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Rapid discovery of high-affinity antibodies 
via massively parallel sequencing, ribosome 
display and affinity screening

Benjamin T. Porebski    1, Matthew Balmforth    1,4, Gareth Browne2, Aidan Riley2, 
Kiarash Jamali    1, Maximillian J. L. J. Fürst    1,5, Mirko Velic3, 
Andrew Buchanan    2, Ralph Minter    2,6, Tristan Vaughan2 & 
Philipp Holliger    1 

Developing therapeutic antibodies is laborious and costly. Here we report a 
method for antibody discovery that leverages the Illumina HiSeq platform 
to, within 3 days, screen in the order of 108 antibody–antigen interactions. 
The method, which we named ‘deep screening’, involves the clustering 
and sequencing of antibody libraries, the conversion of the DNA clusters 
into complementary RNA clusters covalently linked to the instrument’s 
flow-cell surface on the same location, the in situ translation of the clusters 
into antibodies tethered via ribosome display, and their screening via 
fluorescently labelled antigens. By using deep screening, we discovered 
low-nanomolar nanobodies to a model antigen using 4 × 106 unique variants 
from yeast-display-enriched libraries, and high-picomolar single-chain 
antibody fragment leads for human interleukin-7 directly from unselected 
synthetic repertoires. We also leveraged deep screening of a library of 
2.4 × 105 sequences of the t hi rd c om pl em en ta ri ty -d etermining region 
of the heavy chain of an anti-human epidermal growth factor receptor 2 
(HER2) antibody as input for a large language model that generated new 
single-chain antibody fragment sequences with higher affinity for HER2 than 
those in the original library.

Massively parallel assays provide the ability to enormously increase 
both the throughput and speed of data generation in the biomedical 
sciences, and have proven key to the discovery of antibody, peptide 
and aptamer leads and enzymatic catalysts1–3. Although methods of 
diversification at the level of high-throughput DNA oligonucleotide 
synthesis are highly developed4, and various selection strategies such 
as phage, yeast and ribosome display5 are able to process large com-
binatorial (poly)peptide repertoires, these still sample only a fraction 
of the possible sequence space. Furthermore, all selection methods  
(to different degrees) suffer from inherent and inescapable additive 

biases that hinder discovery. Also, such selections are generally con-
ducted ‘in the blind’, with little or no overall a priori information on the 
likelihood of successful outcomes.

Next-generation sequencing (NGS) can provide information 
on the distribution and enrichment of genotypes during selection 
experiments, but multiple studies suggest that repertoire-selection 
experiments, such as phage display, are prone to biases and to inef-
ficient enrichment5,6 owing to varying levels of efficiency of protein 
expression, display and folding, and to fitness effects on the host 
organism. Therefore, the genotype distribution, abundance and 
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strand after sequencing and convert it to the sense strand) to perform 
DNA-templated RNA synthesis, whereby the surface-linked Illumina 
primer (P5) is repeatedly extended by TGK-mediated RNA synthesis. 
Once RNA synthesis is complete, the DNA template is removed, cre-
ating single-stranded RNA clusters that are covalently linked to the 
flow-cell surface via the P5 primer (Fig. 1). Our approach differs from 
similar strategies implemented on the Illumina GenomeAnalyzer17 in 
that flow-cell-bound primers do not need to be modified to enable 
RNA synthesis, and removal of DNA templates does not require DNase I 
treatment. Deep screening also differs from an approach implemented 
on the Illumina MiSeq platform18, which uses a stalled Escherichia 
coli RNA polymerase to non-covalently link the transcribed mRNA 
to double-stranded DNA clusters, in that deep-screening-displayed 
mRNAs are covalently linked to the flow-cell surface, enabling enhanced 
display stability and flexibility in assay reagents and temperatures.

Next, we developed a workflow to translate RNA clusters and 
stably display the resulting polypeptides on the flow-cell surface. 
As 5′-tethered RNA clusters are vulnerable to nuclease degradation, 
we used the reconstituted PURExpress in vitro translation (IVT) sys-
tem22. We specifically used PURExpress ΔRF123, −T7 RNAP—which 
lacks all release factors (RF-1, -2 and -3) and T7 RNA polymerase—in 
conjunction with a flow-cell-tethered RNA construct that comprises 
the desired open reading frame (ORF) preceded by a 5′ untranslated 
region composed of an N28 random DNA sequence segment serving 
as a unique molecular identifier (UMI or barcode) and a translation 
initiation signal (Shine–Dalgarno (SD)). After the ORF, we introduced 
a 3′ extension sequence encoding a 40 amino acid (AA) polypeptide 
sequence (to prevent partial retainment of the displayed protein within 
the ribosomal exit tunnel) and two stop codons for ribosome stalling 
(Fig. 1). Stalled mRNA–ribosome–nascent polypeptide complexes are 
stable for several days at ambient temperature in a high magnesium 
buffer, during which the flow-cell array of protein clusters with known 
sequences or UMIs and coordinates can be interrogated in a variety of 
functional assays, such as antigen binding.

In summary, the deep-screening workflow (Fig. 1) involves (1) 
sequencing of N28 UMI barcodes, (2) conversion of DNA into RNA clus-
ters, (3) IVT of the RNA clusters into protein clusters, and (4) interroga-
tion of protein clusters for equilibrium binding and dissociation for a 
target ligand. Clone ranking and in situ affinity and kinetic data are 
calculated from raw flow-cell images by associating UMIs with fluores-
cence intensities (FIs) at different equilibrium ligand concentrations 
and during the washing steps, yielding apparent dissociation constants 
(KappD ) and kinetic off rates (kappoff ) for each UMI. Next, standard sequenc-
ing of the library is performed on the HiSeq 2500 (or any other sequenc-
ing instrument) using a new flow cell to link ORF sequences with UMI 
barcodes, and therefore binding data (Fig. 1c). Depending on the num-
ber and length of the sequence regions to be sequenced, a complete 
deep-screening experiment (including data processing and hit selec-
tion) can be completed in ≤3 days (Fig. 1d).

Nanobody discovery with pre-selection
For proof of concept, we first explored deep screening of a commer-
cially available yeast surface display nanobody (VHH) library23. We 
performed two rounds of positive and negative selection by 
magnetic-activated cell sorting (MACS), followed by either an addi-
tional round of MACS or by fluorescence-activated cell sorting (FACS) 
for binding to a model antigen (hen egg lysozyme (HEL)) before deep 
screening the selection outputs on a flow cell (Fig. 2a and Supplemen-
tary Fig. 1) using 12-fold redundancy of any given UMI. Redundancy 
reduces noise in the binding datasets, improves unambiguous hit iden-
tification and minimizes false positives, although at the expense of 
reducing screening depth. Together with the diversity losses incurred 
by bottlenecking and clustering of the same library on two separate 
flow cells (for VHH sequencing), this yields a theoretical maximum of 
2.5 × 107 UMIs. We did not reach this but recorded 3 × 106 UMIFACS and 

enrichment obtained from sequencing data only provides an imper-
fect proxy for function and for the global phenotype distribution of 
a biomolecular repertoire.

Owing to these limitations, and the desire to obtain a more reli-
able global picture of genotype-to-phenotype correlations, numerous 
high-throughput screening methods have been developed; however, 
the majority of screening approaches are limited in scope, scale and 
information output. Isolated screening (one clone per compartment) 
does not easily scale, even with robotics or microfluidics, and as a result 
it is expensive to determine the sequence composition of each clone, 
and is often only done for the identified hits7. Array-based assays, where 
a known sequence is printed, synthesized or captured in a defined posi-
tion, allow for the coupled measurement of sequence and function and 
are powerful, but remain limited in scale7–11.

A potentially transformative approach seeks to merge NGS directly 
with functional screening. NGS technologies on the Polony12 and Illu-
mina13 platforms rely on extreme parallelization by sequencing clonal 
DNA from randomly arrayed DNA clusters. Both platforms have been 
leveraged either directly or through barcoding for the parallel inter-
rogation of hundreds of thousands of DNA–protein, RNA–protein and 
protein–protein interactions14–20.

Here we present ‘deep screening’, a method that leverages the 
Illumina HiSeq platform to array, sequence and screen antibody 
libraries. Deep screening involves the clustering and sequencing of 
antibody libraries at the DNA level, followed by the conversion of 
Illumina flow-cell DNA clusters into complementary RNA clusters 
that are covalently linked to the flow-cell surface in the same loca-
tion. RNA clusters can either be interrogated directly or preferentially 
translated into proteins and tethered via ribosome display. The appar-
ent equilibrium-binding affinities and dissociation kinetics of the 
displayed proteins to a fluorescently labelled target ligand can then 
be determined at scale, with the entire process being performed on 
the HiSeq platform. Focussing here on antibody discovery, we show 
the deep screening of yeast display pre-selected libraries of synthetic 
camelid single-domain antibody fragments (VHH nanobodies) and of 
unselected synthetic human single-chain antibody fragment (scFv) 
libraries, with the discovery of high-affinity (low nanomolar to mid 
picomolar) binders directly from global antigen-binding data, accel-
erating high-affinity antibody-lead discovery from months to 2–3 
days. We also show the utility of deep-screening datasets as input for a 
machine learning (ML) model trained on antibody–antigen interactions 
for the rapid generation of new high-affinity antibody-lead sequences 
that exceed the performance of those present in the original library.

Results
Implementation of deep screening
The Illumina HiSeq 2500 is an NGS platform that operates on a highly 
integrated instrument with a flow cell comprising up to 2 × 109 clonal 
DNA clusters. These clusters are generated in situ from individual, 
single-stranded DNA template molecules by a process called bridge 
amplification. Individual clusters typically comprise an array of 
approximately 1,000 DNA molecules in a roughly 1-μm-diameter 
spot13. Once arrayed, clusters are sequenced in parallel using Illumina’s 
sequencing-by-synthesis technology, yielding sequences and their 
physical x–y coordinates as an output.

Development of ultra-high-throughput antibody screening on this 
platform faced multiple technical challenges as described below. To 
implement screening of protein interactions at the localization of the 
sequenced clusters required the development of new methodologies 
to convert DNA clusters into RNA and then protein clusters. To this 
end, we leveraged the efficient primer-dependent RNA polymerase 
activity of the engineered Thermococcus gorgonarius DNA polymer-
ase TGK21 to convert post-sequencing DNA clusters into RNA clusters. 
Specifically, we exploit the paired-end turnaround process (a stand-
ard process on the Illumina platform to regenerate the anti-sense 
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4.4 × 105 UMIMACS. To rank hits by apparent HEL binding affinities (KappD ), 
we performed an in situ equilibrium-binding affinity titration compris-
ing escalating concentrations of HEL (up to 300 nM), followed by 
measurement of dissociation rates whereby the rate of FI decay during 
washing was used to calculate an apparent dissociation constant (kappoff ). 
Data analysis identified 3,687 (FACS) and 1,479 (MACS) unique, putative 
hits with a mean integrated-cluster FI signal exceeding the library mean 
FI (FImean) by at least a factor of 2 (at the highest concentration of anti-
gen tested (300 nM HEL, FImean = 173.79, selected hit threshold of 
347.58 FI units). As we empirically discovered in later screening exper-
iments, a less-stringent hit FI threshold of 1.5-fold over the library mean 
is sufficient to avoid false positives. We next performed library sequenc-
ing to link VHH complementarity-determining region (CDR) 1–3 
sequences (VHH genotypes) to their equilibrium-binding signals and 
dissociation rates (KappD  and kappoff ; VHH phenotypes), obtaining 379,300 
(MACS) and 39,900 (FACS) unique CDR combinations (Fig. 2b), from 
which we identified 47 (MACS) and 53 (FACS) unique putative VHH hits.

However, reliable hit identification rests on the conjecture that a 
high peak FI and/or equilibrium-binding signal (KappD ) correlates with 
‘true’ high-affinity binding (KD). To test this hypothesis, we character-
ized 20 clones (M1–M19 and M23) from the round 3 (R3) MACS and 10 
clones (F1–F10) from the R3 FACS screens, spanning a wide range of 
observed FI signals, KappD s  and abundances for characterization 
(Extended Data Fig. 1a). At the same time, we picked 96 random colonies 

from the R3 MACS selection for colony PCR and Sanger sequencing, 
yielding 25 unique CDR sequences (see Source data for Extended Data 
Fig. 1), which included 4 clones already selected from the MACS or FACS 
libraries (F1, M18, F6 and F3) as these were highly abundant or enriched 
clones. From the remaining 21 sequences, we selected 8 clones (C1–C8) 
for a total of 38 variants for measurement of binding kinetics by 
bio-layer interferometry (BLI; Fig. 2d,e, Extended Data Fig. 1 and Sup-
plementary Figs. 3–5). We identified three VHH hits with low-nanomolar 
KDs (M5, 1.9 × 10−8 M; M6, 1.42 × 10−8 M; M15, 9.81 × 10−9 M), and nine 
clones with lower affinity KDs, ranging from 20 nM to 100 nM, including 
two from the randomly picked colonies (C1 and C2) (see Source data 
for Fig. 2d,e, Extended Data Fig. 1 and Supplementary Figs. 2–5). Plot-
ting KD values derived from BLI measurements against FImean values 
determined in deep screening resulted in a Spearman’s rank correlation 
coefficient (rS) of −0.697, P < 0.001 at 300 nM HEL (the highest concen-
tration tested in the binding assay and the condition that shows the 
greatest separation of FIs; Extended Data Fig. 1b). We also plotted BLI 
KD values against the deep-screening-derived KappD  values, which 
revealed rS = 0.574, P = 0.0014 (Extended Data Fig. 1c). In both cases, 
we set clones with no determined binding affinity as >1 × 10−5 M as we 
could not meaningfully detect any binding beyond this point. Refor-
matted as a binary classification of hit versus non-hit, this yielded a 
weighted F1 score of 0.79 and receiver operating characteristic area 
under the curve of 0.76, which is shown in Extended Data Fig. 1d. As our 
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Fig. 1 | Deep-screening workflow. a, Antibody library preparation involves 
the addition of 5′ and 3′ untranslated regions (UTRs) that flank the library 
protein-coding region. The assembled library is then clustered and the N28 
UMI sequenced on a HiSeq 2500, which reports the UMI sequence and its 
physical x–y coordinates on the flow cell. b, In deep screening, DNA clusters 
are converted into RNA clusters using engineered polymerase TGK21 and the 
DNA template is removed. The RNA clusters are labelled with a complementary 
Atto 647N-labelled oligonucleotide before IVT into protein (antibody) 
clusters. Cluster binding is determined by equilibrium binding of an increasing 
concentration of biotinylated antigen and AF532-labelled Streptavidin (SA), 

followed by kinetic dissociation from the highest antigen concentration. c, If the 
binding assay reports hits within the library, a second sequencing experiment 
is performed to determine the UMI and CDRs with internal sequencing primers. 
CDRs are then paired with binding data using the common UMIs between the two 
experiments. d,e, Paired CDR–binding data is analysed for hits and/or a ML model 
is trained to predict hits, which can be used to generate libraries for subsequent 
rounds of deep screening (d) or short-list hit candidates for characterization 
via conversion into an appropriate antibody format, expression, purification 
(using methods like nickel-nitrilotriacetic acid (NiNTA) resin and size exclusion 
chromatography (SEC)) (e).
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anti-HEL deep-screening experiments did not include a streptavidin 
(SA) screen, SA-binding VHHs would probably be mis-identified as 
binders in deep screening, but fail to generate detectable HEL binding 
by BLI, which used an SA-only tip for referencing. This together with 
potential failure of bacterial VHH expression are the likely reasons for 
the occurrence of false positives in this experiment. Nevertheless, this 
experiment provided proof-of-principle for deep-screening as an 
approach for the rapid identification of low-nanomolar VHH binders 
from pre-selected yeast display repertoires and indicated that both FI 
and KappD  values serve as adequate correlates for ranking VHH clones.

This experiment also showed a key advantage of deep screening 
over alternative strategies, in that deep-screening datasets provide 
a global and granular overview of library performance and enable a 
detailed analysis of the antibody discovery process. For both MACS 
and FACS selection, we observed a poor correlation (rS = 0.361 for 
MACS; rS = 0.442 for FACS) between CDR abundance and peak FI (as a 
correlate of affinity; Extended Data Fig. 1b) (Fig. 2c). This result suggests 
that both the MACS and (to a lesser extent) FACS selections enriched 
high-affinity clones inefficiently, presumably due to well-known inef-
ficiencies of yeast display, including biases such as non-specific binding 

and clonal variances in growth (that is, host toxicity), expression, fold-
ing or display. Deep screening can bypass some of these inefficiencies, 
as shown by the isolation of rare high-affinity binders from both selec-
tions (for example, poorly enriched high-affinity VHH-M5, -M6 and -M15 
clones, with just 3, 11 and 145 UMIs in 2.9 × 106 screened), that would 
have been challenging to discover in the absence of further rounds of 
selection or laborious microplate screening of thousands of colonies.

scFv antibody discovery without pre-selection
Having validated our approach using VHH nanobody discovery, we 
sought to explore whether deep screening could enable antibody dis-
covery directly from an unselected library to avoid the enrichment 
biases observed during bulk selections. Specifically, we sought to 
explore direct discovery of high-affinity scFvs against a clinically rel-
evant target. As our starting point, we chose IL70001, a human scFv 
antibody lead candidate. IL70001 had been previously isolated by 
phage display as a lead with micromolar affinity and a half-maximal 
inhibitory concentration (IC50) of 7.3 μM against human interleukin-7 
(huIL-7), a potential drug target implicated in autoimmune and allergic 
inflammatory disease24–26 (Supplementary Figs. 7 and 8). From IL70001, 
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Fig. 2 | Deep screening of a yeast-display-pre-selected VHH library.  
a, Workflow of VHH yeast display selections. b, Library statistics, showing the 
total number of clusters or reads, the number of barcodes or UMIs with 12 
replicates and number of unique CDR combinations in the protein space.  
c, Abundance versus deep-screening (DS) FImean of unique CDRs at 300 nM HEL 
from the R3 MACS and R3 FACS libraries. The library mean intensity is shown as 
a grey dashed line, and a solid green line shows the hit threshold of 2× the library 

background. rS values of 0.361 and 0.442, respectively, show a poor correlation 
between abundance and deep-screening binding intensities. d, Deep-screening 
equilibrium-binding and kinetic dissociation curves for clones M5, M6, M14  
and M15. Error bars are s.e.m. and n ≥ 12 technical replicates of a given UMI.  
e, BLI kinetics at 50 nM of the same 4 clones against a HEL–biotin-loaded SA 
tip. The grey dashed line is denoting the separation of the association (left) and 
dissociation (right) phases collected during BLI kinetics measurements.
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an affinity maturation library had been constructed by diversification 
of both Vκ light-chain CDRs L1 and L3, and we subjected this unselected 
library directly to deep screening (Fig. 3a).

Deep screening and CDR L1 and L3 sequencing yielded 1.7 × 108 
measurements comprising 2.4 × 106 unique UMIs (with ≥12 rep-
licates), and 1.9 × 105 unique CDR combinations in protein space  
(Fig. 3b). Due to huIL-7’s tendency to aggregate at higher concen-
trations, we only collected equilibrium-binding data up to 1 nM of 
huIL-7, which resulted in 173 unique, potential hit UMIs. Sequenc-
ing of putative hits showed a general convergence of CDR L3 loop 
sequences (despite the large diversity of the input library), while 
retaining considerable diversity in the central region of CDR L1, 
presumably reflecting the larger contribution of CDR L3 to the 
huIL-7 paratope. Therefore, we selected a subset (top-19 clones as 

judged by equilibrium-binding signal at 1 nM huIL-7; Supplementary  
Fig. 6a,b) plus the parental clone, IL70001, for characterization in 
greater depth (see Source data for Fig. 3c). These were re-cloned 
as antibody antigen-binding fragments (Fabs) (to avoid potential 
pitfalls in affinity measurements due to scFv multimerization), 
expressed and purified from Chinese hamster ovary (CHO) cells, 
and binding kinetics were measured by BLI at 50 nM of each Fab. This 
showed that all 19 anti-huIL-7 Fabs have KD values ranging from 3 nM 
up to 429 pM, representing an up to 2,300-fold improvement over 
the parent clone (see Source data for Fig. 3c,d and Supplementary 
Fig. 7), assuming a 1 μM KD for the parent. Again, we observed a strong 
correlation between equilibrium-binding signal and BLI measured 
affinities (rS = −0.788; Fig. 3c,e and Supplementary Fig. 6b), even 
when switching antibody formats from scFv to Fab.

Selection: IL70001
IC50 = 7 µM

CDR L1 CDR L3

Recombination

L1, L3

Deep screen: L1, L3
Sequential binding

100 pM, 333 pM and 1 nM IL-7
100 nM AF532–SA

IL70001 L1L3
Total measurements 173.5M

Unique UMIs (>12 replicates) 2,387,073
Unique CDR combinations 189,139
Unique CDR L1 sequences 22,980
Unique CDR L3 sequences 4,115

IL70001
IL70100
IL70102
IL70105

rS = 0.956
P < 0.001
R2 = 0.901

rS = –0.788
P < 0.001

IL70001
IL70092
IL70093
IL70094
IL70095
IL70096
IL70097
IL70098
IL70099
IL70100
IL70101
IL70102
IL70103
IL70104
IL70105
IL70106
IL70107
IL70108
IL70109
IL70110

CDR L1 CDR L3
114.47 ND 7.38 × 10−6

163.67 9.09 × 10−10 8.52 × 10−10

186.86 5.25 × 10−10 2.26 × 10−10

133.68 7.54 × 10−10 8.00 × 10−10

188.68 4.29 × 10−10 2.68 × 10−10

152.83 7.08 × 10−10 9.03 × 10−10

135.15 1.79 × 10−9 1.50 × 10−8

159.12 5.20 × 10−10 3.08 × 10−10

127.31 1.53 × 10−9 1.58 × 10−9

130.93 3.08 × 10−9 1.91 × 10−8

149.16 1.14 × 10−9 1.53 × 10−9

150.78 1.43 × 10−9 2.23 × 10−9

174.39 6.57 × 10−10 3.24 × 10−10

143.94 2.64 × 10−9 1.02 × 10−8

167.92 4.77 × 10−10 1.96 × 10−10

110.54 2.92 × 10−9 1.46 × 10−8

124.73 2.94 × 10−9 1.35 × 10−8

120.32 2.55 × 10−9 9.58 × 10−9

126.75 1.48 × 10−9 2.14 × 10−9

126.31 8.24 × 10−10 1.22 × 10−9

CDR 
L1

CDR 
L3

P5 P7

N28
UMI

SD

ORF scFv IL70001

TolAk

2× stop
codon

5’ UTR 3’ UTR

VH Vκ
(G4S)3
linker

KD
(M)

IC50
(M)

DS FI at
333 pM

IL-7

IL70001

IL70100

IL70102

IL70105

Re
sp

on
se

 (n
m

)

0

0 200 400 600 800

Time (s)

0.25

0.50

0.75

1.00

1.25

1.50

K D
 (M

)

DS FImean at 333 pM IL-7

100 120 140 160 180 200

1 × 10–9

2 × 10–9

3 × 10–9

4 × 10–10

6 × 10–10

log [Fab] (M)

–10 –9 –8 –7 –6

200

400

600

800

1,000

1,200

1,400

1,600

10–9 10–8

IC50 (M)

Lu
m

in
es

ce
nc

e 
(R

LU
)

IL70105

IL70102

IL70100

a b c

d

e f g

1 × 10–9

2 × 10–9

3 × 10–9

4 × 10–10

6 × 10–10

K D
 (M

)

Fig. 3 | Deep screening of an unselected scFv library. a, Overview of the 
direct affinity maturation experiment from an unselected CDR L1, L3 affinity 
maturation library. b, Library statistics of the unselected L1L3 library from 
deep screening. c, IL70001 and the top-19 clones, showing CDR L1 and CDR L3 
sequences, raw deep-screening intensities at 333 pM huIL-7, BLI-fitted KDs and 
IL-7R IC50s. d, BLI kinetics at 50 nM of IL70001, IL70100, IL70102 and IL70105 Fabs 
against a huIL-7-loaded SA tip. The grey dashed line is denoting the separation of 
the association (left) and dissociation (right) phases collected during BLI kinetics 
measurements. e, Deep-screening FImeans of the top-19 clones at 333 pM huIL-7 
plotted against fitted BLI KDs. Error bars are s.e.m. and n ≥ 12 technical replicates 

of a given UMI. The grey vertical line shows the mean library intensity at 333 pM 
huIL-7. f, TF-1 STAT5 IL-7Rα and IL-7Rγ luciferase inhibition assay, showing mean 
signal from IL70001, IL70100, IL70102 and IL70105 as a representative range of 
the assay. All inhibition assay curves are shown in Supplementary Fig. 7. Error 
bars are the minimum and maximum observations, n = 2 technical replicates.  
g, Plotting BLI-fitted KDs against IC50 reveals a strong, linear correlation between 
affinity and inhibition (rS = 0.956, R2 = 0.901). As IL70001’s KD is probably 
considerably larger than 50 nM, the maximum response measured and speed 
of the on and off rates was insufficient for an accurate fit of the KD. ND, not 
determined.
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IL-7’s role in autoimmune and allergic inflammatory diseases is 
mediated by the IL-7 receptor (IL-7R) (refs. 24–26). Therefore, we sought 
to assess whether our high-affinity Fab hits could inhibit huIL-7R signal-
ling through huIL-7 sequestration using a TF-1 STAT5 IL-7Rα and IL-7Rγ 
luciferase cell-based reporter assay. Indeed, we observed an average 
10,000-fold increase in inhibition potency (IC50) over IL70001, with 
clone IL70105 yielding a 37,000-fold improvement (see Source data for 
Fig. 3f and Supplementary Figs. 8 and 9) with an excellent correlation 
between affinity and inhibition potency (rS = 0.956, R2 = 0.901; Fig. 3g).

This shows that deep screening can rapidly identify multiple 
high-picomolar-affinity antibodies against a therapeutically relevant 
drug target directly from an unselected library. Bypassing selection, 
deep screening delivers a major increase in discovery speed and pro-
vides a direct route to high-affinity (picomolar) antibodies without the 
need for pre-selection or pre-enrichment steps and their associated 
biases and inefficiencies. Furthermore, isolated Fab clones showed 
universally favourable general properties and developability indica-
tors, such as good expression yields (0.25–0.6 mg ml−1 of culture) and 
excellent monomericity (12 of 19 clones showed ≥98% monomeric 
fraction) as per high-performance size exclusion chromatography 
(see Source data and Supplementary Fig. 10).

scFv antibody discovery augmented by ML
Deep screening produces large, internally consistent datasets linking 
antibody sequence to function. Next, we sought to explore whether 
such datasets could be leveraged for supervised machine learning (ML) 
to enable an even wider exploration of CDR sequence space and further 
accelerate high-affinity antibody discovery. As a target, we chose human 
epidermal growth factor receptor 2 (HER2; ERBB2), a cell-surface pro-
tein tyrosine kinase that is overexpressed in 30% of breast27,28, ovar-
ian29,30 and lung cancers31. HER2 is also the target of the highly effective 
therapeutic antibody trastuzumab, which has a reported binding  
affinity (KD) between 0.1 nM and 0.5 nM (refs. 32–34). To benchmark 
scFv display and HER2 binding on the flow cell, we selected a 
well-characterized panel of five anti-HER2 scFvs (G98A, C6.5, ML3-9, 
H3B1 and B1D2+A1) with reported binding affinities (KD) between 
320 nM and 15 pM (ref. 35) (Extended Data Fig. 2a,b). We observed a 
generally correct ranking (Extended Data Fig. 2a,c), with the caveat 
that high-affinity clones ML3-9, H3B1 and B1D2+A1 and similarly 
low-affinity clones G98A and C6.5 were only weakly separated by KappD  
(Extended Data Fig. 2a). Directly comparing peak FI values at 100 nM 
HER2, the clone separation and ranking was more in line with reported 
KD values, but vulnerable to differences in expression and folding  
levels, as illustrated by trastuzumab showing a substantially higher 
peak FI relative to the affinity panel clones (Extended Data Fig. 2c). 
Thus, although both KappD  and peak FI provide principally correct affin-
ity rankings, the caveat is that deep-screening data are a complex mix-
ture of flow-cell display efficiency and binding that a simple hill 
equation fit cannot fully represent. At the same time, peak FI clearly 
captures desirable features beyond antigen affinity, such as relative 
efficiencies of functional antibody expression and folding.

We chose the lowest affinity anti-HER2 scFv, G98A, with a reported 
KD of 320 nM (ref. 35) to HER2 and a barely detectable FI signal at 100 nM 
HER2 (Extended Data Fig. 2c) as a starting point for affinity maturation 
by building six G98A CDR H3 libraries (Fig. 4a). On deep-screening and 
subsequent CDR sequencing, we detected 3 × 105 unique UMIs, coding 
for 2.4 × 105 unique CDR H3 sequences (of 6.2 × 106 possible CDRs; 
Fig. 4b). Despite sampling <5% of the potential diversity, principal 
component analysis (PCA) of the CDR H3 sequence space mapped to 
deep-screening data showed that function is highly localized to three 
fitness peaks in close proximity to each other, with the majority of 
mutations showing no detectable binding at the highest concentration 
tested (100 nM HER2; Fig. 4c).

Inspection of the three-highest-scoring clones (HER20003, 
HER20004 and HER20005, as judged by FI at 100 nM HER2) yielded 

binding curves that closely match ML3-9 from the affinity panel with 
a known KD of 1.0 nM (Fig. 4d,e and Supplementary Fig. 11)35, thus sug-
gesting similar affinities but with dissimilar sets of mutations (Fig. 4d). 
These three scFvs were converted into Fabs, expressed in CHO cells36, 
purified and binding kinetics measured by BLI, yielding KDs of 2.8 nM 
for HER20003, 3.4 nM for HER20004 and 1.8 nM for HER20005, closely 
matching deep-screening observations (Fig. 4d,f and Supplementary 
Figs. 11 and 12). Thus, as observed previously, deep screening was suc-
cessful in identifying antibodies with substantially increased affinity 
in a single experiment, in this case a 100-fold affinity maturation over 
the parental clone, G98A. However, our primary motivation for the 
above experiment had not been affinity maturation, but rather the 
generation of a large deep-screening dataset (HER2affmat) linking 
CDR H3 sequence (genotype) to HER2 binding affinity (phenotype) 
(comprising 2.4 × 105 genotype or phenotype pairs) as an input for ML 
and in silico generation of higher-affinity HER2 binders.

We selected a language model for this task because of the demon-
strated capacity of language models for feature extraction and ability 
to ‘learn’ the underlying rules and hidden patterns within complex 
datasets in a self-supervised manner37–39. Numerous studies have shown 
the utility of large language models for the prediction of protein struc-
ture and function40–47. These models operate by first pre-training on 
a self-supervised task, such as filling in missing amino acids (AAs) or 
predicting the next AA in a protein sequence. Pre-training is typically 
accomplished using large protein sequence databases, such as UniProt, 
and randomly masking or mutating some percentage of AAs in each 
sequence, with the goal of learning the general underlying rules and 
global sequence patterns that give rise to functional proteins. Such 
pre-trained models may then be applied to more specific applications, 
such as protein structure and function prediction, through a second 
fine-tuning process. We hypothesized that a language model that has 
been pre-trained on a large antibody-sequence dataset, such as the 
Observable Antibody Space (OAS) dataset48,49, would impart implicit 
representation of the rules that govern functional human antibody 
sequences that have passed the B cell maturation and quality-control 
processes, and that such a model might be able to leverage this repre-
sentation to make accurate predictions of antibody-binding affinities 
when fine-tuned on deep-screening datasets.

To test this hypothesis, we built an 86-million-parameter Bidirec-
tional Encoder Representations from Transformers (BERT) model50 
inspired by ProtTrans46 that we termed BERT-DS (Extended Data  
Fig. 4). A BERT architecture was selected because—unlike a basic trans-
former model—it is capable of learning the underlying statistical rep-
resentations of a sequence or language (words, sentences or AAs) 
in an unsupervised manner and then later solve a downstream task 
through a process called fine-tuning. We pre-trained BERT-DS to solve a 
masked language-modelling problem, where at each position in a pro-
tein sequence there is a 15% probability that the position will either be 
masked (80% probability), randomly mutated (10%) or have no change 
(10%). The BERT-DS model is tasked with predicting the ground truth of 
the masked or mutated AA. As a training dataset, we used 2 × 107 human 
heavy chain (Vh) sequences from the OAS dataset48,49 (Fig. 5a). Once 
BERT-DS had been pre-trained on the OAS dataset, we validated the 
model by challenging it to correctly predict the missing sequences of 
masked antibody Vh domain framework and CDR regions. Pre-trained 
BERT-DS scored 97.66% accuracy in predicting missing framework and 
CDR residues on 100,000 sequences that were excluded from training.

Next, we sought to leverage BERT-DS to predict HER2 binding by 
formulating a classification problem, where predictions are binned into 
three categories (non-hit, low hit and high hit) using deep-screening 
FI values at a single condition. For maximum separation between the 
categories, we chose the 5 minute wash condition (first wash step after 
binding 100 nM HER2) from the kinetic dissociation measurements  
(Figs. 4e and 5a). We selected threshold FI values (see Methods) 
such that the parental clone G98A was roughly centred in the low-hit 
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category, and empirically adjusted the low-hit or high-hit thresh-
old such that the high-hit category contained a sufficient number 
of sequences to enable training but would still comprise only the 
highest-affinity binders (Fig. 5a). This empirical adjustment improved 
model performance as too few high-hit sequences would reduce the 
capacity of the model to learn general rules of the high-hit category, 
whereas increasing the high-hit count too much would result in the 
model predicting sequences with a wider range of affinities than 
desired. With these thresholds set, the HER2affmat dataset yielded 
232,693 non-hit, 1,284 low-hit and 111 high-hit Vh sequences.

To perform classification with BERT-DS, we extended the model by 
attaching a classifier module to the last transformer block and used it 
to predict hit-category probabilities for a given input sequence (model 
architecture in Extended Data Fig. 4, details in Methods). We then 
fine-tuned the model on a train–test split of 90:10 on the HER2affmat 
dataset with early stopping to minimize overfitting. Our best BERT-DS 
model yielded F1 scores (a measure of classifier accuracy and defined as 
the harmonic mean of precision and recall) of 0.993, 0.329 and 0.480 
for the non-hit, low-hit, and high-hit categories, respectively, on the test 
set (Supplementary Tables 2 and 3). Although the F1 scores for the low 
and high hits were less than ideal, they were dominated by their high 

false positive rate, which is probably due to the challenge of defining the 
class boundaries across a continuous space of measurements. BERT-DS 
was able to accurately predict clones ML3-9, H3B1 and B1D2+A1 as high 
hits, although they were not present in the HER2affmat dataset.

Having established a fine-tuned BERT-DS model, we explored 
whether it could be used to generate anti-HER2 CDR H3 sequences with 
higher affinities than those observed in the HER2affmat dataset and 
how its performance compared with simple random mutagenesis. To 
this end, we took the three top-scoring clones (seeds) from the HER-
2affmat dataset (HER20003, HER20004 and HER20005) and generated 
1.98 × 106 mutant CDR H3 sequences in silico for each seed (Fig. 5b).  
Specifically, we generated all single, double, and triple mutants and up 
to 108 fourth- and fifth-order mutants randomly. All 5.94 × 108 muta-
tions were scored by BERT-DS before selections were made for a sub-
sequent round of deep screening.

To compare the performance of BERT-DS with random mutagen-
esis, we devised a selection scheme where, for each seed sequence, a 
random mutation set was compiled from all 380 single mutants and up 
to 1,000 double, triple, and fourth- and fifth-order mutants each. This 
yielded a pool of 13,121 randomly mutated CDR H3 sequences (termed 
random/mut). Next, we assembled a pool of CDR H3 sequences with 
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Fig. 4 | Affinity maturation of the anti-HER2 scFv G98A. a, Construct schematic 
of G98A, showing its CDR H3 sequence and a depiction of how the six scanning-
window NNS sub-libraries were structured. b, Experiment statistics from the 
deep-screening component. c, PCA plot showing all 236,000 CDR H3 protein 
sequences projected into two dimensions and coloured by FImean at 100 nM of 
HER2. A red dot shows the position of G98A wild type relative to the library.  
d, CDR H3 sequences of G98A, ML3-9 and three of the top-scoring clones 
identified by deep screening. As we were unable to obtain a 1:1 model fit to the BLI 
data of clone G98A at 20 nM of Fab, we opted to use the published surface 

plasmon resonance (SPR) KD value. Next to the sequences are binding KDs 
identified via BLI, and the deep-screening-fitted equilibrium-binding KappD s.  
e, Deep-screening equilibrium-binding and kinetic dissociation curves showing 
G98A, ML3-9 and three of the top-scoring clones. Error bars are s.e.m. and n ≥ 12 
technical replicates of a given UMI. f, BLI kinetics of G98A, ML3-9 and three of the 
top-scoring clones at 20 nM of each clone in the Fab format on a HER2-loaded tip. 
The grey dashed line denotes the separation of the association (left) and 
dissociation (right) phases collected during BLI kinetics measurements.
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Fig. 5 | ML-augmented antibody-affinity maturation. a, An overview of the 
workflow used to pre-train the BERT-DS model on 20 million Vh sequences from 
OAS on an MLM objective and to fine-tune the same model for classification of 
anti-HER2 binding. In the HER2affmat 5 min wash condition, a violin plot shows 
the data distribution in dark green, and an enlarged version of the same data is 
shown in light blue to better reveal the distribution. The red line shown in the 
violin plot indicates the FImean value measured for clone G98A, with lighter grey 
lines indicating FImean values 1.3× above and below. These lines were used to draw 
the hit thresholds for BERT-DS classification. b, The workflow used for in silico 
mutagenesis of three anti-HER2 seed sequences and selection of 13,121 random 
mutations and 11,916 ML-guided mutations before a second round of deep 
screening. c, Evaluation of the selected ML and random mutations at the 5 minute 

wash condition, which shows a substantial, 5-fold shift in the binding distribution 
of the ML-selected mutants (green) relative to making random mutations. In 
the box-and-whisker plots, the box extends from the lower to the upper quartile 
values with a red line to denote the median, and the whiskers extend to 1.5× the 
interquartile range. Outliers to the data are shown as a small open circle. d, CDR 
H3 sequences and BLI-derived KDs of G98A, HER20003, HER20004, HER20005 
HER20006, HER20013 and HER20025. e, BLI-derived binding kinetics of a 
HER2-loaded tip and the top-scoring clones from each library (as purified Fabs) 
at a concentration of 20 nM. The grey dashed line denotes the separation of the 
association (left) and dissociation (right) phases collected during BLI kinetics 
measurements.
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exclusively ML-generated mutations by removing all sequences with 
a suboptimal high-hit score <0.9 and randomly selecting up to 1,000 
double, triple, and fourth- and fifth-order mutants each, but exclud-
ing those that had already been selected in the random/mut set. This 
produced a pool of 11,916 CDR H3 sequences with ML-guided mutations 
(termed ml/mut; Fig. 5b). Finally, we included clones G98A, ML3-9, 
HER20003, HER20004 and HER20005 as internal benchmarks. This 
resulted in a total of 25,042 CDR H3 sequences that we ordered as a 
synthetic oligonucleotide pool (Supplementary Data 1) and subjected 
to deep screening for validation (with the same conditions as in the 
HER2affmat library).

In deep screening, we observed 24,968 (of 25,037) clones from 
the random and ML library (random/mut and ml/mut, 99.72% cover-
age), and 174,700 additional mutants due to errors in oligonucleotide 
synthesis and cloning (199,737 unique CDR H3 sequences in total). 
BERT-DS-selected CDR H3 sequences (ml/mut) showed a marked 
improvement in FIs compared with random mutagenesis (random/
mut), not just in number of top FI signals but with a substantial overall 
shift in the global FI signal distribution towards high FI values (Fig. 5c). 
With reference to the previously established correlation between affin-
ity and FI signals, this strongly suggested that the BERT-DS model had 
successfully distilled the salient features of high-affinity HER2 binding 
from the HER2affmat dataset and leveraged it to predict a large number 
of new, high-affinity HER2 binders.

As our aim was to leverage ML for the discovery of antibodies with 
higher affinities than the parental G98A, HER20003, HER20004 and 
HER20005 clones, we evaluated the deep-screening data as a binary 
classification problem, with G98A now being centred in the non-hit 
category and clones with intensities ≥1.5× above G98A classified as 
hits (Fig. 5c and Supplementary Fig. 14a,b). The resulting classification 
threshold showed an overall hit performance of 13.23% for the ml/mut 
clones versus 2.31% for the random/mut clones (Fig. 5c and Supplemen-
tary Table 4). Inspection of the number of hits per edit distance from 
the seeds showed that BERT-DS improved sequence space sampling 
between 2.6-fold and 32.6-fold over random mutagenesis, with a mean 
improvement over all edit distances of 5.7-fold and markedly improved 
performance at higher edit distances from the parent clones (Supple-
mentary Table 4 and Supplementary Fig. 14a).

We selected 21 new anti-HER2 scFv clones (6 from the original 
HER2affmat library (HER20006–HER20011), 9 from the ml/mut set 
and 6 from the random/mut set) for conversion to Fabs for expression 
in CHO cells, purification, and characterization and affinity determina-
tion (Extended Data Fig. 3 and Supplementary Figs. 11–13). These clones 
were selected based on a variety of criteria, such as peak FI at all con-
centrations, equilibrium-binding and dissociation kinetics (Source 
data). Upon characterization, we observed the strongest correlation 
between BLI KD and deep-screening FI at 3.3 nM and at 10 nM HER2, 
with rS of −0.613 and a P value of 0.002 (Extended Data Fig. 3d,e). We 
observed a weaker correlation between BLI KD and deep-screening- 
derived KappD  values, with rS of 0.563 and a P value of 0.0027 (Extended 
Data Fig. 3f).

All the additionally selected clones from screening the HER2aff-
mat library, including the three seeds (HER20003, HER20004 and 
HER20005) showed KD values from 850 pM to 5.25 nM and a general 
improvement in monomericity (93.5% for G98A compared with 94.4%–
98.4% for the HER2affmat clones; see Source data for Extended Data  
Fig. 3 and Supplementary Figs. 12 and 13). Clones HER20006,  
HER20009 and HER20010 showed an ~300-fold improvement 
in affinity over G98A and had been selected for characterization 
due to their high FI values at low antigen concentration during the 
equilibrium-binding assay. Analysis of the ml/mut and random/mut 
library clones indicated a further improvement of affinity over the HER-
2affmat clones, with the top clone from the ML set (HER20013) show-
ing a 5,220-fold improvement in affinity (KD = 60.7 pM) and another 4 
clones (HER20015, HER20020, HER20021 and HER20022) from the ML 

set showing a >1,000-fold improvement in affinity over G98A (Fig. 5d,e, 
Supplementary Fig. 12 and Supplementary Table 2). Although high-FI 
clones were >5-fold less frequent in the random set, we still managed 
to identify two clones (HER20024 and HER20025) with a >1,000-fold 
improvement in affinity over G98A, at 165 pM and 283 pM, respectively. 
In addition to affinity enhancement, we observed an overall improve-
ment in monomericity for both the ML and random clones over G98A 
from 93.5% to 98.1% (Supplementary Fig. 13 and Source data). Taken 
together, these results show the exceptional effectiveness of combin-
ing deep screening with a natural-language ML model to discover 
high-affinity antibodies to a therapeutically relevant target at scale.

Discussion
Building on work repurposing Illumina sequencing platforms for 
high-throughput screening14–19, we have developed deep screening. 
Deep screening differs from previous strategies in the increased DNA 
and RNA cluster size (fragment length), the covalent attachment of the 
displayed RNA clusters to the flow cell and the potential for accessing 
much higher diversity, owing to capabilities of the HiSeq platform.

Deep screening enables the discovery of high-affinity antibodies 
directly from synthetic repertoires without any need for pre-selection 
or pre-enrichment, as we have shown for two human therapeutic 
drug targets (huIL-7 and HER2), with increases in affinity and inhibi-
tion potency of 103- to 104-fold in a single 3 day experiment. This was 
achieved even without accessing the full power of the HiSeq platform 
and using a relatively modest total repertoire diversity of ≤4 × 106 (and 
even as low as 2 × 105; Fig. 3) compared with classical bulk-selection 
techniques, such as mRNA, ribosome, yeast and phage display (with 
repertoire diversities typically ranging from 107 to 1012). Therefore, 
even at relatively low library diversities, deep screening is capable of 
efficiently discovering rare and high-affinity clones typically present 
at <0.01% of repertoire diversity. We postulate that this is due to the 
high detection sensitivity achieved by interrogating antibody func-
tion arrayed in two dimensions and captured as digital data at mul-
tiple antigen concentrations during equilibrium binding and kinetic 
dissociation.

Such a digital readout of function for every library clone pro-
vides a great depth of information over a specific antibody–anti-
gen interaction landscape and affords a global, granular view of the 
antigen-binding function across the whole library diversity. A digital 
signal readout also allows extraction of real-time antibody–antigen 
binding data with correction for confounding factors such as back-
ground noise, non-specific interactions, and artefacts such as dust, 
fibres, aggregates and flow-cell defects. Furthermore, readouts can 
be optimized for each specific antigen–antibody repertoire interac-
tion, enabling exceptional and fine-grained control over the discovery 
process unavailable in bulk approaches. Combined with detailed 
sequence information for every cluster or antigen-binding signal and 
in-built repertoire redundancy (with ≥12 replicates), deep screening 
provides antigen-binding data for each of the library clones with sta-
tistical significance, greatly reducing the presence of false positives 
and other unwanted artefacts.

Even at the currently realized screening depth, deep screening 
may be sufficient to capture much of the diversity of a rodent or even 
a human antibody response. Of course, a screening depth of ≤4 × 106 
is a gross undersampling of the total potential Vh, Vκ and Vλ diver-
sity (estimated to be up to 1018) of the human repertoire51. However, 
although potentially all of the estimated 1011 circulating human B 
cells could display a different antibody52, due to various biases the 
human immune system is estimated to mainly access only 106–107 of 
actual antibody diversity at any point in time53,54; however, it should be 
noted that this number may be an underestimate as the above studies 
only sampled peripheral blood lymphocytes (which amount to only 
2.5% of total blood lymphocytes) at the expense of less accessible 
lymphoid organs55.
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It would be desirable to access larger repertoires both for antibody 
discovery and for other biomolecular discovery projects because 
larger repertoires are generally thought to have a greater probability 
of containing high-affinity binders as they provide a more complete 
coverage of the shape space of possible epitopes56,57. Although deep 
screening has the potential for screening of repertoire diversities up to 
3 × 108 (as shown here on a 2-lane HiSeq flow cell) and up to 2 × 109 on an 
8-lane flow cell, we have not yet fully leveraged this potential diversity 
due to technical limitations, including library bottlenecking (to achieve 
12-fold redundancy for data noise reduction). Future implementations 
of deep screening with improved display, antigen-binding and imag-
ing protocols may enable screening at these or even higher depths on 
next-generation instruments.

A key aspect of the development of deep screening involved the 
optimization of protocols so that derived metrics, such as 
equilibrium-binding affinity (KappD ) and peak fluorescence signal inten-
sity (FI), correlate well with true antigen-binding affinities (KD), as 
determined by state-of-the-art biophysical measurements on individu-
ally purified monovalent antibody Fabs. This enables not only reliable 
discovery of hits but also the use of deep screening to obtain internally 
consistent and reliable large datasets of global affinity and dissociation 
kinetics across an antibody repertoire. The latter is particularly impor-
tant for ML-guided sampling of the antibody-sequence space. Indeed, 
we show that deep-screening datasets are of sufficiently high quality 
to be used as training data for ML. In particular, we developed a 
natural-language model based on the BERT architecture50, and 
pre-trained it on the OAS database (to learn the general underlying 
rules and patterns of viable antibody sequences) and subsequently 
fine-tuned it using deep-screening data. The resulting trained model, 
termed BERT-DS, proved highly effective in generating high-affinity 
anti-HER2 binders (Fig. 5a), with an average improvement of more than 
5-fold over random mutagenesis (Fig. 5c) and a top hit with a 5,200-fold 
increase in binding affinity for HER2 compared with the parental clone 
G98A (Fig. 5d,e).

Although pre-training natural-language models on naturally 
occurring protein sequences and predicting function is not a new 
concept, previous work had primarily focused on predicting improve-
ments in proteins whose function is conserved in evolutionary his-
tory43,45,58–61. However, this approach is not readily applicable to 
antibodies, which are continuously generated de novo by the immune 
system with divergent antigen-binding functions. Thus, optimizing 
binding to a new target antigen is a more challenging task as the rel-
evant information does not exist a priori within phylogeny. Although 
one could argue that the OAS database embodies general information 
on antigen binding, antigen-specific information is not available. In 
our implementation of BERT-DS, the antigen-specific sequence and 
functional scores are provided by deep-screening datasets, which can 
be readily collected.

Although our approach to sequence generation is relatively 
crude compared with state-of-the-art generative language or diffu-
sion models62–65, the combination of BERT-DS with subsequent deep 
screening of its predictions allowed for the discovery of high-affinity 
binders to a therapeutic drug target with an up to 32-fold improved 
success rate compared with random mutagenesis (depending on the 
number of mutations made; Supplementary Fig. 14a and Supplemen-
tary Table 4). Although many other ML approaches are available, we 
favoured a BERT model, which we considered to best capture the 
complexity of the genotype–phenotype association in antigen–anti-
body interactions. To critically test this assumption, we performed an 
ablation study (Methods, Supplementary Tables 5–14 and Extended 
Data Fig. 5) comparing the performance of BERT-DS (with and without 
pre-training on OAS) with a variety of other ML models. This showed 
that language models indeed performed best with our datasets, and 
indicates that BERT-DS with pre-training on OAS provides an increase 
in the prediction accuracy of antibody binding—still, a comparison 

with BERT-DS trained several years apart suggests that follow-up 
studies are required to thoroughly evaluate whether pre-training on 
OAS results in major benefits.

An unexpected finding was that high-affinity antibodies isolated 
by deep screening typically also display desirable ‘developability’ fea-
tures that are advantageous for antibody therapeutics, such as reten-
tion of affinity upon conversion to Fabs (or whole IgGs), a high degree of 
monomericity and high expression yields in CHO cells. We hypothesize 
that these features may arise due to a stringent pre-selection for desir-
able physicochemical properties by expression and folding during 
deep screening by the use of a minimal translation apparatus (devoid 
of chaperones) for 1 h at 37 °C, which predisposes hits to be fast and 
efficient folders. We also speculate that the crowded environment 
within each RNA cluster may mimic the intracellular environment and 
disfavour misfolded or incompletely folded proteins.

Although deep screening is currently implemented on the expiring 
HiSeq 2500, the approach is by no means restricted to this platform 
and should be extendable to related platforms such as those developed 
by Singular Genomics, Element Biosciences, Ultima Genomics and 
MGI, among others. Indeed, there are many technological aspects 
of the HiSeq platform that are suboptimal for deep-screening pur-
poses, notably the imaging system, which is designed for thresholding 
fluorescence rather than for quantitative measurements. Although we 
currently perform sequencing, display, antigen binding and imaging 
on the same instrument, both internal and external imaging are pos-
sible, as shown for the MiSeq platform19,66. The use of external imaging 
devices could enable faster localized imaging across a wider range of 
colour channels and imaging modes. Faster imaging of large (107–109) 
Vh × Vl libraries might also bring direct screening of the naive rodent or 
human antibody repertoires within reach, with the potential to isolate 
antibody leads for a wide range of targets from a single deep-screening 
experiment.

In conclusion, deep screening expands the power of high- 
throughput phenotype screening into the realm of >108 simultaneous 
measurements. Together with methodological advances, this method 
allows for the display and direct screening of unselected antibody 
libraries with the discovery of high-picomolar binders in a 3 day experi-
ment. Furthermore, deep screening generates large, internally consist-
ent, genotype–phenotype correlation datasets that not only provide 
for efficient sampling of antibody-sequence and paratope space but 
also enable ML models to predict new sequences with improved affini-
ties that are not present in the starting library. We anticipate many 
applications for deep screening, in particular the accelerated discovery 
and development of high-affinity antibodies for use in biotechnology 
and medicine, and as a multimodal tool for the exploration of the geno-
type–phenotype landscape of a wide range of biopolymers.

Methods
Construct design
To transcribe and translate sequenced DNA clusters on an Illumina flow 
cell, our DNA constructs contained the following elements: a P5 adap-
tor, followed by a 28 nt unique barcode, a 27 nt unstructured spacer  
(5p UNS v2), a ribosome binding site, start codon, protein coding 
region, TolAk short linker, 2× stop codons, a 27 nt unstructured spacer 
(3p UNS v2) and the P7 adaptor (Supplementary Table 1).

Cluster generation and barcode sequencing
Libraries as subsequently described were clustered on an Illumina 
HiSeq 2500 using a paired-end rapid-run flow cell (PE-402-4002, 
HiSeq PE Rapid Cluster Kit v.2; Illumina) at 6 pM, which typically 
results in 200 million reads. Although these flow cells are perfectly 
capable of being clustered to yield upwards of 300 million reads, in 
the downstream RNA synthesis and ribosome display steps, we chose 
to hybridize a fluorescent Atto 647N oligonucleotide (R2_atto647N; 
Supplementary Table 1) to the P7 adaptor of each cluster to enable 
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normalization of the binding assay. At densities higher than 200 million 
reads, our HiSeq 2500 is unable to reliably focus and image the flow cell 
when all RNA clusters are labelled.

Clustering and sequencing were performed as a paired-end, 
single-read run with no indexing for 28 cycles on read 1, and 0 cycles 
on read 2, and executed using the HiSeq Control Software (HCS 
v.2.2.68; Illumina). The flow-cell and clustering reagents were sourced 
from the HiSeq PE Rapid Cluster Kit v.2 (PE-402-4002; Illumina) and 
sequencing reagents were sourced from the HiSeq Rapid SBS Kit v.2 
(FC-402-4023; Illumina).

With 12-fold redundancy and the need to cluster the same library 
on two separate flow cells, there is a theoretical maximum yield of 
2.5 × 107 UMIs. However, through the need to undercluster our 2-lane 
flow cells, various losses and amplification biases in library prepara-
tion, we typically yield 1 × 105 to 4 × 106 UMIs that satisfy the 12-fold 
redundancy requirement. Regardless, the benefits of direct observa-
tion of binding at scale allowed for the identification of high-affinity 
binders in smaller-diversity libraries than one would typically expect.

RNA synthesis
Following sequencing, we closed HCS and launched the HiSeq engi-
neering software (Archimedes Test Software v.3.8.317.0; Illumina), 
initialized the instrument, homed the stage, set the chemistry module 
run mode to ‘RapidRun’ and set the flow cell temperature to 20 °C. We 
then pumped 120 μl of Illumina’s Universal Scan Mix into the flow cell 
before automatic tilting, aligning and imaging the flow cell using the 
‘Bruno Scan’ module. We did this specifically by setting the surface to 
‘dual lane’, the scan velocity to 2.0 mm s−1 and the swath to ‘dual swath’. 
The flow-cell images were saved and enabled us to measure offsets and 
chromatic aberration distortions between the different optical paths 
of the instrument.

We then denatured the sequencing product with a Fast Denatura-
tion Reagent (FDR; Illumina) wash at 65 °C, followed by running the 
‘End Deblock’ protocol as found in the HiSeq 2500 rapid-run recipe 
files generated by HCS, which uses the reagents Cleavage Reagent 
Mix and Cleavage Wash Mix to remove the remaining dye-terminated 
nucleotides that are still present on the flow-cell surface. With a single- 
stranded DNA template present on the flow cell, we then needed to 
‘deprotect’ or remove the 3′-phosphate group from the P5 primer. This 
was done using the Fast Resynthesis Mix and the deprotection protocol.

With a free 3′-hydroxyl group on the P5 grafted primer, we repur-
posed the paired-end turnaround process and performed a cycled 
RNA primer extension using TGK polymerase. Here TGK takes a DNA 
primer (grafted P5) annealed to a DNA template (cluster strands) and 
the primer is extended with ribonucleotides (NTPs). This was done 
by heating the flow cell to 55 °C and performing 12 cycles of injecting 
FDR, annealing and extension with the TGK Amplification Mix (TAM; 
625 μM NTPs, 10 nM TGK, 18 U ml−1 Superase In (AM2696; Thermo), 
2 M betaine, 20 mM Tris, 10 mM ammonium sulfate, 6 mM MgSO4, 0.1% 
Triton-X and 1.3% DMSO, pH 8.8); each extension step had an incubation 
time of 1,800 seconds.

After 12 cycles of RNA extension, we observed that for long tem-
plates (>900 nt), TGK is unable to completely synthesize the strand. 
We believe this to be due to a build up of torque in the DNA–RNA 
duplex that is covalently attached to the surface via the respective 5′ 
ends. To relieve the torque, we annealed an oligonucleotide over the 
8-oxoguanine site on the grafted P7 primer and performed 2 cycles 
of cleavage with Illumina’s FLM2 (Fast Linearisation Mix 2) reagent 
and extension (with TAM) at 37 °C for 30 minutes and 55 °C for 1 hour, 
respectively (P7′_surface_hyb; Supplementary Table 1).

Following DNA cleavage and final extensions, we denatured the 
DNA–RNA duplex and washed away the DNA template Illumina’s FDR 
mix. With clusters of single-stranded RNA present on the flow cell, 
100 nM of R2_atto647N was annealed to the P7 adaptor at the 3′ end 
of each molecule of RNA.

Ribosome display on an Illumina flow cell
Ribosome display was performed using a custom PURExpress kit from 
New England Biolabs (NEB) that lacks release factors 1, 2 and 3, and T7 
RNA polymerase. Specifically, we prepared a 200 μl master mix contain-
ing 80 μl of solution A, 60 μl of solution B, 4 μl of disulfide enhancers 
1 and 2 (E6820S; NEB) (if required) and 4 μl of Superase In (AM2696; 
Thermo Fisher). We then injected the master mix into each lane of the 
flow cell, being careful to avoid the introduction of bubbles, before 
incubating the flow cell at 37 °C for 60 minutes. Once the incubation 
period was complete, we cooled the flow cell down to 20 °C, before 
washing and stabilizing the ribosomes with ribosome display buffer 
(50 mM Tris(hydroxymethyl)aminomethane acetate, 150 mM NaCl, 
50 mM magnesium acetate, 0.1% Tween 20 and 1 U ml−1 of Superase In 
(AM2696; Thermo Fisher), pH 7.5).

With the ribosomes stabilized by the display buffer, we block the 
flow cell with binding buffer (ribosome display buffer with 0.1% BSA; 
A9647; Sigma-Aldrich). After flow-cell blocking, we image the surface 
to determine a baseline for background fluorescence.

Sequencing of CDRs via internal sequencing primers
Following a successful deep-screening display experiment, we set-up a 
second sequencing experiment on a fresh flow cell using the same library 
for resolving the CDR sequences with internal sequencing primers. CDR 
sequencing experiments were performed in HCS with a custom recipe 
that initially sequenced the N28 UMI with Illumina’s Read 1 Sequencing 
Primer for 28 cycles, followed by denaturation of the sequencing prod-
uct with FDR at 65 °C, annealing of an appropriate internal sequencing 
primer and sequencing enough cycles to cover the region of variabil-
ity. All internal sequencing primers used in this work were ordered  
from IDT, HPLC purified and resuspended in IDTE at 100 μM.

Image processing
A technical challenge lay in the nature of the HiSeq instrument, which is 
not designed for quantitative measurement; rather its epi-fluorescence 
line-scanning imaging system is designed to threshold fluorescence 
signals between four colour channels to determine base calls during 
sequencing. We solved this challenge for quantitative measurement of 
binding interactions by preparing libraries with 12-fold redundancy of 
each UMI; that is, each UMI considered during analysis was present at 
least 12 times at different locations on the flow cell.

Furthermore, the HiSeq is an epi-fluorescence line-scanning 
microscope with 532 nm and 660 nm lasers that requires a substan-
tial amount of illuminated signal in the 660 nm channel (as expected 
during a sequencing run) to first locate the flow-cell surfaces and then 
maintain focus during a scan. This imaging mode is poorly suited for 
the screening of binding interactions, where clusters showing a high 
signal are rare and do not provide sufficient signal for focusing. We 
solved this problem by labelling all RNA clusters through hybridization 
of a fluorescently labelled DNA oligonucleotide to the 3′ end, enabling 
focused imaging of the whole flow cell even with only sporadic or no 
cluster signal in the 532 nm channel (which we use to detect protein 
binding). In addition, this approach provided us with a diagnostic for 
RNA-synthesis efficiency or cluster size. The ability to conduct all steps 
(comprising sequencing, RNA and protein synthesis, and imaging) 
within the same instrument streamlines the experimental pipeline and 
avoids challenges with image alignment.

A single scan of a 2-lane rapid-run flow cell generates 
8 × 2,048 × 160,000 pixel 16 bit TIFF images in 4 colour channels, 
for a total of 32 images. The HiSeq 2500 uses a 532 nm and 660 nm 
laser with a set of emission filters that path out to 4× time-delayed 
integration-line-scanning CCD detectors. We can detect signal from 
Alexa Fluor 647 or Atto 647 on the ‘A’ and ‘C’ channels, and Alexa Fluor 
532 (AF532) on the ‘G’ and ‘T’ channels, with the highest signal-to-noise 
ratio observed on the C and T channels with these dyes. As such, we only 
perform analysis using the C and T colour channels.
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Our image-processing pipeline operates by breaking up each of the 
2,048 × 160,000 pixel images into 16 tiles that are processed indepen-
dently in parallel. For a given tile image, we first perform a non-uniform 
illumination correction by applying a morphological opening with a 
disk-shaped structuring element using a radius of 25 pixels before sub-
tracting the morphological opening from the tile image. We then detect 
the centroids of any clusters present in the tile image using a peak local 
maximum function that operates by initially performing a morpho-
logical dilation of the tile image with a 3 × 3 pixel square kernel. The 
algorithm then moves through each pixel of the tile image and checks 
if the pixel is equal to the value of the same dilated pixel, and whether 
that pixel intensity is above a set threshold. If a given pixel meets these 
conditions, it is deemed to be a centroid, and is added to the centroid 
map. In this case, we are using a pixel intensity threshold of 600 (this 
value was manually tuned for our instrument). This method for cluster 
detection is simple, fast to compute and generally good enough.

Using the detected cluster coordinates on the C and T images, 
we align these against the known sequencing coordinates using a 
discrete-Fourier-transform phase correlation function from the 
OpenCV package. As there are some slight variations in the repeat-
ability of the microscope stage and optical distortion within the HiSeq, 
we perform a refined alignment by subdividing the tile image further 
into 128 × 128 pixel non-overlapping subimages and saving the refined 
offsets to an offset map.

Using the refined offset map, we quantify the intensity of every 
known cluster from the sequencing data by extracting a 9 × 9 pixel 
subimage centred on the offset-corrected cluster coordinates. We 
then perform an element-wise multiplication of the 9 × 9 pixel subim-
age with a 9 × 9 pixel array constructed from a two-dimensional (2D) 
Gaussian point spread function (PSF) with a sigma (σ; width of the 
Gaussian bell) of 0.5. We use the following equation to describe the 
2D Gaussian PSF:

PSF = 1e
(−( (cx−x)2

2σ2
+ (cy−y)2

2σ2
))

Here, cx and cy is the centre of the Gaussian peak, x and y are the 
respective 2D coordinates. The sum of pixel values after the element- 
wise multiplication is what we define to be the cluster intensity. The 
image-processing pipeline reports cluster intensities for every sequenced 
cluster on the C and T channels from every scan of the flow cell and saves 
this to disc or inserts it into a database.

Data analysis
Data analysis starts by grouping all cluster data by their common N28 
UMI. If there are at least 12 replicates, where a cluster has not been 
rejected for falling outside of the imaging area, the UMI is retained. 
Next, we group the UMI and binding data with the UMI and CDR 
sequencing data, where there exist at least three CDR reads per UMI. 
Following the grouping, CDR reads are consensus error corrected 
(and the UMI is dropped if there is no consensus) before performing 
median absolute deviation outlier rejection and calculating the mean, 
median, s.d. and s.e.m. for each UMI on both the T (532 nm; protein) 
and C (660 nm; RNA) colour channels.

Flow-cell-based equilibrium-binding curves (KappD ) are fit using the 
following equation to the mean integrated intensities of a given UMI 
via least squares, as implemented in the curve_fit function from the 
python package SciPy:

R = Fmax
1 + ( KappD

x
)
+ Fmin

where Fmax is the maximum intensity observed, Fmin is the minimum 
intensity observed, KappD  is the equilibrium-binding constant that we 
wish to fit and x is the concentration of a given measurement.

Flow-cell-based kinetic dissociation curves are fit using the follow-
ing biphasic dissociation equation via least squares, as implemented 
in the curve_fit function from the python package SciPy:

R = R1e(−kd1(t−t0)) + (R0 − R1) e(−kd2(t−t0))

where R0 is the intensity observed at the start of dissociation, R1 is a 
floating parameter for the initial intensity for component 1, t is time in 
seconds, t0 is the start time for the dissociation and kdi is the dissociation 
rate constant for component i.

We chose a biphasic dissociation equation, due to the complex 
dissociation kinetics observed within the flow-cell environment. To 
elaborate, the flow cell is a heterogenous environment where clusters 
containing different antibody clones compete against each other 
for binding and rebinding during the wash conditions. In our evalua-
tions, we found that a biphasic dissociation model best represents the 
kinetics observed. Future studies should examine this phenomenon 
in more detail.

PCA
PCA plots were generated by a compressed one-hot vector encoding 
of all sequences identified from a given library and computing the 
first two principal components using the PCA.fit function from the 
scikit-learn python library. The first two principal components were 
then plotted as a 2D scatter plot using matplotlib, and points were 
coloured based on their FImean values at the condition shown in the 
respective plots.

In more detail, our one-hot vector encoding scheme encodes each 
AA as a binary 1D vector that is 5 long. We chose this encoding scheme as 
it can fully capture all AAs, including stop codon and unknowns, while 
minimizing sparseness in the representation.

For example, alanine is encoded as [0, 0, 0, 0, 0] and glycine is 
encoded as [0, 0, 1, 0, 1].

To encode a full sequence, each AA encoding is appended to an 
array and finally flattened to a 1D vector.

Nanobody yeast surface display selections
The nanobody yeast display library was acquired from the Kruse labo-
ratory as a frozen stock of >2.5 × 109 cells (EF0014-FP; Kerafast)1. The 
library aliquots were initially thawed at 30 °C, before being recovered 
in 1 l of ‘Yglc4.5 −Trp’ (3.8 g l−1 −Trp yeast dropout media supplement 
(Y1876; Merck), 6.7 g l−1 yeast nitrogen base (Y0626; Merck) and 10 ml l−1 
Penicillin-Streptomycin (P4333; Merck)), shaking at 230 rpm, 30 °C, 
overnight. The recovered culture was then expanded to 3 l of media 
and allowed to grow to a stationary phase (OD600 of 20) over 48 hours. 
The culture was centrifuged at 3,500g for 5 minutes and resuspended 
in fresh Yglc4.5 −Trp supplemented with 10% DMSO, such that the final 
density is 1010 cells per ml before making 2 ml aliquots and freezing  
at −80 °C.

To prepare the naive library for the first round of selection, one 
aliquot was thawed at 30 °C and used to inoculate 1 l of Yglc4.5 −Trp 
supplemented with 2% galactose. The culture was then grown for 
72 hours at 24 °C. Expression was confirmed by flow cytometry with 
a FITC-labelled anti-HA antibody (GG8-1F3.3.1; Miltenyi Biotech) 
before the first round of selection. Cells representing over 10-fold 
the library diversity were initially deselected against SA microbeads 
(Miltenyi Biotech) for 1 hour at 4 °C in PBS–T-BSA (0.1% Tween 20 
and 0.1% BSA) before being separated from the beads on a Miltenyi 
MACS magnet. Deselected cells were then incubated in the presence 
of 500 nM HEL–biotin (GTX82960-pro; GeneTex) for 1 hour at 4 °C. 
SA beads were added and incubated further for 15 minutes before 
selection and washing on a Miltenyi MACS magnet. Beads and the 
bound cells were eluted, pelleted and resuspended in 1 l of Yglc4.5 −
Trp supplemented with 2% galactose before growth for 72 hours at 
24 °C. Round 2 was conducted similarly to round 1, with the absence 
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of a deselection step and reduction to 300 nM HEL–biotin before 
adding SA microbeads, panning on a MACS column, and washing 
and recovering the cells.

After round 2, the recovered cells were split in half by volume 
to conduct a round 3 via MACS and FACS with the respective splits. 
Round 3 MACS was conducted as per round 2 with a further reduc-
tion to 200 nM HEL–biotin, followed by recovery, collection of cells 
by centrifugation and miniprep of the plasmid DNA (D2004; Zymo 
Research). Before collecting cells, 100 μl of cells was serially diluted 
and plated on YPD agar plates to enable picking of 96 colonies for 
colony PCR and Sanger sequencing. Round 3 FACS was conducted by 
incubating cells with 200 nM HEL–biotin for 1 hour at 4 °C, pelleting 
and resuspending cells in fresh PBS–T-BSA, combining with 100 μg of 
NeutrAvidin-PE (A2660; Thermo Fisher Scientific), and performing a 
1:1000 dilution of the anti-HA–FITC antibody for 15 minutes before 
sorting on a Synergy 3 cell sorter (Sony Biotechnology) and gating for 
dual-labelled (FITC/PE) events, yielding 50,135 cells. Sorted cells were 
recovered and miniprepped as per round 3 MACS. A diagram of this 
selection scheme can be found in Fig. 2a.

Nanobody library preparation and deep screening
Minipreps for round 3 MACS and FACS were PCR amplified (Q5 poly-
merase; M0492; NEB) for 20 cycles using primers that anneal with the 
amino-terminal framework region and carboxy-terminal HA tag, and 
introduce a 20 nt overhang at the 5′ end of each primer that contain 
homology with the 5′ flow-cell adaptor (RBS + ATG; KF_olap.fwd; Sup-
plementary Table 1) and the 3′ flow-cell adaptor (TolAk linker; KF_olap.
rev; Supplementary Table 1).

The nanobody library, now containing homology with the adap-
tors, was run on a 1% agarose gel and a band of approximately 449 bp 
was gel extracted (approximate because the library contains variably 
sized CDR loops), purified and quantified by NanoDrop. The library is 
subsequently assembled into the deep-screening display construct 
via Gibson assembly using 0.2 pmol of the 5′ adaptor, the nanobody 
library fragment, 3′ adaptor and the HiFi DNA Assembly Master Mix 
(E2621; NEB) and incubated at 50 °C for 30 minutes. The library is then 
bottlenecked by taking 300 amol of material from the Gibson assembly 
reaction (assuming 100% assembly efficiency) and PCR amplifying 
for 25 cycles with Q5 polymerase and the outnest P5 and P7 primers 
(Supplementary Table 1).

The PCR product was run on a 1% agarose gel and a roughly 800 bp 
band was gel extracted, purified and quantified initially by NanoDrop 
and subsequently by quantitative PCR (qPCR; NEBNext Library Quant 
Kit, E7630; NEB).

The quantified library was diluted to 2 nM before being denatured 
(10 μl of library was mixed with 10 μl of 100 mM NaOH and incubated 
at room temperature (RT) for 5 minutes) and rapidly diluted to 20 pM 
in HT1 buffer provided by the rapid PE flow-cell clustering kit (PE-402-
4002; Illumina). We diluted the library to a final concentration of 6 pM 
before loading into the template slot on the HiSeq 2500 and setting up 
a deep-screening experiment as described above and below.

Following acquisition of the baseline flow-cell images, we per-
formed an equilibrium-binding assay at successive and increasing 
concentrations of HEL–biotin. Specifically, each condition involves an 
injection of 120 μl of HEL–biotin (GTX82960-pro; GeneTex) that had 
been pre-complexed with AF532–SA (S11224; Thermo Fisher) at a 1:1 
ratio in display buffer at 20 °C, an incubation of 45 minutes at 20 °C, 
and a 200 μl wash of display buffer, followed by complete imaging of 
the flow cell. This was performed for 1 nM, 10 nM, 100 nM and 300 nM 
HEL with 1:1 amounts of AF532–SA. Following the highest concentration 
of HEL, we proceeded to collect measurements for a kinetic dissocia-
tion rate. This was accomplished by pumping display buffer over the 
flow cell and imaging at 5 minutes, 10 minutes, 15 minutes, 20 minutes, 
30 minutes, 60 minutes and 120 minutes. Raw images were then pro-
cessed as described above.

Nanobody expression and periplasmic extraction
Nanobody hits (as defined in Extended Data Fig. 1) were computa-
tionally composed, assuming no mutations were present outside 
of the sequenced CDR regions, which contains 3 nt before and after 
the actual variability. Composed hits were then codon optimized 
and ordered as a gBlock from IDT (Integrated DNA Technologies, 
Inc) before being cloned via FX (fragment exchange) cloning into 
the E. coli periplasmic expression vector pSBinit, a gift from Markus 
Seeger (Addgene plasmid number 110100) (refs. 2,3). Single colonies 
were picked, and correct clones were validated by Sanger sequenc-
ing. Following validation, single colonies were grown overnight in a 
24-deep-well plate with 5 ml of LB and 25 μg ml−1 chloramphenicol 
at 37 °C before being subcultured at 1:100 into 5 ml of TB (with chlo-
ramphenicol). Cultures were grown at 37 °C and induced roughly 
at an OD600 of 0.6–0.9 with 0.05% w/v l-arabinose. Cultures were 
grown for another 3.5 hours before being collected by centrifuga-
tion at 2,500g for 20 minutes at 4 °C and supernatant discarded. 
Pellets were resuspended (1/20 of the original culture volume) in 
250 μl TES buffer (50 mM Tris–HCl, pH 7.2, 0.1 mM EDTA and 20% 
sucrose) and incubated on ice for 60 minutes to perform a periplasmic 
extraction. The supernatant was then collected by centrifugation at 
4,000g for 30 minutes at 4 °C and protein yield was quantified by 
SDS–PAGE. All clones were normalized to a concentration of 500 nM 
in SuperBlock PBS (37515; Thermo Fisher Scientific) before BLI kinet-
ics measurements.

Nanobody kinetics measurements
Periplasm-extracted nanobodies that had been normalized to 500 nM 
in SuperBlock PBS were further diluted to 50 nM. BLI kinetics were 
performed on an Octet Red384 (Sartorius) with reference subtrac-
tion performed for each nanobody clone using a non-loaded SA tip 
(18-5136; Sartorius). Kinetics were measured using the following steps: 
(1) sensor check for 30 seconds, (2) loading of HEL–biotin at 25 μg ml−1 
for 400 seconds, (3) baseline measurement for 240 seconds, (4) asso-
ciation kinetics at 50 nM of each nanobody for either 400 seconds or 
500 seconds, and (5) dissociation kinetics for 600 seconds. In all stages, 
SuperBlock PBS was used as the buffer.

BLI data fitting
BLI kinetics data were collected on an Octet Red384 instrument as 
described in the previous and subsequent kinetics measurements 
sections. In all cases, SA tips (18-5136; Sartorius) were loaded with 
biotinylated target antigen and washed to a baseline signal before 
binding at a fixed concentration of each VHH or Fab clone. After 
collection of on rate kinetics, tips were dipped in fresh buffer to 
measure off rate kinetics. Measurement data for each clone were 
referenced against SA-only tips to remove non-specific binding  
to SA.

A 1:1 binding model was fit to all data via least squares using SciPy.
Association rates were fit to the following equation:

Rassoc = Rmax (
1

1 + Kd
KaC

) (1 − e(−KaCKd)t)

where Rmax is the peak response, Kd is the dissociation rate to be esti-
mated, Ka is the association rate to be determined, C is the concentra-
tion of the Fab in molar and t is time in seconds.

Dissociation rates were fit to the following equation:

Rdissoc = Y0e−Kd(t−t0)

where Y0 is equal to Rassoc at the end of the association phase, Kd is the 
dissociation rate to be determined, t is the current time in seconds and 
t0 is the time at the start of the dissociation phase.
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KD values are calculated as:

KD =
Kd
Ka

IL-7 library preparation and deep screening
The unselected IL-7 Vκ light-chain CDR L1 and L3 scFv library was pre-
pared and provided to us by AstraZeneca in the pCANTAB6 plasmid. 
The scFv library was extracted by 20 cycles of PCR using Q5 polymerase 
and primers that provide 25 nt of homology with the 5′ and 3′ display 
adaptors. The PCR product was run on a 1% agarose gel, and a roughly 
778 bp band was gel extracted and purified. Similar to the nanobody 
library assembly, 0.2 pmol of the 5′ adaptor, the scFv library frag-
ment, 3′ adaptor and the HiFi DNA Assembly Master Mix (E2621; NEB) 
were combined and incubated at 50 °C for 30 minutes. The library is 
then bottlenecked by taking 500 amol of material from the Gibson 
assembly reaction (assuming 100% efficiency) and PCR amplifying for  
25 cycles with Q5 polymerase and the outnest P5 and P7 primers. The 
PCR product was run on a 1% agarose gel and a 1.2 kb band was gel 
extracted, purified, and quantified initially by NanoDrop and subse-
quently by qPCR (NEBNext Library Quant Kit, E7630; NEB).

The quantified library was diluted to 2 nM before being denatured 
(10 μl of library is mixed with 10 μl of 100 mM NaOH and incubated at RT 
for 5 minutes) and rapidly diluted to 20 pM in HT1 buffer provided by 
the rapid PE flow-cell clustering kit (PE-402-4002; Illumina). We diluted 
the library to a concentration of 6 pM before loading on the HiSeq 
2500 and setting up a deep-screening experiment as described above.

Following acquisition of the baseline flow-cell images, we per-
formed an equilibrium-binding assay at successive and increasing 
concentrations of huIL-7–biotin pre-complexed with AF532–SA (S11224; 
Thermo Fisher) in a 1:1 ratio (100 pM, 333 pM and 1 nM). In this experi-
ment, we observed substantial aggregation of huIL-7 on the flow-cell 
surface that prohibited imaging past a concentration of 1 nM huIL-7; as 
such, no kinetic dissociation measurement was collected. Images were 
processed and CDR sequences resolved as described above, which we 
used to identify putative hits.

Anti-IL-7 and anti-HER2 Fab expression and purification
The top-19 putative anti-IL-7 hits (and IL70001) and all 26 anti-HER2 
hits (including G98A and ML3-9) were converted from scFv to Fab 
format, with the Vh and Vl variables being synthesized separately 
and cloned into mammalian expression vectors pEU10.1 and pEU4.4, 
respectively. Vectors were transiently transfected into CHO cells using 
PEI and a proprietary medium. Expressed Fabs were purified by loading 
the cleared culture supernatant onto a CaptureSelect CH1-XL column 
(Life Technologies; Thermo Fisher), running in DPBS, eluting with 
25 mM acetate (pH 3.6), and buffer exchanging into DPBS (pH 7.4) using 
PD-10 desalting columns (Cytiva). The concentration was determined 
spectrophotometrically using an extinction coefficient based on the 
AA sequence. The protein purity was verified by SDS–PAGE and the 
verification of correct molecular weight was achieved by LC-MS analy-
sis4. Analytical high-performance size exclusion chromatography was 
performed post-purification by loading 70 μl of each protein onto a 
TSKgel G3000SWXL, 5 μm, 7.8 mm × 300 mm column, using a flow rate 
of 1 ml min−1 and 0.1 M sodium phosphate dibasic anhydrous with 0.1 M 
sodium sulfate, pH 6.8, as the running buffer. A gel filtration standard 
(151-1901; Bio-Rad) was also run for comparative purposes.

IL-7 kinetics measurements
Kinetics of binding for the top-19 hits and IL70001 was measured 
using Octet BLI and SA-coated tips (18-5136; Sartorius). In all cases, 
the buffer used was DPBS (14190-169; Gibco) with 0.1% BSA and 0.02% 
Tween 20. Purified Fabs were diluted to a final concentration of 50 nM. 
Kinetics were measured using the following steps: (1) sensor check for 
60 seconds, (2) loading of huIL-7–biotin at 5 μg ml−1 for 30 seconds, 

(3) baseline measurement for 60 seconds, (4) association kinetics at 
50 nM of each Fab for 300 seconds, and (5) dissociation kinetics for 
600 seconds.

TF-1 STAT5 IL-7Rα and IL-7Rγ cell-based reporter assay
Two vials containing 1 ml of 107 per ml TF-1 STAT5 IL-7α and IL-7γ lucif-
erase cG3 cells were removed from liquid nitrogen, defrosted, trans-
ferred into 50 ml Falcon tubes (2 vials per tube) containing 40 ml of 
complete medium, and centrifuged for 5 minutes at 1,200 rpm. The 
supernatant was aspirated, and cell pellets were resuspended in 40 ml 
RPMI (11875093; Thermo Fisher) with 10% FBS and 1% sodium pyru-
vate before centrifugation for another 5 minutes at 1,200 rpm before 
aspirating the supernatant as before. Cells were finally resuspended 
in 40 ml RPMI with 10% FBS and 1% sodium pyruvate, placed in a T175 
flask and incubated for 24 hours at 37 °C in an atmosphere of 5% CO2.

huIL-7 (CHO expressed) was made up to 0.12 nM in RPMI with 10% 
FCS and sodium pyruvate, which was then diluted 1:100 to a final vol-
ume of 20 ml for addition to a 384-well plate. Purified Fabs were added 
undiluted to a 384-well plate, and an 11-point, 3-fold duplicate serial 
dilution was performed using a Bravo liquid handling platform into 
complete RPMI. Cells were removed following the 24 hour incubation 
and pelleted by centrifugation at 1,200 rpm for 5 minutes and resus-
pended in 10 ml of RPMI with 10% FCS and 1% sodium pyruvate. Cells 
were counted and diluted in complete RPMI to give a concentration of 
10,000 cells per 20 μl. Cells (20 μl) were then added to 3× 384-well clear 
assay plates. A 10 μl volume of the titrated Fabs was added to the cells, 
followed by 10 μl of 120 pM huIL-7. The plates were then placed in a tis-
sue culture incubator for 6 hours at 37 °C in an atmosphere of 5% CO2. 
Steady-Glo reagent (100 ml; E2520; Promega) was defrosted before use 
and 40 μl was added to each well of the 384-well plates. The plates were 
sealed and incubated for 10 minutes in a plate shaker before measure-
ment. Luminescence readings were measured using an EnVision plate 
reader with a 1 second pulse time. Each Fab was measured in duplicate.

Data were exported and processed, and mean data were fitted 
using least squares to a log inhibitor response curve defined by the 
following equation:

Y = bottom +
(top − bottom)

(1 + 10((log IC50−X)HillSlope))

where Y is the response, bottom is the response at the minimum of 
the sigmoid curve, top is the response at the maximum of the sig-
moid curve, log IC50 is the log concentration of the inhibitor that gives 
a response halfway between the top and the bottom, and HillSlope 
describes the steepness of the curve. X is the experimental concentra-
tion of the inhibitor.

Deep screening of the anti-HER2 affinity panel
The anti-HER2 scFv affinity panel plus trastuzumab5 protein sequences 
were back translated, codon optimized and composed into the 
deep-screening display construct with a known 28 nt UMI. DNA con-
structs were ordered as gBlocks from IDT and clustered on a rapid PE 
flow cell at 1% per construct, with the remaining clusters on the flow 
cell comprising PhiX control (FC-110-3001; Illumina). The flow cell was 
sequenced for 28 cycles and deep-screening display was conducted as 
described above.

Following successful display, we performed an equilibrium-binding 
assay using biotinylated human HER2 (HE2-H822R, 25 μg; Acro Biosys-
tems) and AF532–SA (S11224; Thermo Fisher). In this instance, a binding 
assay cycle was conducted by injecting 120 μl of HER2–biotin, incu-
bating for 45 minutes at 20 °C, washing with 200 μl of display buffer, 
injecting 120 μl of 100 nM AF532–SA, incubating for 10 minutes at 
20 °C before washing with 200 μl of display buffer and imaging. The 
equilibrium-binding assay was performed at 100 pM, 333 pM, 1 nM, 
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3.33 nM, 10 nM, 33.3 nM and 100 nM HER2–biotin before initiating 
a kinetic dissociation assay. The dissociation assay was performed 
by pumping wash buffer over the flow cell and imaging at 5 minutes, 
10 minutes, 20 minutes, 60 minutes, 240 minutes and 420 minutes. 
Data collected from this experiment were processed as described 
above, and aggregate statistics were calculated through grouping by 
the known UMIs.

Anti-HER2 scFv affinity maturation library preparation and 
deep screening
We built a CDR Vh3 affinity maturation library with G98A as the parental 
starting clone. This was accomplished by topoisomerase-based cloning 
(450245; Thermo Fisher) the G98A gBlock from the previous section 
into TOP10 Chemically Competent Cells (C404010; Thermo Fisher), 
picking 6 colonies, growing these overnight in 5 ml TB with 50 μg ml−1 
kanamycin and miniprepping 2 ml of culture. Plasmids were sent for 
Sanger sequencing using M13 forward and reverse primers; one of the 
correct colonies were taken forward for subsequent processing. As we 
wanted to build a Vh3 affinity maturation library, we first needed to 
extract the regions upstream and downstream of Vh3. We did this by 
PCR amplification of the plasmid DNA as two reactions for 25 cycles 
using Q5 polymerase with primer set 1 (G98A_olap.fwd and G98A_5p_
VH3.rev; Supplementary Table 1) and primer set 2 (G98A_3p_VH3.fwd 
and G98A_olap.rev; Supplementary Table 1). Both PCRs were subse-
quently treated with DpnI (R0176L; NEB) for 1 hour at 37 °C before 
being purified with a PCR clean-up kit (T1030S; NEB). This process 
yielded the upstream and downstream fragments of the G98A clone 
with homology to the deep-screening display construct while removing 
contaminating wild-type plasmid DNA.

We next assembled the HER2 affinity maturation library by 20 
cycles of PCR using Q5 polymerase, the upstream and downstream 
fragments of G98A, an equimolar amount of Vh3 NNS oligonucleo-
tides that produce a scanning window of 4 NNS codons across the 
CDR Vh3, and the G98A overlap forward and reverse primers (Sup-
plementary Table 1). This product is then column purified using a PCR 
clean-up kit (T1030S; NEB). We next append the deep-screening 5′ and 
3′ adaptors using the Gibson assembly with 0.2 pmol of each fragment 
and NEB HiFi Assembly Master Mix (E2621, NEB) at 50 °C for 60 min-
utes. The library is then bottlenecked by taking 300 amol of material 
from the Gibson assembly reaction (assuming 100% efficiency) and 
PCR amplifying for 25 cycles with Q5 polymerase and the outnest P5 
and P7 primers. The PCR product was run on a 1% agarose gel and a 
1.2 kb band was gel extracted, purified, and quantified initially by 
NanoDrop and subsequently by qPCR (NEBNext Library Quant Kit, 
E7630,;NEB).

The quantified library was diluted to 2 nM before being denatured 
(10 μl of library is mixed with 10 μl of 100 mM NaOH and incubated at RT 
for 5 minutes) and rapidly diluted to 20 pM in HT1 buffer provided by 
the rapid PE flow-cell clustering kit (PE-402-4002; Illumina). We diluted 
the library to a final concentration of 6 pM before loading on the HiSeq 
2500 and setting up a deep-screening experiment as described above.

Following acquisition of the baseline flow-cell images, we per-
formed an equilibrium-binding assay at successive and increasing 
concentrations of human HER2–biotin (HE2-H822R, 25 μg; Acro Bio-
systems) pre-complexed with AF532–SA (S11224; Thermo Fisher) in a 
1:1 ratio (100 pM, 333 pM, 1 nM, 3.33 nM, 10 nM, 33.3 nM and 100 nM). In 
this instance, a binding assay cycle was conducted by injecting 120 μl of 
the HER2–biotin and AF532–SA pre-complex, incubating for 45 minutes 
at 20 °C and washing with 200 μl of display buffer before imaging the 
flow cell. Following the highest 100 nM condition, a kinetic dissociation 
assay was conducted by pumping display buffer over the flow cell and 
imaging at 5 minutes, 10, minutes 20, minutes 60 minutes, 120 minutes 
and 240 minutes. Images were then processed, and CDR sequences 
were resolved through internal primer sequencing as described above, 
which we used to assemble a CDR-binding dataset termed HER2affmat.

BERT-DS architecture and training
ML models have been widely applied to protein engineering6. For 
antibody engineering, we built BERT-DS with inspiration from Prot-
Bert7,8, but with substantially fewer parameters and more focused 
towards learning the general rules that govern antibodies. Using the 
PyTorch framework (v.1.8.0) (refs. 9,10), we initially constructed a 
BERT masked language model (MLM) with a positional embedding 
input with a vocabulary size of 25 and a maximum input length of 150, 
as previously described11. The positional embedding layer output is 
then passed into 12 self-attention transformer blocks, with each layer 
containing 12 attention heads, with a feed-forward layer size of 768, a 
position-wise feed-forward layer size of 3,072 and dropout of 0.1. The 
last transformer block output is then passed to the MLM block, which 
consists of a fully connected layer with a dimension of 768 followed by 
a Tanh activation function, another fully connected layer with a dimen-
sion of 768 followed by a layer normalization12, and a Gaussian Error 
Linear Unit (GELU) activation function and a final fully connected layer 
that produces a 150 × 25 logits matrix. This yielded a model compris-
ing 86 million parameters (Extended Data Fig. 4 for a visual structure 
of the model).

A total of 20 million human sequences from the Observed 
Antibody Space (OAS) dataset13,14 were prepared by downloading 
the unpaired dataset on 1 August 2021 and extracting all human Vh 
sequences shorter than 150 AAs stored in CSV files. This yielded 
229 million unique sequences that we shuffled and split. The first 
20 million sequences were used as a training set and the last 100,000 
sequences were used as a validation set. For input into the BERT-DS 
model, each sequence or sample is processed such that, at every AA 
position, there is a 15% probability that it is either masked (with an 
80% probability) or randomly mutated (with a 10% probably), with 
a subsequent 10% probability that the position is unchanged. The 
modified and ground-truth sequences are then tokenized for input 
to the BERT-DS model and padded out to a maximum length of 150 
using a padding token.

BERT-DS was pre-trained against our OAS dataset with a 
cross-entropy loss function and the Adam optimizer using a learning 
rate of 1 × 10−4 and default hyperparameters (β = (0.9, 0.999), ε = 1 × 10−8 
and weight decay = 0), 16,000 warm-up steps over which the learning 
rate is ramped from 0 to 1 × 10−4, before being ramped back to 0 over 
100,000 optimizer steps; where β are coefficients used for computing 
running averages of the gradient and its square, and ε is a term added 
to the denominator of the optimiser function to improve numerical 
stability. This was conducted through model parallelism on 8 Nvidia 
A100 GPUs.

Following pre-training, we next wanted to fine-tune the model to 
perform classification of anti-HER2 Vh sequences using data gener-
ated by deep screening as a part of the HER2affmat dataset. This was 
achieved by using the pre-trained embedding and transformer blocks 
and taking the mean across the vocabulary vector from the last trans-
former block, yielding a 768-long vector. We then appended a classifier 
head, which consists of a fully connected layer with an output dimen-
sion of 128 followed by a Rectified Linear Unit (ReLU) activation func-
tion and a final fully connected layer that outputs logits for 3 classes 
(non-hit, low hit and high hit). We trained this using a cross-entropy 
loss with class weights to help training on a heavily imbalanced prob-
lem (232,693 non-hit, 1,284 low hit and 111 high hit), and the Adam 
optimizer with a learning rate of 1 × 10−4 and default hyperparameters  
(β = (0.9, 0.999), ε = 1 × 10−8 and weight decay = 0). No scheduler 
or warm-up steps were used. We trained the model for 100 epochs 
and used the checkpoint with the lowest-scoring validation set 
cross-entropy loss for subsequent predictions.

Fine-tune training used the HER2affmat dataset to model a 
sequence–function relationship. As we only sequenced the Vh3 of each 
clone, we assumed that the rest of the scFv was wild type. We compose 
a full Vh sequence, tokenize and pad this for input into the BERT-DS 
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model. For the class labels, we decided on three classes, non-hit, low 
hit and high hit, that we wished to predict. Each sequence was given 
a label based on its FImean in the 5 minute wash condition. We selected 
threshold values such that the parent clone G98A was roughly centred 
in the low-hit category, where G98A has an intensity of 190.05, and we 
chose a non-hit threshold of 150.0 and a high-hit threshold of 250. The 
dataset was shuffled and split into train and test sets with a 90:10 ratio 
before training as described above.

ML versus random library preparation and deep screening
We devised a selection scheme (Fig. 5b) where for each seed sequence 
a random mutation set was compiled from all single mutants and up 
to 1,000 mutants from edit distances 2–5, yielding a pool of 13,121 
mutations (random/mut). We next assembled a pool of sequences 
with exclusively ML-generated mutations by removing all sequences 
with a high-hit score <0.9 and randomly selecting up to 1,000 mutants 
from edit distances 2–5 and rejecting those that were already selected 
in the random/mut set. This assembled a pool of 11,916 mutations (ml/
mut). Sequences were combined into an oligonucleotide pool of 25,042 
CDR Vh3 sequences and ordered from Twist Bioscience. The HER2 ML 
versus random library was assembled for deep screening similar to the 
HER2affmat library, where 20 cycles of PCR using Q5 polymerase, the 
upstream and downstream fragments of G98A, were combined with the 
oligonucleotide pool and the G98A olap forward and reverse primers 
(Supplementary Table 1). This product was then column purified using 
a PCR clean-up kit (T1030S; NEB). We next append the deep-screening 
5′ and 3′ adaptors using the Gibson assembly with 0.2 pmol of each 
fragment and NEB HiFi Assembly Master Mix (E2621; NEB) at 50 °C for 
60 minutes. The library is then bottlenecked by taking 300 amol of 
material from the Gibson assembly reaction (assuming 100% assembly 
efficiency) and PCR amplifying for 25 cycles with Q5 polymerase and 
the outnest P5 and P7 primers. The PCR product was run on a 1% aga-
rose gel and a 1.2 kb band was gel extracted, purified, and quantified 
initially by NanoDrop and subsequently by qPCR (NEBNext Library 
Quant Kit, E7630; NEB).

The quantified library was diluted to 2 nM before being denatured 
(10 μl of library is mixed with 10 μl of 100 mM NaOH and incubated at RT 
for 5 minutes) and rapidly diluted to 20 pM in HT1 buffer provided by 
the rapid PE flow-cell clustering kit (PE-402-4002; Illumina). We diluted 
the library to a final concentration of 6 pM before loading on the HiSeq 
2500 and setting up a deep-screening experiment as described above.

Following acquisition of the baseline flow-cell images, we per-
formed an equilibrium-binding assay at successive and increasing 
concentrations of human HER2–biotin (HE2-H822R, 25 μg; Acro Bio-
systems) pre-complexed with AF532–SA (S11224; Thermo Fisher) in a 
1:1 ratio (100 pM, 333 pM, 1 nM, 3.33 nM, 10 nM, 33.3 nM and 100 nM). In 
this instance, a binding assay cycle was conducted by injecting 120 μl of 
the HER2–biotin and AF532–SA pre-complex, incubating for 45 minutes 
at 20 °C and washing with 200 μl of display buffer before imaging the 
flow cell. Following the highest 100 nM condition, a kinetic dissociation 
assay was conducted by pumping display buffer over the flow cell and 
imaging at 5 minutes, 10 minutes, 20 minutes, 60 minutes, 120 minutes 
and 240 minutes. Images were then processed, and CDR sequences 
were resolved through internal primer sequencing as described above, 
which we used to assemble a CDR-binding dataset termed HER2 ML 
versus random.

Anti-HER2 hit kinetics measurements
Kinetics of binding for all anti-HER2 Fabs was measured using Octet 
BLI and SA-coated tips (18-5136; Sartorius). In all cases, the buffer used 
was DPBS (14190-169; Gibco) with 0.1% BSA and 0.02% Tween 20. Puri-
fied Fabs were diluted to a final concentration of 20 nM. Kinetics were 
measured using the following steps: (1) sensor check for 60 seconds, (2) 
loading of human HER2–biotin (HE2-H822R, 25 μg; Acro Biosystems) 
at 5 μg ml−1 for 30 seconds, (3) baseline measurement for 60 seconds, 

(4) association kinetics at 20 nM of each Fab for 300 seconds, and (5) 
dissociation kinetics for 600 seconds in buffer.

Ablation study of BERT-DS
With experimentally validated performance comparisons of BERT-DS 
against random mutagenesis, we sought to conduct an ablation study to 
understand whether BERT-DS provides an improvement over BERT-DS 
without pre-training and over a variety of classical ML models (includ-
ing a multi-layered perceptron (MLP), linear regression, linear support 
vector machine (SVM) and random forest models).

As BERT-DS was initially trained in August 2021 and this ablation 
study was performed in March 2023, considerable changes to our 
software and hardware stack have affected our ability to fairly compare 
BERT-DS as described above, with the only exception being the absence 
of early stopping. Therefore, we decided to set a static train–test split 
and random seed before (re)training all models with the exact same 
hardware and software.

The train–test split contained the following counts: for training, 
149,402 (non-hit), 899 (low hit) and 81 (high hit); for testing, 37,328 
(non-hit), 245 (low hit) and 22 (high hit).

A randomly initialized BERT-DS. To understand whether pre-training 
a language model on an antibody-specific dataset provides benefit 
to downstream antibody-affinity predictions, we randomly initial-
ized a BERT-DS model and proceeded with the fine-tuning process as 
described above.

A soft classification target for BERT-DS. During development of 
BERT-DS, we wondered whether converting a continuous set of values 
with some degree of experimental noise into a multi-class classifica-
tion problem (non-hit, low hit and high hit) was the cause of our poor 
F1 scores on the high-hit class. We hypothesized that hard boundaries 
between the classes and small sample numbers were resulting in a high 
hit being classified as a low hit and vice versa when such a hit had an FI 
value close to the boundary. Therefore, we implemented the idea of a 
soft classification target, where we treat the task of predicting whether 
a given sequence is a non-hit, low hit or high hit as a binary classification 
problem; that is, non-hits have a label of 0.0, low hits have a label of 0.5 
and high hits have a label of 1.0. We implemented this training regime 
for a pre-trained and randomly initialized BERT-DS model.

MLP. To explore the utility of a large language model over an MLP 
neural network, we implemented a simple multiple-layered, fully con-
nected neural network. The input to this model is the 21-AA-long CDR3 
loop. This is converted into a 64-dimensional feature vector using an 
embedding layer, which is flattened along the sequence dimension. We 
then have one linear layer that receives a 21 × 64 dimensional input to 
a 32-long vector without a bias. This is followed by a GELU activation 
function and layer normalization. This is followed by another linear 
layer that increases from 32 dimensions to 64 without a bias, followed 
again by a GELU and a layer norm. Finally, the last linear layer takes a 
64-dimensional input and outputs either a 3D output for multi-class 
classification or a single scalar value for predicting a soft classification 
target (as described above). This leads to 46,979 and 46,849 param-
eters, respectively. Training of both MLP models was performed until 
convergence with a batch size of 200 on 4× A100 GPUs. Losses of 
non-hit instances were downweighed by a factor of 1–99 and losses 
were optimized using AdamW with a linear decay from 5 × 10−5 to 0 
over 50,000 steps.

Classical ML models. We also compared BERT-DS against several 
classical ML models for multi-class classification, provided by the 
Scikit-learn package (v.1.2.1). This included a linear regression, lin-
ear SVM and random forest model. These models were trained using 
default hyperparameters on the same train–test split as BERT-DS and 
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a 1D (flattened) one-hot encoding of the AA sequences, as described 
in the PCA methods.

Results and discussion. In this ablation study, we sought to under-
stand the impact of BERT-DS pre-training and its soft classification 
target on downstream antibody-affinity predictions. We also compared 
the performance of BERT-DS against a randomly initialized BERT-DS, 
MLP, and several classical ML models, including logistic regression, 
linear SVM and random forest.

As considerable time had passed since we first trained and evalu-
ated BERT-DS, we needed to ensure that comparisons were conducted 
fairly, using the same train–test data, random seeds, hardware and 
software stack. We first retrained BERT-DS and on the test set observe F1 
score increases in the low-hit class (0.33 to 0.39) and F1 score decreases 
(0.48 to 0.42, Δ = −0.06) when compared with our 2021 BERT-DS model. 
We suspect that the variations between the two BERT-DS models (2021 
and 2023) are due to a combination of the test–train split in 2023 con-
taining fewer high-hit class samples and the fact that we did not use 
early stopping in 2023, but rather ran the classification training for 100 
epochs. Regardless, we will consider BERT-DS 2023 as the benchmark 
going forward (Supplementary Table 4).

During the development of BERT-DS, we struggled to improve 
the F1 scores of the low hit and high hit and wondered whether this 
was the result of binning FI values into three classes; that is, variances 
on samples at the class boundaries results in misclassifications from 
the model. Therefore, we decided to explore that concept of a soft 
classification target, where we treat the task as a binary classification 
problem, so that non-hits have a value of 0.0, low hits have a value of 0.5 
and high hits have a value of 1.0. Although this improved the low-hit F1 
score by 4.8%, the high-hit F1 score dropped by 26.5% (Supplementary 
Tables 5 and 13). We are not entirely sure why this approach negatively 
affected the BERT-DS model so much, but future work should explore 
alternative approaches to ‘softening’ the binned classification tasks.

We next explored whether pre-training a language model on the 
observed antibody space provided an advantage over randomly ini-
tialized weights. After fine-tuning a randomly initialized BERT-DS, we 
observed a 7.61% increase in the low-hit F1 score and an 8.11% decrease 
in the high-hit F1 score (Supplementary Tables 6 and 13). Implementing 
a soft classification target on a randomly initialized BERT-DS resulted 
in a 13.71% decrease in the low-hit F1 score and a 33.65% decrease in the 
high-hit F1 score (Supplementary Tables 7 and 13). Taken together, we 
show that pre-training on a domain-specific dataset provides a substan-
tial improvement in performance over random initialization (Supple-
mentary Table 13), an effect that was observed with natural-language 
tasks in the original BERT article15.

Following our explorations into ablating BERT-DS, we wanted to 
evaluate prediction performance using an MLP, logistic regression, 
SVM and random forest. Pre-training and fine-tuning BERT-DS is com-
putationally intensive relative to these simpler models, and we wanted 
to understand whether this is a justified cost. The results here indicate 
that BERT-DS, particularly the pre-trained and soft classification target 
variant, outperforms all classical ML models in terms of F1 scores for all 
classes in the test set (Supplementary Tables 8–13 and Extended Data 
Fig. 5). This finding shows that the use of pre-trained language models, 
specifically tailored to the domain of interest, can provide substantial 
benefits for antibody-affinity prediction.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The main data supporting the results in this study are available in sum-
marized form from Zenodo at https://doi.org/10.5281/zenodo.8241732, 
under a CC-BY-NC-ND licence. The raw datasets generated during the 

study are too large to be publicly shared, yet these and other raw data 
are available from the corresponding author on reasonable request. 
Source data are provided with this paper.

Code availability
The custom code for the processing of images collected in a 
deep-screening experiment and training of BERT-DS is available at 
https://github.com/holliger-lab/DeepScreening under a CC-BY-NC-ND 
licence.
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Extended Data Fig. 1 | Characterization of anti-HEL nanobodies. a) Anti-HEL 
nanobody hit candidates selected for characterisation, showing the library 
construct structure (top) and clone ID, where M1-23 are derived from the R3 
MACS library, C1-8 were identified by colony picking from the R3 MACS output 
and F1-10 were derived from the R3 FACS library. The abundance, CDR sequences, 
a deep screening derived equilibrium binding constant (KappD ), and BLI derived 
kinetic KDs are also shown. b) BLI KDs plotted against deep screening FI at 300 nM 
HEL for all characterised clones, revealing a Spearman’s rank correlation 
constant (rs) of -0.697 and a p-value (determined by two-tailed test) <0.001. Error 
bars are the errors from fitting respective binding constants. Hit thresholds are 

shown as dashed orange and grey lines. c) BLI KDs plotted against deep screening 
KappD s for all characterised clones revealing a Spearman’s rank correlation 
constant (rs) of 0.574 and p-value of 0.0014. Error bars are the errors from fitting 
respective binding constants. d) Receiver Operating Characteristic (ROC) curve 
showing the performance of deep screening at picking hits versus non-hits in a 
binary classification scheme, and how this compares to random. This curve uses 
the following hit thresholds: a mean FI at 300 nM HEL of 347.58 and a BLI KD of 
10−6M. Area under the curve (AUC) values are indicative of performance, with 
deep screening having an AUC of 0.76, while random is 0.49.
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Extended Data Fig. 2 | Display of an anti-HER2 scFv affinity panel. a) Construct 
design showing CDR sequences (VH3, VL1 and VL3) and binding affinities 
of clones G98A, C6.5, ML3-9, H3B1 and B1D2 + A1. b) Flow cell images of the 
ribosome displayed anti-HER2 scFv affinity panel during equilibrium binding and 

kinetic dissociation. Images are set to the same min/max threshold of 100/1000. 
c) Curve fits to equilibrium binding and kinetic dissociation data, showing clones 
from A) and the addition of Herceptin (trastuzumab).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Rank and correlation plots from deep screening for the 
HER2 ML vs. Random library. a) Rank plots of 199k anti-HER2 scFv clones from 
the equilibrium binding assay, showing their mean fluorescent intensities at 
0 nM, 0.1 nM, 0.3 nM, 1 nM, 3.3 nM, 10 nM, 33.3 nM and 100 nM Her2. Clones were 
selected for a variety of reasons (see Extended Data 1) for subsequent conversion 
to Fab, expression, purification, and characterisation. b) PCA plot from the 
‘HER2Affmat’ library, showing all 236k CDR H3 protein sequences projected into 
two dimensions and coloured by mean fluorescent intensity at 100 nM of HER2. A 
red dot shows the position of G98A wild-type relative to the library. c) PCA plot 
from the HER2 ML vs. Random library, showing all 199k CDR H3 protein 
sequences projected into two dimensions and coloured by mean fluorescent 
intensity at 100 nM of HER2. d) Correlation between BLI characterised binding 

affinities (KD) and deep screening mean FI at 0 nM, 0.1 nM, 0.3 nM, 1 nM, 3.3 nM, 
10 nM, 33.3 nM, 100 nM HER2 and the 5 minute wash condition. Error bars are 
s.e.m. and n ≥ 12. The grey vertical line is showing the mean library intensity at 
each respective concentration. Correlations are shown as Spearman’s rank 
correlation constant (rs) and p-values were determined by a two-tailed test. e) 
Zoomed correlation between BLI characterised binding affinities (KD) and deep 
screening mean FI at 3.3 nM and 10 nM HER2. Error bars are s.e.m. and n ≥ 12. f ) 
Correlation between BLI characterised binding affinities (KD) and deep screening 
determined equilibrium binding constants (KappD ). Correlations are shown as 
Spearman’s rank correlation constant (rs) and p-values were determined by a 
two-tailed test. Linear regression was used to show a line of best fit.
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Extended Data Fig. 5 | Ablation study of BERT-DS. Ablation study F1 scores on 
predicting non-hits, low-hits, and high-hits from the ‘HER2Affmat’ dataset for 
BERT-DS (with and without pretraining on OAS), BERT-DS ablation models, a 
multi-layered perceptron (MLP) neural network, an MLP trained on a soft binary 

classification target, logistic regression, linear support vector machine and 
random forest models. We report F1 scores on the a) train and b) test set splits. 
Numerical values for F1, precision and recall for each model and train/test set can 
be found in Supplementary Tables 5–14.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection HiSeq Control software (HCS v. 2.2.68, Illumina). 
Archimedes Test software (ATS v. 3.8.317.0, Illumina). 
Octet Data Acquisition software (v. 11.0, ForteBio).

Data analysis Data were analysed using custom software, available at https://github.com/holliger-lab/DeepScreening

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 
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Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender The study did not involve human participants.

Population characteristics —

Recruitment —

Ethics oversight —

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes for the deep-screening experiments were initially determined by Illumina sequencing and refined via UMI replicate filtering, 
median absolute deviation outlier rejection, and filters on whether data were observed during the binding assay.

Data exclusions In processing the deep-screening data, measurements were grouped by UMI, and outliers removed by median absolute deviation of 2 
standard deviations from the sample median.

Replication The deep-screening experiments were not replicated, although replication studies have been performed outside of this work. Within a given 
deep-screening experiment, we require that each UMI has at least 12 replicate measurements at different locations on the flow-cell surface. 
Otherwise a UMI is excluded from further analysis. 
 
The BLI experiments were not replicated. 
 
TF-1 STAT-5 IL7 receptor-signalling assays were performed in duplicate for each anti-IL7 Fab that was produced.

Randomization No randomization outside of random mutagenesis (experimental/in silico) was performed or required.

Blinding Blinding was not applicable to this study, because data acquisition and quantification were performed by machines.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Antibodies
Antibodies used FITC labelled anti-HA antibody (GG8-1F3.3.1, Miltenyi Biotech).

Validation The manufacturer states that 293HEK cells transiently transfected with HA-tagged CD4 were stained intracellularly with Anti-HA-FITC 
and CD4-PE, and analysed by flow cytometry to control gene-of-interest and MACSelect surface-marker expression. 
The manufacturer shows a flow-cytometry plot that indicates the validation of the product. 
https://www.miltenyibiotec.com/GB-en/products/ha-antibody-gg8-1f3-3-1.html#fitc:30-tests-in-60-ul

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation The nanobody yeast-display library was acquired from the Kruse laboratory as a frozen stock of >2.5x10^9 cells (EF0014-FP, 
Kerafast). To prepare the naïve library for the first round of selection, one aliquot was thawed at 30°C and used to inoculate 1 
L of Yglc4.5 –Trp supplemented with 2% galactose. The culture was then grown for 72 hours at 24°C. Expression was 
confirmed by flow cytometry with a FITC-labelled anti-HA antibody (GG8-1F3.3.1, Miltenyi Biotech) prior to the first round of 
selection. Round 3 FACS was conducted by incubating cells with 200 nM HEL-biotin for one hour at 4°C, pelleted and 
resuspended in fresh PBS-T-BSA and combined with 100 μg of Neutravidin-PE (A2660, ThermoFisher Scientific) and a 1:1000 
dilution of the anti-HA-FITC (GG8-1F3.3.1, Miltenyi Biotech) antibody for 15 minutes before being sorted.

Instrument Synergy 3 cell sorter (Sony Biotechnology).

Software SY3200 software v2.0 (Sony Biotechnology).

Cell population abundance 50,135 cells with dual labelled (FITC/PE).

Gating strategy Cells were sorted by gating for dual labelled (FITC/PE) events, yielding 50,135 cells.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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