random 
noise can be added to samples during training to guarantee DP ([13, 
14]). Additionally, encryption can be used during the aggregation pro
cess to preserve privacy. Membership and model inversion attacks can 
be addressed by the DP mechanism ([13,14]). Other attacks, including 
data and model poisoning (i.e. adversarial attacks), can be performed by 
malicious parties. We implemented DP as well as secure FL approaches 
and showed that they both achieved centralized FL performance in 
PET/CT image segmentation while preserving patient privacy and se
curity against potential attacks. 

In our study, an experienced nuclear medicine physician evaluated 
and checked all PET/CT segmentations and edited/modified them to 

offset plausible errors, which is unrealistic in a real-world FL setup. 
However, it was necessary for our study as the dataset was gathered 
from an online dataset that contained a few errors that had to be miti
gated before building models. In real FL, images and segmentations 
should be checked and modified in case of errors; otherwise, this could 
be an issue for the training process. Another challenge in FL is the sta
tistical variation resulting from image pre-processing at different centers 
([13,14]). As PET/CT images are in DICOM format, in real-world sce
narios, image pre-processing could be shared with the client to provide 
pre-processed images with the same setting across the different centers. 
We implemented fully automated pre-processing steps in the current 
study toward reproducing data preparation. One of the limitations of the 
current study is that all the analysis has been performed in one server 
with multiple GPUs treated as different centers; thus, good communi
cation between centers and the parameter server is assumed. To address 
the communication limitations in practice, quantized model trans
mission is considered, and it is observed that the centralized benchmark 
performance can be achieved while reducing the communication load 
significantly. Further studies should consider practical communication 
bottlenecks for real clinical applications. In the current study, we used a 
limited number of data and clients for model development to demon
strate the effectiveness of FL for tumor segmentation to achieve the 
performance achieved by the centralized level model. However, further 
studies need to be conducted using more data and clients to prove the 
effectiveness of FL algorithms for FL segmentation models. 

5. Conclusion 

FL-based algorithms have proven to be highly effective for HN tumor 
segmentation in PET/CT images, achieving performance on par with 
centralized deep learning models. These algorithms enable the training 
of generalizable PET/CT image segmentation models by providing ac
cess to large, diverse datasets from multiple centers without compro
mising patient privacy or security. This decentralized approach to model 
training allows for the creation of more robust and accurate models, 
particularly in situations where communication among centers is 
limited. The use of FL-based algorithms represents a novel and innova
tive approach to HN tumor segmentation in PET/CT images. 
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