
 

 

 University of Groningen

Siamese model for collateral score prediction from computed tomography angiography
images in acute ischemic stroke
Fortunati, Valerio; Su, Jiahang; Wolff, Lennard; van Doormaal, Pieter-Jan; Hofmeijer,
Jeanette; Martens, Jasper; Bokkers, Reinoud P H; van Zwam, Wim H; van der Lugt, Aad; van
Walsum, Theo
Published in:
Frontiers in neuroimaging

DOI:
10.3389/fnimg.2023.1239703

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2024

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Fortunati, V., Su, J., Wolff, L., van Doormaal, P.-J., Hofmeijer, J., Martens, J., Bokkers, R. P. H., van Zwam,
W. H., van der Lugt, A., & van Walsum, T. (2024). Siamese model for collateral score prediction from
computed tomography angiography images in acute ischemic stroke. Frontiers in neuroimaging, 2,
1239703. https://doi.org/10.3389/fnimg.2023.1239703

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://doi.org/10.3389/fnimg.2023.1239703
https://research.rug.nl/en/publications/94ed40e2-44fa-4726-a2cd-21eb3fec9f3a
https://doi.org/10.3389/fnimg.2023.1239703


TYPE Original Research

PUBLISHED 11 January 2024

DOI 10.3389/fnimg.2023.1239703

OPEN ACCESS

EDITED BY

Alan Wang,

The University of Auckland, New Zealand

REVIEWED BY

Yikang Liu,

United Imaging Intelligence, United States

Viktor Vegh,

The University of Queensland, Australia

*CORRESPONDENCE

Valerio Fortunati

v.fortunati@quantib.com

RECEIVED 13 June 2023

ACCEPTED 26 December 2023

PUBLISHED 11 January 2024

CITATION

Fortunati V, Su J, Wol� L, van Doormaal P-J,

Hofmeijer J, Martens J, Bokkers RPH,

van Zwam WH, van der Lugt A and

van Walsum T (2024) Siamese model for

collateral score prediction from computed

tomography angiography images in acute

ischemic stroke.

Front. Neuroimaging 2:1239703.

doi: 10.3389/fnimg.2023.1239703

COPYRIGHT

© 2024 Fortunati, Su, Wol�, van Doormaal,

Hofmeijer, Martens, Bokkers, van Zwam,

van der Lugt and van Walsum. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Siamese model for collateral
score prediction from computed
tomography angiography images
in acute ischemic stroke

Valerio Fortunati1*, Jiahang Su2, Lennard Wol�3,

Pieter-Jan van Doormaal3, Jeanette Hofmeijer4,5,

Jasper Martens6, Reinoud P. H. Bokkers7, Wim H. van Zwam8,

Aad van der Lugt3 and Theo van Walsum2

1Quantib BV, Rotterdam, Netherlands, 2Biomedical Imaging Group Rotterdam, Department of Radiology

& Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands,
3Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam,

Rotterdam, Netherlands, 4Clinical Neurophysiology, MIRA Institute for Biomedical Technology and

Technical Medicine, University of Twente, Enschede, Netherlands, 5Department of Neurology, Rijnstate

Hospital, Arnhem, Netherlands, 6Department of Radiology and Nuclear Medicine, Rijnstate Hospital,

Arnhem, Netherlands, 7Faculty of Medicine, University Medical Center Groningen, Groningen,

Netherlands, 8Department of Radiology & Nuclear Medicine, Maastricht UMC, Cardiovascular Research

Institute Maastricht, Maastricht, Netherlands

Introduction: Imaging biomarkers, such as the collateral score as determined

from Computed Tomography Angiography (CTA) images, play a role in treatment

decision making for acute stroke patients. In this manuscript, we present an end-

to-end learning approach for automatic determination of a collateral score from

a CTA image. Our aim was to investigate whether such end-to-end learning

approaches can be used for this classification task, and whether the resulting

classification can be used in existing outcome prediction models.

Methods: The method consists of a preprocessing step, where the CTA image

is aligned to an atlas and divided in the two hemispheres: the a�ected side and

the healthy side. Subsequently, a VoxResNet based convolutional neural network

is used to extract features at various resolutions from the input images. This is

done by using a Siamese model, such that the classification is driven by the

comparison between the a�ected and healthy using a unique set of features for

both hemispheres. After masking the resulting features for both sides with the

vascular region and global average pooling (per hemisphere) and concatenation of

the resulting features, a fully connected layer is used to determine the categorized

collateral score.

Experiments: Several experiments have been performed to optimize the

model hyperparameters and training procedure, and to validate the final model

performance. The hyperparameter optimization and subsequent model training

was done using CTA images from the MR CLEAN Registry, a Dutch multi-

center multi-vendor registry of acute stroke patients that underwent endovascular

treatment. A separate set of images, from theMRCLEAN Trial, served as an external

validation set, where collateral scoring was assessed and compared with both

human observers and a recent more traditional model. In addition, the automated

collateral scores have been used in an existing functional outcome prediction

model that uses both imaging and non-imaging clinical parameters.

Conclusion: The results show that end-to-end learning of collateral scoring in

CTA images is feasible, and does perform similar to more traditional methods,
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and the performance also is within the inter-observer variation. Furthermore, the

results demonstrate that the end-to-end classification results also can be used in

an existing functional outcome prediction model.
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acute ischemic stroke, CTA, collateral score, end-to-end classification, Siamese model

1 Introduction

According to the World Health Organization (WHO), stroke

is the second leading cause of death and an important cause of

disability.1 As such, it is a major challenge for the health care

system. The large majority of strokes is ischemic, caused by an

occlusion of one of the cerebral arteries. Traditionally, such strokes

have been treated by the intra-venous administration of tPA to

dissolve the blood cloth causing the occlusion. More recently,

several large trials demonstrated that intra-arterial approaches to

remove the clot, either by dissolving it with thrombolytic agents,

or by explicitly removing the clot (mechanical thrombectomy)

are effective procedures for ischemic stroke patients (Goyal et al.,

2016). However, not all patients equally benefit from intra-arterial

treatment, a procedure which is not without risks. Consequently,

much research has been devoted to determining which factors may

best predict successful treatment outcome.

The collateral circulation, i.e., alternative routes for blood

supply to the brain region affected by the stroke, is assumed

to play an important role in ischemic stroke (Liebeskind, 2003).

It is known that collateral status is a modifier of the effect

of endovascular treatment on functional outcome (Berkhemer

et al., 2016). Collateral circulation in a stroke patient is generally

visualized using Computed Tomography Angiography (CTA)

imaging. CTA is a medical imaging technique that uses X-ray

technology and computed tomography technique to visualize blood

vessels throughout the body. For stroke either single or multiphase

CTA is used: in single phase CTA one image is acquired, whereas in

multiphase CTA multiple images are acquired, with fixed delays,

so as to image, e.g., the arterial and venous phase. Assessing

collateral circulation and investigating the effect of collateral status

on treatment outcome requires a scoring scheme for collaterals.

Several (manual) grading scores have been developed in the past

for collateral scoring (McVerry et al., 2012), among which a

four point scale (Tan et al., 2009), five point scales (Maas et al.,

2009; Souza et al., 2012), and a ten point scale (Menon et al.,

2013) for single phase CTA, and a six point scale (Menon et al.,

2015a) for multiphase CTA (Menon et al., 2015b). All these

approaches are based on a visual assessment of the vessels present

in the affected hemisphere compared to the same regions in the

contralateral hemisphere.

Stroke patients benefit from fast treatment, as “time is

brain.” Human collateral scoring in clinical practice may be time

consuming, and thus potentially delay treatment. In addition,

there is a large inter observer variation when scored by humans

1 http://dx.doi.org/10.2471/BLT.16.181636

(Tan et al., 2009; McVerry et al., 2012; Su et al., 2020). Automation

of the scoring thus may be relevant, firstly by not requiring

human intervention, and secondly, it may be a more objective (and

quantitative) measure, and thus provide better results in outcome

prediction. Consequently, automated collateral scoring has been

developed and reported. Boers et al. (2017) reported a collateral

scoring method for single phase CTA that uses a Hessian-based

vesselness filter for detecting vessels, and subsequently quantifies

the amount of vessels in both hemispheres using an atlas-based

mask of the territory at risk. This image mask was created by

registration and combination of stroke infarct lesions from many

patients to a healthy individual, and thresholding the probability

map obtained at 5%. Additionally, they assessed the value of this

quantitative collateral scoring by comparing it to manual collateral

scores for a large set of patients, and they verified that the score

could be used in functional outcome prediction (Boers et al.,

2018). Su et al. (2020) described a collateral scoring approach

where vessels were segmented using a U-Net. Features were

subsequently derived by comparing lengths, volume and intensity

of the segmented vessels inside the middle cerebral artery (MCA)

territory (determined from an atlas with vessel information; Peter

et al., 2017), and these features were used as input for a random

forest classifier to compute a quantitative collateral score. Several

commercial solution have appeared as well, generally lacking

detailed information on the underlying algorithms. Grunwald et al.

(2019) assessed the e-STROKE SUITE of Brainomix Ltx, which
follows a similar strategy of vessel segmentation and quantification
in the MCA territory.

Collateral scoring depends on accurate timing of the imaging,
as imaging in early arterial or late venous phase may lead to

incorrect scores. Therefore, collateral scoring on multi phase CTA
or 4D CTA has also been investigated. Aktar et al. (2020) follow
an approach that is similar to the approaches of Boers et al. (2018)

and Su et al. (2020): comparing presence of vessels in the affected
brain vs. the full vasculature. The vessel information was extracted

from the 4D CTA using fast robust matrix completion on a cohort

of healthy subjects and the patient, where the patient’s unfilled

vessels and the estimated full vasculature were modeled as sparse

and low-rank components, respectively.

To the best of our knowledge, all automated collateral scoring

on CTA images follow a procedure that is similar to how humans

perform this task: comparing the amount of arteries in the affected

and contralateral hemisphere (or using a healthy reference subject).

We are not aware of any approach to directly predict collateral

score from CTA image using AI approaches. However, currently,

AI approaches, and more specifically CNN-based approaches,

are dominating the field of medical imaging. Especially the

segmentation task seems to be well suited to the CNN paradigm.
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The U-net is a well-known example, and in the original U-net

paper Ronneberger et al. (2015) demonstrated that augmentation

helps to get good results even in case of little training data. Isensee

et al. (2020) later showed that a basic U-net is able to address a

large variety of medical imaging segmentation tasks, and that even

the configuration can be automatically determined. Segmentation

clearly is a task that well matches the CNN approach (Isensee

et al., 2020). There are several reasons for this. First, the appearance

of the image is often directly linked to the segmentation result.

In addition, the ability to augment both the image and the

segmentation allows to generate a much larger training set easily.

More advanced approaches have been described to perform

more complex tasks, such as the prediction of brain lesions

in follow-up MR images based on baseline MR images, as is

reported by the Ischemic Stroke Lesion Segmentation (ISLES)

challenges organizers (Winzeck et al., 2018). Whereas, the trend

is toward deep learning approaches for such tasks, the results for

such tasks are generally less accurate than segmentation tasks.

In the brain lesion prediction, e.g., mean Dice scores of 0.2–

0.3 were obtained. The reasons for such relatively low scores

(e.g., compared to a standard CNN-based segmentation) may

be in the complexity of the task, and the limited availability of

training data.

Similarly, direct quantification of biomarkers, or prediction

of outcome is a relevant task in the field of stroke, which

may be addressed with deep learning based methods. A

recent example is classifying CTA images into stroke and

non-stroke cases (Barman et al., 2019). For this application,

a Siamese network approach was followed, and an area

under the curve of ∼0.9 was obtained for various scenarios.

Whereas, apparently detection of stroke is feasible, we are

interested in investigating to what extent networks can be

trained to directly predict more advanced biomarkers or

even treatment outcome. Similar to the superiority of neural

network based segmentation approaches over traditional ones,

such classification and prediction tasks may also outperform

traditional methods.

The purpose of our study is therefore to investigate to

what extent collateral scoring can be directly performed using

neural networks, and whether this can be trained in an end-

to-end manner. In addition, we want to assess whether such

collateral scores have any added value in existing functional

outcome prediction models. The motivation for this work

is twofold. First, it is clinically relevant to provide collateral

scores that can be used in therapeutic decision making.

Second, the neural network architecture developed and

assessed for this purpose, may be the basis for future studies

that investigate prediction of functional outcome directly on

the images.

Our contributions are three-fold:

1. we developed a dedicated end-to-end architecture for collateral

scoring, that is adapted to the task of processing stroke

patient images;

2. we assessed the method on a large set of stroke patients,

comparing it to human observers;

3. we assessed the collateral scoring approach in an existing

functional outcome prediction model.

2 Methods and materials

2.1 Method

2.1.1 Method motivation
The collateral score was designed to be performed by a human

observer. The semi-quantitative nature of the score helps clinicians

to translate the image features to a number. The score is deduced

by comparing the MCA regions, i.e., the brain region fed by the

left and right MCA, in both hemispheres of the patient’s brain.

The vessels in the occluded territory of the affected hemisphere are

observed and compared to the contra-lateral hemisphere to visually

quantify the collaterals and deduce the four-valued score (Tan

et al., 2009; see Figure 1): when the occluded territory is not filled

by any collateral vessel a score of 0 is assigned to the patient;

when less than 50% of the territory is filled with blood vessels the

score is 1; when the territory is filled between 50 and 100% with

vessels the assigned score is 2; and when the occluded territory is

completely vascularized then the collateral score for the patient is

3. In practice, it has been observed that the dichotomized version

of the score (grouping scores 0 and 1 to a score of 0, and 2

and 3 to a score of 1) is clinically the most relevant. In our

method we mimic the human visual assessment procedure using

a Siamese Neural Network (SNN). SNNs were introduced in the

early 90’s (Bromley et al., 1993) for signature recognition. In this

early seminal work the goal was to discriminate between authentic

and forged signatures acquired using a pen input tablet. Generally

a Siamese network consists of two identical sub-networks joined

at their outputs. During training the two sub-networks extract

features from the inputs and the subsequent joining layers measure

the difference between the features extracted by the sub-networks.

These difference can be used to generate the desired output: in case

of signatures, a binary output reporting the signature authenticity.

With the advent of deep learning, this idea has been applied to deep

neural networks for a multitude of applications (Chicco, 2021).

When designing our method we were mostly inspired by the work

of Antony et al. (2017) and Tiulpin et al. (2018) who used SNNs

to automatically assess Kellgren-Lawrence (KL) scores from X-ray

images of the knee. Similar to the collateral score, the KL score is a

semi-quantitative score. It is used for a different clinical application

that is the quantification of the severity of osteoarthritis of the knee.

Similar to their work our method applies the SNN methodology to

integrate the symmetric nature of the problem in the architecture

of the neural network.

2.1.2 Method overview
In the proposed method, the affected and the healthy

hemispheres are used as inputs for the Siamese sub-networks

as shown in Figure 2. Then, the feature activation of these sub-

networks is joined to obtain the Collateral Score. Since the

Collateral Score applies at the subject image level, the entire image

needs to be fed to the SNN model for each prediction. In our

case the images consists of a high-resolution three-dimensional

CTA and therefore, to fit them into a fixed region in the voxel

space we needed to pre-processed them. The neural network was

based on the VoxResNet (Chen et al., 2018) model architecture
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FIGURE 1

Examples of four collateral score in Maximum Intensity Projection (MIP) from 3D CTA image. All subjects have a right hemisphere occlusion. (A)

Collateral score 0; (B) Collateral score 1; (C) Collateral score 2; (D) collateral score 3.

which provides a memory efficient multi scale representation of

the image. The output activations of the network are then used

to obtain the final classification. In a post-processing step the

operating point of the classifier was adjusted to match the expected

human performance obtained from the inter-observer. The details

on the pre-processing, network architecture2 and post-processing

are given in the following sections.

2.1.3 Image pre-processing
The main purpose of the preprocessing step is to align

the images, and crop them in two images representing both

hemispheres. To this end, the preprocessing step consists of

(see also Figure 3): (1) Diffeomorphic registration of the input

subject image to a CTA atlas (Peter et al., 2017), in which

the MCA region is known for both hemispheres. A multi-step

affine plus diffeomorphic registration was applied using the ANTs

toolkit (Klein et al., 2009). This registration implicitly includes the

resampling of the images to a 1 × 1 × 1 mm3 resolution. (2)

Flipping of the input image, depending on the affected hemisphere,

in order to have the affected hemisphere always at the right side of

2 Code is available at https://gitlab.com/radiology/igit/accurate/

siamese_model.

the input image. (3) Separation of the image in two symmetrical

sub-images containing the hemispheres. Here a small overlap of

10 voxels was used to make sure each sub-network has enough

context to work with. (4) Mirroring the left (healthy) hemisphere

to obtain voxel-wise correspondence with the affected hemisphere;

(5) normalizing the intensity values in a range [−1, 1]. The

normalization was performed to have the image values of between

35 and +165Hounsfield units falling in the given range and clipping

values outside the range to −1 (if below 35) and +1 (if above

+165). The normalization interval was initially chosen by visual

inspection, to optimize the contrast between brain tissue and the

visibility of the vessels.

2.1.4 Siamese sub-network
For the sub-network of the SNN model we adapted the

VoxResNet (Chen et al., 2018) model architecture. This

architecture was selected because of two reasons. First it has

excellent performance which are, from our experience, similar

to the performance of the more popular and widely used 3D

U-Net (Çiçek et al., 2016). And secondly it has the advantage of

a less computationally demanding decoding component when

compared to the aforementioned U-Net. The adapted VoxResNet

architecture used in this paper is shown in Figure 4. Since for
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FIGURE 2

Siamese Neural Network for collateral score prediction. The blue bi-directional arrows between the Voxel Residual Networks indicates weights

sharing applied to all the neurons in the neural networks.

FIGURE 3

Preprocessing steps visualized with axial MIPs. (Top row) From left to right: original image, image after alignment to atlas space (a�ected side is left

side of patient, i.e., right side of image), image after flipping to get a�ected side at patient right, images of both hemispheres after splitting. (Bottom

row) Images after flipping non-a�ected healthy side, images after intensity clipping, and images with MCA mask overlayed (MIP of binarized mask).

our application we do not need a high-resolution volumetric

response from the network, the decoding components generate

an output image down-sampled space (with a factor of two).

The other relevant difference when comparing to the original

architecture is that we used Instance-Normalization instead of

Batch-Normalization which provides better performance in case of

training using unit-sized mini-batches (Çiçek et al., 2016; Ulyanov

et al., 2017). The volumetric feature map output of the VoxResNet
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FIGURE 4

Voxel Residual Network used as Siamese sub-network. Conv. stands for convolution, Strided Conv. indicates a covolution with stride 2 in all

directions, K is the kernel size, n the number of features, IN stands for Instance Normalization and ReLU for the rectified Linear Unit non-linear

activation. Siamese feature are the feature map for each of the Siamese sub-network, that are later joined to obtained the final classification.

is then masked with the MCA label image, available from the CTA

atlas, and reduced to a hemisphere-wise feature activation vector

using global average pooling. The MCA masking provides the

network with an extra input on the region of interest to be used for

Collateral Scoring.

2.1.5 Siamese feature joining
The feature activation from the MCA regions of the two

hemispheres are then concatenated and fed to a classification

layer with a softmax activation that output the four-values

Collateral Score. The proposed architecture permits generating a

Class Activation Map (CAM) (Zhou et al., 2016), which enables

interpretability of the output score of the network model, by

inferring the model again with the same input but without

including the global pooling layer. In this way the feature vector

will be replaced by a volumetric output for each Siamese feature

which will propagate to the output to obtain a voxel-wise activation

for each class.

2.1.6 Training procedure
The SNN was trained end-to-end using back-propagation

and the available four-values collateral score as reference. Mini-

batch learning was used, with a mini-batch size of 1 in order

to train the model on a single GPU3 and using Adam as

stochastic optimizer (Kingma and Ba, 2014). The loss used

3 NVIDIA GeForce RTX 2080Ti.

for training is a combination of binary and categorical-entropy

where dichotomized and four-valued collateral scores are used as

target values. Note that dichotomized prediction can be directly

computed from the four-valued prediction for each sample by

simply summing the predictions of the last two classes. The final

loss is given by a weighted combination of these losses:

L = (1− α)[−(y2,3 log(p2,3))− (1− y2,3 log(1− p2,3))]−

α

3∑

c=0

(yc log(1− pc))),

where pc indicates the model prediction for score class c and yc the

reference score class. With p2,3 and y2,3 we indicate respectively the

dichotomized prediction (prediction for combined score classes 2

and 3) and the dichotomized reference score. This loss allows to re-

define the problem as a classification even if the classes are ordinal.

That is because the dichotomized loss penalizes the mislabeling of

more than 1 ordinal class (0 to 2, 3, or 1–3 or vice-versa).

For the optimization we used a warm-up learning rate

scheduler (Smith, 2017) using a single cycle which allows us to

stabilize the training over different training subsets which were

used in our experiments (see Section 3). Specifically we defined

a scheduler to linearly increase the learning rate for half of the

training cycle and then decrease that until zero with a cosine-

like decay. Since the manual collateral score is relatively noisy

we used label smoothing, with a smoothing s of 0.2, to decrease

the negative impact of label uncertainty and increase classification

performance (Müller et al., 2019). A smoothing of 0.2 has the

approximate effect of decreasing the k-hot encoded reference label
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values of 0.2 (from 1.0 to 0.8) for each output class, and therefore

decrease the confidence of said reference labels:

ys = (1− s) ∗ y+ s/K

where y is the k-hot encoded reference label, y its smoothed

version and K is the number of classes (5 in our experiments).

Since we have a relatively small set of training data affected by a

large class imbalance we used substantial augmentation combined

with sample balancing during training. The number of samples

for each class was set to be the same at each epoch by up-

sampling the less represented classes and down-sampling the

more represented. Then each sample was augmented randomly

using a random rotation, translation, scaling and elastic (B-Spline

based) augmentation.

2.1.7 Post-processing
During the evaluation of the collateral score results a post-

processing step is performed to adapt the classifier threshold so

that the operating point of the classifier is similar to the one of the

human observer. We used the sensitivity of the human observers

(taken from the inter-observer variability of the score) in scoring

the dichotomized collateral to obtain the desired threshold θ to be

applied to the trained classifier. This threshold was used both to

obtain the predicted dichotomized score and to obtain the four-

values score: the dichotomized score at the provided threshold was

used to find the subset of classes in the four-values score (e.g., 0, 1

or 2, 3); then the subclass within this subset was selected according

to the multi-class prediction. This post-processing correction was

used because the dichotomized labels are more reliable than the

four-values scores (see Section 2.2.1).

2.2 Data

Two different sets of data were used in this study. CTA

images from the MR CLEAN Registry were used as a training

and validation set, and the CTA images from the MR CLEAN

Trial (Berkhemer et al., 2016) were used as an independent test

set. The MR CLEAN Registry is a registry of stroke patients who

underwent endovascular therapy from March 2014 till December

2018. This registry contains images from a large variety of hospitals

in the Netherlands, and from a large variety of vendors. From

the MR CLEAN Registry, 347 subjects were randomly selected

for development, training and validation of the method, after

applying selection criteria on slice spacing and thickness (<1.5

mm), contrast phase (peak arterial, equilibrium, and early venous),

image quality (good image quality according to core lab) and

brain coverage (>50%), similar to Su et al. (2020). Initially the

development set was split in a training set (278) and a validation

set (69) which was kept as a last resource to validate the algorithm

performance before the final evaluation on the MR CLEAN Trial

set. The split was done by stratifying the subject cases according to

the collateral score and the vendor of the CT scanner used for image

acquisition. For the independent testing, the MR CLEAN Trial

dataset was used. From the 495 subjects with available CTA images,

we selected all cases with at least a 50% brain coverage (425).

2.2.1 Inter-observer variability
Two subset of the MR CLEAN Registry and the MR CLEAN

Trial datasets were selected to evaluate the inter-observer variability

of the collateral score: (1) a sub-set ofMRCLEAN registry data, and

a sub-set of the MR CLEAN data with the characteristics showed in

Table 1. The procedure to obtain the MR CLEAN Registry inter-

observer set is described in Su et al. (2020): for 269 subject of the

MR CLEAN Registry dataset two independent raters scored the

CTA images to evaluate the score variability resulting in an inter-

observer multi-class accuracy of 0.64 for the four-value scores, an

accuracy of 0.81, a sensitivity of 0.81, and a specificity of 0.85 for

the dichotomized score.

For the MR CLEAN Trial inter-observer set all the images were

rated on three characteristics used for the selection: CS (0/1/2/3),

image quality (good/intermediate/bad) and location of occlusion

[Internal Carotid Artery (ICA), Middle Cerebral Artery, horizontal

segment (M1) and insular segment (M2)]. The selection was aimed

to include 39 scans which are qualitatively suitable for radiology

training in collateral scoring. Because the MR CLEAN Trial is a

multicenter trial, image quality, and characteristics differ between

cases and a quality selection is needed to make collateral scoring

as accurate as possible. For this set all the images were rated

by multiple observers with different level of experience: medical

doctors (MD), radiologists and medical student at different year of

study. The inter-observer accuracy of the four-values score varies

from a minimum accuracy of 0.62 to maximum accuracy of 0.67

depending on the level of the observers with an average accuracy

between all observation of 0.65. For the dichotomized score the

minimum and maximum accuracy per observer sub-set are 0.87

and 0.89 with an average accuracy of 0.89.

3 Experiments and results

3.1 Experiments overview

For optimizing the network and hyperparameters of the deep

learning model a cross-validation scheme was adopted using the

training set. The training set was split in five-folds using the

same stratification criteria that were used to split the MR CLEAN

Registry into the training and validation set (see Section 2.2). The

best performing method architecture and hyper-parameters were

selected by evaluating the performance on the validation folds.

Considering the architecture design and hyperparameters, we chose

to keep the Voxel Residual model as in the original paper and we

set the Siamese features as many as the GPU memory allowed, that

was 28 features. To define the best training strategy we started with

a training a model to predict dichotomized collateral score and

then extended to the four-values score as explained in Section 3.2.

Afterwards the training was stabilized across the different folds to

obtain an optimal number of epochs to train the final model. Then

an ablation study was performed to verify that the proposed design

choices are optimal. Next, we also investigated ensembling ofmodel

predictions to further improve the classification performance.

Based on these results, a final model was trained on the complete

training set from the MR CLEAN Registry, and assessed on the

MR CLEAN Trial images, both for collateral scoring, and for using

the collateral scores as input to a state-of-the art prediction model
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TABLE 1 Dataset description.

MR CLEAN Registry MR CLEAN

Properties Category Training Validation Entire Test Inter-observer

Vendor GE 17 2 19 130 16

Philips 81 21 102 71 3

Siemens 165 41 206 162 7

Toshiba 15 5 20 62 13

Collateral 0 12 4 16 21 5

1 82 21 103 145 13

2 123 29 152 122 10

3 61 15 76 137 11

Slice thickness [mm] [0.5–0.75) 244 59 303 97 26

[0.75–1.00) 10 3 13 94 13

[1.00–1.5) 24 7 31 146 0

[1.5–2.0] – – – 88 0

Voxel spacing [mm] Range 0.34–0.84 0.36–0.90 0.34–0.90 0.23–0.79 0.38–0.70

Average 0.48 0.48 0.47 0.48 0.53

Gender Females 131 33 164 177 14

Males 147 36 183 248 25

Subjects Total 278 69 347 425 39

for treatment outcome prediction in acute ischemic stroke. Each of

these steps is detailed in the following sections.

3.2 Dichotomized and four-valued
collateral score prediction model

We first designed the network architecture and fine-tuned

optimal hyper-parameters for the prediction of a dichotomized

collateral score. This was done by setting the α parameter to 0 in

the hybrid loss (1). Next we performed experiments to tune the

parameter α and we introduced label smoothing to alleviate the

issue of having noisy labels. In Figure 5, the dichotomized score

performance is shown for the α equal to zero and the optimal α of

0.3. For this value of α the model trained to predict the four-valued

collateral score can perform slightly better than a model trained to

predict the dichotomized score.

3.3 Training stabilization

When running the cross-validation experiment we found

that the training of the network was relatively unstable in the

sense that the model was converging to the best validation

loss at quite different epochs for each fold. Since, as explained

later in this Section, we want to obtain an optimal number of

epochs for training of the final model, we need the training

to converge uniformly among different folds. To stabilize the

model convergence across different training subset, i.e., the cross-

validation folds, a warm-up learning rate schedule was used. In

Figure 6, we compared the validation accuracy variation during

training when using the warm-up learning rate schedule with the

validation accuracy when using a regular learning rate decay. For

the warm-up scheduler the following parameters were set: α = 0.3,

maximum learning rate at half training 0.0002 and 100 epochs. For

the learning rate decay scheduler the following parameters were set:

α = 0.5, starting learning rate 0.0005, 200 epochs and a cosine

shaped decay schedule. Considering the performance of the models

corresponding to the best validation metrics, the models perform

similarly with a score accuracy of 0.62. However, considering the

validation accuracy when selecting the training epoch that gives

the highest average accuracy across all the folds we have that using

warm-up decay gave an improved accuracy of 0.56 while the cosine

decay model an accuracy of 0.54. Therefore, the warm-up decay

lead to a more stable training across the different folds.

3.4 Hyperparameters

After our experiments, the hyperparameters were set for the

candidate models (as shown in Figure 4) to be used for the

ensemble. Twenty-eight Siamese features, used to represent each

hemisphere, were used; the multi-class weight loss α was set to 0.3;

the label smoothing was set to 0.2; we used the Adam optimizer

with a warm-up learning rate scheduler with maximum learning

rate at half training of 0.0002, and starting (and final) learning

rate of 0.0, and 100 epochs; for augmentation we used a random

translation of 10 voxels in-plane and three voxels in the slice
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FIGURE 5

Dichotomized accuracy, sensitivity, specificity, and R.O.C. using di�erent value of α. R.O.C. is the receiver operating characteristic curve. The models

are evaluated on the epoch that gives on average the best multi-class accuracy on the validation set.

FIGURE 6

Validation curves with di�erent learning rate schedules.

direction, a random rotation between −20◦ and 20◦ for all planes

and, for the elastic augmentation, a B-spline grid of 20 × 20 × 20

voxels was used with a random perturbation (per grid-point) of

10 voxels.

3.5 Ablation study

The training setting and strategy was verified by ablation.

Since we used an established architecture the ablation is focused

on verifying whether (1) the Siamese architecture, (2) the hybrid

binary and multi-class loss, and (3) the learning rate warm up

strategy were effective on improving performance. Note that we

already verified in Section 3.2 that the hybrid loss was effective

on obtaining performance similar to the binary loss for the

dichotomized collateral score. Here we also verified that the

multiclass performance are not reduced by the hybrid loss. As

ablation, we run the cross-validation training with the same

parameters as described in Section 3.4 but unsetting each of the

methodology to ablate. In Table 2, the ablation results are shown.

For all the results we evaluated the validation set (in a cross-

validation fashion) using the model at the epoch that gave on

average the highest performance across the five-fold. In this way

we could also take into account the training stability that is the

main reason why we selected the warm-up learning rate scheduling.

Note that for the No-Siamese experiment the model capacity is

the same as for the Proposed (Siamese) model and only the input
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TABLE 2 Cross-validation performance of models trained using di�erent settings: Selected—model trained with the selected parameters;

No-warm-up—model trained without warm-up learning rate scheduler but just with a cosine annealing rate decay; Multi-class—model trained with

multi-class loss without contribution of the dichotomic loss; No-Siamese—model trained using the entire brain as input, and no Siamese architecture.

Model Multiclass metrics Dichotomized metrics

Accuracy Accuracy Sensitivity Specificity AUC

Proposed 0.56 0.82 0.82 0.82 0.86

No-warm-up 0.54 0.81 0.83 0.76 0.85

Multi-class 0.51 0.72 0.82 0.70 0.82

No-Siamese 0.50 0.77 0.82 0.69 0.82

The models are evaluated on the epoch that gives on average the best multi-class accuracy on the validation set.

TABLE 3 Cross-validation performance of models trained using di�erent random initialization seeds and of their ensemble.

Model Multiclass metrics Dichotomized metrics

Accuracy Accuracy Sensitivity Specificity AUC

Model A 0.62 0.82 0.84 0.79 0.86

Model B 0.61 0.81 0.82 0.79 0.83

Model C 0.60 0.79 0.82 0.76 0.84

Ensemble 0.61 0.83 0.84 0.82 0.86

AUC stands for Area Under the Curve.

and forward pass were changed to implement this architecture. The

inputs were pre-processed as explained in Section 2.1.3 but without

splitting the images in two hemispheres. The results show that

ablating each of the proposed solutions degrades the performance

of the model both in terms of multiclass score accuracy and

dichotomized score metrics.

3.6 Training and evaluating the model
ensemble

The last part of the model optimization process was the

selection of a model ensemble: using the optimal setting

found in the previous experiments, three models were

trained using different random processes initialization. The

cross-validation performances of the ensembles and of the

individual models were evaluated and compared to each

other. These results are shown in Table 3. The ensemble

of three models has better evaluation metrics than any

individual model when considering both multiclass and

dichotomized metrics. Therefore, we used the ensemble as

our selected method.

After defining the final ensemble, we re-trained the model

using the entire training set. In this training the number of

epochs was selected as the epoch that gave the highest average

validation multi-class accuracy over the five-fold’s training. The

model resulting from this final training was evaluated on the

validation set and on the test set. Using the performance on

the validation set and the inter-observer sensitivity the optimal

threshold θ was computed as the threshold that resulted in a

sensitivity equal to or higher than the inter-observer sensitivity.

This optimal threshold of 0.53 was then used for the final evaluation

on the test set. In Figure 7, the confusionmatrices and performance

metrics are given for the training, validation, test set and the

inter-observer agreement. Multi-class accuracy, and dichotomized

accuracy, sensitivity, and specificity are provided. The confusion

matrices show that for all the datasets used for the evaluation

the performance are close to the interobserver performance. The

confusion with a score difference larger than one point is extremely

rare, especially on the test set. The most confused scores are 2 and

3 and the least are 0 and 1. On the test set the confusion error is

more balanced across the classes than the interobserver confusion

and all the metrics show equal or higher performance than the

interobserver. In Figure 8, the ROC curves are provided for the

dichotomized collateral score for training, validation, and test set.

Note that for the training set the metrics are related to the models

with best validation accuracy for each of the cross-validation

fold. The ROC curves of the dichotomized score classification

of the validation and test set are similar and represent a high

performing classifier.

In Figure 9, we show CAMs for four example cases with correct

predicted score. The CAM of the ensemble is the average of each

model’s activation map. The underlying images in figure have been

pre-processed as the input images of the SNN model but without

intensity normalization. For each of the scores a CAM is obtained

and shown in the figure with a different overlay color. The maps

are overlaid on the voxel-wise absolute difference image between

the affected and healthy hemisphere so that is easier to visualize

vessels that are only on one hemisphere. The CAMs show that the

model focus on the image regions where the vessel signal is different

between the two hemispheres: for the score 0 and 1 the regions

in the affected hemisphere that have lower contrast enhancement

with respect to the contralateral hemisphere are highlighted while

for the score 2 and 3 the regions with higher contrast enhancement

are highlighted.
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FIGURE 7

Confusion matrices and performance for the selected model on training set (according to the five-fold cross-validation), validation set and test set;

and inter-observer variability.

3.7 Assessment on test set

The MR CLEAN Trial dataset was used as an independent

test set for the method developed. The final model was trained

as explained in Section 3.2. From the MR CLEAN Trial dataset,

425 subjects had a CTA with more than 50% brain coverage.

A collateral score was computed for each of these subjects.

These collateral scores were compared with the human annotated

collateral scores, and with the method of Su et al. (2020). Since,

Su et al. (2020) have different selection criteria for the input

data the methods were compared for the common subset of

the MR CLEAN Trial dataset that consists of 418 subjects. The

results are in Figure 10 (top row). The results show that the

proposed method have similar performance than Su et al. (2020)

on the entire test set and slightly worse performance on the small

test set.

Awareness of gender differences in medicine is growing, and

in particular for cardiovascular diseases it is becoming important

to discriminate between males and females. In line with this,

we also investigated whether there were differences between the

performance of the model when applied to males or females. The

sex-based performance is given in Figure 11; the results show that

there is no significant difference in the results formales and females.

The samemodel ensemble was also used to predict the collateral

score for the MR CLEAN inter-observer subset of 39 subject. The

performance metrics of the model’s ensemble on this dataset are

shown in Figure 10 (bottom row) in comparison with the method

of Su et al. (2020).
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FIGURE 8

ROC curves for training (according to the five-fold cross-validation), validation, and test set.

3.8 Application to prediction of treatment
outcome

In addition, the collateral scores have been used as replacement

of human annotated collateral scores in the MR Predicts functional

outcome prediction model (Venema et al., 2017). This is a model

that predicts positive functional outcome (modified Ranking scale

< 3), as well as the modified Ranking scale at 90 days, from 11

clinical parameters, among which radiological biomarkers such as

the Alberta Stroke Program Early CT Score and collateral score.

The main purpose is to assess to what extent these collateral scores

can be used in such models, and whether quantitative measures

improve the prediction. The area under the curve of four different

models [one trained with the human scored CS, one with the

quantitative collateral score computed by Su et al. (2020), one with

the collateral score from the SSNmodel, and one with a quantitative

collateral score from the SSN model, where the quantitative value

is the expectation of the collateral score, i.e., the weighted average

of the four probabilities for the collateral categories output by

the final layer of the SNN] is shown in Table 4. Note that in

order to compare with the performance of Su et al. (2020). the

evaluation was performed on the subset of 418 subject for which

both method could be used. The results show that using the score

and quantitative value from the proposed method slightly increases

the AUC of the treatment outcome prediction model.

4 Discussion

We have presented an end-to-end collateral scoring approach.

The model uses a Siamese Network approach that facilitates

comparing features extracted from the affected and healthy

hemispheres. Experiments with large clinical datasets demonstrate

that such approaches can replace human scoring, and also can

compete with approaches that mimic the human assessment.

In our experiments we showed that using an hybrid loss, which

combines the four-values cross-entropy loss with the dichotomized

binary loss, was effective in obtaining optimal performance for the

dichotomized even when applied to the four-values classification.

This loss was necessary because the standard categorical cross-

validation counts all the classification error as equal while in

our task the errors between classes far from each other is more

relevant and should therefore be more penalizing to the loss.

We expect that the standard categorical cross-entropy can be

directly used without loss of performance in case of a significant

increase of the training set available (Muhamedrahimov et al.,

2021; i.e., several thousand cases). We also showed that using a

warm-up learning rate schedule we could stabilize the training

in order to obtain models performance uniform across different

folds. Even though in Figure 6 we compared training experiments

with slightly different parameters, the effect of these differences

on the stability of the training is negligible. Therefore, we can

say that the approach is effective in stabilizing the training and

allows setting an optimal training strategy to be used in the final

training. Looking at validation loss over different training epochs

in Figure 6 we can notice that the curve is quite noisy. This is

not surprising considering that we used a mini-batch size of one

sample to overcome memory constraints. This effect could be

mitigated by using more mini-batches and changing the training

procedure using (1) a GPU with more memory, (2) multiple GPUs,

and gradient accumulation, or (3) mixed-precision training. At the

moment we did not investigate these alternatives and we think it is

not likely that this would lead to a significant improvement of the

model performance.

The collateral scoring was assessed on two different sets: one

small set (inter-observer set) composed of carefully chosen CTA
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FIGURE 9

CAM for the collateral score. Each column shows the a�ected hemisphere, the contra-lateral side, the CAM for each score overlaid on the absolute

intensity image. (A–D) Indicate cases with a correct prediction of collateral score of 0, 1, 2, and 3, respectively.
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FIGURE 10

(Top) Confusion matrices and performance of our method and of the method of Su et al. evaluated on a subset of 418 subject of the MR CLEAN Trial

dataset. (Bottom) Confusion matrices and performance of our method and of the method of Su et al. evaluated on a subset of 39 subject of the MR

CLEAN Trial dataset.

images with good quality, and an even distribution of collateral

scores, and a large set (test set) of representative clinical data.

For the smaller set, the method performs slightly worse than the

method of Su et al. This may be explained by the fact that the

distribution of the collateral scores in this set is different from the

distribution that is normally encountered in clinical practice. The

number of subjects with a collateral score of 0 was 13%, whereas

the percentage of collateral scores of zero in the training set was

only 4.3%. From the confusion matrix in Figure 10 (bottom row)

it is clear that the zero cases are one of the larger errors for the

end-to-end trained model. Having a more explicit computation of

collateral scores by explicit comparing the amount of vessels in

both hemispheres may give a better prediction. Still, the accuracy

for collateral scoring and dichotomized collateral scoring are in the

same range as the inter-observer values.

For the larger test set, the results are slightly different. There, the

accuracy for collateral scoring and dichotomized collateral scoring

are similar, and also the confusion matrices are similar. Note that,

for both automated methods, the performance is similar in both

test sets. However, the inter-observer variation is much smaller for

the smaller dataset. That may be caused by the selection criteria,

where good image quality was a pre-requisite. The overall image

quality in the smaller set likely is better than the image quality in the

larger dataset, and apparently the lower quality of the images affects

human scoring more than the scoring of algorithms that have been

trained on representative datasets.
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FIGURE 11

Confusion matrices and performance of our method for Female (177) and Male (248) subjects of the MR CLEAN Trial dataset.

TABLE 4 Area under the curve for prediction of positive functional

outcome on the 418 subject for which both the SNN and the method by

Su et al. (2020) could be used.

MR predicts using
CS from:

Prediction of 90-days outcome
(95% CI), AUC

mRS ≤ 2 mRS 0–6

Human obs 0.795 (0.757–0.833) 0.749 (0.711–0.787)

Su et al. 0.798 (0.759–0.837) 0.752 (0.713–0.791)

SNN categorized 0.800 (0.754–0.847) 0.749 (0.702–0.795)

SNN quant. 0.814 (0.777–0.851) 0.760 (0.723–0.797)

Collateral scoring plays a role in clinical decision making.

Having good collaterals may prolong the time window in which

intra-arterial treatment is still considered beneficial, as the collateral

flow may prevent the brain tissue at risk from dying. It is

therefore relevant to know whether automated collateral scoring

can be applied in such contexts as well. To this end, we

used the automated collateral scores in an existing outcome

prediction model (Venema et al., 2017). This model was developed

to determine the treatment benefit based on various clinical

baseline parameters, including radiological biomarkers. One of

the underlying hypotheses was that automated collateral scoring

may remove inter-observer variability and therefore improve

the performance of the prediction model. In addition, using

a quantitative score may also improve the outcome prediction

over a categorical score, as it allows the model to discriminate

between various collateral scores in a more quantitative way.

The results shown in Table 4 indeed suggest both trends: the

area under the receiver operating curve (AUROC) increases when

using automated scores vs human scores, and also increases

when the categorical score from the SNN model is replaced

with a quantitative value. Still, the increases are small, and not

statistically significant, so more experiments are needed to assess

whether these hypothesis hold. It is, however, clear from these

results that human scores can safely be replaced with well-trained

automated methods.

For the final assessment of the models we used an external
dataset. In addition, both the training and validation sets are
multi-vendor and multi-center, and are data that have been

acquired in normal clinical care. Eighty-six percent of the CTA
images from the large external validation set could be processed.

The main reason for not being able to process the images
was the lack of a usable CTA (cases with at least a 50%
brain coverage). We expect that with newer data, and improved

imaging protocols for stroke patients in acute setting, even higher
percentages of usable CTA images can be obtained. Further

assessment may still be needed for images from populations with
different ethnicity.

Direct prediction of biomarkers such as collateral scores is

more difficult than task that are commonly done in medical

imaging, such as the segmentation of anatomical structures.

In this manuscript, we proposed a Siamese network model

with a VoxResNet backbone, to compute features from both

hemispheres to predict a collateral score. The experiments

demonstrate that collateral scoring in such a way is in the

inter-observer range, and performs similar to more traditional

approaches. In the future, we will build on these results,

and investigate to what extent similar approaches can be

used for, e.g., functional outcome prediction, a task where

the relation between image and predicted value is even

less clear.
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5 Conclusion

Concluding, we presented an Siamese network model that

was trained in an end-to-end fashion to predict collateral scores

from CTA images of acute stroke patients. For dichotomized

collateral scoring, and AUC of 0.93 is obtained on an external test

set. Dichotomized accuracy is 86%, and accuracy for categorized

score is 0.64. These numbers are in line with inter-observer

results obtained on large datasets. Application of these scores in

a functional outcome prediction model also results in an AUC of

0.790, which is not worse than the AUC obtained with collateral

scores obtained by humans, 0.785.
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