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Abstract: Understanding habitat quality patterns and their drivers in arid zones is of fundamental
importance to the sustainability maintenance of terrestrial ecosystems, but remains elusive. Here, we
applied the InVEST model to investigate the spatiotemporal patterns of habitat quality in the northern
sand-prevention belt (NSPB) across five time periods (2000, 2005, 2010, 2015, 2018), coupled with the
structural equation model (SEM) and boosted regression tree (BRT) model to identify their integrated
driving forces. The results exhibited that habitat quality in high-level zones expanded gradually
from 2000 to 2018, while the middle- and low-level zones shrank. Climate, soil, topography, and
human activities were significantly correlated with habitat quality, with mean annual temperature
(MAT) and human activities being key contributing factors in the high-level and low-level zones,
respectively, whereas the contribution of factors varied considerably in the middle-level zones. The
interactions among climate, soil, topography, and human activities jointly drive habitat quality
changes. Climate intensified the positive effects of soil on habitat quality, while the topographic and
human activities mainly affected habitat quality indirectly through climate and soil. Our findings offer
a scientific guidance for the restoration and sustainable management of desertification ecosystems in
northern China.

Keywords: habitat quality; sustainability maintenance; land use; driving forces; the northern
sand-prevention belt; InVEST model

1. Introduction

Habitat quality is generally defined as the potential of ecosystems to provide suitable
conditions for biological conservation, which has fundamental importance to biodiversity
maintenance and ecosystem service functions [1–3]. Over the decades, land use changes
have dramatically affected habitat quality [4]. Field surveys, ecological index evaluation,
and ecological models were widely applied to evaluate habitat quality and explore its
dynamic change. Most early studies focused on exploring regional variations in habitat
conditions and suitable habitats for species in specific regions through field surveys [5].
Various ecological indexes have been used to rapidly monitor biodiversity and ecological
quality across different scales with the advancements of remote sensing technology [6–10].
Recently, ecological models (e.g., Integrated Valuation of Ecosystem Services and Tradeoffs,
InVEST) were primarily employed to quantify, evaluate, and simulate habitat quality at

Sustainability 2024, 16, 1508. https://doi.org/10.3390/su16041508 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16041508
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-6085-8293
https://orcid.org/0000-0002-1342-3024
https://doi.org/10.3390/su16041508
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16041508?type=check_update&version=1


Sustainability 2024, 16, 1508 2 of 15

larger scales [11–17]. Exploring the spatiotemporal evolution in habitat quality and driving
forces has garnered growing attention in research [18,19].

Identifying the factors influencing habitat quality provides guidance on protecting the
regional ecological environment [20,21]. Natural environment factors (e.g., climate, soil,
and topography) and human activities are generally recognized as the major driving forces
of variations in habitat quality [22]. Climatic conditions, such as temperature and precipita-
tion, affect the land cover, vegetation growth, and water cycle in different environments,
which causes significant differences in habitat quality [12]. Soil physical and chemical prop-
erties are profoundly affected by land use changes [23], with a corresponding regulation
on the distribution characteristics of habitat quality to a certain extent [24]. Topographic
conditions have not altered significantly in the short term but impact surface materials,
energy transfer, and land use patterns, which in turn affect ecological environment qual-
ity [2,25]. In addition, as the primary sources of disturbance to the natural ecosystems,
population pressure and human socio-economic activities are emerging as the most active
factors affecting the evolution of ecosystem patterns. Anthropogenic intensity [26,27],
grazing pressure [28], and urban expansion [29–31] significantly alter the spatiotemporal
characteristics of habitat quality within diverse regions, leading to ecological degradation.
Investigating the effects of various factors such as climate, soil, topography, and human
activities on ecological environment quality is conducive to balancing regional construction
and ecological development [20]. Therefore, examining the synergistic effects of multiple
factors on habitat quality is crucial to fill gaps in the quantitative analysis.

As a national-level ecological barrier in northern China, the northern sand-prevention
belt (NSPB) is highly significant in maintaining ecosystem services, economic development,
and ecological security patterns [32–34]. In recent years, regional land desertification and vege-
tation degradation remained severe, especially under the dual pressures of climate change and
human activities [35,36]. Extensive studies have focused on the regional ecological security,
ecological vulnerability assessment, and ecosystem service function in the NSPB [34,37,38].
However, studies on the interrelationship between habitat quality and driving factors often
adopt simple methods including geographical detectors [39,40], a correlation analysis [41],
and a multiple regression analysis [42], and these studies only focus on examining the effect of
a single factor or single natural element on the ecological environment, and fail to comprehen-
sively explore the multifactorial influencing mechanisms and grasp the impact pathways of
habitat quality from the perspective of ecological integrity. Therefore, spatiotemporal patterns
and integrated driving forces of habitat quality within NSPB remain poorly understood.

In this study, we assembled a comprehensive database including environmental factors
and human activities’ index from 2000 to 2018. The InVEST model was then applied to
quantify habitat quality of NSPB and grasp its temporal and spatial changes. Finally, the
structural equation model (SEM) and boosted regression tree (BRT) model were introduced
to investigate the influence of natural and anthropogenic factors on habitat quality across
five time periods (2000, 2005, 2010, 2015, 2018). The specific objectives of this research
were to (1) explore the habitat quality patterns in the NSPB; (2) identify the contribution
of environmental and anthropogenic variables to habitat quality; (3) grasp the direct and
indirect driving paths of habitat quality patterns. This study is essential for the ecological
restoration and biodiversity conservation of ecological projects in northern China.

2. Materials and Methods

2.1. The Study Area

The NSPB is distributed in an elongated band across northern China (26◦45′34′′ N–
43◦53′25′′ N, 71◦34′23′′ E–125◦43′35′′ E), which mainly includes three regions: the Inner
Mongolia sand-prevention belt, the Tarim sand-prevention belt, and the Hexi Corridor
sand-prevention belt (Figure 1). Among them, the Inner Mongolia sand-prevention belt is
located in south-central Inner Mongolia, west of the Greater Khingan Mountains. The Tarim
sand-prevention belt is situated between the Tianshan and Kunlun Mountains in southern
Xinjiang, China. The Hexi Corridor sand-prevention belt is located in northwestern China,
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south of the Qilian Mountains, and includes parts of Gansu and Qinghai Provinces. The
study area covers 8.1 × 105 km2, with the mean annual temperature being −1.9–13.5 ◦C,
the mean annual precipitation being 30–450 mm, and an arid and semi-arid temperate
continental climate [38]. Soil types within our study area are diverse, including ordinary
wind-sand mobile soil, brown desert soil, thin frozen soil, and ordinary brown soil. The
biomes are mainly desert, grassland, and farmland, with typical characteristics of an
agro-pastoral ecotone [38].
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Figure 1. The location of the NSPB in China.

2.2. Data Collection and Processing

We assembled a comprehensive database by collecting datasets on land cover, climate,
soil, topography, and human activities (Table 1), which are described as follows: (1) The
NSPB of China boundary data were obtained from Global Change Research Data Publishing
& Repository (http://www.geodoi.ac.cn, accessed on 20 June 2023). (2) The land use
data with a 30 m resolution for five periods (2000, 2005, 2010, 2015, 2018) came from the
CLCD database of Yang and Huang [43]. The first-level classification of land use data
includes cropland, forest, shrub, grassland, water, snow, barren, impervious, and wetland.
(3) Meteorological data with a 1 km resolution mainly contain mean annual temperature
(MAT), mean annual precipitation (MAP), and potential evapotranspiration (PET), from
the National Earth System Science Data Center (http://loess.geodata.cn, accessed on
22 June 2023). The average values of climate factors were calculated in the four continuous
time series periods: 2001–2005, 2006–2010, 2011–2015, and 2016–2018. (4) Soil factors
comprise total nitrogen (TN), total phosphorus (TP), soil organic carbon (SOC), soil pH,
bulk density (BD), Clay, Silt, and Sand, which were obtained from the National Tibetan
Plateau Science Data Center (https://data.tpdc.ac.cn, accessed on 26 June 2023) with a
resolution of 1 km. (5) The 1 km resolution digital elevation model (DEM) data were
derived from the Resource and Environmental Science and Data Center of the Chinese
Academy of Sciences (https://www.resdc.cn, accessed on 28 June 2023). The elevation data
were processed by using the surface analysis tool of ArcGIS to obtain the Slope and Aspect.
(6) The 1 km resolution human footprint index (HFI) data came from Mu et al. [44]. The
average values of HFI were calculated in the continuous time series (2001–2005, 2006–2010,
2011–2015, 2016–2018) for the analysis of factors affecting habitat quality in five periods.
To ensure data availability, the above data were uniformly converted into 1 km × 1 km
raster data.

http://www.geodoi.ac.cn
http://loess.geodata.cn
https://data.tpdc.ac.cn
https://www.resdc.cn
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Table 1. Description of data source.

Category Variable Description Resolution Unit Source

Climate factors

MAT
Mean annual

temperature in study
area

1 km °C

National Earth System Science Data
Center (http://loess.geodata.cn,

accessed on 22 June 2023)
MAP

Mean annual
precipitation in study

area
1 km mm

PET
Mean potential

evapotranspiration in
study area

1 km mm

Soil chemical properties

TN
The total amount of all
forms of nitrogen in the
soil to assess soil fertility

1 km g/kg

National Tibetan Plateau Science
Data Center

(https://data.tpdc.ac.cn,
accessed on 26 June 2023)

TP

The total amount of all
forms of phosphorus in

the soil to assess
nutrient status

1 km g/kg

SOC The content of organic
carbon in the soil 1 km g/kg

pH

Soil acidity and
alkalinity as a key index

to evaluate soil
environment

1 km -

Soil physical properties

BD
Soil texture density

reflecting soil
compactness

1 km g/cm3

Clay The content of Clay
particles in the soil 1 km g/kg

Silt The content of Silt
particles in the soil 1 km g/kg

Sand The content of Sand
particles in the soil 1 km g/kg

Topographic factors

DEM

Digital elevation model
represents the

topography of the area
surface

1 km m
Resource and Environmental

Science and Data Center of the
Chinese Academy of Sciences

(https://www.resdc.cn,
accessed on 28 June 2023)

Aspect
Aspect is extracted from

DEM data for
topography analysis

1 km ◦

Slope
Slope is extracted from

DEM data for
topography analysis

1 km ◦

Human activities HFI

Human footprint index
systematically covers

built environment,
population density,

night light, farmland,
pasture, road, railway,
navigable waterway

1 km - (Mu et al., 2022) [44]

Land use Land use

The land use type
includes cropland,

forest, shrub, grassland,
water, snow, barren,
impervious, wetland

30 m - (Yang and Huang, 2021) [43]

2.3. Habitat Quality Assessment

The habitat quality module in the InVEST model can evaluate ecosystem suitability to
support species survival and reproduction [45]. The module calculates the habitat quality
index by integrating land use type sensitivity and external threat intensity. As the habitat
quality index increases, the level of habitat quality improves accordingly [46]. Therefore,
the InVEST model was employed to quantify habitat quality in the NSPB for five time
periods. The input parameters of the model were confirmed according to the InVEST model
manual and previous studies (Tables S1 and S2) [13,14,47]. On this basis, the habitat quality
in the NSPB in 2000, 2005, 2010, 2015, and 2018 was calculated.

To precisely characterize the dynamic tendency of habitat quality, three levels were
divided from the habitat quality in the NSPB through the natural breakpoint classification
method, including low (0–0.4), medium (0.4–0.8), and high (0.8–1.0) [13].

http://loess.geodata.cn
https://data.tpdc.ac.cn
https://www.resdc.cn
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2.4. Identify Drivers of Habitat Quality

The grid method was performed to sample in the study region at a 12 km × 12 km
scale, so as to analyze the drivers of habitat quality and their contributions at a smaller unit
scale. Finally, a total of 5632 sampling points in the NSPB were extracted. Data analysis
tools were used to extract habitat quality of the corresponding grid and average value of
environmental factors and human activities for each period. All sampling points were
extracted in ArcGIS 10.8 software, and then the attribute tables were generated by removing
missing values.

In order to screen out more variables by combining multicollinearity [48,49], 15 factors
were analyzed with the Spearman correlation test. By combining relevant literature [40,50],
we removed the variables that had a high correlation coefficient with the others (|r| > 0.8).
PET, Sand, and SOC were therefore eliminated. After screening, 3 topographic factors (DEM,
Aspect, Slope), 2 climatic factors (MAT, MAP), 6 soil factors (Clay, Silt, BD, pH, TN, TP), and
1 human activity (HFI) factor were included in the final modeling within the NSPB (Figure S1).

All statistical analyses in the research were performed in R (v4.3.0) [51]. To examine
the correlation between habitat quality and variables, the linear mixed-effects model was
conducted using the “lme4” package in R [52], habitat quality was regarded as the response
variable, climate, soil, topography, and human activities were used as fixed effects, and
land use types were included as a random effect. The relative importance of the screened
variables on habitat quality was determined using the BRT algorithm [53] and ranked in
order of importance. BRT can handle a nonlinear relationship and complicated interactions
and is not constrained by covariance and missing data. The “XGBoost” package v.1.4.1.1 in
R was utilized in the BRT analysis and visualization [54].

2.5. Quantify Driving Pathways of Habitat Quality

Piecewise SEM was introduced [55,56] to explore the direct and indirect effects (β
represents the path coefficient) of these variables on the habitat quality in the NSPB.
Piecewise SEM, as a commonly applied method for analyzing ecological data, can address
non-independent observations and the non-multivariate normal distribution of residuals
in response variables. The “piecewise SEM” [57], “nlme”, and “lme4” packages in R were
adopted to perform piecewise SEM. We employed Fisher’s C test to evaluate the goodness
of fit of the model (0 ≤ Fisher’s C/df ≤ 2, 0.05 < P ≤ 1.00), and the model was further
refined based on significance (p < 0.05), and AIC values [55,58].

3. Results

3.1. Spatiotemporal Patterns of Habitat Quality

From 2000 to 2018, the high-level zones in the NSPB were primarily distributed in
mountainous regions, including the Tianshan Mountain Area on the western edge of
Xinjiang Province, the Qilian Mountain Area in the northeast of Qinghai Province, the edge
of Greater Khingan Mountains, and other mountains areas in Inner Mongolia, covered by
vegetation such as woodland, grassland, and scrubland (Figure 2). Medium-level zones
were mainly dispersed in Inner Mongolia areas, where the land types mainly were cropland
and grassland. Low-level zones were extensively distributed in areas spanning Xinjiang
Province, a border area of Gansu Province and Inner Mongolia, as well as the northwest
of Qinghai Province. These regions were mainly concentrated in large areas of desert and
a small portion of grassland, while including areas strongly interfered with via human
activities, such as construction land.
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Figure 2. Habitat quality classification and the proportion of land type at three levels in (a) 2000,
(b) 2005, (c) 2010, (d) 2015, and (e) 2018.

Across the five time periods, the area ratio of low-level zones was the highest, exceed-
ing 50% (Table 2). The area of low-level zones exhibited a trend of “decreased-increased”,
decreasing from 54.10% in 2000 to 51.88% in 2010 and then increasing to 52.11% in 2018.
Meanwhile, the area ratio of medium-level and high-level zones occupied over 20%, with
the area of high-level zones showing a primarily increasing trend from 22.59% in 2000 to
25.24% in 2018.

Table 2. Habitat quality area and percentage statistic for the NSPB from 2000 to 2018.

Level
2000 2005 2010 2015 2018

Area/km2 Percentage/% Area/km2 Percentage/% Area/km2 Percentage/% Area/km2 Percentage/% Area/km2 Percentage/%

Low 439,806 54.10 438,571 53.95 421,762 51.88 422,987 52.03 423,627 52.11
Medium 189,464 23.31 192,303 23.66 188,850 23.23 188,002 23.13 184,156 22.65

High 183,668 22.59 192,064 23.63 202,326 24.89 201,949 24.84 205,155 25.24

3.2. Drivers of Habitat Quality Patterns

The result of the linear mixed effect analysis showed that in the high-level zones,
the habitat quality from 2000–2018 was positively correlated with DEM (p < 0.001), MAP
(p < 0.001), TN (p < 0.001), TP (p < 0.001), and Silt (p < 0.01), and negatively correlated with
MAT (p < 0.001), pH (p < 0.01), BD (p < 0.001), and Clay (p < 0.01), while no significant
relationships were found with the Slope and Aspect (Figures S2–S5). The results of BRT
showed that MAT (ranked as the top one) was the dominant factor shaping habitat quality
in the high-level zones from 2000 to 2018, followed by MAP and HFI. The contribution
of these factors showed significant differences among different periods. Climatic factors
(MAT, MAP) ranked first in the cumulative importance ordering, accounting for more than
30% (Figure 3).
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In medium-level zones, the habitat quality showed a positive relationship with DEM
(p < 0.05), Slope (p < 0.001), and TN (p < 0.001), a negative relationship with pH (p < 0.01)
and BD (p < 0.001), and no significant relationship with Clay (Figures S2–S5). The BRT
results showed a significant difference in the contribution rate of each environmental factor
in the middle-level zones. The primary factors contributing to the habitat quality were
DEM, Slope, BD, and HFI. The importance of soil physical properties in the cumulative
importance ranking decreased by years, from 33% in 2000 to 19% in 2018. On the contrary,
the importance of topographic factors in the cumulative importance ordering increased by
years, from 22% in 2000 to 44% in 2018 (Figure 3).

In the low-level zones, habitat quality was positively correlated with DEM (p < 0.001)
and Slope (p < 0.001), and negatively correlated with MAP (p < 0.01), MAT (p < 0.05), HFI
(p < 0.001), pH (p < 0.001), BD (p < 0.001), Clay (p < 0.001), and Silt (p < 0.001), while the
relationship with Aspect was not significant (Figures S2–S5). We identified HFI as the
major driver of affecting habitat quality with BRT analyses, and the cumulative importance
ranking of human activity was significantly higher than that in the medium-level zones
(Figure 3).

3.3. The Driving Paths of Habitat Quality Patterns

In the high-level zones, the results showed that topographic factors had an indirect
and positive effect on habitat quality through climatic factors and soil physical properties
(Figure 4). The path coefficient of topographic factors on climatic factors was obviously
greater than that of soil physical properties. The HFI contributed indirectly to habitat
quality through its effects on climatic and soil factors. In 2015 and 2018, the HFI directly
negatively affected habitat quality. Climatic factors exerted an indirect positive influence
on habitat quality by regulating soil properties. Moreover, climate negatively affected
habitat quality in 2000 (−0.0872), 2005 (−0.0835), 2010 (−0.0951), and 2015 (−0.0981). Soil
chemistry properties always had positive effects on habitat quality, with path coefficients
of 0.3298, 0.3127, 0.3347, 0.3231, and 0.3093 (p < 0.001) for each period (Figure 4). Notably,
the impact coefficient of soil chemical properties on habitat quality was higher than that of
soil physical properties.
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In the medium-level zones, the results demonstrated that topographic factors exerted
two obvious influence paths on habitat quality from 2000 to 2018. One had a positive
effect on habitat quality (β = 0.2759, 0.3065, 0.3353, 0.3105, and 0.2768, p < 0.001). Another
had an indirect and positive effect through climate and soil (Figure 5). The HFI had
direct negative impacts on habitat quality, with path coefficients of −0.2048, −0.2188,
−0.2254, −0.1748, and −0.1509, respectively (p < 0.001), and indirectly inhibited habitat
quality through adverse effects on climate and soil physical properties. In addition, climate
had a direct and negative influence pathway from 2000 to 2018, with path coefficients
of −0.1764 (p < 0.05), −0.2656 (p < 0.001), −0.2105 (p < 0.001), −0.2547 (p < 0.001), and
−0.2925 (p < 0.001), respectively (Figure 5).
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In the low-level zones, topographic factors primarily had an indirect and positive
effect on habitat quality through their effects on climatic factors and soil physical properties.
In 2000 and 2018, topographic factors had a weak direct positive effect on habitat quality
(Figure 6). Climatic factors in this region indirectly affected habitat quality by increasing soil
physical properties and inhibiting soil chemical properties. In addition, we can observe that
the influence of human activities in this range is more significant than other factors. There
are two observable paths, one indirectly affected habitat quality by influencing climatic
factors and soil physical properties, and another directly affected habitat quality, both of
which displayed negative impacts and had significant impact coefficients (β = −0.2212,
−0.3060, −0.1771, −0.1693, and −0.1778, p < 0.001) (Figure 6).
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4. Discussion

4.1. Spatiotemporal Patterns of Habitat Quality

As a key means to understand ecological conditions, habitat quality assessment signif-
icantly contributes to sustainable development and ecological security. The exploration of
habitat quality patterns provides valuable guidance for regional ecological planning and
biodiversity conservation in the NSPB [59]. A previous study has suggested that threat
factors to habitat quality incorporate construction land, desert, and cropland [45]. We
demonstrated that habitat quality in NSPB was generally low (the proportion of low-level
zones is 54.10%, 53.95%, 51.88%, 52.03%, and 52.11% in the five periods, respectively).
The land type dominated by deserts was the most crucial factor that severely threatened
environmental conditions in the NSPB. Habitat quality of the NSPB exhibited an escalating
trend from 2000 to 2018, but the range remained as fluctuating (Table 2). This finding
is consistent with existing research [7], which suggested that it is primarily related to
the extreme ecological environment or periodic irrational human activities. In addition,
there was a high degree of consistency in the distribution of habitat quality and land type
(Figure 2) [60], which is in accordance with the findings obtained by Mu et al. [61] and
Bi et al. [28]. Therefore, future ecological restoration efforts should place emphasis on the
low-level zones and adopt more biological conservation and land restoration strategies.
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4.2. Drivers of Habitat Quality Patterns

One of the motivators that promote the formation of and change in habitat quality
patterns is the external environment [20]. In this study, we comprehensively consider the
driving forces of multiple factors on habitat quality at a regional scale. Topographic factors
can represent the geomorphic features of the NSPB, reflecting the accessibility of human
activities to some extent. Habitat quality was positively correlated with the DEM and Slope
(Figure S2) [2]. Soil properties can regulate habitat quality through feedback that affects plant
composition and community structure [62,63]. Across three levels, soil pH and BD were found
to be negatively related to habitat quality, while soil TN was positively correlated with habitat
quality (Figure S4). Those sensitive soil quality indicators (e.g., soil pH, TN, and BD) adjusted
plant nutrient absorption, soil element dissolution, and microbial community diversity, which
jointly regulate ecosystem function and stability [64–67]. BRT models showed that MAT
had the most considerable contribution to the habitat quality in high-level zones, which
largely support previous findings [40]. Conversely, habitat quality in our study is significantly
negatively correlated with MAT (Figure S3). The reason may be that temperature conditions
in the NSPB exceed the optimum value for plant growth [11,68]. Temperature changes
directly affect the metabolic processes and growth rates of plants, influencing the ecological
environment quality by altering plant habitability [69]. In addition, it was demonstrated
that human activities were negatively correlated with habitat quality (Figure S5) and their
contributions were higher in the low-level zones (Figure 3), which is extremely similar to a
previous study [26]. The above findings suggest that human activities are essential drivers of
variations in regional habitat quality [27]. Irrational human behavior can destroy the original
ecological conditions and accelerate the deterioration of regional habitat quality [11].

4.3. The Driving Paths of Habitat Quality Patterns

Except for exploring the drivers of habitat quality patterns, capturing the driving
pathways is vital to understanding the complex ecological mechanisms. This study in-
novatively uses SEM models to explore the direct and indirect pathways of climate, soil,
topography, and human activities on habitat quality. The findings indicate that these factors
have not only direct influences on habitat quality distribution but also indirectly affect such
distribution by impacting other factors. Our study found that topographic factors directly
and positively influenced habitat quality in the medium-level zones across five periods
(β = 0.2759, 0.3065, 0.3353, 0.3105, and 0.2768, respectively) (Figure 5), indicating that topog-
raphy has a strong influence on medium habitats dominated by farmland [70,71]. Moreover,
our SEMs revealed that topography indirectly affected the habitat quality through soil
physical properties and climate factors, while soil chemical properties directly affected the
habitat quality. The influence coefficient of soil chemical properties in the high-level zones
was higher than other factors across five periods (β = 0.3298, 0.3127, 0.3347, 0.3231, and
0.3093, respectively) (Figure 4). Environmental conditions have critical long-term effects
on soil, while both topography and climate are closely related to soil variations [72,73].
Soil chemical properties may vary greatly by different land use types [24,65,74]. Therefore,
the significance of soil chemical properties for the habitat quality should not be ignored.
In land use development activities, attention should be paid to the destruction of soil
conditions and variation in soil chemical indicators to realize the sustainable development
of ecological resources.

Furthermore, the responses of habitat quality to climate change should also be a
focus in arid regions. We found that climate favorably mainly affected habitat quality
by regulating the soil physical and chemical properties (Figures 4–6). Climate conditions
influence landscape patterns, such as altering soil element concentration or moisture [64,75].
Notably, climate conditions had direct negative effects on habitat quality, and the influence
pathway coefficients were higher in medium-level zones than in high-level zones across
five periods (β = −0.1764, −0.2656, −0.2105, −0.2547, and −0.2925, respectively). Current
climate conditions are increasingly unfavorable to habitat quality, attributed to global
change and extreme weather (e.g., drought) [76,77].
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Our SEMs exhibited that HFI had a direct negative influence on habitat quality, which
was extremely similar to the linear mixed model results. Human activities not only directly
affect the habitat quality but also indirectly impact through soil and climate (Figures 4–6).
Mechanisms of anthropogenic impacts on habitat quality are incredibly complex, involving
various dynamic processes [29,31,78]. Many studies have reported various ecological projects,
such as the “Three-North Shelter Forest Program”, “The Grain for Green Program”, and “The
Beijing-Tianjin Sand Source Control Project”, which actively contribute to the environmental
ecosystem in northern China [79–81]. Obviously, human activities can regulate the develop-
ment of ecosystems in a benign direction under a strict ecological protection policy. In other
words, economic development can be compatible with ecological protection.

4.4. Limitations and Outlooks

Achieving effective management of the ecological environment in the arid regions of
northern China is a complicated and critical research topic. Prior studies mainly focused on
how land use patterns affect variations in habitat quality, while the driving mechanism of
natural and anthropogenic factors on habitat quality still needs to be clarified. This study
extensively examined the spatiotemporal changes in habitat quality over the past 18 years
in NSPB, and adopted multiple ecological factors to identify the drivers and influence path-
ways of variations in habitat quality by incorporating the natural environment and human
activities into the comprehensive analysis framework, so as to better grasp the modulation
of habitat quality in response to multiple factors and make up for the shortcomings of
quantitative analyses in existing studies. This study has essential roles in promoting the
sustainable and balanced advancement of the regional economy, society, and environment.
The current database data used in this study may have accuracy limitations. In the future,
more measured and observed data should be integrated to optimize the model.

Considering the complexity of the regional ecosystem, the evaluation indexes of
ecological environment quality exhibit diversity. Future studies should explore how abiotic
(e.g., wind, light, and nitrogen deposition) and biotic (e.g., species interactions, seed
dispersal, and alien invasion) factors jointly affect habitat quality and analyze the intrinsic
mechanisms of ecosystem responses to global changes. In addition, factors affecting habitat
quality in different regions are often different. In the future, ecological assessment data
with a regional dimension can be specifically selected, and the research framework can be
extended to other regional studies with important ecological value.

5. Conclusions

This study puts forward an innovative research framework in investigating the effects
of the natural environment, human activities, and their interactions on habitat quality. By
assembling an integrated database including climate, soil, topography, human activities,
and land use, the InVEST model, BRT model, and SEM model were applied to investi-
gate habitat quality patterns and driving mechanisms in the NSPB. The conclusions are
as follows:

(1) The habitat quality within NSPB was comparatively low, showing an upward trend
from 2000 to 2018. During the study periods, the low-level and medium-level habitats
tended to develop into high-level habitats, while the level of habitat quality remained
as fluctuating. This result suggests that ecological conditions in the NSPB are gradually
improved, but the potential risk of habitat degradation remains.

(2) Over most periods, habitat quality showed a significant correlation with the topog-
raphy, climate, soil factors, and human activities, but was independent of Aspect. Across
five periods, MAT and HFI were the most important for habitat quality in the high- and
low-level zones, respectively, while there were period differences in the ordering of factor
contributions in the middle-level zones.

(3) Focusing on the driving pathways of habitat quality variations, we found that soil
chemical properties, topography, and human activities had the greatest direct influence
on habitat quality of high-, medium-, and low-level zones, respectively. Habitat quality
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was enhanced via the soil chemical properties and topography while it was decreased via
human activities. The indirect pathways showed that climate enhanced the positive effects
of soil factors on habitat quality, while topographic and human activities mainly influenced
habitat quality indirectly through climate and soil factors.

In conclusion, our study further indicates that climate, topographic, and soil conditions
are fundamental to maintaining ecosystem stability, while human activities are a significant
threat to habitat quality within NSPB. In the background of accelerated global change and
human activities, habitat quality within NSPB is still improved, which suggests that the
implementation of ecological projects makes a positive contribution to habitat quality in
northern China. Sustained ecological projects can effectively contribute to restoring natural
ecosystems and curb the negative effects of global change.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/su16041508/s1, Table S1: Habitat threat factors. Table S2:
Sensitivity of land use types to the threat factors. Figure S1: Variable correlations and interactions
from 2000 to 2018 (* p < = 0.05). Figure S2: Relationship between topographic factors and habitat
quality at three levels of habitat quality (blue, yellow, and green respectively indicate different levels
of habitat quality: high, medium, and low. The solid line indicates the significance of the fitted
regression line, dashed line indicates non-significance. Gray shading indicates 95% confidence inter-
vals. The sample size is N). Figure S3: Relationship between climate factors and habitat quality at
three levels of habitat quality (blue, yellow, and green respectively indicate different levels of habitat
quality: high, medium, and low. The solid line indicates the significance of the fitted regression line,
dashed line indicates non-significance. Gray shading indicates 95% confidence intervals. The sample
size is N). Figure S4: Relationship between soil factors and habitat quality at three levels of habitat
quality (blue, yellow, and green respectively indicate different levels of habitat quality: high, medium,
and low. The solid line indicates the significance of the fitted regression line, dashed line indicates
non-significance. Gray shading indicates 95% confidence intervals. The sample size is N). Figure S5:
Relationship between human activities and habitat quality at three levels of habitat quality (blue,
yellow, and green respectively indicate different levels of habitat quality: high, medium, and low. The
solid line indicates the significance of the fitted regression line, dashed line indicates non-significance.
Gray shading indicates 95% confidence intervals. The sample size is N).
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