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Abstract

To derive and validate an effective machine learning and radiomics-based model

to differentiate COVID-19 pneumonia from other lung diseases using a large

multi-centric dataset. In this retrospective study, we collected 19 private and five

public datasets of chest CT images, accumulating to 26 307 images (15 148

COVID-19; 9657 other lung diseases including non-COVID-19 pneumonia, lung

cancer, pulmonary embolism; 1502 normal cases). We tested 96 machine

learning-based models by cross-combining four feature selectors (FSs) and eight

dimensionality reduction techniques with eight classifiers. We trained and eval-

uated our models using three different strategies: #1, the whole dataset (15 148

COVID-19 and 11 159 other); #2, a new dataset after excluding healthy individ-

uals and COVID-19 patients who did not have RT-PCR results (12 419 COVID-

19 and 8278 other); and #3 only non-COVID-19 pneumonia patients and a
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random sample of COVID-19 patients (3000 COVID-19 and 2582 others) to pro-

vide balanced classes. The best models were chosen by one-standard-deviation

rule in 10-fold cross-validation and evaluated on the hold out test sets for report-

ing. In strategy#1, Relief FS combined with random forest (RF) classifier

resulted in the highest performance (accuracy = 0.96, AUC = 0.99,

sensitivity = 0.98, specificity = 0.94, PPV = 0.96, and NPV = 0.96). In strat-

egy#2, Recursive Feature Elimination (RFE) FS and RF classifier combination

resulted in the highest performance (accuracy = 0.97, AUC = 0.99,

sensitivity = 0.98, specificity = 0.95, PPV = 0.96, NPV = 0.98). Finally, in strat-

egy #3, the ANOVA FS and RF classifier combination resulted in the highest

performance (accuracy = 0.94, AUC =0.98, sensitivity = 0.96, specificity = 0.93,

PPV = 0.93, NPV = 0.96). Lung radiomic features combined with machine

learning algorithms can enable the effective diagnosis of COVID-19 pneumonia

in CT images without the use of additional tests.

KEYWORD S

computed tomography, COVID-19, differential diagnosis, machine learning, radiomics

1 | INTRODUCTION

Different diagnostic methods have been proposed for
SARS-CoV-2, the virus that causes coronavirus disease
2019, also known as COVID-19.1–3 Medical imaging
modalities, including chest x-rays (CXR) and computed
tomography (CT) scanning, have a key role in the diagno-
sis, prognosis, and treatment planning of COVID-19
pneumonia.1–3 CXR is regarded as the fastest, non-
invasive, widely available, and cost-effective modality for
the assessment of pulmonary lesions and diseases.4 In the
context of COVID-19, some characteristics, such as ground
glass or patchy opacities, can be linked with COVID-19
pneumonia in a CXR.4,5 Nonetheless, discovering these
findings requires expertise as these changes are subtle,
leading to the low sensitivity of CXR.5 CT images, on the
other hand, better demonstrate the opacities and are use-
ful even for the early diagnosis of COVID-19 pneumonia
in asymptomatic/pre-symptomatic patients.6 Nevertheless,
CT shows significantly higher sensitivity and diagnostic
accuracy compared to CXR (0.85 and 0.56, respectively)
while being similar in terms of low specificity (0.50 and
0.60, respectively).7,8 Hence, it is better suited in the triage
of patients if a scanner is available and the higher dose to
the patient from the CT scan is carefully considered.8

A wide range of studies reported on the clinical use of
chest CT and associated qualitative assessment and quan-
titative analysis for the diagnosis and management of
COVID-19 patients.9,10 A number of qualitative/semi-
quantitative findings in chest CT, such as the presence
and laterality of ground-glass opacities and consolidation,
the number of lobes affected, and the extent of lung

involvement, are used as acceptable features for COVID-
19 diagnosis.11 Although the sensitivity of CT imaging
might be high for the assessment of COVID-19 pneumo-
nia, it lacks the ability to make a confident diagnosis as it
suffers from a low specificity since these findings rely on
physician's inference and are most likely to be subjec-
tive.12 Computerized tools have been proposed as a solu-
tion to address the aforementioned limitations of CT with
aiming to provide tools that can visualize and extract the
most subtle and minute characteristics of images.

Radiomics, a high-level image analysis technique that
mines multi-dimensional data from medical images,13–16

has emerged in the past decade and has been used more
recently in evaluating COVID-19 based on CT images.17

Studies reported on the feasibility of deep learning (DL)/
radiomics applied to CT images toward classification
(e.g., COVID-19 pneumonia, non-COVID-19 pneumonia,
other lung diseases, or normal images). Harmon et al.18

trained a DL-based neural network and validated it on a
cohort of 1337 patients. Bai et al.19 included 1186 patients
and evaluated an artificial intelligence (AI)-based model
to classify CT images into COVID-19 and non-COVID-19
pneumonia. Zhang et al.20 conducted a study on 3777
patients and evaluated an AI system with the addition of
clinical data to determine whether an image reflects
COVID-19 pneumonia, other pneumonia, or normal. Di
et al.21 utilized radiomic features to assess the differentia-
tion of COVID-19 pneumonia and community-acquired
pneumonia in 3330 patients. Xie et al.22 evaluated the
ability of radiomics features and ground-glass opacities in
301 patients for the discrimination of COVID-19 and
non-COVID-19 patients.
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In addition, several studies were conducted at the
intersection era of COVID-19 to develop CT-based radio-
mic signatures for diagnostic and predictive purposes
with the aim to improve clinical decision-making.17,23–32

Most aforementioned studies utilized datasets consisting
of the dichotomy of COVID-19 pneumonia versus other
non-COVID-19 pneumonia or COVID-19 vs. normal
patients. However, some CXR or CT studies included
other lung diseases as well. For instance, Albahli et al.23

included 14 classes of diseases (e.g., cancer, pneumotho-
rax, fibrosis, edema, atelectasis, etc.) in their dataset and
trained their model on CXR images. Das et al.33 also
included tuberculosis patients and added their images to
COVID-19 pneumonia, other pneumonia, and healthy
CXR images of their dataset. Wang et al.34 studied a data-
set consisting of COVID-19 and other lung disease images
in addition to normal lung images.

Several other AI-based algorithms, such as machine
learning (ML) and deep learning (DL), have been proposed
for the tasks of COVID-19 detection, diagnosis, or prognos-
tication; however, the majority of these studies face limita-
tions according to a systematic review by Roberts et al.,35

which included more than 2000 original articles focusing
on the development of different DL/ML-based algorithms
in the diagnosis/prognosis of COVID-19 patients. First and
foremost is data bias; many articles have used datasets with
small sample sizes, duplicate samples, and low-quality or
non-standardized medical image formats. Moreover, many
researchers have studied the so-called Frankenstein35 and
Toy36 datasets, utilizing small and/or low-quality images
assembled and redistributed from other datasets.35 In addi-
tion, most studies have not provided sufficient information
regarding data preprocessing and demographics of train-
ing/testing cohorts and did not provide public access to
code/data. Roberts et al.35 reported that most articles in the
diagnostic era failed to balance the number of COVID-19
and other classes of diseases in the training and testing
datasets. For example, one study may have included con-
siderably fewer COVID-19 cases compared to other cases.35

Regarding the methodology, most of the studies failed to
elucidate an exact methodology which is a must for con-
ducting reproducible research.35 Hence, few studies are
practical in real clinical situations.35

In the present study, we have gathered multi-centric
CT image datasets of 26 307 patients containing
COVID-19, non-COVID-19 pneumonia, and other lung
pathologies.37 We aimed to assess the value of systemati-
cally utilizing CT-based radiomics and multiple dimension-
ality reductions, feature selection (FS), and classification
algorithms to distinguish COVID-19 pneumonia from non-
COVID-19 pneumonia and other lung diseases. To this
end, we have assembled and utilized a very large, curated
dataset and applied different ML models consistent with
prognostic/diagnostic modeling guidelines.

2 | MATERIALS AND METHODS

The methodological steps adopted in this study can be
found in Figure 1. We filled out several standardized

FIGURE 1 Flowchart of the different steps implemented in

this study, including data acquisition, segmentation using COLI-

NET pipeline, image preprocessing, and feature extraction.

Univariate analysis was performed for each feature, followed by

feature preprocessing performed on feature sets, and feature

selection and classifier algorithms applied to these features.
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checklists regarding diagnostic modeling (TRIPOD, Trans-
parent Reporting of a multivariable prediction model for
Individual Prognosis or Diagnosis38) and AI in medical
image analysis (CLAIM, Checklist for Artificial Intelli-
gence in Medical imaging39) to ensure the reproducibility
and decency of our study. The complete checklist of stan-
dardizations was provided in the supplementary files.

2.1 | Datasets

The data of this study consisted of 19 local and five public
datasets containing both COVID-19 and other lung dis-
eases, arriving at 26307 images (15 148 COVID-19; 9657
other lung diseases including non-COVID-19 pneumonia,
lung cancer, and pulmonary embolism; and 1502
normal). Our public dataset consisted of five separate
datasets, including COVID-19 (n = 1744),18,40,41 pulmo-
nary embolism (PE, n = 5696),42 and lung cancer
(n = 1379)40 CT images. Additional information about

public datasets is provided in.18,40–43 Our private datasets
were assembled in this effort from 19 clinical centers in
Iran, totaling 13 404 COVID-19 patients with the same
number of CT images (one image per patient). The
approval for our research was granted by the institutional
ethical review boards, and due to the study's retrospective
design, the requirement for obtaining written informed
consent was exempted. All public and private datasets
consisted of 3D CT images.

In this study, we included patients with confirmed
COVID-19 pneumonia (n = 15 148),44 patients with con-
firmed other types of pneumonia (n = 2582), pulmonary
embolism (PE) (n = 5696), lung cancer (n = 1379), and
normal healthy population (n = 1502). The confirmation
of COVID-19 pneumonia was either based on positive
RT-PCR or a consensus opinion of two experienced radi-
ologists regarding COVID-19 manifestation in CT images
(in compliance with CO-RADS).2,44 If the two radiologists
reached a discrepancy, a third experienced radiologist
gave the final judgment.44

FIGURE 2 Flowchart of patient enrollment along with their inclusion and exclusion criteria. Altogether, 29 098 patients with various

lung diseases were enrolled in this study, 2791 patients were excluded, and 26 307 patients were used for further analysis.
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Altogether, 29 098 patients with various lung dis-
eases were enrolled in this study. The inclusion and
exclusion criteria are summarized in Figure 2. The
exclusion criteria for patients were as follows:
(1) patients who had negative RT-PCR results
(n = 1900), (2) patients presenting with severe motion
artifacts in CT images confirmed by an experienced
medical physicist (n = 560), (3) patients with inappro-
priate positions in CT images (n = 121), and (4) patients
with low-quality CT images (n = 210). Overall, we
excluded 2791 patients because of the above-mentioned
reasons, and 26 307 patients were used for further
analysis.

The private centers acquired all chest CT images
using an institutional variant of COVID-19 imaging cri-
teria provided by an Iran national society of Radiology.45

To decrease motion artifacts, image acquisition was per-
formed in breath-hold mode. Each center's image acquisi-
tion features are provided in.44

2.2 | Image segmentation, preprocessing,
and feature extraction

The images were segmented automatically using a previ-
ously developed deep learning algorithm called COLI-
Net46 and validated29,44,47,48 DL algorithm. Images and
segmentations were reviewed and edited in case of
mis-segmentation. The images were first cropped to attain
the lung-only region box, then resized to 296 � 216. Next,
the image voxel size was resized to 1 � 1 � 1 mm3 fol-
lowed by 64-bin size discretization. Radiomics feature
extraction was performed using the Pyradiomcis library,49

which has been standardized according to the image bio-
marker standardization initiative (IBSI).50,51 The
105 extracted features included shape (n = 14),
first-order histogram (n = 16), second-order gray level co-
occurrence matrix (GLCM, n = 24), and higher-order fea-
tures including gray level dependence matrix (GLDM,
n = 14), gray level size zone matrix (GLSZM, n = 16), gray
level run length matrix (GLRLM, n = 16), and neighbor-
ing gray tone difference matrix (NGTDM, n = 5).

2.3 | Univariate analysis

In our univariate analysis, we calculated the area under
the receiver operating characteristic curve (AUC), accu-
racy, sensitivity, and specificity for test sets using the
logistic regression model, which was performed on each
feature in three strategies. The Delong test was imple-
mented to show if any significant difference exists
between the AUCs of train and test sets.

2.4 | Feature preprocessing, feature
selection, and classifiers

For Z-Score normalization, the mean and standard devia-
tion were calculated in the training sets and then applied
to testing sets for each feature. Features with high corre-
lation (R2 >0.99) were eliminated using Pearson correla-
tion. Four feature selection (FS) algorithms, including
analysis of variance (ANOVA), Kruskal–Wallis (KW),
recursive feature elimination (RFE), and relief, alongside
eight dimensionality reduction techniques, including
principal component analysis (PCA), incremental PCA
(IPCA), Kernel PCA (KPCA), truncated SVD (TSVD),
Gaussian random projection (GRP), sparse random pro-
jection (SRP), fast ICA (FICA), and t-distributed stochas-
tic neighbor embedding (TSNE) were implemented.
Eight classifiers, including logistic regression (LR), least
absolute shrinkage and selection operator (LASSO), lin-
ear discriminant analysis (LDA), decision tree (DT), ran-
dom forest (RF), AdaBoost (AB), Naïve Bayes (NB), and
multilayer perceptron (MLP) were implemented for clas-
sification. In total, we tested 96 different combinations
via cross-combining four FSs and eight dimensionality
reduction techniques (12 in total) with eight classifiers.

2.5 | Evaluation

We trained and evaluated our models in three different
strategies. First of all, the entire dataset (26 307 patients,
including 15 148 COVID-19 and 11 159 non-COVID-19)
being randomly split into 70% (18 414 patients) and 30%
(7893 patients) for the training and test sets, respectively.
Our dataset encompassed both categories of patients:
those with a confirmed diagnosis of COVID-19 via
reverse transcription polymerase chain reaction
(RT-PCR) and those whose diagnoses were through CT
imaging. Second, excluding normal patients in other lung
disease classes and only including RT-PCR-positive
COVID-19 cases in the COVID-19 class, the resulting
dataset (20 697 patients, including 12 419 COVID-19 and
8278 non-COVID-19) was randomly split into 70% (14488
patients) and 30% (6209 patients) for the training and test
sets, respectively. In the third strategy, only including
non-COVID-19 pneumonia patients and a random sam-
ple of COVID-19 patients (5582 patients including 3000
COVID-19 and 2582 non-COVID-19) to provide a bal-
anced dataset, and then randomly split the dataset into
70% (3907 patients) and 30% (1675 patients) for the train-
ing and test sets, respectively. Figure 2 summarizes the
inclusion, exclusion, and each strategy dataset.

The steps for multivariate analysis, including feature
preprocessing, FS, and classification, were performed
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separately for each strategy. The model's parameters and
hyper-parameters were optimized during the training
phase using grid search algorithms in 70% of the data sets
for three strategies as training sets. A one-
standard-deviation rule chose the best models in 10-fold
cross-validation on train sets (70% of datasets in three
strategies) and the final results reported in the hold-out
test sets (untouched during preprocessing, feature selec-
tion, and classifier training). Accuracy, sensitivity, speci-
ficity, AUC, positive predictive value (PPV), and negative
predicted value (NPV) were reported for the test set. Sta-
tistical comparison of AUCs between the different models

in the test sets was performed by the DeLong test52 to
ascertain the best performances. The significance level of
0.05 was considered for statistical tests. All multivariate
machine learning analyses were performed in the Python
open-source library Scikit-Learn53.

3 | RESULTS

Supplemental Figures S1–3 and S4–6 show the hierarchi-
cal clustering heat map and TSNE visualization of the
radiomic features distribution for COVID-19 and lung

FIGURE 3 Heatmaps of the cross-combinations of feature selectors (12 rows) and classifiers (8 columns) for AUC, sensitivity,

specificity, accuracy, PPV, and NPV in strategy #1. ACC: Accuracy, SEN: sensitivity, SPE: Specificity, AUC: area under the receiver operating

characteristic curve positive predictive value (PPV), and negative predicted value (NPV). The feature selectors including, Analysis of

Variance (ANOVA), Kruskal-Wallis (KW), Recursive Feature Elimination (RFE), Relief, Principal Component Analysis (PCA), Incremental

PCA (IPCA), Kernel PCA (KPCA), Truncated SVD (TSVD), Gaussian Random Projection (GRP), Sparse Random Projection (SRP), Fast ICA

(FICA), and t-Distributed Stochastic Neighbor Embedding (TSNE). Classifiers include Logistic Regression (LR), Least Absolute Shrinkage

and Selection Operator (LASSO), Linear Discriminant Analysis (LDA), Decision Tree (DT), Random Forest (RF), AdaBoost (AB), Naïve

Bayes (NB), and Multilayer Perceptron (MLP).
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disease classes for strategies #1, #2, and #3, respectively.
According to these results, we did not find any cluster in
an unsupervised manner based on centers/dataset. In
addition, TSNE visualization did not show any meaning-
ful cluster of datasets. The correlation of radiomic fea-
tures is depicted in Supplemental Figures S7–9 for
strategies #1, #2, and #3, respectively. Prior to multivari-
ate analysis, highly correlated features (R2 >0.99) were
identified, and redundant features were eliminated,
enabling dimensionality reduction in an unsupervised
manner via machine learning algorithms.

3.1 | Univariate outcome

Supplemental Tables S1–3 summarize univariate analysis for
each feature in strategies #1, #2, and #3, respectively. Using
binary logistic regression, we reported AUC, accuracy, sensi-
tivity, specificity, and p-values (DeLong test) for each feature
of the train and test sets. When comparing AUCs, most of

the features had a p-value > 0.05 for the training and test
sets using the DeLong test. In both strategies 1 and 2, two
features, including Zone Variance and Large Area
Emphasis from GLSZM (AUC = 0.85/0.84, accuracy = 0.79/
0.79, sensitivity = 0.77/0.76/, specificity = 0.82/0.83), subsets
had highest AUC, accuracy, sensitivity, and specificity. In
strategy 3, Joint Entropy from GLRLM (AUC = 0.83,
accuracy = 0.79, sensitivity = 0.84, and specificity = 0.73)
and Gray Level Non-Uniformity Normalized from GLRLM
(AUC = 0.83, accuracy = 0.78, sensitivity = 0.78, and
specificity = 0.78) subsets had highest AUC, accuracy, sensi-
tivity, and specificity.

3.2 | Multivariate outcome

3.2.1 | Strategy #1

For strategy #1, Figure 3 presents the heatmap of the
cross-combinations of FSs and classifiers for different

TABLE 1 Mean value of different

quantitative parameters in different

feature selectors and classifiers for

strategy 1.

AUC ACC SEN SPE PPV NPV

Classifier LDA 0.93 0.92 0.93 0.91 0.95 0.88

MLP 0.82 0.80 0.80 0.79 0.92 0.61

RF 0.94 0.93 0.94 0.91 0.94 0.91

LR 0.92 0.91 0.92 0.89 0.93 0.88

LASSO 0.92 0.90 0.92 0.89 0.93 0.86

AB 0.95 0.93 0.93 0.93 0.95 0.89

DT 0.87 0.86 0.87 0.87 0.92 0.77

NB 0.92 0.91 0.90 0.93 0.95 0.86

Feature selection ANOVA 0.93 0.90 0.91 0.87 0.92 0.87

KW 0.93 0.90 0.91 0.88 0.92 0.86

Relief 0.91 0.87 0.87 0.88 0.92 0.83

RFE 0.93 0.90 0.91 0.88 0.92 0.86

PCA 0.89 0.89 0.89 0.89 0.95 0.80

IPCA 0.89 0.89 0.89 0.89 0.95 0.79

KPCA 0.92 0.92 0.93 0.91 0.95 0.89

TSVD 0.89 0.89 0.89 0.89 0.95 0.80

GRP 0.90 0.90 0.89 0.90 0.94 0.82

SRP 0.90 0.90 0.90 0.90 0.94 0.83

FICA 0.90 0.89 0.89 0.91 0.96 0.78

TSNE 0.90 0.90 0.92 0.88 0.92 0.88

Note: ACC: accuracy, SEN: sensitivity, SPE: specificity, AUC: area under the receiver operating
characteristic curve positive predictive value (PPV), and negative predicted value (NPV). Feature selectors

including analysis of variance (ANOVA), Kruskal–Wallis (KW), recursive feature elimination (RFE), relief,
principal component analysis (PCA), incremental PCA (IPCA), Kernel PCA (KPCA), truncated SVD
(TSVD), Gaussian random projection (GRP), sparse random projection (SRP), fast ICA (FICA), and
t-distributed stochastic neighbor embedding (TSNE). Classifiers, including logistic regression (LR), least
absolute shrinkage and selection operator (LASSO), linear discriminant analysis (LDA), decision tree (DT),

random forest (RF), AdaBoost (AB), Naïve Bayes (NB), and multilayer perceptron (MLP).
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quantitative parameters. Relief FS and RF classifier com-
bination resulted in the highest performance (AUC =

0.99, sensitivity = 0.98, specificity = 0.94, accuracy =

0.96, PPV = 0.96, and NPV = 0.96). Table 1 presents the
mean value of different quantitative parameters in differ-
ent FSs and classifiers for strategy #1. Results show that
the AB classifier across AUC, ACC, SPE, PPV, and RF
classifier across SEN and NPV had higher mean perfor-
mance (considering all metrics). The RFE (AUC),
KPCA (ACC, SEN, SPE, and NPV), and FICA (PPV)
had the highest mean performance among FS methods.

Supplemental Figure S10 presents a box plot of FSs and
classifiers for the different evaluation metrics in strategy
#1.

3.2.2 | Strategy #2

For strategy #2, Figure 4 presents the heatmap of the
cross-combinations of FSs and classifiers for different
quantitative parameters. The RFE FS and RF classifier
combination resulted in the highest performance

FIGURE 4 Heatmaps of the cross-combinations of feature selectors (12 rows) and classifiers (8 columns) for AUC, sensitivity,

specificity, accuracy, PPV, and NPV in strategy #2. ACC: Accuracy, SEN: sensitivity, SPE: Specificity, AUC: area under the receiver operating

characteristic curve positive predictive value (PPV), and negative predicted value (NPV). The feature selectors including, Analysis of

Variance (ANOVA), Kruskal-Wallis (KW), Recursive Feature Elimination (RFE), Relief, Principal Component Analysis (PCA), Incremental

PCA (IPCA), Kernel PCA (KPCA), Truncated SVD (TSVD), Gaussian Random Projection (GRP), Sparse Random Projection (SRP), Fast ICA

(FICA), and t-Distributed Stochastic Neighbor Embedding (TSNE). Classifiers include Logistic Regression (LR), Least Absolute Shrinkage

and Selection Operator (LASSO), Linear Discriminant Analysis (LDA), Decision Tree (DT), Random Forest (RF), AdaBoost (AB), Naïve

Bayes (NB), and Multilayer Perceptron (MLP).
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(AUC = 0.99, sensitivity = 0.98, specificity = 0.95,
accuracy = 0.97, PPV = 0.96, NPV = 0.98). Table 2 pre-
sents the mean value of different quantitative parameters
in different FSs and classifiers for strategy #2. Results
indicated that the RF classifier had higher mean perfor-
mance than other methods across all metrics (considering
all metrics). Nevertheless, the best FS method was differ-
ent based on each metric, including RFE (AUC), KPCA
(ACC, SEN, and NPV), and FICA (SPE and PPV). Supple-
mental Figure S11 represents a box plot of FSs and classi-
fiers for the different evaluation metrics in strategy #2.

3.2.3 | Strategy #3

For strategy #3, Figure 5 presents the heatmap of the
cross-combinations of FSs and classifiers for different
quantitative parameters. ANOVA FS and RF classifier
combination resulted in the highest performance
(AUC = 0.98, sensitivity = 0.96, specificity = 93, accu-
racy = 0.94, PPV = 0.93, NPV = 0.96). Table 3 presents

the mean value of different quantitative parameters in
different FSs and classifiers for strategy #3. RF (AUC,
ACC, SEN, NPV) and MLP (SPE and PPV) classifiers and
RFE FS across all metrics had higher mean performance
than other methods. Supplemental Figure S12 represents
a box plot of FSs and classifiers for the different evalua-
tion metrics in strategy #3. Figure 6 depicts the receiver
operating characteristic curve for three strategies (for the
best models in each strategy).

3.3 | Supplemental data

Supplemental Figures S13–15 represent the statistical
comparison of AUC between the different models using
the DeLong test in strategies #1, #2, and #3, respec-
tively. The combinations of RF classifiers with ANOVA,
KW, Relief, and RFE FSs were significantly higher than
other models in strategies #1 and #2 in terms of classi-
fication power. In strategy #3, several models, including
the combinations of ANOVA FS with RF, LR, and

TABLE 2 Mean value of different

quantitative parameters in different

feature selectors and classifiers for

strategy 2.

AUC ACC SEN SPE PPV NPV

Classifier LDA 0.91 0.89 0.90 0.88 0.91 0.87

MLP 0.96 0.94 0.94 0.95 0.96 0.93

RF 0.97 0.96 0.96 0.96 0.97 0.95

LR 0.90 0.88 0.87 0.90 0.93 0.81

LASSO 0.94 0.93 0.93 0.93 0.95 0.91

AB 0.93 0.91 0.92 0.91 0.93 0.90

DT 0.91 0.91 0.92 0.90 0.92 0.89

NB 0.79 0.76 0.74 0.82 0.90 0.60

Feature selection ANOVA 0.93 0.89 0.89 0.89 0.92 0.87

KW 0.93 0.90 0.90 0.90 0.92 0.88

Relief 0.92 0.88 0.87 0.90 0.92 0.85

RFE 0.95 0.92 0.92 0.92 0.93 0.90

PCA 0.90 0.90 0.89 0.92 0.95 0.83

IPCA 0.90 0.90 0.89 0.91 0.95 0.83

KPCA 0.93 0.93 0.93 0.92 0.94 0.91

TSVD 0.90 0.90 0.89 0.91 0.95 0.83

GRP 0.91 0.91 0.90 0.91 0.94 0.86

SRP 0.91 0.91 0.91 0.91 0.94 0.88

FICA 0.90 0.89 0.89 0.93 0.96 0.81

TSNE 0.86 0.87 0.88 0.85 0.89 0.84

Note: ACC: accuracy, SEN: sensitivity, SPE: specificity, AUC: area under the receiver operating
characteristic curve positive predictive value (PPV), and negative predicted value (NPV). Feature selectors
including analysis of variance (ANOVA), Kruskal –Wallis (KW), recursive feature elimination (RFE), relief,
principal component analysis (PCA), incremental PCA (IPCA), kernel PCA (KPCA), truncated SVD (TSVD),

gaussian random projection (GRP), sparse random projection (SRP), fast ICA (FICA), and t-distributed
stochastic neighbor embedding (TSNE). Classifiers, including logistic regression (LR), least absolute
shrinkage and selection operator (LASSO), linear discriminant analysis (LDA), decision tree (DT), random
forest (RF), AdaBoost (AB), Naïve Bayes (NB), and multilayer perceptron (MLP).
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LASSO classifiers, KW with AB and RF, Relief with
AB, LASSO, and RF, and RFE with AB, LASSO, LDA,
LR, and RF were significantly higher than other
models.

4 | DISCUSSION

In this study, we implemented multiple machine learning
algorithms to differentiate COVID-19 in a dataset
consisting of a large number of patients (COVID-19, non-

COVID-19 pneumonia, lung cancer, PE, and normal sub-
jects). First, the entire lung was segmented using auto-
mated DL algorithms, followed by extracting radiomic
features. Second, the features were normalized, redun-
dant features were eliminated, and the remaining fea-
tures were fed to FS algorithms and classifiers. Third,
univariate results showed that some single features could
differentiate between diseases when using different strat-
egies with limited performance. Finally, we assessed if
our models decently discriminated COVID-19 from other
lung diseases and COVID-19 pneumonia from other

FIGURE 5 Heatmaps of the cross-combinations of feature selectors (12 rows) and classifiers (8 columns) for AUC, sensitivity,

specificity, accuracy, PPV, and NPV in strategy #3. ACC: Accuracy, SEN: sensitivity, SPE: Specificity, AUC: area under the receiver operating

characteristic curve positive predictive value (PPV), and negative predicted value (NPV). The feature selectors including, Analysis of

Variance (ANOVA), Kruskal-Wallis (KW), Recursive Feature Elimination (RFE), Relief, Principal Component Analysis (PCA), Incremental

PCA (IPCA), Kernel PCA (KPCA), Truncated SVD (TSVD), Gaussian Random Projection (GRP), Sparse Random Projection (SRP), Fast ICA

(FICA), and t-Distributed Stochastic Neighbor Embedding (TSNE). Classifiers include Logistic Regression (LR), Least Absolute Shrinkage

and Selection Operator (LASSO), Linear Discriminant Analysis (LDA), Decision Tree (DT), Random Forest (RF), AdaBoost (AB), Naïve

Bayes (NB), and Multilayer Perceptron (MLP).
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pneumonia. In this light, in strategy #1, Relief FS com-
bined with the RF classifier resulted in the best perfor-
mance (Accuracy = 0.96, AUC = 0.99, sensitivity = 0.98,
specificity = 0.94, PPV = 0.96, and NPV = 0.96). In strat-
egy #2, RFE FS and RF classifier combinations resulted
in the best performance (Accuracy = 0.97, AUC = 0.99,
sensitivity = 0.98, specificity = 0.95, PPV = 0.96,
NPV = 0.98). Finally, in strategy #3, the ANOVA FS and
RF classifier combination resulted in the highest perfor-
mance (Accuracy = 0.94, AUC =0.98, sensitivity = 0.96,
specificity = 0.93, PPV = 0.93, NPV = 0.96).

A study by Fang et al.54 showed that a radiomics
model based on CT imaging features could differentiate
COVID-19 pneumonia from other types of pneumonia
with an AUC of 0.95. Their results also suggested that
radiomics performs better than the clinical-only model.
In another study, Tan et al.55 demonstrated the efficacy
of a radiomics-based model in discovering whether a
patient has COVID-19 pneumonia or other types of

pneumonia by analyzing the non-infectious areas of their
CT scan. Their model achieved an AUC as high as 0.95 in
the training and test datasets. Di et al.21 also studied the
diagnostic accuracy of CT-based radiomics in patients
and reported that their hypergraph model could distin-
guish between community-acquired pneumonia and
COVID-19 disease pneumonia.

Similar to most radiomic studies of COVID-19, we
used chest CT images.21,22,56 However, there is ongoing
research exploiting other imaging modalities as well.
For example, Bae et al.57 evaluated the prediction abil-
ity of radiomics on chest x-rays of 514 patients taking
advantage of other DL methods (radiomics feature map
+ DL + clinical features). They achieved AUCs of 0.93
and 0.90 in the prediction of mortality and the need
for mechanical ventilators, respectively. In another
study by Chandra et al.,58 chest x-rays of 2088 (training
set) and 258 (testing set) patients taken at baseline
were assessed, and radiomics analysis was performed.

TABLE 3 Mean value of different

quantitative parameters in different

feature selectors and classifiers for

strategy 3.

AUC ACC SEN SPE PPV NPV

Classifier AB 0.92 0.91 0.91 0.90 0.89 0.92

DT 0.87 0.87 0.87 0.87 0.88 0.86

LASSO 0.93 0.92 0.94 0.89 0.88 0.95

LDA 0.93 0.92 0.93 0.91 0.89 0.94

LR 0.93 0.92 0.92 0.92 0.92 0.92

MLP 0.94 0.93 0.92 0.93 0.92 0.93

NB 0.88 0.87 0.90 0.85 0.83 0.91

RF 0.94 0.93 0.95 0.91 0.91 0.95

Feature selection ANOVA 0.95 0.91 0.89 0.92 0.92 0.90

KW 0.95 0.91 0.91 0.92 0.92 0.91

RFE 0.97 0.94 0.93 0.94 0.94 0.93

Relief 0.95 0.92 0.91 0.93 0.93 0.91

SRP 0.91 0.91 0.93 0.90 0.89 0.93

TSVD 0.91 0.91 0.93 0.90 0.89 0.93

KPCA 0.91 0.91 0.92 0.90 0.90 0.92

PCA 0.91 0.91 0.92 0.90 0.89 0.92

TSNE 0.90 0.90 0.92 0.88 0.86 0.93

GRP 0.90 0.90 0.92 0.88 0.87 0.92

FICA 0.89 0.89 0.91 0.88 0.87 0.91

IPCA 0.86 0.87 0.92 0.83 0.80 0.92

Note: ACC: accuracy, SEN: sensitivity, SPE: specificity, AUC: area under the receiver operating
characteristic curve positive predictive value (PPV), and negative predicted value (NPV). Feature selectors
including analysis of variance (ANOVA), Kruskal–Wallis (KW), recursive feature elimination (RFE), Relief,
principal component analysis (PCA), incremental PCA (IPCA), Kernel PCA (KPCA), truncated SVD

(TSVD), Gaussian random projection (GRP), sparse random projection (SRP), fast ICA (FICA), and
t-distributed stochastic neighbor embedding (tsne). Classifiers, including logistic regression (LR), least
absolute shrinkage and selection operator (LASSO), linear discriminant analysis (LDA), decision tree (DT),
random forest (RF), AdaBoost (AB), Naïve Bayes (NB), and multilayer perceptron (MLP).
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They reached an AUC of 0.95 in the test set for identi-
fying normal, suspicious, and COVID-19 groups of
patients.

Regarding the results of COVID-19 radiomics, litera-
ture review showed that multiple studies evaluated the
ability of CT-based radiomic features to differentiate
COVID-19 pneumonia from other types of pneumonia or
other lung diseases. For instance, Velichko et al.32 stud-
ied a total of 5759 chest CT image patches of confirmed
COVID-19 pneumonia and 7958 CT images patches of
pulmonary edema and proposed a model based on radio-
mic features to differentiate them. They achieved an
AUC of 0.994, which performed better compared to other
known neural networks. In another study, Peng et al.31

assessed whether radiomic features derived from CT
scans can aid in the differentiation of COVID-19 pneu-
monia from highly suspected but non-COVID-19

pneumonia in 145 patients. Their radiomics model per-
formed well with an AUC of 0.99 and 0.97 on their train-
ing and testing dataset, which was significantly
(p < 0.001) better than conventional CT parameters, such
as the ratio of GGO.

Regarding the use of different lung pathologies in the
dataset, a number of related studies have been conducted.
Amyar et al.30 dataset included healthy and COVID-19
patients with lung cancer and other lung pathologies.
They achieved an AUC of 0.97 for the classification task.
Wang et al.34 utilized a PARL (prior attention residual
learning)-based model for classifying CT images into
COVID-19 pneumonia, other pneumonia, and non-
pneumonic images and could achieve an AUC of 0.97 for
COVID-19 discrimination. Chen et al.59 included
422 patients who had COVID-19, other types of pneumo-
nia, tuberculosis, and normal images in their dataset.

FIGURE 6 ROC curves for strategy #1 (A), strategy #2 (B), and strategy #3 (C). Confidence intervals are also plotted in gray with 10 000

bootstrapping. The confidence intervals are very small due to the large scale of our study. In addition, the results from strategies 1–3 are
plotted all in one figure (D) to compare the different algorithms.
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Their ResNet model achieved an accuracy of 91.2% for
classifying images. Our study also included several lung
pathologies, including COVID-19, pneumonia of other
types (viral and bacterial), lung cancer, and subjects with
normal lungs. Overall, we utilized a large-sized dataset
consisting of CT images of patients from multiple institu-
tions (multiple scanners/protocols) from different coun-
tries. The large-scale dataset used in our work helped
with the generalizability and reproducibility of our model
in contrast to the small-sized datasets of most previous
studies.20,60,61

Our efforts faced a number of limitations, some of
which were addressed and considered. First, motion arti-
facts are inescapable when patients are undergoing CT
scanning.44 Hence, we excluded these patients as they
had an overlapping region of pneumonia in their chest
image. Second, not all patients were tested for COVID-19
RT-PCR; some were included in our study only by their
positive CT symptoms.44 Hence, we attempted to over-
come this limitation using different model evaluation
strategies (e.g., choosing patients with positive RT-PCR
as the testing set) to reach a reproducible model for fur-
ther studies. Third, we did not include clinical or labora-
tory data. However, these data have been shown to be
linked with CT image features.20,62 Forth, image acquisi-
tion parameters were undoubtedly distinct in each cen-
ter, hence affecting radiomic features.44 Therefore,
further studies should focus on harmonized features
between the different centers.63

In this study, different diseases were gathered from
various centers/databases/time-points where some infor-
mation (scanner name, injection of contrast enhance
material,…) was unavailable (removed during anonymi-
zation) owing to privacy issues. Therefore, data distribu-
tion by disease and center/time of acquisition could
potentially bias classification results. Yet, CT is a quanti-
tative imaging modality in which pixel values in Houns-
field units are in the same range for the different tissues.
In addition, we performed different image preprocessing
steps before feature extraction to harmonize the feature
extraction across different CT imaging protocols. Further-
more, unsupervised clustering and TSNE visualization
based on features were performed to ensure no bias
regarding the datasets. However, we should remain cau-
tious about potential hidden patterns in the dataset that
these methods may not have uncovered, and these should
be investigated in future studies. Classification metrics
based on the different centers should be reported in a
multi-centric study to visualize the variability across dif-
ferent scanners and image acquisition and reconstruction
protocols. Even though we achieved a high AUC and
good performance on other metrics, it is important to
consider that a few hundred cases were detected as false

positives and false negatives using the proposed method
in each strategy. This factor should be taken into account
for future clinical implementation. Finally, exploring
interpretable and explainable AI models should be con-
sidered in future studies focusing on the diagnosis and
prognosis of COVID-19.

5 | CONCLUSION

Our results support radiomics and machine learning
capability to differentiate COVID-19 pneumonia versus
normal lungs and several lung pathologies, including
other types of pneumonia, lung cancer, and pulmo-
nary embolism. Our study was conducted on a large
heterogeneous cohort of patients/individuals with
three different data curation techniques. FS algorithms
chose the most robust radiomic features extracted
from CT images and fed them into machine learning
classifiers in order to diagnose diseases if any exist.
Our framework was successfully implemented, produc-
ing appropriate diagnostic results, and further empha-
sizing the ability of radiomic features to enhance lung
pathologies discrimination.

AUTHOR CONTRIBUTIONS
Isaac Shiri and Yazdan Salimi played roles in conceptual-
ization, methodology, software development, validation,
formal analysis, investigation, resource management,
data curation, original draft writing, review and editing,
visualization, and supervision. Abdollah Saberi, Masou-
meh Pakbin, Ghasem Hajianfar, Atlas Haddadi Avval,
Amirhossein Sanaat, Azadeh Akhavanallaf, Shayan Mos-
tafaei, Zahra Mansouri, Dariush Askari, Mohammadreza
Ghasemian, Ehsan Sharifipour, Saleh Sandoughdaran,
Ahmad Sohrabi, and Elham Sadati were involved in con-
ceptualization, methodology, validation, investigation,
resource management, data curation, and writing for
review and editing, along with visualization. Somayeh
Livani, Pooya Iranpour, Shahriar Kolahi, Bardia Khos-
ravi, Maziar Khateri, Salar Bijari, Mohammad Reza
Atashzar, Sajad P. Shayesteh, Mohammad Reza Babaei,
Elnaz Jenabi, Mohammad Hasanian, Alireza Shahham-
zeh, and Seyed Yaser Foroghi Ghomi contributed to con-
ceptualization, software development, formal analysis,
resource management, and writing for review and edit-
ing, as well as visualization. Abolfazl Mozafari, Hesamad-
din Shirzad-Aski, Fatemeh Movaseghi, Rama
Bozorgmehr, Neda Goharpey, Hamid Abdollahi, Parham
Geramifar, Hossein Arabi, Kiara Rezaei-Kalantari, and
Mehrdad Oveisi participated in conceptualization, meth-
odology, validation, investigation, resource management,
data curation, original draft writing, review and editing,

SHIRI ET AL. 13 of 16

 10981098, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/im

a.23028 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [20/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



visualization, supervision, project administration, and
funding acquisition. Amir Reza Radmard, Arman Rahmim,
and Habib Zaidi contributed to conceptualization, method-
ology, validation, investigation, resource management, data
curation, original draft writing, review and editing, visuali-
zation, supervision, project administration, and funding
acquisition.

AFFILIATIONS
1Division of Nuclear Medicine and Molecular Imaging,
Geneva University Hospital, Geneva, Switzerland
2Imaging Department, Qom University of Medical
Sciences, Qom, Iran
3School of Medicine, Mashhad University of Medical
Sciences, Mashhad, Iran
4Division of Clinical Geriatrics, Department of
Neurobiology, Care Sciences and Society, Karolinska
Institute, Stockholm, Sweden
5Department of Medical Epidemiology and Biostatistics,
Karolinska Institute, Stockholm, Sweden
6Department of Radiology Technology, Shahid Beheshti
University of Medical Sciences, Tehran, Iran
7Department of Radiology, Shahid Beheshti Hospital,
Qom University of Medical Sciences, Qom, Iran
8Neuroscience Research Center, Qom University of
Medical Sciences, Qom, Iran
9Clinical Oncology Department, Royal Surrey Hospital,
Guildford, United Kingdom
10Radin Makian Azma Mehr Ltd. Radinmehr Veterinary
Laboratory, Gorgan, Iran
11Department of Medical Physics, Faculty of Medical
Sciences, Tarbiat Modares University, Tehran, Iran
12Clinical Research Development Unit (CRDU), Sayad
Shirazi Hospital, Golestan University of Medical
Sciences, Gorgan, Iran
13Department of Radiology, Medical Imaging Research
Center, Shiraz University of Medical Sciences,
Shiraz, Iran
14Department of Radiology, School of Medicine,
Advanced Diagnostic and Interventional Radiology
Research Center (ADIR), Imam Khomeini Hospital,
Tehran University of Medical Sciences, Tehran, Iran
15Digestive Diseases Research Center, Digestive Diseases
Research Institute, Tehran University of Medical
Sciences, Tehran, Iran
16Department of Medical Radiation Engineering, Science
and Research Branch, Islamic Azad University, Tehran,
Tehran, Iran
17Department of Immunology, School of Medicine, Fasa
University of Medical Sciences, Fasa, Iran
18Department of Physiology, Pharmacology and Medical
Physics, Alborz University of Medical Sciences,
Karaj, Iran

19Department of Interventional Radiology, Firouzgar
Hospital, Iran University of Medical Sciences,
Tehran, Iran
20Research Centre for Nuclear Medicine, Tehran
University of Medical Sciences, Tehran, Iran
21Department of Radiology, Arak University of Medical
Sciences, Arak, Iran
22Clinical Research Development Center, Qom
University of Medical Sciences, Qom, Iran
23Department of Medical Sciences, Qom Branch, Islamic
Azad University, Qom, Iran
24Infectious Diseases Research Center, Golestan
University of Medical Sciences, Gorgan, Iran
25Clinical Research Development Unit, Shohada‐e
Tajrish Hospital, Shahid Beheshti University of Medical
Sciences, Tehran, Iran
26Department of Radiation Oncology, Shohada‐e Tajrish
Hospital, Shahid Beheshti University of Medical
Sciences, Tehran, Iran
27Department of Radiology, University of British
Columbia, Vancouver, BC, Canada
28Department of Integrative Oncology, BC Cancer
Research Institute, Vancouver, BC, Canada
29Department of Radiology, Shariati Hospital, Tehran
University of Medical Sciences, Tehran, Iran
30Rajaie Cardiovascular, Medical & Research Center,
Iran University of Medical Sciences, Tehran, Iran
31Comprehensive Cancer Centre, School of Cancer &
Pharmaceutical Sciences, Faculty of Life Sciences &
Medicine, King's College London, London, UK
32Department of Computer Science, University of British
Columbia, Vancouver, BC, Canada
33Departments of Physics and Biomedical Engineering,
University of British Columbia, Vancouver, BC, Canada
34Department of Nuclear Medicine and Molecular
Imaging, University of Groningen, University Medical
Center Groningen, Groningen, Netherlands
35Department of Nuclear Medicine, University of
Southern Denmark, Odense, Denmark
36University Research and Innovation Center, Óbuda
University, Budapest, Hungary

ACKNOWLEDGMENTS
This work was supported by the Swiss National Science
Foundation under grant SNSF 320030_176052. Open
access funding provided by Universite de Geneve.

CONFLICT OF INTEREST STATEMENT
The authors declare that they have no conflict of
interest.

DATA AVAILABILITY STATEMENT
Research data are not shared.

14 of 16 SHIRI ET AL.

 10981098, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/im

a.23028 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [20/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ORCID
Hamid Abdollahi https://orcid.org/0000-0003-0761-
1309
Habib Zaidi https://orcid.org/0000-0001-7559-5297

REFERENCES
1. Aljondi R, Alghamdi S. Diagnostic value of imaging modalities for

COVID-19: scoping review. J Med Internet Res. 2020;22(8):e19673.
2. Prokop M, van Everdingen W, van Rees VT, et al. CO-RADS: a

categorical CT assessment scheme for patients suspected of
having COVID-19-definition and evaluation. Radiology. 2020;
296(2):E97-E104.

3. D'Andrea A, Radmilovic J, Carbone A, et al. Multimodality
imaging in COVID-19 patients: a key role from diagnosis to
prognosis. World J Radiol. 2020;12(11):261-271.

4. Ke Q, Zhang J, Wei W, et al. A neuro-heuristic approach for
recognition of lung diseases from X-ray images. Expert Syst
Appl. 2019;126:218-232.

5. Kanne JP, Little BP, Chung JH, Elicker BM, Ketai LH. Essen-
tials for radiologists on COVID-19: An update-radiology scien-
tific expert panel. Radiology. 2020;296(2):E113-E114.

6. Varble N, Blain M, Kassin M, et al. CT and clinical assessment
in asymptomatic and pre-symptomatic patients with early
SARS-CoV-2 in outbreak settings. Eur Radiol. 2020;1–12:4406.

7. Long C, Xu H, Shen Q, et al. Diagnosis of the coronavirus dis-
ease (COVID-19): rRT-PCR or CT? Eur J Radiol. 2020;126:
108961.

8. Borakati A, Perera A, Johnson J, Sood T. Diagnostic accuracy
of X-ray versus CT in COVID-19: a propensity-matched data-
base study. BMJ Open. 2020;10(11):e042946.

9. Li Y, Xia L. Coronavirus disease 2019 (COVID-19): role of chest
CT in diagnosis and management. AJR Am J Roentgenol. 2020;
214(6):1280-1286.

10. Awulachew E, Diriba K, Anja A, Getu E, Belayneh F. Com-
puted tomography (CT) imaging features of patients with
COVID-19: systematic review and meta-analysis. Radiol Res
Pract. 2020;2020:1023506.

11. Yurdaisik I. Effectiveness of computed tomography in the diag-
nosis of novel Coronavirus-2019. Cureus. 2020;12(5):e8134.

12. Kov�acs A, Pal�asti P, Veréb D, Bozsik B, Palk�o A, Kincses ZT.
The sensitivity and specificity of chest CT in the diagnosis of
COVID-19. Eur Radiol. 2021;31(5):2819-2824.

13. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics:
extracting more information from medical images using
advanced feature analysis. Eur J Cancer. 2012;48(4):441-446.

14. Yip SS, Aerts HJ. Applications and limitations of radiomics.
Phys Med Biol. 2016;61(13):R150-R166.

15. Avanzo M, Stancanello J, El Naqa I. Beyond imaging: the
promise of radiomics. Phys Med. 2017;38:122-139.

16. Hassani C, Varghese BA, Nieva J, Duddalwar V. Radiomics in
pulmonary lesion imaging. AJR Am J Roentgenol. 2019;212(3):
497-504.

17. Bouchareb Y, Khaniabadi PM, Al Kindi F, et al. Artificial
intelligence-driven assessment of radiological images for
COVID-19. Comput Biol Med. 2021;136:104665.

18. Harmon SA, Sanford TH, Xu S, et al. Artificial intelligence for
the detection of COVID-19 pneumonia on chest CT using mul-
tinational datasets. Nat Commun. 2020;11(1):4080.

19. Bai HX, Wang R, Xiong Z, et al. Artificial intelligence augmen-
tation of radiologist performance in distinguishing COVID-19
from pneumonia of other origin at chest CT. Radiology. 2020;
296(3):E156-E165.

20. Zhang K, Liu X, Shen J, et al. Clinically applicable AI system
for accurate diagnosis, quantitative measurements, and progno-
sis of COVID-19 pneumonia using computed tomography. Cell.
2020;181(6):1423-1433.e11.

21. Di D, Shi F, Yan F, et al. Hypergraph learning for identification
of COVID-19 with CT imaging. Med Image Anal. 2020;68:
101910.

22. Xie C, Ng MY, Ding J, et al. Discrimination of pulmonary
ground-glass opacity changes in COVID-19 and non-COVID-19
patients using CT radiomics analysis. Eur J Radiol Open. 2020;
7:100271.

23. Albahli S, Yar G. Fast and accurate COVID-19 detection along
with 14 other chest pathology using: multi-level classification.
J Med Internet Res. 2021;23:e23693.

24. Shi H, Xu Z, Cheng G, et al. CT-based radiomic nomogram for
predicting the severity of patients with COVID-19. Eur J Med
Res. 2022;27(1):13.

25. Cai S, Chen Y, Zhao S, et al. Dynamic 3D radiomics analysis
using artificial intelligence to assess the stage of COVID-19 on
CT images. Eur Radiol. 2022;1–11:4760-4770.

26. Ke Z, Li L, Wang L, et al. Radiomics analysis enables fatal out-
come prediction for hospitalized patients with coronavirus dis-
ease 2019 (COVID-19). Acta Radiol. 2022;63(3):284185121
994695.

27. Wang H, Wang L, Lee EH, et al. Decoding COVID-19
pneumonia: comparison of deep learning and radiomics CT
image signatures. Eur J Nucl Med Mol Imaging. 2021;48(5):
1697.

28. Moradi Khaniabadi P, Bouchareb Y, Al-Dhuhli H, et al. Two-
step machine learning to diagnose and predict involvement of
lungs in COVID-19 and pneumonia using CT radiomics. Com-
put Biol Med. 2022;150:106165.

29. Shiri I, Mostafaei S, Haddadi Avval A, et al. High-dimensional
multinomial multiclass severity scoring of COVID-19 pneumo-
nia using CT radiomics features and machine learning algo-
rithms. Sci Rep. 2022;12(1):14817.

30. Amyar A, Modzelewski R, Li H, Ruan S. Multi-task deep learn-
ing based CT imaging analysis for COVID-19 pneumonia: clas-
sification and segmentation. Comput Biol Med. 2020;126:
104037.

31. Peng S, Pan L, Guo Y, et al. Quantitative CT imaging fea-
tures for COVID-19 evaluation: the ability to differentiate
COVID-19 from non- COVID-19 (highly suspected) pneumo-
nia patients during the epidemic period. PLoS One. 2022;
17(1):e0256194.

32. Velichko E, Shariaty F, Orooji M, et al. Development of
computer-aided model to differentiate COVID-19 from pulmo-
nary edema in lung CT scan: EDECOVID-net. Comput Biol
Med. 2022;141:105172.

33. Das D, Santosh KC, Pal U. Truncated inception net: COVID-19
outbreak screening using chest X-rays. Phys Eng Sci Med. 2020;
43(3):915-925.

34. Wang J, Bao Y, Wen Y, et al. Prior-attention residual learning
for more discriminative COVID-19 screening in CT images.
IEEE Trans Med Imaging. 2020;39(8):2572-2583.

SHIRI ET AL. 15 of 16

 10981098, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/im

a.23028 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [20/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0003-0761-1309
https://orcid.org/0000-0003-0761-1309
https://orcid.org/0000-0003-0761-1309
https://orcid.org/0000-0001-7559-5297
https://orcid.org/0000-0001-7559-5297


35. Roberts M, Driggs D, Thorpe M, et al. Common pitfalls and
recommendations for using machine learning to detect
and prognosticate for COVID-19 using chest radiographs and
CT scans. Nat Mach Intell. 2021;3(3):199-217.

36. Tizhoosh HR, Fratesi J. COVID-19, AI enthusiasts, and toy
datasets: radiology without radiologists. Eur Radiol. 2021;31(5):
3553-3554.

37. Shiri I, Salimi Y, Saberi A, et al. Diagnosis of COVID-19 using
CT image radiomics features: a comprehensive machine learn-
ing study involving 26,307 patients. medRxiv. 2021;2021:
2021.2012. 2007.21267367.

38. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent
reporting of a multivariable prediction model for individual
prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ.
2015;350:g7594.

39. Mongan J, Moy L, Charles E, Kahn J. Checklist for artificial
intelligence in medical imaging (CLAIM): a guide for authors
and reviewers. Radiol Artif Intell. 2020;2(2):e200029.

40. Clark K, Vendt B, Smith K, et al. The cancer imaging archive
(TCIA): maintaining and operating a public information repos-
itory. J Digit Imaging. 2013;26(6):1045-1057.

41. Morozov S, Andreychenko A, Pavlov N, et al. Mosmeddata:
chest ct scans with covid-19 related findings dataset. arXiv Pre-
print arXiv:200506465. 2020.

42. Colak E, Kitamura FC, Hobbs SB, et al. The RSNA pulmonary
embolism CT dataset. Radiol Artif Intell. 2021;3(2):e200254.

43. Ning W, Lei S, Yang J, et al. Open resource of clinical data
from patients with pneumonia for the prediction of COVID-19
outcomes via deep learning. Nat Biomed Eng. 2020;4(12):1197-
1207.

44. Shiri I, Salimi Y, Pakbin M, et al. COVID-19 prognostic model-
ing using CT radiomic features and machine learning algo-
rithms: analysis of a multi-institutional dataset of 14,339
patients. Comput Biol Med. 2022;145:105467.

45. Radpour A, Bahrami-Motlagh H, Taaghi MT, et al. COVID-19
evaluation by low-dose high resolution CT scans protocol. Acad
Radiol. 2020;27(6):901.

46. Shiri I, Arabi H, Salimi Y, et al. COLI-net: deep learning-
assisted fully automated COVID-19 lung and infection pneu-
monia lesion detection and segmentation from chest computed
tomography images. Int J Imaging Syst Technol. 2022;32(1):
12-25.

47. Salimi Y, Shiri I, Akhavanallaf A, et al. Deep learning-based
fully automated Z-axis coverage range definition from scout
scans to eliminate overscanning in chest CT imaging. Insights
Imaging. 2021;12(1):1-16.

48. Salimi Y, Shiri I, Akhavanallaf A, et al. Deep learning-based
calculation of patient size and attenuation surrogates from
localizer image: toward personalized chest CT protocol optimi-
zation. Eur J Radiol. 2022;157:110602.

49. van Griethuysen JJM, Fedorov A, Parmar C, et al. Computa-
tional radiomics system to decode the radiographic phenotype.
Cancer Res. 2017;77(21):e104-e107.

50. Zwanenburg A, Vallières M, Abdalah MA, et al. The image bio-
marker standardization initiative: standardized quantitative
radiomics for high-throughput image-based phenotyping. Radi-
ology. 2020;295(2):328-338.

51. Depeursinge A, Andrearczyk V, Whybra P, et al. Standardised
convolutional filtering for radiomics. arXiv Preprint arXiv:
200605470. 2020.

52. Robin X, Turck N, Hainard A, et al. pROC: an open-source
package for R and S+ to analyze and compare ROC curves.
BMC Bioinformatics. 2011;12(1):1-8.

53. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn:
machine learning in python. J Mach Learn Res. 2011;12:2825-2830.

54. Fang X, Li X, Bian Y, Ji X, Lu J. Radiomics nomogram for the
prediction of 2019 novel coronavirus pneumonia caused by
SARS-CoV-2. Eur Radiol. 2020;30(12):6888-6901.

55. Tan HB, Xiong F, Jiang YL, et al. The study of automatic
machine learning base on radiomics of non-focus area in the
first chest CT of different clinical types of COVID-19 pneumo-
nia. Sci Rep. 2020;10(1):18926.

56. Zeng QQ, Zheng KI, Chen J, et al. Radiomics-based model for
accurately distinguishing between severe acute respiratory syn-
drome associated coronavirus 2 (SARS-CoV-2) and influenza a
infected pneumonia. MedComm (Beijing). 2020;1:240-248.

57. Bae J, Kapse S, Singh G, et al. Predicting mechanical ventila-
tion requirement and mortality in COVID-19 using radiomics
and deep learning on chest radiographs: a multi-institutional
study. Diagnostics. 2021;11(10):1812.

58. Chandra TB, Verma K, Singh BK, Jain D, Netam SS. Coronavi-
rus disease (COVID-19) detection in chest X-ray images using
majority voting based classifier ensemble. Expert Syst Appl.
2021;165:113909.

59. Chen H, Guo S, Hao Y, et al. Auxiliary diagnosis for COVID-19
with deep transfer learning. J Digit Imaging. 2021;34:1-11.

60. Chao H, Fang X, Zhang J, et al. Integrative analysis for COVID-
19 patient outcome prediction.Med Image Anal. 2020;67:101844.

61. Chassagnon G, Vakalopoulou M, Battistella E, et al. AI-driven
quantification, staging and outcome prediction of COVID-19
pneumonia. Med Image Anal. 2020;67:101860.

62. Lassau N, Ammari S, Chouzenoux E, et al. Integrating deep
learning CT-scan model, biological and clinical variables to pre-
dict severity of COVID-19 patients. Nat Commun. 2021;12(1):1-11.

63. Shiri I, Amini M, Nazari M, et al. Impact of feature harmoniza-
tion on radiogenomics analysis: prediction of EGFR and KRAS
mutations from non-small cell lung cancer PET/CT images.
Comput Biol Med. 2022;105230:105230.

SUPPORTING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Shiri I, Salimi Y,
Saberi A, et al. Differentiation of COVID-19
pneumonia from other lung diseases using CT
radiomic features and machine learning: A large
multicentric cohort study. Int J Imaging Syst
Technol. 2024;34(2):e23028. doi:10.1002/ima.23028

16 of 16 SHIRI ET AL.

 10981098, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/im

a.23028 by C
ochrane N

etherlands, W
iley O

nline L
ibrary on [20/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

info:doi/10.1002/ima.23028

	Differentiation of COVID-19 pneumonia from other lung diseases using CT radiomic features and machine learning: A large mul...
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Datasets
	2.2  Image segmentation, preprocessing, and feature extraction
	2.3  Univariate analysis
	2.4  Feature preprocessing, feature selection, and classifiers
	2.5  Evaluation

	3  RESULTS
	3.1  Univariate outcome
	3.2  Multivariate outcome
	3.2.1  Strategy #1
	3.2.2  Strategy #2
	3.2.3  Strategy #3

	3.3  Supplemental data

	4  DISCUSSION
	5  CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


