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In the context of solving inverse problems for physics applications within a Bayesian framework, we present 
a new approach, the Markov Chain Generative Adversarial Neural Network (MCGAN), to alleviate the 
computational costs associated with solving the Bayesian inference problem. GANs pose a very suitable 
framework to aid in the solution of Bayesian inference problems, as they are designed to generate samples 
from complicated high-dimensional distributions. By training a GAN to sample from a low-dimensional latent 
space and then embedding it in a Markov Chain Monte Carlo method, we can highly efficiently sample from 
the posterior, by replacing both the high-dimensional prior and the expensive forward map. This comes at the 
cost of a potentially expensive offline stage in which training data must be simulated or gathered and the GAN 
has to be trained. We prove that the proposed methodology converges to the true posterior in the Wasserstein-1 
distance and that sampling from the latent space is equivalent to sampling in the high-dimensional space in a 
weak sense. The method is showcased in two test cases where we perform both state and parameter estimation 
simultaneously and it is compared with two conventional approaches, polynomial chaos expansion and ensemble 
Kalman filter, and a deep learning-based approach, deep Bayesian inversion. The method is shown to be more 
accurate than alternative approaches while also being computationally faster, in multiple test cases, including 
the important engineering setting of detecting leaks in pipelines.

1. Introduction

The Bayesian inference approach is popular for solving inverse problems in various fields including physics and engineering [1–4], mainly due 
to the fact that it does not only provide an estimate of the solution but also quantifies the uncertainty of the estimate. Information about the 
distribution of a computed quantity is important, for example, for digital twins [5].

The general idea of Bayesian inference is to use observations to update a given prior distribution towards a resulting posterior distribution over 
the parameters of interest. The observations and parameters are linked through a forward map and a noise distribution that make up the likelihood 
function. The main task in the Bayesian approach is to connect the prior and the likelihood in order to compute the posterior distribution. Since 
the posterior is typically not analytically tractable, one must use numerical sampling techniques such as Monte Carlo methods to approximate the 
distribution. However, for each sample, it is necessary to compute the likelihood which in turn requires the evaluation of the forward map. For 
nontrivial problems, such as high-dimensional or nonlinear partial differential equation (PDE) problems, this becomes a computational bottleneck 
and often results in unacceptable computation times. In Fig. 1, the general schematics of an inverse problem are shown.

The two most common approaches for overcoming this problem are to either minimize the required number of samples by making certain 
assumptions about the posterior or to reduce the computational complexity associated with the forward map by approximating it with a surrogate 
model. The first approach includes methods such as Kalman filters [2] and Markov Chain Monte Carlo (MCMC) methods [6,7]. With Kalman filters, 
one minimizes the number of necessary samples by assuming Gaussian distributions. While this is efficient, it is often quite restrictive when it 
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comes to highly nonlinear problems. MCMC methods, while being quite efficient, are based on fewer assumptions but still require many samples. 
See Fig. 1 for a visualization of a common workflow for Bayesian inference using Markov chain Monte Carlo methods (MCMC). The surrogate 
modeling approach includes methods such as reduced basis methods [8], polynomial chaos expansion (PCE) [9], and Gaussian processes [10]. 
While a surrogate model enables fast likelihood evaluations, it requires a forward map that can be approximated by a low-order representation. 
This is however not trivial for problems with a so-called slow Kolmogorov 𝑛-width decay, such as very high-dimensional problems and problems 
involving discontinuities in either the parameters or the state.

In this paper, we consider an approach that overcomes the above mentioned challenges (high-dimensionality, nonlinearity, discontinuities, 
expensive sampling) by utilizing machine learning. Specifically, we will make use of neural networks which have already been recognized as 
promising tools in scientific computing, especially for the case of high-dimensional and nonlinear problems that we wish to address [11–17]. While 
there exist several types of neural networks, each aiming at solving specific problems, we focus on generative models in this paper. Generative 
models aim to learn a distribution from data in order to enable sampling from it at later times [18]. Such models include generative adversarial 
networks (GANs) [19], variational autoencoders (VAEs) [20], diffusion models [21], and Normalizing Flow models [22].

Examples where generative models have been successfully used for solving Bayesian inverse problems already exist. In [23] and [24], a VAE and 
Normalizing Flow, respectively, are embedded into a variational Bayesian inference approach and in [25] and [26] a GAN and a VAE, respectively, 
are used as the prior distribution in MCMC sampling. While [25] and [26] combine generative models for parameter prior approximation with 
MCMC sampling in order to get samples from the posterior distribution, they do not achieve significant speed-ups. Since the generative models are 
only used to approximate the parameter prior they still need the expensive forward problem being solved to match synthetic observations with the 
real observations. Furthermore, in [27] a GAN has been trained to directly sample from the posterior distribution. This is done by using a conditional 
GAN that generates samples conditioned on the observations. This approach achieves speed-ups as MCMC sampling is bypassed, but is restricted to 
the sensors configuration used for training. That is, the observation operator must be chosen when training in order to form the training set and 
cannot be changed without changing the architecture of the neural network and retraining it.

We will focus on GANs due to their success in learning complicated high-dimensional distributions. When choosing a generative model, there are 
essentially three aspects to consider [28]: Quality of samples, sampling speed, and mode coverage. VAEs generally generate lower quality samples 
than GANs, as they tend to blur the samples. Diffusion models [29], on the other hand, generate high quality samples, but they are significantly 
slower than both VAEs and GANs and are therefore not suitable for solving inverse problems in real-time. While the original GAN was known 
to suffer from mode collapse, it has been shown that the extension, the Wasserstein GAN (WGAN) [30], overcomes this issue to a large extent. 
Furthermore, the GAN training is more stable but it comes at a cost of computational time. As the training takes place in the offline stage, this is not 
a serious problem.

Specifically, GANs learn a target distribution by training a generator to map latent space samples to samples that mimic a nontrivial high-
dimensional target distribution. So, GANs provide a way to represent a complicated high-dimensional distribution by means of a low-dimensional 
latent space distribution.

We here present the novel Markov Chain Generative Adversarial Network (MCGAN) method, visualized in Fig. 1. In short, we train a GAN 
to approximate the prior distribution for the states and parameters and thereby obtain a corresponding latent representation. By using an MCMC 
method, we can then efficiently sample from a latent space posterior instead of the high-dimensional posterior. As a result, we achieve dimensionality 
reduction, due to the approximation of the desired posterior, and furthermore the forward map is replaced by the generator. In practice, this 
gives significant computational speed-ups as the computational bottleneck is significantly reduced. The methodology presented draws inspiration 
from [25], but utilizes the GAN in a different manner. Our extension is hence well-suited for both state and parameter estimation in real-time.1

Furthermore, we prove that sampling in the latent space is the same as sampling in the high-dimensional space in a weak sense and we provide a 
proof of convergence of the posterior distribution in the Wasserstein-1 distance.

The paper’s outline is as follows. In Section 2, we explain the setting of Bayesian inverse problems as well as the MCMC methods and GANs. 
Then, in Section 3, we present the details of our proposed methodology, the MCGAN methodology, including the theoretical findings. In Section 4, 
we show the MCGAN performance on two problems: a stationary Darcy flow and leakage localization in a pipe flow. The results are compared to 
ensemble Kalman filters, MCMC methods with PCE as the surrogate model and the likelihood-free deep Bayesian inversion. Finally, in Section 5, we 
conclude this work.

2. Notation, problem setting, and preliminaries

Throughout the paper, we will make use of the following notation: capital letters will denote random variables, e.g. 𝑋 and 𝑌 . The distribution 
of 𝑋 is denoted 𝑃𝑥, where 𝑃𝑥(𝐴) = 𝑃𝑥(𝑋 ∈𝐴) is the probability of observing 𝑋 ∈𝐴. Similarly, the probability of 𝑥 is denoted 𝑃𝑥(𝑥) = 𝑃𝑥(𝑋 = 𝑥). We 
assume that all distributions have a probability density function (PDF), 𝜌𝑥. A stochastic variable, 𝑋, conditioned on another stochastic variable, 𝑌 , 
is denoted 𝑋|𝑌 and is distributed according to 𝑃𝑥|𝑦(𝑋|𝑌 ) with PDF, 𝜌𝑥|𝑦.

2.1. Problem setting

Let 𝐪 ∈ℝ𝑁𝑞 denote the state, 𝐦 ∈ℝ𝑁𝑚 the parameters, and 𝐲 ∈ℝ𝑁𝑦 the available observations. Note that 𝐪 encapsulates the state at all discrete 
times for time-dependent problems. Hence, the state, 𝐪, is the full space-time state of the system at hand. 𝐪 is computed by solving a forward 
problem, typically a PDE, depending on the parameters, 𝐦. We denote the vector of combined state and parameters, 𝐮 = (𝐪, 𝐦) ∈ℝ𝑁𝑢 , 𝑁𝑢 =𝑁𝑞 +𝑁𝑚.

The inverse problem deals with the recovery of 𝐮 from a vector of observations in space-time, 𝐲 ∈ 𝑂 ⊂ ℝ𝑁𝑦 . By setting up the inverse problem 
in both state and parameters, we allow for the case where the state is not necessarily determined by the parameters of interest alone. The relation 
between 𝐮 and 𝐲 is assumed to be of the form

𝐲 = 𝐡(𝐮) + 𝜂, 𝜂 ∼ 𝑃𝜂, 𝜂 ∈ℝ𝑁𝑦 , (1)

where 𝐡 ∶ℝ𝑁𝑢 →𝑂 ⊂ℝ𝑁𝑦 is referred to as the observation operator and 𝜂 is a random variable denoting the observation or measurement noise.

1 Note that “real-time” is dependent on the specific problem at hand.
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Fig. 1. Left: overview of the forward problem and the inverse problem. The parameters of interest are typically boundary and/or initial conditions, or physical 
parameters. The physics model depends on the system at hand and is here a PDE modeling pipe flow. The model output is the result obtained from a numerical 
simulation, such as pressure or velocity in the case of fluid dynamics. Observations are either observed from a set of sensors or created synthetically from the model 
output through the observation operator. Middle: a typical approach for doing Bayesian inference with MCMC (see Section 2). Right: our proposed method, the 
MCGAN approach as explained in section 3. Note that the complicated prior distribution is replaced with a simple latent distribution. Furthermore, the physical 
model is replaced with a generator that enables us to evaluate the full forward problem, more or less, instantaneously.

From Eq. (1), we can write the PDF associated with the probability of observing 𝐲 given 𝐮, 𝜌𝑦|𝑢(𝐲|𝐮), as:

𝜌𝑦|𝑢(𝐲|𝐮) = 𝜌𝜂(𝐲 − 𝐡(𝐮)). (2)

When observations are given, one can view this as a function of 𝐮, i.e., Φ(𝐮) = 𝜌𝑦|𝑢(𝐲|𝐮), in which case it is referred to as the likelihood since it is not 
a PDF with respect to 𝐮.

We assume that, before observing any data, the probability of 𝐮 has the PDF 𝜌0, which is referred to as the prior. The goal of the Bayesian inverse 
problem is to identify the PDF, 𝜌𝑢|𝑦(𝐮|𝐲), i.e. the PDF of 𝐮 given observations, 𝐲. Using Bayes theorem, we can write this as:

𝜌𝑢|𝑦(𝐮|𝐲) = 𝜌𝑦|𝑢(𝐲|𝐮)𝜌0(𝐮)
∫ℝ𝑁𝑢 𝜌𝑦|𝑢(𝐲|𝐮)𝜌0(𝐮) d𝐮

=
𝜌𝜂(𝐲 − 𝐡(𝐮))𝜌0(𝐮)

∫ℝ𝑁𝑢 𝜌𝑦|𝑢(𝐲|𝐮)𝜌0(𝐮) d𝐮
. (3)

The denominator is called the evidence and serves as a normalization constant; the lefthand side is the posterior.
However, in order to compute the likelihood in Eq. (3), a PDE must be solved for a given set of parameters. Moreover, choosing a suitable prior 

is not always an easy task, and the evidence can be restrictive to compute in high dimensions.
It should be noted that the last problem is alleviated in many methods such as maximum likelihood estimation and MCMC methods as we will 

describe below. The other two complications will be minimized using our proposed methodology.

2.2. Markov chain Monte Carlo methods

MCMC methods [6,7] form a class of algorithms for sampling from probability distributions. Stated in terms of the posterior PDF, we have:

𝜌𝑢|𝑦(𝐮|𝐲) ∝ 𝜌𝑦|𝑢(𝐲|𝐮)𝜌0(𝐮), (4)

and we aim to generate a set of points distributed according to the PDF 𝜌𝑢|𝑦. The general idea is to construct a Markov chain, 
{
𝐮1,… ,𝐮𝑁

}
, with a 

stationary PDF, 𝜌̃𝑢|𝑦, that approximates 𝜌𝑢|𝑦. We then sample according to 𝜌̃𝑢|𝑦 by computing the next element in the chain. For MCMC algorithms, 
we have the following result, under some reasonable assumptions [6]:

lim
𝑁𝑚𝑐𝑚𝑐→∞

1
𝑁𝑚𝑐𝑚𝑐

𝑁𝑚𝑐𝑚𝑐∑
𝑖=1

𝑓 (𝐮𝑖) = 𝔼𝐮∼𝑃𝑢|𝑦 [𝑓 (𝐮)], 𝐮𝑖 ∼ 𝑃𝑢|𝑦 (5)

where 𝑃𝑢|𝑦 is the probability distribution associated with the density 𝜌̃𝑢|𝑦. Eq. (5) indicates that with enough samples from the chain, we can 
approximate some statistics of the true posterior arbitrarily well, i.e. the distribution, 𝑃𝑢|𝑦 , converges weakly to 𝑃𝑢|𝑦.

The arguably most common MCMC sampler is the Metropolis-Hasting (MH) algorithm [31,32]. However, it is well-known that the MH algorithm 
converges very slowly in high-dimensional settings. Therefore, in this paper, we make use of the Hamiltonian Monte Carlo Method (HMC), which 
can be considered a special case of the MH algorithm. Instead of computing new proposals by a random walk, the HMC algorithm computes a new 
sample by moving in a state space defined by a Hamiltonian ODE system.
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Starting with a ‘momentum’ vector, 𝐩, of the same size as 𝐮, and a joint PDF 𝜌𝑢,𝑝|𝑦(𝐮, 𝐩|𝐲), we define a Hamiltonian as:

𝐻(𝐮,𝐩) = − log𝜌𝑢,𝑝|𝑦(𝐮,𝐩|𝐲) = − log𝜌𝑝|𝑢(𝐩|𝐮) − log𝜌𝑢|𝑦(𝐮|𝐲)
∝ 1

2
𝐩𝑇 𝑀−1𝐩

⏟⏞⏞⏞⏟⏞⏞⏞⏟
=𝐾(𝐩)

− log
[
𝜌𝑦|𝑢(𝐲|𝐮)𝜌0(𝐮)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝑈 (𝐮)

, (6)

where we choose the conditional distribution of the momentum given 𝐮 to be normally distributed, 𝑃𝑝|𝑢(𝐩|𝐮) ∼ (0, 𝑀). 𝐾(𝐩) is referred to as the 
kinetic energy and 𝑈 (𝐮) the potential energy. One can compute trajectories on level sets of the Hamiltonian by solving the Hamiltonian dynamical 
system. A new sample is then computed by perturbing the current sample, integrating the Hamiltonian system in time and using the final state as 
the new sample with acceptance probability:

𝛼 =min

{
1,

exp
(
−𝐻(𝐮′,𝐩′)

)
exp

(
−𝐻(𝐮𝑖,𝐩(0))

)} , (7)

where (𝐮′, 𝐩′) is the terminal state of the trajectory. Intuitively, this procedure will be biased towards sampling from level sets in the phase space 
that maximize the likelihood 𝑈 (𝐮). Furthermore, 𝐾(𝐩) ensures that the algorithm explores other areas of the phase space to a degree decided by 𝑀
and the integration horizon, 𝑇 . Compared to the standard MH algorithm, this reduces the correlation between elements in the chain by traversing 
long distances in the phase space while maintaining a high acceptance probability due to the energy preserving properties of Hamiltonian dynamics.

When sampling using the HMC algorithm, a series of choices have to be made, like the number of time steps in the integration and the end time, 
𝑇 . If 𝑇 is too small the sampling will resemble a random walk, while 𝑇 too large may result in trajectories making a ‘U-turn’ and return to their 
initial condition. To avoid this, we utilize the No U-Turn Sampler (NUTS) [33].

The idea is to integrate backward and forward in time until a U-turn condition is satisfied. Then, a random point from the computed trajectory 
is chosen, and the algorithm continues from there.

It is important to emphasize that the HMC algorithm can only be utilized when the likelihood and the prior are differentiable. Furthermore, the 
derivative should be cheap to compute to get the desired speed-up.

Even though HMC with NUTS is efficient, one still needs many samples to converge. With a good initial sample, the method converges signifi-
cantly faster. There are several ways of computing a suitable initial guess, one of which is the maximum a posteriori (MAP) estimate [4], which we 
will use in this work. This is typically computed using the log PDFs:

𝐮MAP = argmax
𝐮

log(𝜌𝑢|𝑦(𝐲|𝐮)) + log(𝜌0(𝐮)). (8)

𝐮MAP can be computed using standard optimization methods such as gradient descent methods. In our case, both 𝜌𝑦|𝑢 and 𝜌𝑢 are known PDFs so it 
is easy to compute derivatives using standard software libraries such as PyTorch.

2.3. Alternative methods

Here, we will comment on some well-known alternative methods that exist to speed up solving the Bayesian inverse problem, which we will use 
to compare our proposed method to. We will also comment on their respective shortcomings.

Ensemble Kalman filter Ensemble Kalman filtering (EnKF) is a Kalman filter variant that is suitable for high-dimensional and nonlinear problems 
[2]. The general idea is to compute the sample mean and sample covariance from an ensemble and then update the prior accordingly. However, 
as all distributions are assumed to be Gaussian, it means that it is not directly suitable for non-Gaussian problems. In cases with very nonlinear or 
high-dimensional features, large ensembles are necessary which in turn makes it computationally slow.

Alternative approaches exist, such as particle filters, that do not assume a Gaussian distribution. However, such methods are, in general, compu-
tationally very expensive and will not be further discussed.

Surrogate models Instead of replacing the sampling method, the forward computations can be done using a surrogate model, such as polynomial 
chaos expansion (PCE) methods [9], Gaussian processes [34], or reduced basis methods [8]. The idea is to approximate the parameter-to-observations 
map or the forward map by a low-order model that is computationally fast to evaluate. These approaches have been shown to speed up the sampling 
significantly. However, in high-dimensional cases the curse of dimensionality hampers the applicability of such methods. Moreover, they usually do 
not perform well in discontinuous and/or highly nonlinear cases unless the approach is tailored to the problem at hand.

Likelihood-free methods As mentioned above, the computationally most expensive task is to evaluate the likelihood as this requires the solution 
of the forward problem. Alternatively, one can compute the posterior distribution without computing the likelihood. Such approaches are termed 
likelihood-free methods.

There are several ways of making use of likelihood-free methods. One approach that has become increasingly popular is to learn the posterior 
directly in an offline stage [27]. Here, pairs of state/parameters and corresponding observations, (𝐮, 𝐡(𝐮)), are required in the training stage. Then a 
model is trained to approximate the posterior, 𝑃 (𝐮|𝐡(𝐮)) ≈ 𝑃 (𝐮|𝐲).

While this approach enables fast computation of the posterior in the online stage, because no sampling is needed, it is less flexible, as 𝐡
cannot change between the offline and the online stages, meaning that sensor configurations must be constant. Hence, in cases where the sensor 
configuration is not known a priori, the methodology is not usable. Furthermore, if the noise levels in the observations change, this cannot be 
incorporated in the online stage.

2.4. Generative adversarial neural networks

In this section, we will give a brief overview of generative adversarial networks (GANs), see [19,35] for more details. We will focus on a version 
of GANs called Wasserstein GAN (WGAN) [30].
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Fig. 2. GAN architecture.

GANs deal with the problem of learning an unknown distribution from samples. Consider a probability distribution, 𝑃 𝑟
𝑢 , on a data space which is 

a subset of ℝ𝑚. We aim to approximate 𝑃 𝑟
𝑢 with another distribution, 𝑃 𝑔

𝑢 . We will refer to 𝑃 𝑟
𝑢 as the real data probability distribution or the target 

distribution, and 𝑃 𝑔
𝑢 the generated distribution. In order to compute 𝑃 𝑔

𝑢 , we define a stochastic latent variable, 𝑍 ∈ℝ𝑁𝑧 , with prior distribution 𝑃 𝑔
𝑧 , 

typically chosen to be a Gaussian. Then, we define a generator, 𝐺𝜃 ∶ ℝ𝑁𝑧 → ℝ𝑁𝑢 , which is a neural network parameterized by its weights, 𝜃. 𝐺𝜃

takes in the latent variable and outputs 𝐺𝜃(𝑍) ∼ 𝑃
𝑔
𝑢 . Hence, 𝑃 𝑔

𝑢 = 𝐺𝜃#𝑃
𝑔
𝑧 is the pushforward of the latent space distribution with PDF 𝜌𝑔

𝑢 = 𝜌
𝑔
𝑧◦𝐺

−1

[36]. By choosing 𝑁𝑧 ≪ 𝑁𝑢, we effectively get a low-dimensional representation of the 𝑁𝑢-dimensional distribution. Therefore, the variable 𝑧 can 
be considered a latent/low-dimensional representation of samples from 𝑃 𝑟

𝑢 .
Next, we introduce the discriminator, 𝐷𝜔 ∶ℝ𝑁𝑢 →ℝ. The discriminator takes in samples from either the real data probability distribution or the 

generated probability distribution, and returns a real number called the score. A large score means that the discriminator believes the sample comes 
from the real data distribution. 𝐷𝜔 is a neural network parameterized by its weights, 𝜔.

In order to learn the target distribution, a zero-sum game between the generator and the discriminator is set up. The generator aims to maximize 
the discriminator output, while the discriminator tries to minimize the score of generated samples while simultaneously trying to maximize the 
score of the real samples. For the WGAN, this game is mathematically formulated as [30]:

inf
𝜃
sup
𝜔

𝔼𝑋∼𝑃 𝑟
𝑢

[
𝐷𝜔(𝑋)

]
− 𝔼𝑍∼𝑃

𝑔
𝑧

[
𝐷𝜔(𝐺𝜃(𝑍))

]
. (9)

It can be shown that this inf-sup problem is equivalent to minimizing the Wasserstein-1 distance between 𝑃 𝑟
𝑢 and 𝑃 𝑔

𝑢 due to the Kantorovich-
Rubinstein duality [30]. The WGAN framework requires the discriminator to be Lipschitz continuous with respect to the input. Therefore, we 
introduce a gradient penalty term to constrain the gradient of the discriminator [37]:

inf
𝜃
sup
𝜔

𝔼𝑋∼𝑃 𝑟
𝑢

[
𝐷𝜔(𝑋)

]
− 𝔼𝑍∼𝑃

𝑔
𝑧

[
𝐷𝜔(𝐺𝜃(𝑍))

]
− 𝜆𝔼𝐱̂∼𝑃

𝑋̂

[(||∇𝑋̂𝐷𝜔(𝑋̂)||− 1
)2]

, (10)

where 𝜆 is a regularization parameter to be tuned, 𝑋̂ = 𝜖𝑋 + (1 − 𝜖)𝐺𝜃(𝑍), and 𝜖 is a small positive number.
In practice, we do not update the weights of the generator and the discriminator at the same time. Instead, we split (10) into two subproblems: 

a generator loss that aims to minimize (10) and a discriminator loss that aims to maximize (10) by minimizing the negative value:

𝐿𝐺 = −𝔼𝑍∼𝑃
𝑔
𝑧

[
𝐷𝜔(𝐺𝜃(𝑍))

]
, (Generator Loss) (11a)

𝐿𝐷 = −𝔼𝑋∼𝑃 𝑟
𝑢

[
𝐷𝜔(𝑋)

]
+ 𝔼𝑍∼𝑃

𝑔
𝑧

[
𝐷𝜔(𝐺𝜃(𝑍))

]
+ 𝜆𝔼𝑋̂∼𝑃

𝑋̂

[(||∇𝑋̂𝐷𝜔(𝑋̂)||− 1
)2]

. (Discriminator Loss) (11b)

For details about the training, see Appendix C. The WGAN is visualized in Fig. 2.
It has been shown that if the generator and the discriminator have sufficient capacity, the generated distribution converges to the real data 

probability distribution in the Wasserstein-1 distance [38].

3. Markov chain GAN

In this section, we will outline our proposed method, the Markov Chain GAN (MCGAN) method. The general purpose is to combine MCMC 
methods with GANs in order to perform state and parameter estimation in a computationally fast and accurate way. As mentioned in the previous 
section, similar approaches exist using polynomial surrogate models [39,40] and Gaussian processes [10]. However, as will be discussed, using 
GANs gives significant advantages over these alternatives.

3.1. Proposed algorithm

In short, the proposed algorithm aims to speed up posterior sampling without compromising too much on accuracy. The general methodology 
is to replace the forward model in the likelihood computation with the generator and replace the data prior with the GAN latent distribution (see 
Fig. 2).

Firstly, in an offline stage, we train the GAN to generate discrete solutions to the PDE for the desired time span and corresponding parameters. 
The GAN is trained on samples from the real prior distribution, 𝑃 𝑟

0 , i.e. solutions computed through conventional numerical methods (finite elements, 
finite volumes, etc.) and aims to learn a generated prior distribution, 𝑃 𝑔

0 . Samples from 𝑃 𝑟
0 are typically computed by sampling the parameters and 

then solving the physical model to get the state. This can be a lengthy process, but the training data can be simulated completely in parallel on 
several computer cores. After training, the (single) generator may generate pairs of states and parameters from a latent sample, 𝐳:

𝐺𝜃(𝐳) = (𝐺𝑞

𝜃
(𝐳),𝐺𝑚

𝜃
(𝐳)) = (𝐪𝑔 ,𝐦𝑔) = 𝐮𝑔 ∼ 𝑃

𝑔

0 (12)
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Hence, the generated distribution is approximating the real prior distribution, 𝑃 𝑔

0 ≈ 𝑃 𝑟
0 . In the training, the discriminator will receive pairs of states 

and parameters, (𝐪𝑟, 𝐦𝑟), sampled from the real data prior and generated pairs of states and parameters, (𝐪𝑔 , 𝐦𝑔), sampled from the generated 
distribution, in order to ensure that the generator learns to generate states and parameters that match.

Remark. It should be noted that since the GAN is trained on discrete solutions on a specific grid, it will generate samples on the same grid. Therefore, 
it is important to train on discrete solutions that have all the necessary properties for the online phase (sufficient resolution, etc.).

In order to take advantage of the low-dimensional latent space, we need to be able to sample solutions and parameters from a posterior on the latent 
space, instead of the generated distribution in the full data space. To this end, we have the expression for the latent space posterior density:

𝜌
𝑔

𝑧|𝑦(𝐳|𝐲) = 𝜌
𝑔

𝑦|𝑢(𝐲|𝐺𝜃(𝐳))𝜌
𝑔
𝑧(𝐳)

∫ℝ𝑁𝑧 𝜌
𝑔

𝑦|𝑢(𝐲|𝐺𝜃(𝐳))𝜌
𝑔
𝑧(𝐳) d𝐳

=
𝜌𝜂(𝐲 − 𝐡(𝐺𝜃(𝐳)))𝜌

𝑔
𝑧(𝐳)

∫ℝ𝑁𝑧 𝜌
𝑔

𝑦|𝑢(𝐲|𝐺𝜃(𝐳))𝜌
𝑔
𝑧(𝐳) d𝐳

∝ 𝜌𝜂(𝐲 − 𝐡(𝐺𝜃(𝐳)))𝜌𝑔
𝑧(𝐳). (13)

By training the generator to generate pairs of states and parameters, there is no need for the expensive forward model, as it is replaced by an 
evaluation of the generator at the sampled 𝐳. This means that in the online stage we only have to evaluate the GAN once in order to get both 
the state and parameters. This is in contrast to “conventional” approaches where a surrogate model only approximates the forward map or the 
parameters. In that case, one would have to make use of two surrogates – one for the parameters and one for the forward map. Furthermore, it also 
takes into account the slightly more general case where there is not necessarily a deterministic relationship between the parameters and the state.

This approach yields a significant speed-up in online computation time since evaluating the generator is, more or less, instantaneous and we 
obtain the posterior over both the state and parameters at no extra cost. The derivation of (13) is given in Section 3.2 in Theorem 1.

In the online stage, we then use the MCMC method, as discussed in Section 2.2, to sample from the latent space posterior. We can make use 
of the highly efficient HMC algorithm since derivatives of the likelihood are easily obtained through back propagation of the neural network 
generator. For conventional numerical methods, this is rarely the case as computing derivatives of the forward model typically requires expensive
numerical approximations or adjoint methods. Furthermore, the MAP estimate is also cheap to compute for the same reasons, which provides an 
excellent starting point for the HMC algorithm. Since the dimension is lowered significantly, and derivatives and an appropriate starting point are 
cheaply available, the Markov chain will converge significantly faster and we can get by with much fewer samples. In conclusion, with the MCGAN 
methodology each sample is cheap and we need fewer samples than for conventional methods.

Given the MCMC samples, we can compute derived quantities, e.g. for a given quantity of interest 𝑓 , we can compute the expected value by:

𝔼𝐪∼𝑃 𝑟
𝑞|𝑦 [𝑓 (𝐪)] ≈ 𝔼𝐪∼𝑃

𝑔

𝑞|𝑦 [𝑓 (𝐪)] = 𝔼𝐳∼𝑃
𝑔

𝑧|𝑦 [𝑓 (𝐺𝑞

𝜃
(𝐳))] ≈ 1

𝑁MCMC

𝑁MCMC∑
𝑖=1

𝑓 (𝐺𝑞

𝜃
(𝐳𝑖)), 𝐳𝑖 ∼ 𝑃

𝑔

𝑧|𝑦, (14a)

𝔼𝐦∼𝑃 𝑟
𝑚|𝑦 [𝑓 (𝐦)] ≈ 𝔼𝐦∼𝑃

𝑔

𝑚|𝑦 [𝑓 (𝐦)] = 𝔼𝐳∼𝑃
𝑔

𝑧|𝑦 [𝑓 (𝐺𝑚
𝜃
(𝐳))] ≈ 1

𝑁MCMC

𝑁MCMC∑
𝑖=1

𝑓 (𝐺𝑚
𝜃
(𝐳𝑖)), 𝐳𝑖 ∼ 𝑃

𝑔

𝑧|𝑦. (14b)

By choosing an appropriate 𝑓 , we can thereby compute various quantities of interest by sampling the latent space posterior. See Theorem 1 in 
Section 3.2 for details.

For an overview of the methodology, see Algorithm 1 for the offline stage and Algorithm 2 for the online stage. Here is a summary of the distinct 
advantages of the proposed method compared to the alternatives discussed in Section 2.3:

• The latent vector 𝐳 is, in general, of significantly lower dimension than the state and parameters, effectively reducing the dimension of the 
stochastic space resulting in significantly faster convergence of MCMC methods;

• The computationally expensive forward problem is replaced by the generator, whose cost is computationally negligible to evaluate once it has 
been trained;

• Since the forward map is replaced by a neural network, derivatives of the log-likelihood function can be computed efficiently, which enables 
computationally fast MAP estimation and allows us to utilize the highly efficient HMC method for sampling.

While the advantages are clear, it is worth mentioning the drawbacks as well:

• There is no immediate way of choosing the dimension of the latent space. However, one can consider it a hyperparameter and perform 
hyperparameter optimization;

• Training a GAN is not always an easy task, since commonly known problems of training neural networks, such as local minima and generaliza-
tion, also apply here;

• It is necessary to generate much training data in order to ensure accuracy of the GAN.

Note that the drawbacks are not unique to this methodology, but general when dealing with neural networks. The first two points are a matter of 
hyperparameter tuning, and the last point is a matter of time in the offline stage. Furthermore, with an efficient numerical solver and the fact that 
the offline stage can be easily parallelized (since the training samples are independent), the generation of data is often feasible within a reasonable 
timeframe. If the forward solver would be too expensive to allow for this, it is recommended to first obtain a simpler forward model e.g. by model 
reduction techniques such as reduced order models.

Remark. The purpose of the proposed methodology is to solve Bayesian inverse problems computationally fast in an online stage. As mentioned, 
this comes at a cost of an expensive offline stage in which the GAN is trained on simulated data. However, when the GAN is trained it can be 
deployed in several settings. Therefore, the method is highly suitable in settings where computational speed is crucial and offline training time is 
less important. This is, for example, the case for digital twins and model predictive control where repeated real-time state estimation and parameter 
calibration are necessities.
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Algorithm 1: MCGAN offline stage.

Input : 𝑁train , GAN hyperparameters, GAN architecture
1 Generate training samples, {(𝐪𝑖 , 𝐦𝑖)}

𝑁train

𝑖=1 ∼ 𝑃 𝑟
0 , by solving the forward problem;

2 Train the GAN to approximate the prior, 𝑃 𝑔

0 ≈ 𝑃 𝑟
0 (see Section 2.4);

Output : Trained generator, 𝐺𝜃

Algorithm 2: MCGAN online stage.

Input : Generator from Algorithm 1, MCMC parameters, observations (𝐲),
1 Compute the MAP estimate in the latent space, using a gradient descent algorithm, as initial sampling point (see Eq. (8));
2 Use MCMC algorithm (see Section 2.2) to sample from the latent space posterior (see Eq. (13));
3 Generate states and parameters from the posterior latent space samples:

{𝐪𝑖 , 𝐦𝑖} = {𝐺𝑞

𝜃
(𝐳𝑖), 𝐺𝑚

𝜃
(𝐳𝑖)} = {𝐺𝜃 (𝐳𝑖)}, 𝑖 = 1, … , 𝑁samples 𝐳𝑖 ∼ 𝑃

𝑔

𝑧|𝑦 .

4 Compute the relevant statistics, such as mean and variance;

Output : {𝐪𝑖 , 𝐦𝑖}
𝑁samples

𝑖=1 , statistics

3.2. Latent space sampling

Here we prove that sampling from the latent space posterior essentially yields the same results as sampling from the full data space in a weak 
sense. From [41], we have the following results for push forward distributions:

𝔼𝑈∼𝑃𝑢
[𝑓 (𝑈 )] = ∫

𝐸

𝑓 (𝐮)𝜌𝑢(𝐮)d𝐮 = ∫
𝐺−1(𝐸)

𝑓 (𝐺(𝐳))𝜌𝑧(𝐳)d𝐳 = 𝔼𝑍∼𝑃𝑧
[𝑓 (𝐺(𝑍))], (15)

where 𝐮 = 𝐺(𝐳) ∈ 𝐸, 𝑃𝑢 and 𝑃𝑧 are the distributions of 𝐮 and 𝐳 with PDFs 𝜌𝑢 and 𝜌𝑧, respectively, and 𝑓 is a measurable function on 𝐸. Here, 
𝑃𝑢 =𝐺#𝑃

𝑔
𝑧 is the push forward of 𝑃𝑧 by 𝐺. The derivation of Eq. (15) only requires that 𝐺 is measurable.

Theorem 1. Let 𝐺𝜃 be a generator. Let 𝑍 be a latent space variable distributed according to a latent space distribution, 𝑃 𝑔
𝑧 , with PDF 𝜌𝑔

𝑧 , and let 𝑈 =𝐺𝜃(𝑍)
be distributed according to the push forward distribution of the latent space distribution, 𝑈 ∼ 𝑃

𝑔
𝑢 = 𝐺𝜃#𝑃

𝑔
𝑧 , with PDF 𝜌𝑔

0 . Then, the push forward posterior 
distribution, conditioned on data 𝐲, is equal to the latent space posterior distribution conditioned on the same data in a weak sense, i.e. for all measurable 
functions 𝑓 , the following holds:

𝔼𝑈∼𝑃
𝑔

𝑢|𝑦 [𝑓 (𝑈 )] = 𝔼𝑍∼𝑃
𝑔

𝑧|𝑦 [𝑓 (𝐺(𝑍))], (16)

where the associated PDFs are given by:

𝜌
𝑔

𝑢|𝑦(𝐮|𝐲) = 𝜌
𝑔

𝑦|𝑢(𝐲|𝐮)𝜌𝑔

0(𝐮)

∫ℝ𝑁𝑢 𝜌
𝑔

𝑦|𝑢(𝐲|𝐮)𝜌𝑔

0(𝐮) d𝐮
, 𝜌

𝑔

𝑧|𝑦(𝐳|𝐲) = 𝜌
𝑔

𝑦|𝑢(𝐲|𝐺𝜃(𝐳))𝜌
𝑔
𝑧(𝐳)

∫ℝ𝑁𝑧 𝜌
𝑔

𝑦|𝑢(𝐲|𝐺𝜃(𝐳))𝜌
𝑔
𝑧(𝐳) d𝐳

. (17)

The proof can be found in Appendix A.
Using Theorem 1, we can conclude that sampling from the latent space posterior, 𝑃 𝑔

𝑧|𝑦, and pushing forward using the generator, 𝐺𝜃 , yields the 
same results as sampling directly from the generated posterior, 𝑃 𝑔

𝑢|𝑦 in a weak sense. While small perturbations in the latent domain might result in 
different output in the full data space, Theorem 1 shows that, in a weak sense, the posterior obtained from pushing forward the latent samples is 
equal to the full data posterior.

3.3. Convergence of generated posterior

In this subsection, we prove that 𝑃 𝑔

𝑢|𝑦 ≈ 𝑃 𝑟
𝑢|𝑦 when 𝑃 𝑔

0 ≈ 𝑃 𝑟
0 and under some additional reasonable assumptions on the generator. That is, the case 

where the prior is approximated in the Wasserstein metric and the likelihood is approximated with a surrogate forward map. While [42] proves the 
cases where either the likelihood or the prior is approximated, we provide a proof where both are being approximated.

Before stating the theorem, we need to define the appropriate spaces and metrics. Let (𝐸, 𝑑𝐸) be a complete metric space. 𝐸 ⊂ ℝ𝑑 is the set 
containing the state and parameter vectors, 𝐮 ∈𝐸 and 𝑑𝐸 ∶𝐸 ×𝐸 →ℝ+ assigns non-negative distances between two elements of 𝐸. Furthermore, in 
this formulation, the observation operator, 𝐡 ∶𝐸 →𝑂 maps elements from 𝐸 to the observation space.

We can then define the relevant space of probability distributions:

Definition 1. On a metric space, (𝐸, 𝑑𝐸 ), we define the space of probability distributions as:

𝑞(𝐸) =
{
𝑃 ∶ |𝑃 |𝑞

<∞
}

, |𝑃 |𝑞
= inf

𝑥0∈𝐸

⎛⎜⎜⎝∫𝐸 𝑑𝐸 (𝑥,𝑥0)𝑞𝜌(𝑥) d𝑥
⎞⎟⎟⎠
1∕𝑞

.

Then, we define the Wasserstein-1 distance and its dual representation [43]:
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Definition 2. For two probability distributions, 𝑃1, 𝑃2 ∈1(𝐸), the Wasserstein-1 distance is defined as:

𝑊1(𝑃1, 𝑃2) = inf
𝛾∈Γ(𝑃1 ,𝑃2)

|||||||∫𝐸 ∫
𝐸

𝑑𝐸 (𝑥, 𝑦)𝛾(𝑥, 𝑦)d𝑥d𝑦
||||||| ,

where Γ(𝑃1, 𝑃2) is the set of joint PDFs, 𝛾 , for combined probability distributions with 𝑃1 and 𝑃2 as marginal distributions, respectively. From the 
Kantorovich–Rubinstein duality, we can write the Wasserstein-1 distance as:

𝑊1(𝑃1, 𝑃2) = sup
Lip(𝑓 )≤1

|||||||∫𝐸 𝑓 (𝑥)𝜌1(𝑥)d𝑥− ∫
𝐸

𝑓 (𝑥)𝜌2(𝑥)d𝑥
||||||| ,

where 𝑓 ∶ 𝐸 → ℝ is a Lipschitz continuous function, Lip(𝑓 ) is its corresponding Lipschitz constant, and 𝜌1 and 𝜌2 are the PDFs of 𝑃1 and 𝑃2, 
respectively.

Besides the Wasserstein distance, we will also be working with the weighted norms:

||𝑓 ||𝐿1
𝜌
= ∫ |𝑓 (𝑥)|𝜌(𝑥) d𝑥, ||𝑓 ||𝐿2

𝜌
=
(
∫ |𝑓 (𝑥)|2𝜌(𝑥) d𝑥)1∕2

.

With the proper spaces, norms, and metrics defined, we can state the following theorem inspired by [42]:

Theorem 2. Let (𝐸, 𝑑𝐸 ) be a bounded metric space with sup𝐱1 ,𝐱2∈𝐸 𝑑𝐸 (𝐱1, 𝐱2) ≤𝐷 <∞.

Let 𝑃 𝑟
0 ∈2(𝐸) denote the prior probability distribution of real data, and let 𝑃 𝑟

0 ∈2(𝐸) denote the generated prior probability distribution of generated 
data.

Let the real data and generated likelihoods satisfy

𝜌𝑟
𝑦|𝑢(𝐲|𝐮) ∝ Φ𝑟(𝐮) = 𝑒−𝑙𝑟(𝐮), Φ𝑟 ∶𝐸 →ℝ+, 𝑙𝑟 ∶𝐸 →ℝ+,

𝜌
𝑔

𝑦|𝑢(𝐲|𝐮) ∝ Φ𝑔(𝐮) = 𝑒−𝑙𝑔 (𝐮), Φ𝑔 ∶𝐸 →ℝ+, 𝑙𝑔 ∶𝐸 →ℝ+,

where 𝑙𝑟 and 𝑙𝑔 are the log-likelihood functions for the real and generated data, respectively, and Φ𝑟 and Φ𝑔 are Lipschitz continuous functions with Lipschitz 
constants Lip(Φ𝑟) and Lip(Φ𝑔), respectively. Furthermore, let Φ𝑟, Φ𝑔 ∈𝐿2

𝜌
𝑔

0
, where 𝐿2

𝜌
𝑔

0
is the weighted 𝐿2 space with 𝜌𝑔

0 as the weight function.

Assume the GAN has converged, i.e. 𝑊1(𝑃 𝑟
0 , 𝑃

𝑔

0 ) ≤ 𝜖1. Furthermore, assume that this implies convergence of the log-likelihood, as follows,

||𝑙𝑟(𝐮) − 𝑙𝑔(𝐮)||𝐿1
𝜌
𝑔
0

≤ 𝜖2, ||𝑙𝑟(𝐮) − 𝑙𝑔(𝐮)||𝐿2
𝜌
𝑔
0

≤ 𝜖3, (18)

where || ⋅ ||𝐿1
𝜌
𝑔
0

is the weighted 𝐿1-norm with 𝜌𝑔

0 as the weight function. Then, the Wasserstein-1 distance between the real posterior probability distribution 

given observations and the generated posterior probability distribution given observations satisfies:

𝑊1(𝑃 𝑟
𝑢|𝑦, 𝑃 𝑔

𝑢|𝑦) ≤ 𝐶1𝜖1 +𝐶2𝜖2 +𝐶3𝜖3, (19)

where

𝐶1 =
(1 +𝐷Lip(Φ𝑟))

𝑄𝑟
𝑢(𝐲)

, 𝐶2 =
max(Φ𝑟,Φ𝑔)
𝑄𝑟

𝑢(𝐲)𝑄
𝑔
𝑢 (𝐲)

(1 +𝐷Lip(Φ𝑟))|𝑃 𝑔

0 |1
, 𝐶3 =

max(Φ𝑟,Φ𝑔)
𝑄

𝑔
𝑢 (𝐲)

|𝑃 𝑔

0 |2
,

where 𝑄𝑟
𝑢 and 𝑄𝑔

𝑢 are the evidence from the real and generated posterior, respectively, and 𝐷 denotes the maximum distance between two points in the metric 
space, 𝐸.

The proof can be found in Appendix B.
In short, the proof of Theorem 2 helps us understand when we can expect convergence of the posterior. While the assumptions of the Theorem 

might seem restrictive, this is actually not the case. Firstly, we assume that the metric space, 𝐸, is bounded, which is typically the case in many 
applications. Secondly, we assume that the likelihood is of the form 𝑒−𝑙(𝐮) , Lipschitz continuous, and is in the weighted 𝐿1 and 𝐿2 spaces. For simple 
observation operators (e.g. linear), this is a consequence of the negative log-likelihood function typically being an 𝐿2-norm. This leaves us with the 
question of the convergence of the prior, which directly determines 𝜖1 , 𝜖2, and 𝜖3.

3.4. Convergence of the generated prior

The convergence of the generated prior is a matter of studying convergence properties of GANs. Such studies are beyond the scope of this paper. 
Instead, we refer to [30,37,38] where convergence properties of GANs are discussed. In short, ensuring convergence of GANs is similar to ensuring 
convergence of other types of neural networks. Hence, it is a matter of having enough data and performing hyperparameter tuning. For the MCGAN, 
the amount of data is, in general, not a problem, as we simulate the training data.

4. Results

In this section, we will present the results on two different problems using the MCGAN methodology. We show two distinct parameter and state 
estimation cases to highlight various advantages of using the MCGAN methodology. Firstly, we consider a Darcy flow case (stationary flow through 
a porous medium), with the aim of approximating the horizontal and vertical velocity, the pressure, and the permeability field. The purpose of 
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Fig. 3. Convergence of mean and variance of the generated prior towards the prior computed from simulations. The error is computed using a test dataset.

this case is to emphasize the ability to deal with high-dimensional stochastic problems as the permeability field is spatially distributed and follows 
a high-dimensional distribution. Secondly, we consider the problem of leakage detection in pipe flow. Here, the challenge lies in dealing with a 
nonlinear hyperbolic PDE with discontinuities and a non-informative prior.

The results will be assessed using the relative root mean squared error (RRMSE):

State RRMSE =

√∑𝑁𝑞

𝑖=1(𝐪
∗
𝑖
− 𝐪𝑖)2√∑𝑁𝑞

𝑖=1 𝐪
2
𝑖

, Parameter RRMSE =

√∑𝑁𝑚

𝑖=1(𝐦
∗
𝑖
−𝐦𝑖)2√∑𝑁𝑚

𝑖=1 𝐦
2
𝑖

, (20)

where 𝐪∗ and 𝐦∗ denote the approximated state and parameters, respectively, and 𝐪 and 𝐦 are the reference state and parameters, respectively. 
The reference values are computed using an appropriate numerical solver. These will be discussed in each test case.

Furthermore, we will look at the approximated posterior distributions resulting from the MCGAN.
For the details on the training and hyperparameters for each of the test cases as well as GAN architectures, see Appendix C. Furthermore, all the 

training data for the GANs are generated by sampling the parameter spaces according to the chosen distribution for the test case. The number of 
training samples is chosen based on the performance of the resulting GAN. Note that it is, in general, a difficult problem to choose the number of 
necessary training samples.

The specific architectures of the generators and discriminators for each test case can be found in Fig. C.8. It is worth noting that we make use of 
convolutional neural networks in all cases due to their success in problems dealing with spatially distributed degrees of freedom [14,11]. It should, 
however, be noted that convolutional neural networks can essentially only be applied to Cartesian grids. To deal with irregular grids, one could 
make use of alternative architectures, such as graph neural networks, as in [44], or operator neural networks, such as Fourier neural operators [16].

As mentioned in Section 3.4, it is not feasible to compute the Wasserstein distance for very high-dimensional distributions. Therefore, in order 
to show convergence of the generated prior, we show the convergence of the first two moments, mean and standard deviation, with the training 
epochs. Here, we have a value for the mean and variance at every grid point and we compute the error as the relative RMSE. The convergence plots 
are shown in Fig. 3. While this is a weaker type of convergence than convergence in the Wasserstein-1 distance, it still gives an indication that the 
GAN error is sufficiently small for the purpose of Bayesian inversion.

We compare the proposed set-up with three alternatives: Ensemble Kalman filter, polynomial chaos expansion, and deep Bayesian inversion 
(DBI) [27]. Brief summaries of each methods can be found in Appendix D. For the first test case, it is worth noting that we make use of a variation 
called ensemble Kalman inversion, that is suitable for stationary problems. For the DBI, we make use of the same architectures, except for the input. 
In the generator, the observations are concatenated with the latent variables and for the discriminator the observations are concatenated with output 
of the convolutional layers. Furthermore, both the PCE and the DBI approaches are trained to the specific sensor configurations. Hence, they are 
less flexible than the Kalman filter and MCGAN methods, which allow for varying sensor configurations and a change of likelihood function.

All results are generated using synthetic observations. Therefore, all observations are simulation-based and perturbed with artificial noise. To 
ensure that we are not subject to inverse crime [45], the synthetic observations are generated with a higher resolution than what is used for 
the training of the GANs and PCE models, for all experiments. Furthermore, the Kalman filter results are also generated with a lower resolution. 
Secondly, we will use another distribution for the likelihood function than for the noise in the synthetic observations. The specifics will be discussed 
in each test case.

The number of necessary MCMC samples was considered a hyperparameter to be tuned and we chose the smallest number of samples that did 
not sacrifice accuracy in both cases.

4.1. Darcy flow

As a first test case, we consider stationary two-dimensional Darcy flow:

𝐯+ 𝑘∇𝑝 = 0, 𝐱 ∈ [0,1]2, (21a)

∇ ⋅ 𝐯 = 0, 𝐱 ∈ [0,1]2, (21b)

𝑝 = 1, 𝐱 ∈ 0 × [0,1], (21c)

𝑝 = 0, 𝐱 ∈ 1 × [0,1], (21d)
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𝐯 ⋅ 𝐧 = 0, 𝐱 ∈ [0,1] × {0,1}. (21e)

𝑝 ∶ [0, 1]2 →ℝ denotes pressure, 𝐯 ∶ [0, 1]2 →ℝ2 denotes the velocity, 𝑘 ∶ [0, 1]2 →ℝ is the spatially-dependent permeability field, and 𝐱 = (𝑥1, 𝑥2) are 
the spatial coordinates in the horizontal and vertical directions, respectively. The permeability field 𝑘 is modeled as a lognormal field, log𝑘 = 𝑚 ∼
 (0, 𝐶). The problem of state and parameter estimation for Darcy flow is often considered in data assimilation and in uncertainty quantification, 
see e.g. [46,47].

The covariance matrix 𝐶 is derived from the class of Matérn functions [48]:

𝐶(𝐱𝑖,𝐱𝑗 ) = 𝜎2 21−𝜈

Γ(𝜈)

(√
2𝜈
𝑙

𝑑(𝐱𝑖,𝐱𝑗 )
)𝜈

𝐾𝜈

(√
2𝜈
𝑙

𝑑(𝐱𝑖,𝐱𝑗 )
)

. (22)

Γ is the gamma function and 𝐾𝜈 is the modified Bessel function of the second kind. 𝑑(𝐱𝑖, 𝐱𝑗 ) denotes the distance between two points, 𝐱𝑖 and 𝐱𝑗 , in 
the domain, 𝜈 defines the smoothness, 𝜎2 > 0 is the variance, and 𝑙 > 0 is the correlation length.

We denote by 𝐦𝑁 the discretized version of 𝑚 defined on an 𝑁 ×𝑁 grid and the covariance matrix, 𝐶𝑁 ∈ ℝ𝑁2 ×ℝ𝑁2
, has elements (𝐶𝑁 )𝑖,𝑗 =

𝐶(𝐱𝑖, 𝐱𝑗 ). Then, 𝐦𝑁 can be sampled by computing

𝐦𝑁 =
𝑁2∑
𝑖=1

√
𝜆𝑖𝐦̂𝑖𝝍 𝑖, 𝐦̂ ∈ℝ𝑁2

, 𝐦̂ ∼ (0, 𝐼), (23)

where 𝐼 ∈ ℝ𝑁2 ×ℝ𝑁2
is the identity matrix, 𝜆𝑖 are the eigenvalues of 𝐶𝑁 in descending order, and 𝝍 𝑖 the corresponding eigenvectors. Hence, the 

permeability field is determined by 𝐦̂𝑖, 𝑖 = 1, … , 𝑁 . A reduced representation of the permeability field can then be computed by choosing 𝑛 < 𝑁2:

𝐦(𝑛)
𝑁

=
𝑛∑

𝑖=1

√
𝜆𝑖𝐦̂𝑖𝝍 𝑖. (24)

Thereby, the reduced permeability field is determined by 𝑛, instead of 𝑁2, parameters.
For generating the training data, Eq. (21) is solved using the finite element method. The velocity is discretized by discontinuous Raviart-Thomas 

elements of polynomial order 3 and the pressure is discretized by Lagrange elements of polynomial order 2. This is known to be a stable pairing 
of finite element spaces for the stationary Darcy flow [49]. The domain is divided into 32 × 32 squares, each divided into two triangles, resulting 
in 25793 degrees of freedom in total. The solutions are then evaluated on a 50 × 50 equidistant grid. The implementation is done using the FEniCS 
library [50].

The specific setting for creating the permeability field here is 𝑛 = 1089, 𝜈 = 1.5, 𝑙 = 0.2, and 𝜎 = 0.5.
For the observations, we consider evenly distributed sensors at locations, (𝐱1, … , 𝐱𝑁𝑦

), measuring the horizontal velocity at 𝑁𝑦 = 100 discrete 
points, see Fig. 5a. Thus, 𝐡 ∶ℝ𝑁×𝑁 →ℝ𝑁𝑦 , and the measurements are created by:

y = 𝐡(𝐯) + 𝜂, 𝐡(𝐯) = (𝑣1(𝐱1),… , 𝑣1(𝐱𝑁𝑦
)) 𝜂 ∼ (0,0.012𝐼), 𝜂 ∈ℝ𝑁𝑦 . (25)

The synthetic observations are generated using 50 × 50 squares divided into two triangles. The velocity is discretized with polynomial order 4 and 
the pressure with polynomial order 3. The test case is similar to the one presented in [46].

We compare the MCGAN method with the ensemble Kalman inversion (EKI) method [51] and Deep Bayesian Inversion [27]. The DBI is trained 
to the specific sensor locations. We do not compare with PCE since it is infeasible to compute a PCE model for a problem of this high dimensionality.

GAN setup

The discriminator of the GAN consists of convolutional layers and the generator consists of transposed convolutional layers. The generator is 
trained to generate the velocity in the horizontal direction, 𝑣1, the velocity in the vertical direction, 𝑣2, the pressure, 𝑝, and the log-permeability 
field, log(𝑘). Each quantity is considered a channel in the sense of convolutional neural networks. Thereby, the generator outputs tensors of the 
shape (4, 𝑁, 𝑁). To avoid boundary artifacts in the generated fields originating from the transposed convolutional layers, the generator is trained to 
generate fields of the shape (4, 𝑁 + 𝑙, 𝑁 + 𝑙), 𝑙 > 0, which are then cropped to the desired size. For details on the exact architecture specifications, see 
Fig. C.8.

Results

The MCGAN results are computed with a single chain of 20,000 samples, where the first 12,500 samples are discarded to ensure that we only use 
samples with a converged chain. The MAP estimate is used as the initial MCMC sample, which reduces the time until convergence for the MCMC 
method significantly.

For the likelihood function, we use  (0, 0.022𝐼), which is different from the distribution used to generate the observation noise.
In Fig. 4, the convergence of relative RMSE is presented for the MCGAN approximated state and permeability with respect to the latent dimension. 

For each latent dimension, a new GAN is trained with the same architecture, hyperparameters, and training data. For comparison, we also compute 
the convergence of a high-fidelity MCMC procedure.2 Clearly, with a latent dimension of 10 in the MCGAN, essentially the same accuracy was 
achieved for the permeability as for the high-fidelity MCMC method with between 150 and 300 modes. Furthermore, for the state, a dimension 

2 We sample the permeability and solve the forward model to get the likelihood. We use the same forward as for simulating the MCGAN training data and the 
standard deviation was also the same as for the MCGAN. The mean values of all accepted samples were used for computing the relative RMSE of the permeability. 
Similarly, the mean values of all corresponding states were used to compute the state relative RMSE. The latent dimension refers to the number of modes used for 
the permeability, as shown in (24). A Metropolis-Hastings algorithm with adaptive proposal standard deviation ensuring that the acceptance rate is between 0.2 
and 0.5 was used. We employed 10 uncorrelated chains in parallel, with different initial conditions. The first 200,000 samples from each chain were discarded and 
then every 5th sample was saved to reduce the correlation between each sample in the chain until 3,000 samples per chain were reached. Hence, a total of 30,000 
samples were used for computing the relative RMSE.
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Fig. 4. Convergence of the MCGAN and high-fidelity MCMC for the state and log-permeability with respect to the latent dimension.

Fig. 5. Top row: 𝑣1 . Red dots are points of measurements. Bottom row: log(𝑘).

of 50 in the MCGAN achieves similar accuracy as 300 modes in the high-fidelity MCMC. Hence, the MCGAN approach provides a significant 
dimensionality reduction, together with a speed-up of the evaluation.

In Fig. 5, the results from using MCGAN for the Darcy flow are shown. We see that the horizontal velocity is estimated accurately with a relative 
RMSE of 0.10 and a relatively low standard deviation. Not surprisingly, the standard deviation seems to be largest at the upper boundary where no 
measurements are available. Furthermore, larger uncertainty is observed in the areas of the domain where the magnitude 𝑣1 is large.

Regarding the log-permeability, the MCGAN captures the structure of the true log-permeability as well as the sharp edges with a relative RMSE 
of 0.17.

For both the state and log-permeability, the Kalman inversion gives similar, but slightly worse, accuracy and significantly smoother results than 
the MCGAN approach (see Fig. D.9). Hence, the Kalman inversion is not able to capture the sharper edges. Furthermore, it is an order of magnitude 
slower (see Table 4). The DBI method gives similar results, but a lower accuracy on the parameter estimation is observed (see Fig. D.10.

4.2. Leakage detection in pipe flow

To show the method’s generality, as a different problem, we consider unsteady single phase flow through a pipeline, until suddenly (at t=10 s) 
a leak occurs. As a consequence, pressure waves start propagating through the pipeline, and the velocity field at the leak becomes discontinuous 
because of the mass flow leaving through the leak. We have only two measurement locations, one close to the inlet and one close to the outlet of 
the pipeline measuring pressure, and the goal is to infer the leak location and size based on these measurements and a physical model of the flow in 
the pipeline. This is a challenging problem because of the very sparse measurement data and the discontinuity in the solution.
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Table 1

Parameters for the pipe flow equations, (26). Note that the discharge 
coefficient and the leakage location have values denoted by intervals, 
as they are the parameters to determine.

Physical quantity Constant Value Unit

Pipe length 𝐿 2000 m
Diameter 𝑑 0.508 m
Cross-sectional area 𝐴 0.203 m2

Speed of sound in fluid 𝑐 308 m/s
Ambient pressure 𝑝amb 101325 Pa
Reference pressure 𝑝ref 5016390 Pa
Reference density 𝜌ref 52.67 kg/m3

Inflow velocity 𝑣0 4.0 m/s
Outflow pressure 𝑝𝐿 5016390 Pa
Pipe roughness 𝜀 10−8 m
Fluid viscosity 𝜇 1.2 ⋅ 10−5 N ⋅ s∕m2

Leakage start time 𝑡𝑙 10 s
Discharge coefficient 𝐶𝑑

[
1.0 ⋅ 10−4 ,9.0 ⋅ 10−4

]
m

Leakage location 𝑥𝑙 [100,1900] m

The governing equations are given by the one-dimensional Euler equations for mass and momentum conservation [52,53]:

𝜕𝑡𝑞1 + 𝜕𝑥𝑞2 = 𝐶𝑑

√
𝜌(𝑝(𝜌) − 𝑝amb)𝛿(𝑥− 𝑥𝑙)𝐻(𝑡− 𝑡𝑙), (26a)

𝜕𝑡𝑞2 + 𝜕𝑥

(
𝑞22
𝑞1

+ 𝑝(𝜌)𝐴

)
= − 1

2𝑑
𝑞22
𝑞1

𝑓𝑓 (𝑞), (26b)

𝑣(0, 𝑡) = 𝑣0, 𝑝(𝐿, 𝑡) = 𝑝𝐿, (26c)

where 𝜌 is the fluid density (not to be confused with the probability density functions in previous sections), 𝑝(𝜌) = 𝑐2(𝜌 − 𝜌0) + 𝑝0 is the pressure, 𝑣 is 
the velocity, 𝑞1 = 𝜌𝐴, 𝑞2 = 𝜌𝑣𝐴, 𝛿 is the Dirac delta function, and 𝐻 is the Heaviside function. 𝑣0 represents the boundary conditions prescribed on 
the velocity at the left end of the pipe and 𝑝𝐿 is the prescribed pressure at the right end of the pipe. 𝑑, 𝐴, 𝑝amb, 𝑐, 𝜌0, are all constants. The physical 
quantities they represent and the values we will be working with are found in Table 1. The righthand side in Eq. (26a) is the leakage, modeled as 
a discharge. 𝑡𝑙 is the time at which the leakage occurs, 𝑥𝑙 and 𝐶𝑑 are the two parameters of interest. They represent the location and size of the 
leakage, respectively. The righthand side of Eq. (26b) is the friction, where 𝑓𝑓 is the Darcy-Weisbach friction coefficient, which is given by the 
Haaland expression [54]:

1√
𝑓𝑓

= −1
4
1.8 log10

[(
𝜀∕𝐷
3.7

)1.11
+ 6.9

𝑅𝑒

]
, (27)

where 𝑅𝑒 is the Reynolds number, 𝑅𝑒 = 𝜌𝑣𝑑

𝜇
, with 𝜇 the fluid viscosity and 𝜀 the pipe roughness. The values and units of all parameters in the model 

are in Table 1. The initial condition is (𝑞1, 𝑞2) = (𝜌0𝐴, 𝜌0𝑣0𝐴).
Eq. (26) is solved using the nodal discontinuous Galerkin method [55]. We use Legendre polynomials for the modal representation of the local 

polynomials, and Lagrange polynomials for the nodal representation. The numerical flux is chosen to be the Lax-Friedrichs flux. To ensure stability 
and non-oscillatory behavior while ensuring high-order accuracy, a TVBM slope-limiter is applied after each time step [55]. The time-stepping is 
performed using the BDF2 method, with an initial implicit Euler step [56].

For the generation of the training data, we consider 75 elements with a local polynomial order of 3. The resulting solution is then evaluated 
on an equidistant grid consisting of 256 points. For the time-stepping, we consider a horizon of 𝑇 = 64 seconds with 256 time steps. Hence, 
(𝑞1, 𝑞2) ∈ℝ256×256 ×ℝ256×256.

We assume a uniform prior for both the leakage location, 𝑥𝑙 ∼ (100, 1900), and the discharge coefficient, 𝐶𝑑 ∼ (
1.0 ⋅ 10−4,9.0 ⋅ 10−4

)
. Other 

choices of distributions of 𝑥𝑙 and 𝐶𝑑 are subject to future studies.
For the state and parameter estimation, only measurements of the pressure are observed. We consider the vector, (𝑥1, … , 𝑥𝑁𝑦

), of measurement 
locations, and the vector of measurement times, (𝑡1, … , 𝑡𝑁𝑦

). This gives rise to the synthetic observations:

y = 𝐡(𝑝) + 𝜂, 𝐡(𝑝) = (𝑝(𝑥1, 𝑡1),… , 𝑝(𝑥𝑁𝑦
, 𝑡𝑁𝑦

)), 𝜂 ∼ (0,15002𝐼), 𝜂 ∈ℝ𝑁𝑦 . (28)

We specifically consider the case where we only observe at 𝑥 = 20 m and at 𝑥 = 1980 m and for all time instances, i.e. (𝑥1, … , 𝑥𝑁𝑦
) =

(20, … , 20, 1980, … , 1980) and (𝑡1, … , 𝑡𝑁𝑦
) = (0.25, … , 64, 0.25, … , 64). Hence, 𝑁𝑦 = 2 ⋅ 256 = 512. For simulating the synthetic observations, we used 

100 elements with a local polynomial order of 4.

GAN setup

As for the above tests, we use convolutional layers for the discriminator and transposed convolutional layers for the generator. The GAN is 
trained to generate the velocity, 𝑣, and pressure, 𝑝, instead of generating the conservative variables 𝑞1 and 𝑞2, since 𝑣 and 𝑝 are the quantities of 
interest. The GAN is trained to generate full space-time solutions in the intervals, 𝑥 ∈ [0, 𝐿] and 𝑡 ∈ [0, 𝑇 ]. 𝑣 and 𝑝 are considered channels in the 
sense of convolutional neural networks. Hence, the generator generates tensors of size (2, 256, 256).

At the location of the leakage, there will be a discontinuity in the velocity, due to a drastic drop in the velocity. We use this information to 
compute the leakage location by identifying the spatial location of the discontinuity, by convolving the state with an appropriate kernel. Furthermore, 
a dense neural network takes in the generated state and outputs the discharge coefficient. See Fig. C.8 for a visualization of the GAN.

Due to the large differences in orders of magnitude, the velocity, pressure and discharge coefficients are scaled to have values between -1 and 1.
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Fig. 6. Results for the MCGAN method applied to the pipe flow with a leakage, Eq. (26). (a)-(c) are space-time contour plots of the true state, the MCGAN estimated 
state, and the standard deviation, respectively. (d)-(f) show the state reconstruction at various instances in time with the shaded area denoting one standard deviation 
away from the reconstruction.

Fig. 7. Posterior distributions of the leakage location and discharge coefficient in the pipe flow equation.

Results

The MCGAN results are computed with a single chain of 15,000 samples, where the first 10,000 samples are discarded to ensure that we only 
use samples after the chain has converged. The MAP estimate is, again, used as the initial MCMC sample in order to speed up convergence. For the 
likelihood function, we use  (0, 30002𝐼), which is different from the distribution used to generate the observation noise.

Fig. 6 presents the reconstruction of the velocity. It is apparent that the velocity is reconstructed very well with a relative RMSE of 0.01. It is 
especially worth noting that the uncertainty is largest around the drop in velocity, i.e. at the location of the leakage, as expected. This uncertainty 
information could further be used to estimate the location of the leakage. While the state estimation is accurate, it is apparent that the velocity 
estimation is slightly worse in the domain to the right of the leakage (𝑥 > 𝑥𝑙). The lack of accuracy is accompanied by an increased standard deviation 
in that part of the domain. Hence, the uncertainty estimates provide useful information.

While the MCGAN is performing well in the interior of the domain, it is noteworthy that the estimation at the boundary at 𝑥 = 2000 is not as 
accurate.

In Fig. 7, we see the estimated posterior distributions of the leakage location and discharge coefficient, respectively. In the leakage location 
posterior, the estimated mean is close to the true mean (see also Table 2) and it is, more or less, symmetric. In the discharge coefficient posterior, 
on the other hand, the estimated value appears to be smaller than the true value. The MCGAN method significantly outperforms the PCE and EnKF 
methods in this case. The EnKF is initiated with 𝑥𝑙 = 1000 and 𝐶𝑑 = 5 ⋅10−4 and the MCMC with PCE is initiated at the MAP estimate. In Fig. D.11 and 
D.12, the results obtained using the EnKF and PCE method are shown. None of the two approaches manages to estimate the state or the parameters 
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Table 2

Estimated parameters for the pipe flow using MCGAN, PCE, and EnKF. The best estimates are highlighted 
in boldface.

Pars True val. MCGAN PCE EnKF DBI

Mean Std Mean Std Mean Std Mean Std

𝑥𝑙 1354.5 1336.8 44.80 1099.2 69.98 1005.0 10.15 1357.2 35.7
𝐶𝑑 3.5⋅10−4 𝟑.𝟏⋅𝟏𝟎−𝟒 5.7⋅10−5 2.6⋅10−4 2.4⋅10−5 7.2⋅10−4 3.2⋅10−3 2.7⋅10−4 1.2⋅10−5

Table 3

Relative RMSE for the state and parameter estimation for the various test cases. For the Darcy flow, the 
Relative RMSE for (𝑣1, 𝑣2, 𝑝) is computed. For the pipe flow, the Relative RMSE for (𝑢, 𝑝) is computed. 
The best performing cases are highlighted in boldface.

MCGAN PCE EnKF/EKI DBI

State Pars State Pars State Pars State Pars

Darcy flow 1.3⋅𝟏𝟎−𝟏 1.7⋅𝟏𝟎−𝟏 - - 2.0⋅10−1 4.2⋅10−1 1.9⋅10−1 4.9⋅10−1

Pipe flow 4.8⋅𝟏𝟎−𝟑 1.3⋅10−2 1.3⋅10−2 1.9⋅10−1 3.3⋅10−2 2.6⋅10−1 7.0⋅10−3 2.0⋅𝟏𝟎−𝟑

Table 4

Comparison of online computation time. All simulations are run on CPU cores. Only the 
number of CPU cores varies.

MCGAN (1 core) PCE (20 cores) EnKF/EKI (20 cores) DBI (1 core)

Darcy flow 3.17⋅102 s - 4.11⋅103 s 3.31⋅101 s
Pipe flow 7.10⋅102 s 1.18⋅104 s 1.25⋅104 s 3.14⋅101 s

in a satisfying manner. Table 2 shows that the EnKF approach is unable to update the posterior and the PCE approach only performs marginally 
better.

The pipe flow equations are highly nonlinear and the solution exhibits a discontinuity at the location of the leakage. Both phenomena are not 
easy to handle with the PCE nor EnKF approaches, while neural networks have been shown to be well-suited for such tasks.

On the other hand, DBI performs highly satisfactory (see Fig. D.13). For the leak location, DBI is slightly more accurate, while for the leak size, 
MCGAN performs better. Furthermore, the distribution over the leak size computed by DBI is narrow, suggesting that the approximated value has 
small uncertainty associated with it, even though the approximation is not accurate. MCGAN, on the other hand, shows larger uncertainty associated 
with the approximation suggesting more accurate evaluation of the reliability. Lastly, we see that MCGAN approximates the state more accurately 
than DBI.

As mentioned, when using DBI, one has to choose the exact location and temporal frequency of incoming observations before training, to create 
the training set. This is not the case for MCGAN, where the exact sensor configuration and likelihood do not have to be specified before the online 
stage.

4.3. Summary of results

To summarize the results obtained using the proposed MCGAN method, we highlight accuracy and computation time. Firstly, in Table 3 the 
relative RMSE for the state and parameters are presented for both test cases. The MCGAN performs better than the three alternative approaches in 
almost all metrics. For the leakage localization in the pipe flow test case, the MCGAN method outperforms the PCE and the EnKF approaches, while 
performing similarly to DBI. The MCGAN results are very close to the true values with relative RMSEs that are one order of magnitude better than 
PCE and ensemble Kalman approaches for the state and parameter estimation. In Table 4, the online computation times for the methods applied 
to the two test cases are shown. It is interesting to note that the computation time does not change much in the two test cases for the MCGAN. 
This is due to the fact that there are only minor differences in computation time between evaluating a small neural network and a large one. DBI is 
the fastest approach since the GAN is trained to sample directly from the posterior, in contrast to the MCGAN approach that makes use of MCMC 
methods.

Lastly, we briefly comment on the offline training time. For the computationally most expensive case, the pipe flow, the most time consuming 
part is the generation of data. Generating 100,000 training trajectories took about 80 hours on 30 CPU cores (90 seconds per trajectory). The training 
of the GAN was finished in about 24 hours for both the MCGAN and DBI. In total, the offline stage took approximately 104 hours. The offline time 
for the Darcy flow was shorter, totaling around 50 hours. We did not experience high sensitivity to the hyperparameters, such as learning rate, batch 
size, etc. This might be a product of the large number of training samples.

5. Conclusion

We have presented a new method, named MCGAN, to efficiently and accurately solve Bayesian inverse problems in physics and engineering 
applications. The method combines Generative Adversarial Networks and Markov Chain Monte Carlo methods to sample from posterior distributions 
by utilizing a low-dimensional latent space and a push-forward map defined as a neural network.

The methodology is divided into two distinct stages, an offline stage, in which the GAN is trained on simulated training data in order to learn 
the prior distribution, and an online stage, in which the inverse problem is solved for a new set of observations. While the offline stage potentially 
takes significant computational time, the online stage is computationally very fast and efficient.
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We presented a proof of theoretical convergence of the posterior distribution in the Wasserstein-1 distance, in the case where the GAN would be 
perfectly trained. Furthermore, we provided the insight that sampling from the latent space yields essentially the same results as sampling from the 
high-dimensional space, in a weak sense.

To showcase the method’s performance, we applied it to two computational engineering test cases with different characteristics and compared 
it to three alternative approaches. In the high-dimensional problem, the Darcy flow with uncertain permeability field, an improved accuracy was 
found with MCGAN compared with EKI and DBI, as well as a speed-up of one order of magnitude compared to the EKI method. In the second test 
case, the leakage localization for flow in a pipe, the MCGAN approach showed increased accuracy for the state and leak size detection, while DBI 
was slightly more accurate regarding the leak location. Out of the four approaches, the MCGAN method is the one that provided accurate results, 
fast sampling without being trained to only work for a single sensor configuration.

It is worth noting that, similar to any surrogate modeling approach, it is unclear how well the methodology performs on out-of-distribution cases. 
This is a subject to future study.

While the MCGAN approach performed well on the two test cases, there is still room for future research. We believe the offline stage can be 
improved by identifying optimal ways of simulating training data and determining hyperparameters for the GAN. This includes determining the 
optimal size of the latent space. Furthermore, the GAN can be improved by incorporating physics knowledge either in the training or directly in the 
neural network architecture. This could possibly alleviate the boundary estimation problems. Also, possibilities of using the MCGAN framework in 
a sequential fashion, as is the case for Kalman filters, would be an interesting direction to explore.

In conclusion, we believe that the MCGAN methodology can form an important piece of the puzzle towards a well performing digital twin 
framework, in which real-time state and parameter estimation is of crucial importance.
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Appendix A. Proof of Theorem 1

Proof. Firstly, since neural networks with continuous activation functions are continuous, they are also measurable [41]. Therefore, the generator 
defines a push forward distribution and Eq. (15) is applicable.

Secondly, we look at the evidence. Assuming the likelihood is measurable with respect to 𝐮, we have from Eq. (15):

𝑄𝑢(𝐲) = ∫
ℝ𝑁𝑢

𝜌
𝑔

𝑦|𝑢(𝐲|𝐮)𝜌𝑔

0(𝐮) d𝐮 = ∫
ℝ𝑁𝑧

𝜌
𝑔

𝑦|𝑢(𝐲|𝐺𝜃(𝐳))𝜌𝑔
𝑧(𝐳) d𝐳 =𝑄𝑧(𝐲). (A.1)

Consider the expected value of the likelihood times some measurable function, 𝑓 , with respect to the prior:

𝔼𝑈∼𝑃
𝑔

0
[𝑓 (𝑈 )𝜌𝑔

𝑦|𝑢(𝐲|𝑈 )] = ∫
𝐸

𝑓 (𝐮)𝜌𝑔

𝑦|𝑢(𝐲|𝐮)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=𝜉(𝐮)

𝜌
𝑔

0(𝐮) d𝐮

= ∫
𝐺−1

𝜃
(𝐸)

𝑓 (𝐺𝜃(𝐳))𝜌
𝑔

𝑦|𝑢(𝐲|𝐺𝜃(𝐳))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝜉(𝐺𝜃 (𝐳))

𝜌𝑔
𝑧(𝐳)d𝐳

= 𝔼𝑈∼𝑃
𝑔
𝑧
[𝑓 (𝐺𝜃(𝑍))𝜌𝑔

𝑦|𝑢(𝐲|𝐺𝜃(𝑍))].

(A.2)

Note that 𝜉 is the product of two measurable functions and is therefore measurable. Hence, Eq. (15) applies. Now using Eq. (A.1) and (A.2) we get:

𝔼𝑈∼𝑃
𝑔

𝑢|𝑦 [𝑓 (𝑈 )] = 1
𝑄𝑢(𝐲)

𝔼𝑈∼𝑃
𝑔

0
[𝑓 (𝑈 )𝜌𝑔

𝑦|𝑢(𝐲|𝑈 )]

= 1
𝑄𝑧(𝐲)

𝔼𝑍∼𝑃
𝑔
𝑧
[𝑓 (𝐺𝜃(𝑍)𝜌𝑔

𝑦|𝑢(𝐲|𝐺𝜃(𝑍))]

= 𝔼𝑍∼𝑃
𝑔 [𝑓 (𝐺(𝑍))]. □

𝑧|𝑦
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Appendix B. Proof of Theorem 2

Proof. We write the Wasserstein-1 distance between the real prior and the generated prior in dual form:

𝑊1(𝑃 𝑟
0 , 𝑃

𝑟
0 ) = sup

Lip(𝑓 )≤1

|||||||∫𝐸 𝑓 (𝐮)𝜌𝑟
0(𝐮)d𝐮− ∫

𝐸

𝑓 (𝐮)𝜌𝑔

0(𝐮)d𝐮
||||||| , (B.1)

where 𝑓 ∶𝐸 →ℝ is Lipschitz continuous with Lipschitz constant less or equal 1 and 𝑓 (𝐮0) = 0 for some 𝐮0. Note that any function, 𝑔, with Lipschitz 
constant less than or equal 1, is a contraction and therefore admits a fixed point. Now, assuming that 𝐮0 is the fixed point, we can simply define 
𝑓 = 𝑔 − 𝐮0, which admits 𝑓 (𝐮0) = 𝐮0. Therefore, assuming 𝑓 (𝐮0) = 0 for some 𝐮0 is not a restriction. Furthermore, we have:

|𝑓 (𝐮)| = |𝑓 (𝐮) + 𝑓 (𝐮0) − 𝑓 (𝐮0)| = |𝑓 (𝐮) + 𝑓 (𝐮0)| ≤ Lip(𝑓 )𝑑(𝐮,𝐮0) ≤𝐷.

The Wasserstein-1 distance between the posteriors is given by:

𝑊1(𝑃 𝑟
𝑢|𝑦, 𝑃 𝑔

𝑢|𝑦) = sup
Lip(𝑓 )≤1

|||||||∫𝐸 𝑓 (𝐮)𝜌𝑟
𝑢|𝑦(𝐮|𝐲)d𝐮− ∫

𝐸

𝑓 (𝐮)𝜌𝑔

𝑢|𝑦(𝐮|𝐲)d𝐮
|||||||

= sup
Lip(𝑓 )≤1

|||||||∫𝐸 𝑓 (𝐮)(𝜌𝑟
𝑢|𝑦(𝐮|𝐲) − 𝜌

𝑔

𝑢|𝑦(𝐮|𝐲))d𝐮
|||||||

= sup
Lip(𝑓 )≤1

|||||||∫𝐸 𝑓 (𝐮)
(
Φ𝑟(𝐮)𝜌𝑟

0(𝐮)
𝑄𝑟

𝑢(𝐲)
−

Φ𝑔(𝐮)𝜌𝑔

0(𝐮)
𝑄

𝑔
𝑢 (𝐲)

)
d𝐮

||||||| .
Adding and subtracting the term 𝑓 (𝐮) Φ

𝑟(𝐮)𝜌𝑔0(𝐮)
𝑄𝑟

𝑢(𝐲)
gives

𝑊1(𝑃 𝑟
𝑢|𝑦, 𝑃 𝑔

𝑢|𝑦) = sup
Lip(𝑓 )≤1

|||||||∫𝐸 𝑓 (𝐮)
(
Φ𝑟(𝐮)𝜌𝑟

0(𝐮)
𝑄𝑟

𝑢(𝐲)
−

Φ𝑔(𝐮)𝜌𝑔

0(𝐮)
𝑄

𝑔
𝑢 (𝐲)

+
Φ𝑟(𝐮)𝜌𝑔

0(𝐮)
𝑄𝑟

𝑢(𝐲)
−

Φ𝑟(𝐮)𝜌𝑔

0(𝐮)
𝑄𝑟

𝑢(𝐲)

)
d𝐮

|||||||
≤ sup

Lip(𝑓 )≤1

|||||||∫𝐸 𝑓 (𝐮)Φ
𝑟(𝐮)

𝑄𝑟
𝑢(𝐲)

(
𝜌𝑟
0(𝐮) − 𝜌

𝑔

0(𝐮)
)

d𝐮
|||||||+

|||||||∫𝐸 𝑓 (𝐮)𝜌𝑔

0(𝐮)
(
Φ𝑟(𝐮)
𝑄𝑟

𝑢(𝐲)
− Φ𝑔(𝐮)

𝑄
𝑔
𝑢 (𝐲)

)
d𝐮

||||||| .
Subsequently, adding and subtracting the term 𝑓 (𝐮) Φ

𝑟(𝐮)𝜌𝑔0(𝐮)
𝑄

𝑔
𝑢 (𝐲)

in the second integral gives

𝑊1(𝑃 𝑟
𝑢|𝑦, 𝑃 𝑔

𝑢|𝑦) ≤ sup
Lip(𝑓 )≤1

|||||||∫𝐸 𝑓 (𝐮)Φ
𝑟(𝐮)

𝑄𝑟
𝑢(𝐲)

(
𝜌𝑟
0(𝐮) − 𝜌

𝑔

0(𝐮)
)

d𝐮
|||||||

+
|||||||∫𝐸 𝑓 (𝐮)𝜌𝑔

0(𝐮)
(
Φ𝑟(𝐮)
𝑄𝑟

𝑢(𝐲)
− Φ𝑔(𝐮)

𝑄
𝑔
𝑢 (𝐲)

)
+ 𝑓 (𝐮)𝜌𝑔

0(𝐮)
(
Φ𝑟(𝐮)
𝑄

𝑔
𝑢 (𝐲)

− Φ𝑟(𝐮)
𝑄

𝑔
𝑢 (𝐲)

)
d𝐮

|||||||
≤ sup

Lip(𝑓 )≤1

|||||||∫𝐸 𝑓 (𝐮)Φ
𝑟(𝐮)

𝑄𝑟
𝑢(𝐲)

(
𝜌𝑟
0(𝐮) − 𝜌

𝑔

0(𝐮)
)

d𝐮
|||||||

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐼1

+
|||||||∫𝐸

(
1

𝑄𝑟
𝑢(𝐲)

− 1
𝑄

𝑔
𝑢 (𝐲)

)
𝑓 (𝐮)𝜌𝑔

0(𝐮)Φ
𝑟(𝐮)d𝐮

|||||||
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝐼2

+
|||||||∫𝐸

1
𝑄

𝑔
𝑢 (𝐲)

𝑓 (𝐮)𝜌𝑔

0(𝐮) (Φ
𝑟(𝐮) − Φ𝑔(𝐮))d𝐮

|||||||
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝐼3

.

We will consider 𝐼1, 𝐼2, and 𝐼3 individually. Starting with 𝐼3, we use that

|𝑒−𝑥1 − 𝑒−𝑥2 | ≤ 𝑒−min(𝑥1 ,𝑥2)|𝑥1 − 𝑥2|⇒ |Φ𝑟(𝐮) − Φ𝑔(𝐮)| ≤max
𝐮

(Φ𝑟,Φ𝑔)|𝑙𝑟(𝐮) − 𝑙𝑔(𝐮)|. (B.2)

Using Eq. (B.2) and the fact that |𝑓 (𝐮)| ≤ 𝑑(𝐮, 𝐮0), together with the Cauchy-Schwartz inequality, we get:

sup
Lip(𝑓 )≤1

𝐼3 ≤ sup
Lip(𝑓 )≤1

max(Φ𝑟,Φ𝑔)
𝑄

𝑔
𝑢 (𝐲)

||||||∫ 𝑓 (𝐮)𝜌𝑔

0(𝐮)|𝑙𝑟(𝐮) − 𝑙𝑔(𝐮)|d𝐮||||||
|𝐸 |
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≤ max(Φ𝑟,Φ𝑔)
𝑄

𝑔
𝑢 (𝐲)

|||||||∫𝐸 𝑑(𝐮,𝐮0)𝜌
𝑔

0(𝐮)|𝑙𝑟(𝐮) − 𝑙𝑔(𝐮)|d𝐮|||||||
≤ max(Φ𝑟,Φ𝑔)

𝑄
𝑔
𝑢 (𝐲)

⎛⎜⎜⎝∫𝐸 𝑑(𝐮,𝐮0)2𝜌
𝑔

0(𝐮)d𝐮
⎞⎟⎟⎠
1∕2 ||𝑙𝑟(𝐮) − 𝑙𝑔(𝐮)||𝐿2

𝜌
𝑔
0

≤ max(Φ𝑟,Φ𝑔)
𝑄

𝑔
𝑢 (𝐲)

|𝑃 𝑔

0 |2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐶3

||𝑙𝑟(𝐮) − 𝑙𝑔(𝐮)||𝐿2
𝜌
𝑔
0

.

Considering 𝐼2, we use the following [42]:||||| 1
𝑄𝑟

𝑢(𝐲)
− 1

𝑄
𝑔
𝑢 (𝐲)

||||| = |𝑄𝑔
𝑢 (𝐲) −𝑄𝑟

𝑢(𝐲)|
𝑄𝑟

𝑢(𝐲)𝑄
𝑔
𝑢 (𝐲)

, (B.3)

and

|𝑄𝑔
𝑢 (𝐲) −𝑄𝑟

𝑢(𝐲)| ≤max(Φ𝑟,Φ𝑔)||𝑙𝑟(𝐮) − 𝑙𝑔(𝐮)||𝐿1
𝜌
𝑔
0

, (B.4)

in order to get:

𝐼2 =
|||||||∫𝐸

(
1

𝑄𝑟
𝑢(𝐲)

− 1
𝑄

𝑔
𝑢 (𝐲)

)
𝑓 (𝐮)𝜌𝑔

0(𝐮)Φ
𝑟(𝐮)d𝐮

|||||||
≤ ||||| 1

𝑄𝑟
𝑢(𝐲)

− 1
𝑄

𝑔
𝑢 (𝐲)

|||||
|||||||∫𝐸 𝑓 (𝐮)𝜌𝑔

0(𝐮)Φ
𝑟(𝐮)d𝐮

|||||||
≤ |𝑄𝑔

𝑢 (𝐲) −𝑄𝑟
𝑢(𝐲)|

𝑄𝑟
𝑢(𝐲)𝑄

𝑔
𝑢 (𝐲)

|||||||∫𝐸 𝑓 (𝐮)𝜌𝑔

0(𝐮)Φ
𝑟(𝐮)d𝐮

|||||||
≤ max(Φ𝑟,Φ𝑔)

𝑄𝑟
𝑢(𝐲)𝑄

𝑔
𝑢 (𝐲)

|||||||∫𝐸 𝑓 (𝐮)𝜌𝑔

0(𝐮)Φ
𝑟(𝐮)d𝐮

||||||| ||𝑙
𝑟(𝐮) − 𝑙𝑔(𝐮)||𝐿1

𝜌
𝑔
0

By defining the function, 𝑔 ∶𝐸 →ℝ, 𝑔(𝐮) = 𝑓 (𝐮)Φ𝑟(𝐮), one can show that 𝑔 is Lipschitz continuous with Lipschitz constant Lip(𝑔) = 1 +𝐷Lip(Φ𝑟) [42]. 
Furthermore, we have |𝑔(𝐮)| ≤ 𝑑(𝐮, 𝐮0). This gives:

sup
Lip(𝑓 )≤1

𝐼2 ≤ max(Φ𝑟,Φ𝑔)
𝑄𝑟

𝑢(𝐲)𝑄
𝑔
𝑢 (𝐲)

(1 +𝐷Lip(Φ𝑟))
|||||||∫𝐸 𝑑𝐸 (𝐮,𝐮2)𝜌

𝑔

0(𝐮)d𝐮
||||||| ||𝑙

𝑟(𝐮) − 𝑙𝑔(𝐮)||𝐿1
𝜌
𝑔
0

≤ max(Φ𝑟,Φ𝑔)
𝑄𝑟

𝑢(𝐲)𝑄
𝑔
𝑢 (𝐲)

(1 +𝐷Lip(Φ𝑟))|𝑃 𝑔

0 |1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐶2

||𝑙𝑟(𝐮) − 𝑙𝑔(𝐮)||𝐿1
𝜌
𝑔
0

.

Finally, we consider 𝐼1. By using the function, 𝑔 ∶𝐸 →ℝ, 𝐮 ↦ 𝑓 (𝐮)Φ𝑟(𝐮), as defined above, we get:

sup
Lip(𝑔)≤1

𝐼1 ≤ sup
Lip(𝑓 )≤1

(1 +𝐷Lip(Φ𝑟))
𝑄𝑟

𝑢(𝐲)

|||||||∫𝐸 𝑔(𝐮)
(
𝜌𝑟
0(𝐮) − 𝜌

𝑔

0(𝐮)
)

d𝐮
|||||||

=
(1 +𝐷Lip(Φ𝑟))

𝑄𝑟
𝑢(𝐲)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐶1

𝑊1(𝑃 𝑟
0 , 𝑃

𝑟
0 )

Combining, 𝐼1, 𝐼2, and 𝐼3 we then get:

𝑊1(𝑃 𝑟
𝑢|𝑦, 𝑃 𝑔

𝑢|𝑦) ≤ sup
Lip(𝑓 )≤1

𝐼1 + 𝐼2 + 𝐼3

= 𝐶1𝑊1(𝑃 𝑟
0 , 𝑃

𝑟
0 ) +𝐶2||𝑙𝑟(𝐮) − 𝑙𝑔(𝐮)||𝐿1

𝜌
𝑔
0

+𝐶3||𝑙𝑟(𝐮) − 𝑙𝑔(𝐮)||𝐿2
𝜌
𝑔
0

≤ 𝐶1𝜖1 +𝐶2𝜖2 +𝐶3𝜖3. □

Appendix C. Training Wasserstein GANs

In the WGAN framework, it is important to properly train the discriminator. Therefore, it is common practice to update the discriminator 
parameters more frequently than the generator parameters. The number of discriminator updates, relative to those of the generator, is denoted by 
𝑛𝑑𝑖𝑠𝑐∕𝑛𝑔𝑒𝑛. The hyperparameters for the training of the three test cases are shown in Table C.5. The specific architectures used are shown in Fig. C.8.
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Table C.5

Hyperparameters for the WGANs for the three test cases.

Hyperparameters ∖ Test case Darcy flow Pipe flow

Optimizer RMSProp RMSProp
Learning rate 10−4 10−4

Batch size 64 64
Gradient penalty 5 5
𝑛𝑑𝑖𝑠𝑐∕𝑛𝑔𝑒𝑛 1 2
𝑁𝑡𝑟𝑎𝑖𝑛 300,000 100,000
Latent dimension (𝑁𝑧) 150 50

Fig. C.8. Generator and discriminator architectures for the two test cases.

We compared the Adam optimizer and the RMSprop optimizer for training, and found that RMSProp, in general, showed superior results in our 
test cases.

Appendix D. Alternative methods

D.1. Ensemble Kalman filter

We make use of two variations of the ensemble Kalman filter (EnKF):

• The (standard) EnKF for dynamic problems, where the state and parameter distributions are computed based on previous time steps along with 
data availability;

• Ensemble Kalman Inversion (EKI), used for stationary problems, where an artificial time dimension is introduced in order to iteratively update 
the posterior of the state and parameters.

For the pipe flow equations the standard EnKF is utilized while for the Darcy flow the EKI is used. The EnKF implementation is based on [2] and 
the EKI implementation is based on [51].

For simultaneously estimating the parameter and state, we make use of disturbance modeling [57]. Here, we define an augmented model:

𝐪𝑖 = 𝐹 (𝐪𝑖−1,𝐦𝑖−1) + Γ𝑞𝜖𝑖, 𝜖𝑖 ∼ (0,𝑄𝑞), (D.1a)
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𝐦𝑖 =𝐦𝑖−1 + Γ𝑚𝛿𝑖, 𝛿𝑖 ∼ (0,𝑄𝑚), (D.1b)

𝐲𝑖 = 𝐡(𝐪𝑖) + 𝜂𝑖, 𝜂𝑖 ∼ (0,𝑅), (D.1c)

where 𝐹 is the discrete one-step time advancement model, 𝜖𝑖 is the model noise, 𝑄 the model covariance, and 𝑅 the observation covariance. With 
this formulation, both the state and parameters are updated in every step of the EnKF algorithm.

D.2. Polynomial chaos expansion

The basic idea behind polynomial chaos expansion (PCE) is to create a surrogate model that maps the stochastic parameters, 𝐦, to a quantity of 
interest, 𝑄 [9]. The surrogate model is defined by a linear expansion of orthogonal polynomials:

𝑄(𝐦) =
𝑁∑
𝑖=1

𝛼𝑖𝜙𝑖(𝐦), (D.2)

where 𝜙𝑖 are the polynomials that are chosen based on the distribution of 𝐦, and 𝛼𝑖 are the generalized Fourier coefficients.
The coefficients, 𝛼𝑖, are typically computed using either spectral projection methods or by least squares minimization. In both cases, the evalua-

tions are carefully chosen according to a quadrature rule.
In our test cases, we choose the quantity of interest to be the observations, i.e. 𝑄(𝐦) ≈ 𝐡(𝐪(𝐦)) and 𝛼𝑖 ∈ ℝ𝑁𝑦 . 𝐦 are the parameters of interest, 

which are often the model parameters and/or initial and boundary conditions.
When the PCE is computed, the posterior PDF is defined by:

𝜌𝑦
𝑚(𝐦|𝐲) = 1

𝜌𝑦(𝐲)
𝜌𝜂(𝐲 −𝑄(𝐦))𝜌𝑚

0 (𝐦). (D.3)

The expected state and parameters are then computed by:

𝔼𝐪
[
𝐪
]
≈ 1

𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝑁𝑠𝑎𝑚𝑝𝑙𝑒∑
𝑖=1

𝐪(𝐦𝑖), 𝔼𝐦 [𝐦] ≈ 1
𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝑁𝑠𝑎𝑚𝑝𝑙𝑒∑
𝑖=1

𝐦𝑖, 𝐦𝑖 ∼ 𝑃 𝑦
𝑚, (D.4)

and the variance is computed in a similar manner.
It is important to notice that the sampling is done in the parameter space and the state is thereafter computed by using the sampled parameters 

as input for the forward problem. Directly sampling the state is infeasible due to the high-dimensionality of the state.
The implementation of the PCE method is done using the Python library Chaospy [58].

D.3. Deep Bayesian inversion

Deep Bayesian Inversion (DBI) makes use of conditional GANs (CGANs) to learn the posterior distribution [27]. A CGAN is trained to learn to 
sample from the posterior distribution, 𝑃𝑢|𝑦, directly. The general setup is the same as in Section 2.4, but with some minor differences. The generator 
is now a map that takes a latent vector, 𝐳, and observations, 𝐲, and outputs a sample 𝐮:

𝐺(𝑍,𝐲) = 𝑃
𝑔

𝑢|𝑦(𝑈 |𝐲) ≈ 𝑃 𝑟
𝑢|𝑦(𝑈 |𝐲), 𝑍 ∼ 𝑃 𝑔

𝑧 . (D.5)

Similarly, the discriminator takes 𝐲 and 𝐮 and outputs a real number.
The training is performed by solving the inf-sup problem:

inf
𝜃
sup
𝜔

𝔼𝑋∼𝑃 𝑟
𝑢

[
𝐷𝜔(𝑋,𝐡(𝑋))

]
− 𝔼𝑍∼𝑃

𝑔
𝑧

[
𝐷𝜔(𝐺𝜃(𝑍),𝐡(𝐺𝜃(𝑍))))

]
(D.6)

−𝜆𝔼𝐱̂∼𝑃
𝑋̂

[(||∇𝑋̂𝐷𝜔(𝑋̂,𝐡(𝑋̂))||− 1
)2]

.

Hence, the training is performed with the same data as for the MCGAN training, with the difference that the observation operator is used to create 
observations for training.

In the online stage, when observations become available, one samples several latent vectors for the same observations and uses those to obtain 
posterior samples:{

𝐺(𝐳1,𝐲),𝐺(𝐳2,𝐲),… ,𝐺(𝐳𝑁 ,𝐲)
}
=
{
𝐮1|𝐲,𝐮2|𝐲,… ,𝐮𝑁 |𝐲} , 𝐳𝑖 ∼ 𝑃 𝑔

𝑧 , ∀𝑖. (D.7)

The generator is now tied to the observation operator that was used for training.

D.4. Darcy flow

For the Darcy flow, we compared the MCGAN results with EKI, since it is infeasible to compute high-dimensional distributions with PCE. We 
compute ensembles consisting of 4000 forward computations and use 25 iterations. Note that the EKI method is parallel since each member of the 
ensemble can be computed independently from the other members. Therefore, we run the EKI using 20 CPU cores. For computing the permeability 
field, we use 𝑛 = 1089, which is the total number of degrees of freedom. See Fig. D.9 for the results.

D.5. Leakage detection in pipe flow

For the leakage detection in the pipe, we compare our method with the PCE and the EnKF approaches. The PCE model is trained to map 
the leakage location, 𝑥𝑙 , and discharge coefficient, 𝐶𝑑 , to the observations. We achieved the highest precision with fourth-order polynomials. We 
performed 50,000 MCMC posterior samples and discarded the first 40,000. The state reconstruction is performed after the sampling by computing 
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Fig. D.9. In (a)-(b) we see the reconstruction of 𝑣1 and the standard deviation of the reconstruction, respectively. In (c)-(d) we see the reconstruction of log(𝑘) and 
the standard deviation of the reconstruction, respectively.

Fig. D.10. In (a)-(b) we see the reconstruction of 𝑣1 and the standard deviation of the reconstruction, respectively. In (c)-(d) we see the reconstruction of log(𝑘) and 
the standard deviation of the reconstruction, respectively.

Fig. D.11. Results for the MCMC sampling with a PCE surrogate model applied to the pipe flow with a leakage, Eq. (26). In (a) we see the space-time contour plots 
of the reconstructed velocity. In (b) we see the velocity reconstruction at 𝑡 = 44 with the shaded area denoting the standard deviation. In (c)-(d) we see the posterior 
distributions of the leakage location and discharge coefficient.

Fig. D.12. Results for EnKF method applied to the pipe flow with a leakage, Eq. (26). In (a) we see the space-time contour plots of the reconstructed velocity. In (b) 
we see the velocity reconstruction at 𝑡 = 44 with the shaded area denoting the standard deviation. In (c)-(d) we see the posterior distributions of the leakage location 
and discharge coefficient.

the state using the parameters samples from the MCMC sampling. The state reconstructions are computed in parallel using 20 cores. See Fig. D.11
for results.

In the EnKF method we used an ensemble size of 2000. Γ𝑞 and Γ𝑚 are chosen to be identity matrices and 𝑄𝑞 = diag(0.01, 0.001)2 and 𝑄𝑚 =
diag(100, 1 ⋅ 105)2. The ensemble is computed in parallel on 20 CPU cores. See Fig. D.12 for results.
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Fig. D.13. Results for DBI method applied to the pipe flow with a leakage, Eq. (26). In (a) we see the space-time contour plots of the reconstructed velocity. In (b) 
we see the velocity reconstruction at 𝑡 = 44 with the shaded area denoting the standard deviation. In (c)-(d) we see the posterior distributions of the leakage location 
and discharge coefficient.
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