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Background: Accurate registration between microscopy and MRI data is necessary for validating imaging biomark- 
ers against neuropathology, and to disentangle complex signal dependencies in microstructural MRI. Existing reg- 
istration methods often rely on serial histological sampling or significant manual input, providing limited scope 
to work with a large number of stand-alone histology sections. Here we present a customisable pipeline to assist 
the registration of stand-alone histology sections to whole-brain MRI data. 
Methods: Our pipeline registers stained histology sections to whole-brain post-mortem MRI in 4 stages, with 
the help of two photographic intermediaries: a block face image (to undistort histology sections) and coronal 
brain slab photographs (to insert them into MRI space). Each registration stage is implemented as a configurable 
stand-alone Python script using our novel platform, Tensor Image Registration Library (TIRL), which provides 
flexibility for wider adaptation. We report our experience of registering 87 PLP-stained histology sections from 

14 subjects and perform various experiments to assess the accuracy and robustness of each stage of the pipeline. 
Results: All 87 histology sections were successfully registered to MRI. Histology-to-block registration (Stage 1) 
achieved 0.2–0.4 mm accuracy, better than commonly used existing methods. Block-to-slice matching (Stage 2) 
showed great robustness in automatically identifying and inserting small tissue blocks into whole brain slices 
with 0.2 mm accuracy. Simulations demonstrated sub-voxel level accuracy (0.13 mm) of the slice-to-volume 
registration (Stage 3) algorithm, which was observed in over 200 actual brain slice registrations, compensating 
3D slice deformations up to 6.5 mm. Stage 4 combined the previous stages and generated refined pixelwise 
aligned multi-modal histology-MRI stacks. 
Conclusions: Our open-source pipeline provides robust automation tools for registering stand-alone histology 
sections to MRI data with sub-voxel level precision, and the underlying framework makes it readily adaptable to 
a diverse range of microscopy-MRI studies. 

1

 

i  

a  

a  

r  

i  

s  

n  

h
A
1

. Introduction 

MRI is a powerful neuroimaging technique providing non-invasive
mages of the entire brain but suffers from limited spatial resolution
nd biological non-specificity. In comparison, microscopy techniques
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re highly complementary, conferring specificity through high spatial
esolution and precise targeting of cellular constituents, but being highly
nvasive (e.g., requiring tissue extraction). Combined MRI-microscopy
tudies are useful for validating radiological signs of disease against
europathological evidence ( Tisdall et al., 2022 ; Yilmazer-Hanke et al.,
 John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK 
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020 ), and to improve biophysical models ( Jelescu and Budde, 2017 )
hat infer microstructural properties of the tissue beyond ordinary res-
lution limits of MRI. 

Depending on the aim, MRI-microscopy datasets can vary along
any axes: (1) whole brain ( Amunts et al., 2013 ) vs tissue blocks

 Gangolli et al., 2017 ), (2) serial histological sectioning ( Tullo et al.,
018 ) vs single-section sampling ( Meyer et al., 2006 ), (3) large ( Bagnato
t al., 2018 ) vs small ( Meadowcroft et al., 2015 ) histology sections,
4) excised/biopsied tissue imaging ( Matsuda et al., 2017 ) vs post-
ortem MRI ( Jonkman et al., 2019 ), and (5) the exact combination of
RI and microscopy modalities used. This diversity of the input data

resents unique challenges ( Alyami et al., 2022 ) for the alignment of
RI-microscopy images (e.g., extreme contrast differences, vastly dif-

erent spatial resolutions, 2D vs 3D image domains), which are difficult
o overcome with existing registration software that was not optimised
or this task. This is especially true if the source code is closed, or an
nflexible implementation prohibits the customisation of the core algo-
ithm. 

An overwhelming majority of previous works addressed microscopy-
o-MRI registration via volumetric reconstruction of serial sections
 Toga et al., 1994 ; Schormann et al., 1995 ; Mega et al., 1997 ;
chormann and Zilles, 1998 ; Jacobs et al., 1999 ; Bardinet et al., 2002 ;
urselin et al., 2001 ; Anderson et al., 2006 ; Dauguet et al., 2007 ;
hoe et al., 2011 ; Yang et al., 2013 ; Alkemade et al., 2020 ; Alegro et al.,
019 ; Chakravarty et al., 2006 ; Yelnik et al., 2007 ; Dubois et al., 2008 ;
ebenberg et al., 2010 ; Adler et al., 2014 ; Ali et al., 2018 ). A comprehen-
ive review of these techniques was published by Pichat et al. (2018) .
or these methods, the tissue must be sectioned with a constant slice
ap. First, the histology images are undistorted in 2D using photographs
f the tissue block as a reference. Subsequently, the undistorted histol-
gy images are stacked to create a volume, which is then registered to
RI using 3D registration tools such as ABA ( Rohde et al., 2002 ) or
NTs ( Avants et al., 2008 ). While the results are highly accurate, these
ethods cannot work with single-section histology images, and serial
istological sampling is often prohibitively labour-intensive, especially
or whole-brain coverage in multiple subjects ( Alegro et al., 2016 ). 

Registering stand-alone histology images to volumetric MRI data on
he other hand presents unique challenges. First, the 2D-to-3D trans-
ormation must account for both the in-plane deformations of the tis-
ue section as well as the bulk deformations of the brain that may de-
ect the sectioning plane. Second, a complex transformation model im-
lies a vast parameter space, that must be navigated effectively during
he optimisation to find the global optimum. Third, the cost function
ust be able to account for the contrast, data type, and dimensional-

ty difference of the input images. Finally, the algorithm should aim to
e fully automated, (e.g., without requiring manual landmarks) to be
easible for larger datasets. A comprehensive survey of slice-to-volume
egistration methods was published by Ferrante et al ( Ferrante and
aragios, 2017 ). One early landmark-free approach used 2nd and 3rd-
egree polynomial extensions of the 3D affine transformation model
 Kim et al., 2000 ) but achieved limited accuracy (3–8 mm) ( Singh et al.,
008 ). Meyer et al. (2006) introduced a thin-plate spline (TPS) trans-
ormation model and obtained “visually accurate ” results. A compre-
ensive study by Osechinskiy and Kruggel (2011 b, 2011 a) concluded
hat transformation models, cost functions, and optimisation meth-
ds must be tailored to the specifics of the input MRI and histology
ata. The additional challenge of registering small-format histology sec-
ions (as opposed to whole-hemisphere sections) was later addressed by
hnishi et al. (2016) , using manual landmarks to stitch together mul-

iple histology images and register them indirectly to MRI via a brain
lab photograph. Goubran et al. (2013) introduced a hybrid 2D/3D algo-
ithm specifically for sparsely sampled histology sections that alternates
etween slice-based and volume-based registration with ex-vivo MRI.
owever, their method relies on multiple slices and cannot account for
D slice deformations. While these works collectively laid down impor-
ant algorithmic foundations, each of them concerned a specific prob-
2 
em at hand, and the underlying software framework was not released
o the wider community for further testing and refinement. HistoloZee
 Yushkevich et al., 2016 ) is a recent development that addresses the pre-
iously unmet need for histology-to-MRI registration software, and even
rovides an interactive graphical user interface. However, the registra-
ion process strongly relies on manual input, the transformation model
annot account for deformations of the sectioning plane, and the source
ode is closed. 

Hence, existing software tools are not well-positioned to automate
he registration of sparsely sampled histology sections to volumetric
RI data. An experimental MRI-microscopy registration framework is

eeded, that is open-source, and provides enough flexibility to cre-
te, test, and refine various algorithms. Simultaneously, the framework
hould exhibit a sufficiently high-level programming interface such that
espoke MRI-microscopy pipelines can be deployed in a timely manner.
deally, one would additionally reduce the steep learning curve that is
ormally associated with the more general-purpose, low-level frame-
orks, such as the Insight Toolkit ( Avants et al., 2014 ). 

In this paper we describe a novel pipeline for the registration of
parsely sampled single-section histology images to MRI volumes of the
uman brain. A significant proportion of the pipeline is automated, and
t is implemented in our newly built software framework, the Tensor
mage Registration Library (TIRL). TIRL aims to provide a flexible solu-
ion for implementing bespoke image registration pipelines for diverse
RI-microscopy applications. 

. Methods 

.1. Registration workflow in the tensor image registration library 

The Tensor Image Registration Library (TIRL) is a an open-
ource software platform ( https://git.fmrib.ox.ac.uk/ihuszar/tirl , also
istributed with FSL v6.0.4 and above) for implementing bespoke image
egistration routines in Python 3. We designed it for situations where the
ype of the input data (e.g., histology formats) or the nature of the regis-
ration problem (e.g., 2D-to-3D transformation) makes it difficult to em-
loy existing software, and one can benefit from taking full control over
he registration process with the granularity of individual parameter
pdates. TIRL is highly modular; it consists of generic objects that may
e customised (via parameters or subclassing) and assembled in unique
ays within a Python script – hereafter designated as a TIRL script – to
erform specialised image registration tasks. While we summarise the
ain design concepts of TIRL here, readers may refer to a full documen-

ation of the library at https://git.fmrib.ox.ac.uk/ihuszar/tirldocs . 
Fig. 1 shows the anatomy of a basic TIRL script that registers two

mages. A core part of the library is a universal image container, the
Image object ( Fig. 1 , black box ). Image data is imported from disk

n chunks into the TImage to avoid memory overload. Image data in
he TImage is defined on an N -dimensional discrete manifold (a grid
r scattered datapoints), where each datapoint can be an L -rank ten-
or (scalar/vector/matrix/tensor). For interim points, image data is re-
rieved by the associated Interpolator object ( Fig. 1 , yellow box ), sup-
orting nearest-neighbour, linear, and spline interpolation by default.
For large images, interpolation is internally distributed across parallel
rocesses for higher performance.) Each TImage has an associated Do-
ain ( Fig. 1 , red box ), which represents the pixel/voxel coordinates of

he image. Pixel/voxel coordinates are mapped to physical coordinates
y the Chain of Transformation objects that is assigned to the Domain.
he Chain is divided into two parts. The internal Chain ( Fig. 1 , grey par-

llelograms ) is managed by TIRL to store the resolution of the image
nd to preserve the physical coordinates of the image when padding is
pplied. The external Chain is where the author of the TIRL script can
pecify an arbitrary sequence of linear and non-linear Transformation
bjects ( Fig. 1 , white boxes ) for optimisation. The parameters of the ex-
ernal Chain can be optimised either all-at-once or in arbitrary groups,
dentified by OptimisationGroups ( Fig. 1 , brown box ). The registration

https://www.git.fmrib.ox.ac.uk/ihuszar/tirl
https://www.git.fmrib.ox.ac.uk/ihuszar/tirldocs
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Fig. 1. Schematic representation of a generic TIRL registration workflow. Specialised instances of this workflow are implemented by all four stages of the pipeline, 
employing specialised subclasses of the Cost, Optimiser and Regulariser base classes. For a detailed description of the objects/classes, the reader is referred to the 
general documentation of TIRL. A coarse overview of the TImage object and the workflow is given in Section 2.1 of the main text. 
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rocess is controlled by the Optimiser object ( Fig. 1 , green box ), which it-
ratively updates the selected parameters within their predefined range
ccording to its own predefined algorithm. The Optimiser’s objective
unction is evaluated at every iteration as a sum of image-specific cost
nd parameter-specific regularisation terms, represented by the respec-
ive Cost ( Fig. 1 , blue box ) and Regularisation objects ( Fig. 1 , light grey

ox ). 
Using the above scheme, one can create individual TIRL scripts that

pecialise in a specific type of input or transformation, then assemble
hese into a bespoke modular registration pipeline by passing the op-
imised transformation chain from one script to another. Any object of
he workflow can be saved into a TIRL file or loaded from a TIRL file at
ny time, which eliminates compatibility issues, and makes it straight-
orward to interrogate the results even at the level of elementary trans-
ormations. TIRL transformation chains can be split and freely recom-
ined, as well as concatenated with FLIRT ( Jenkinson and Smith, 2001 ;
enkinson et al., 2002 ) matrices or FNIRT ( Andersson et al., 2007 ) fields,
roviding full interoperability with FSL ( Jenkinson et al., 2012 ) regis-
ration tools. Finally, TIRL chains have built-in methods to realign vec-
ors and tensors under transformations, making them compatible with
irection-sensitive data, such as diffusion MRI. 

In the following sections, we overview the TIRL scripts that we
reated to register histology sections to MRI data in an existing
ataset. We implemented these in a general style, with several con-
guration options, with the aim of making them directly accessi-
le to users without professional coding skills. The scripts are dis-
ributed as part of a growing open-source collection, called TIRLScripts
 https://git.fmrib.ox.ac.uk/ihuszar/tirlscripts ). 

.2. MRI ‐histology dataset 

For demonstrating histology-to-MRI registration with TIRL, we
esourced images from a previous post-mortem study ( Pallebage-
amarallage et al., 2018 ), only including subjects with a consistent

et of histology, photographic, and MRI data ( Fig. 2 ). Compared to
reviously published versions, this led to a reduced dataset with 14
ost-mortem human brains. All data was collected and used accord-
ng to the Oxford Brain Bank’s (OBB) generic Research Ethics Com-
ittee approval (15/SC/0639). Written informed consent was obtained

y the OBB from all participants of this study. The image acquisition
 Pallebage-Gamarallage et al., 2018 ; Miller et al., 2011 ; Foxley et al.,
014 ) and post-processing ( Tendler et al., 2020 ; Tendler et al., 2020 ;
3 
ang et al., 2020 ) details have been described earlier; we only sum-
arise the most important aspects here. 

Our dataset represented a mixed group of post-mortem brains, 11
f which were affected by terminal-stage motor neuron disease (MND)
nd 3 brains without pathological evidence of neurodegeneration at the
ime of death (median age: 65.5 years). The brains were immersed in
0% neutral buffered formalin for a median duration of 4 months. 

MRI scans ( Fig. 2 , blue panel) were acquired on a 7T Siemens Mag-
etom scanner and processed to produce quantitative T1 and T2 maps
t 1 mm isotropic resolution, T2 ∗ and susceptibility maps at 0.5 mm
sotropic resolution, diffusion-derived parametric maps at 0.85 mm
sotropic resolution, and a TRUFI anatomical reference scan at 0.25 mm
sotropic resolution. All modalities were aligned to TRUFI space using
SL’s Linear Registration Tool (FLIRT), and to the 1 mm MNI152 tem-
late using ANTs. 

As further shown in Fig. 2 (green panel), the brains were subse-
uently dissected by hand to create approximately 1 cm thick coronal
ections ( “coronal slabs ”), starting from the plane of the mammillary
odies. The total number of coronal slabs (13–17) varied with the size
f the brain. One or more (usually 4–8), approximately 25 × 35 mm large
issue blocks were sampled from predefined anatomical locations within
ach coronal slab. The tissue block sampling process was carefully doc-
mented by taking photographs of both sides of the coronal slabs and
he extracted tissue blocks. The brain slabs were photographed repeat-
dly, whenever a new block was sampled from them to create a series
f intact and “cut-out ” brain slab photographs. Each photograph repre-
ents the cross-sectional anatomy of an infinitesimally thin brain section
t the anterior or posterior surface of the slabs. We may refer to them
ollectively as brain slices or brain slice photographs without the ante-
ior/posterior distinction to emphasise their 2D nature. All photographs
ere 5472 × 3648 pixels large (approximately 50 𝜇m/pixel), and the
nterior slice photographs were digitally flipped to ensure a consistent
rientation for all brain slice photographs, i.e., looking at the brain from
ehind. 

The tissue blocks were embedded in paraffin and sectioned on their
nterior surface on a microtome at 6–10 𝜇m thickness. Consecutive tis-
ue sections from each block were immuno-stained separately for myelin
roteolipid protein (PLP), neurofilaments (SMI-312), microglia (Iba-1),
ctivated microglia and macrophages (CD68), and phosphorylated TAR-
NA binding protein-43 (pTDP-43), and counter-stained with haema-

oxylin to visualise cell nuclei ( Pallebage-Gamarallage et al., 2018 ). The
lides were digitised in SVS format using an Aperio ScanScope slide

https://www.git.fmrib.ox.ac.uk/ihuszar/tirlscripts
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Fig. 2. Overview of the MRI-histology dataset for demonstrating histology-to-MRI registration with TIRL. Fourteen (11 MND + 3 control) post-mortem brains with 
a consistent set of multi-modal MRI data, dissection photographs, and digitised histology slides were resourced from a previous study ( Pallebage-Gamarallage et al., 
2018 ). Further details are given in Section 2.2 of the main text. 

Fig. 3. Overview of the histology-to-MRI registration pipeline with two photographic intermediaries. Each stage maps the pixel coordinates of the input image to 
the pixel/voxel coordinates of the output image by a chain of transformations. The stage-specific transformation chains are optimised separately and eventually 
combined to obtain a one-to-one (invertible) mapping between histology and MRI. Due to the generality of the transformations, each histology image is mapped 
onto a parametric surface in MRI space. Images are not shown to scale. 
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canner at ×20 objective magnification, yielding a typical image size
f 60,000 × 45,000 at full resolution (approximately 0.5 𝜇m/pixel) and
humbnails at 8 𝜇m/pixel resolution ( Fig. 2 , yellow panel). Histology
pecimens with substantial artefacts (such as tears with noticeable dis-
ocation, missing tissue parts, or folds that change the overall shape of
he specimen) were discarded and repeated to ensure high-quality reg-
stration and downstream quantitative analysis of all samples. 

.3. Creating a multi ‐stage TIRL pipeline for histology ‐to ‐MRI registration 

Histology sections are prone to distortions, and it is often very diffi-
ult to localise them in whole-brain MRI data without anatomical knowl-
dge. We eliminate these difficulties and automate most of the registra-
ion process by proposing a multi-stage pipeline ( Fig. 3 ), that relies on
wo intermediate photographs to undistort (Stage 1) and guide the in-
ertion (Stages 2 & 3) of each histology image into MRI space. 

Fig. 3 shows how the histology-to-MRI transformation chain is
roken down into three independent parts, whose optimisation may
e carried out in parallel (Stages 1–3). The optimised stage-specific
hains are then concatenated and fed into a 4th stage to refine the
ransformation parameters by directly registering histology to MRI
ata. Each stage is implemented as a stand-alone Python script, which
ses the components and methods of the TIRL package and is ac-
ompanied by a YAML-formatted configuration file, allowing users to
ustomise each stage for their own data. For further details, readers
an refer to the openly available source code of the scripts and anno-
ated configuration files ( https://git.fmrib.ox.ac.uk/ihuszar/tirlscripts ).
4 
xample data from the above-mentioned MRI-histology dataset with
ompleted registrations are available through the Digital Brain Bank
 https://open.win.ox.ac.uk/DigitalBrainBank/#/datasets/pathologist ). 
he full dataset is available on request via a material transfer agreement
o ensure that the data is used for purposes that satisfy research ethics
nd funding requirements. 

In the subsequent sections, we discuss the multi-stage optimisation
equence of the transformation chain that maps the pixels of a stand-
lone histology onto the voxels of whole-brain MRI, and further discuss
he experiments to validate the accuracy of each stage. 

.4. Stage 1 

The goal of Stage 1 is to establish a forward mapping from the pixel
oordinates of a histology image to the pixel coordinates of the corre-
ponding tissue block photograph ( Fig. 3 ). Stage 1 therefore accounts
or the deformations of the tissue section that occur while it is mounted
n the glass slide. Both images are pre-processed before the registration
n line with the Stage-1 configurations. 

.4.1. Pre ‐processing 

The block photo was cropped loosely around the edges of the block
to eliminate other objects from the frame) and background-segmented
y pixelwise k -means clustering ( k = 2) using auxiliary scripts (provided
ia Git). The Stage-1 script automatically downsamples the histology im-
ge by a Gaussian kernel (FWHM = 6.25 pixels) to equalise the resolu-
ion of the inputs. Both images are converted to grayscale. The histology

https://www.git.fmrib.ox.ac.uk/ihuszar/tirlscripts
https://www.open.win.ox.ac.uk/DigitalBrainBank/\043/datasets/pathologist
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Fig. 4. Stage 1 – deformable registration of a histology image to a tissue block photograph. Contrast differences between the input images are equalised by applying 
the non-linear image filter MIND. Image dissimilarity is defined as the Euclidean distance between the MIND representation of the images. The parameters of the 
Stage-1 transformation chain are found in three successive linear and one non-linear optimisation steps. See further details in Section 2.4 of the main text. 
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mage is padded on all four edges by 1/6th of the respective image di-
ension. Padding avoids trivial reductions in cost function by simply

hifting one image outside the other’s field of view. A manually defined
ask is occasionally supplied as an input with the histology image to

xclude artefactual drivers of the registration, such as tears, holes, folds,
tain deficiencies, overstaining, tissue debris, bubbles, or slide scanning
efects. To bridge the modality gap, equal representations of the im-
ges are obtained by applying a non-linear filter, the Modality Indepen-
ent Neighbourhood Descriptor (MIND) ( Heinrich et al., 2012 ) to the
rayscale images. MIND accentuates edges in the images by replacing
ixel values with an 8 × 1 vector describing the intensity relationship of
he pixel with its immediate neighbours. The images are initially aligned
y their geometrical centres. 

.4.2. Registration 

The Stage-1 chain consists of the following transformations ( Fig. 4 ,
hain): 2D rotation (about the geometrical centre of the histology im-
ge), isotropic scaling, 2D translation, 2D affine, and a pixelwise de-
ned displacement field. The registration cost (hereafter referred to as
IND cost ) is calculated as the sum of pixelwise Euclidean distances

f MIND vectors across the histology image domain. The MIND cost is
uccessively minimised in 3 linear and 1 non-linear step ( Fig. 4 ). The
inear registration steps uniformly employ the gradient-free bounded
OBYQA optimisation method ( Powell, 2009 ). For the non-linear reg-

stration, the cost function is extended with a diffusion regularisation
erm ( Heinrich et al., 2012 ; Modersitzki, 2003 ) that enforces smooth
eformations by penalising sharp gradients in the displacement field.
he relative weight ( 𝛼) of the regularisation term is determined em-
irically for each dataset. The displacement vectors are initialised to
 and refined by 20 or fewer iterations of Gauss–Newton optimisation
 Heinrich et al., 2012 ; Madsen, 2004 ) at each of the prespecified reso-
ution levels (typically 0.8, 0.4, and 0.2 mm/pixel). 

.4.3. Experiments 

We performed Stage-1 registrations on PLP-stained histology images
rom the hippocampus and anterior cingulate cortex regions of all sub-
ects (2 × 14 images). A foreground mask was generated for the block
hotos by thresholding at 0.1 relative intensity and dilating by a 10 × 10
ixel kernel. The regularisation weight was empirically set to 𝛼 = 0.4. 

To quantitatively assess the accuracy and robustness of the regis-
ration, ground-truth grey-white matter contours were segmented by
and on both the original tissue block photographs and the histology
mages. We chose the grey-white matter contours as they were the most
isible and most consistent features of the images, allowing us to min-
mise segmentation errors. The histology contours were transformed by
5 
he optimised Stage-1 chain and compared with the respective photo-
raphic contours by calculating the median contour distance (MCD, in
illimetres). MCDs were compared between the linear and non-linear

egistration steps and plotted for different regularisation weights. Fi-
ally, the accuracy of the Stage-1 registration was compared for both
natomical regions against various ANTs paradigms, including both the
attes mutual information and the cross-correlation metrics that were

sed in a previous study ( Alegro et al., 2019 ) to register histology sec-
ions. Further details of the ANTs registration parameters are given in
upplementary material 1. 

.5. Stage 2 

The goal of Stage 2 is to establish a forward mapping from the tissue
lock photograph to the corresponding coronal brain slab photograph
 Fig. 3 ). This stage eliminates the need for anatomical knowledge to
anually localise small tissue sections within whole-brain MRI data.
oth images are pre-processed before the registration in line with the
tage-2 configurations. 

.5.1. Pre ‐processing 

The pre-processing steps for the input images are identical to those in
tage 1 with respect to cropping, background segmentation. The Stage-2
cript also converts inputs to grayscale. 

.5.2. Sampling site determination 

All photographs pertaining to a specific coronal slice of the brain are
ollected and automatically sorted starting from the most intact image
f the slice towards the slice with the most regions missing. Consecu-
ive image pairs ( Fig. 5 G–K) are aligned by a succession of rigid, affine,
nd non-linear registration, as described in Stage 1. The non-linear reg-
stration is carried out at slightly coarser resolutions (1.5 mm/pixel and
 mm/pixel) and with higher regularisation ( 𝛼 = 0.6) to avoid exces-
ive deformations around missing regions, but no masks are used at this
tage. The aligned image pairs are binarized and their difference (XOR)
s taken to highlight potential sampling sites ( Fig. 5 M). Sites with area
maller than 1 cm 

2 or width narrower than 4 mm are considered minor
egistration errors, and hence discarded. The centroids of the remain-
ng blobs are deemed possible sampling sites, and their coordinates are
apped onto the most intact slice ( Fig. 5 G), which are then used as the

egistration target for the individual blocks (e.g., the one in Fig. 5 L). 

.5.3. Registration 

The Stage-2 chain maps the pixel coordinates of the tissue block onto
he pixels of the corresponding brain slab photograph. The Stage-2 chain
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Fig. 5. Stage 2 – Automated sampling site matching and deformable registration of tissue blocks to coronal brain slabs. The raw inputs (A–F) are background- 
extracted (G–L), and the sampling sites on G are automatically identified by binarizing and pairwise subtracting (XOR) subsequent photographs of the coronal brain 
slab (G–K). Tissue block photographs (F) are cross-matched with the identified sampling sites (M) and their alignment is fine-tuned (N) at the relevant site using 
both linear and diffusion-regularised deformable registration. 
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onsists of the following transformations: a 2D rotation (about the cen-
re of the tissue block), a 2D isotropic scaling, a fixed 2D translation to
he sampling site (sampling site offset), a variable 2D translation, a 2D
ffine, and a pixelwise displacement field defined over the domain of
he tissue block image ( Fig. 5 ). To identify the correct sampling site for
ny block, the block is first initialised at all sites, and the MIND cost is
valuated for set combinations of rotations (typically in 30° increments)
nd translation parameters (typically at + / − 10 mm from the sampling
ite) to account for small inaccuracies of the sampling site determina-
ion. The best three sets of parameters at each site are fine-tuned by
OBYQA optimisation, and the one associated with the lowest MIND
ost at the end of this process is used to initialise the chain by setting
he sampling site offset and the 2D rotation. From this initial state, the
egistration proceeds through rigid, affine, and non-linear optimisation
s described in Stage 1 to fine-tune the rest of the Stage-2 chain param-
ters. Masks to exclude the background are used throughout all Stage-2
egistration steps and are generated automatically by thresholding both
rayscale inputs at 10% relative intensity. 

.5.4. Experiments 

We performed Stage-2 registrations on 87 tissue blocks from vari-
us anatomical regions (corpus callosum, anterior cingulate cortex, hip-
ocampus, visual cortex). To test the accuracy of the registration, con-
ours were defined manually along salient anatomical features on 28
mage pairs and the MCD were measured after registration. The robust-
ess of the automatic sampling site matching was tested by registering 8
locks that were extracted from the same brain slab. Finally, to test the
obustness of Stage-2 registration against block initialisation error, we
imulated the registration of the same 8 blocks from 100 different po-
itions around the centre of their respective sampling sites and counted
uccessful registrations ( < 0.2 mm MCD) as a function of initialisation
rror in millimetres. 

.6. Stage 3 

The goal of Stage 3 is to establish a forward mapping from the pixel
oordinates of a coronal brain slab photograph to the voxel coordinates
6 
f an MRI volume ( Fig. 3 ). Crucially, we make very few assumptions
bout the physical brain slabs in Stage 3. While their orientation is
coronal’, it is unlikely that their posterior and anterior surfaces will
orrespond perfectly to acquisition slices of the MRI data. In fact, it is
ossible that the sectioning planes are tilted or curved in MRI space,
ue to the irregularity of the cuts or the bulk deformations of the brain
uring either dissection or scanning. Therefore, Stage 3 leverages the
nique cross-sectional anatomy of the brain slab photographs (e.g., the
hape of the cortical ribbon, the cross section of subcortical nuclei and
entricles) to find a 3D surface in MRI space that best represents the
cutting plane ” and maps the pixels of a 2D brain slab photograph onto
his surface. Slight in-plane deformations of the brain slices are also
aken into account, as they could jeopardise the alignment of anatom-
cal structures. As the number of transformation parameters is large,
tage 3 makes extensive use of parallel computing by performing grid
earches, ranking interim results, and employing nested gradient-free
ocal optimisations, which make it the most algorithmically complex
art of the entire pipeline. The Stage-3 algorithm was developed empir-
cally in a detailed trial-and-error process. The schedule of parameter
e-initialisations and optimisation bound updates was found to be crit-
cal to achieve general robustness. While this may give the impression
hat Stage 3 would be difficult to use with a different dataset, in practice
e found the current implementation to be readily adaptable for a range
f microscopy and MRI images of both mouse and macaque brains by
hanging the concomitant Stage-3 configuration file. Readers may com-
are the different configurations that are provided in the Git repository
o learn more about adapting Stage 3. Here, we provide a high-level
verview of the optimisation process, which is common to all protocols.

.6.1. Pre ‐processing 

The brain slab photograph was cropped and background-extracted
efore importing to Stage 3 using auxiliary scripts (provided via Git).
he Stage-3 script converts the input to grayscale, and downsamples it
y a Gaussian kernel (FWHM = 5 pixels) to match the resolution of the
RI (0.25 mm/voxel). Where necessary, 2D masks were generated by

and to exclude areas where the brain slab had been damaged due to
urther investigations on the motor cortex (Supplementary Material 2). 
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Fig. 6. Stage 3 – Deformable registration of a brain slab photograph to an MRI volume. The four tiles from left to right illustrate consecutive steps of the optimisation 
process. See the main text for further details. 
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.6.2. Registration 

The Stage-3 chain consists of the following transformations ( Fig. 6 ):
 2D isotropic scaling, a 2D rotation about the slice centre, a 2D trans-
ation, a 2D-to-3D embedding (sets z = 0), a 3D displacement field, a
D rotation (about the adjusted centre of the slice photograph), a 3D
ranslation, and a 3D affine. The chain parameters are initialised such
hat the brain slice corresponds to the middle layer of a 2 cm-thick rect-
ngular slab ( Fig. 6 , panel 1, in orange). The slab, which is defined man-
ally in the configurations by its centre and orientation, represents the
patial extent of the 4-step optimisation process. The first step ( Fig. 6 ,
anel 1, rigid search ) moves the centre of the photo to several (usually
–11) equidistant points along the central axis of the slab and varies the
D rotation parameters at each of these in a prespecified range (e.g.,
 values in a 30° range about each axis). Each combination of the ini-
ial rigid parameters is then refined in a multi-resolution local optimi-
ation scheme (typically 2, 1, 0.5, and 0.25 mm/pixel) that minimises
he MIND cost. The MIND cost is always calculated between the brain
lab photo and the MRI data that is resampled onto the same 2D do-
ain. This step employs heavy parallelisation and interim results are

onstantly ranked to reduce the number of optimisations that need to
e carried out at higher resolutions. The second step ( Fig. 6 , panel 2,
ffine alignment) starts from the best rigid position and orientation of
he slice and optimises the 3D affine matrix to account for shears. The
ast two steps estimate the vectors of the 3D displacement field: first
he in-plane components only ( Fig. 6 , panel 3), then both the in-plane
nd the orthogonal components simultaneously ( Fig. 6 , panel 4). As an
mpirical compromise between accuracy and computational efficiency,
xact displacements are estimated for only a small number of evenly
istributed control points (typically 32), which are generated automat-
cally by the script. For the rest of the pixels, the local displacements
re calculated by interpolation using Gaussian radial basis functions.
ll optimisations throughout Stage 3 employ the BOBYQA method and
inimise the MIND cost, which demonstrated superior robustness in our

xperiments when compared to normalised mutual information (Supple-
entary Material 3). 

.6.3. Experiments 

To assess the accuracy and robustness of Stage 3, we registered 209
rain slab photographs from 14 subjects (approximately 15 slices per
ubject), and inspected the alignment of salient anatomical structures,
7 
ith special attention to the highly variable grey-white matter bound-
ry, ventricle cross sections, and perforating vessels. 

.6.4. Simulations 

To quantify the accuracy of Stage 3, and specifically its ability to
ompensate 3D deformations of 2D slices, we also performed registra-
ions with simulated slices. These were generated by virtually recreating
he coronal slicing scheme ( Fig. 2 , green panel ), i.e., by resampling the
tructural MRI data of a single subject onto a series of analytically de-
ned parallel first-order (planar) and second-order (quadratic) polyno-
ial surfaces. Two groups of planar and quadratic slices were generated:
rst in coronal orientation, then slightly (10°) tilted towards the left and

nferior directions for increased difficulty. Starting from a perturbed po-
ition and orientation, the slices were registered to structural MRI data
y the Stage-3 algorithm. We calculated the median registration error
MRE) for each slice and for each optimisation step by measuring the
edian distance of the registered slice pixels from the corresponding

nalytical surface points. 

.7. Stage 4 

The goal of Stage 4 is to fine-tune the alignment of a histology image
fter it has been registered in MRI space by the previous three stages.
tage 4 accounts for two specific imperfections of the intermediate pho-
ographs, which are discussed below in conjunction with the most im-
ortant methodological considerations for this stage. 

.7.1. Imperfection of the tissue block photographs 

Anatomical inconsistencies may arise between the tissue block pho-
ograph and the histology section if the histology section comes from
everal hundred micrometres deep inside the tissue block (as a result of
having off an excessive number of tissue layers in the microtome). Such
nconsistencies may drive the non-linear registration in Stage 1 to over-
stimate local deformations, leading to the misalignment and an overly
istorted appearance of the histology image in MRI space. 

.7.2. Imperfection of the coronal brain slab photographs 

Excessive widening or closing of the interhemispheric fissure
 Fig. 7 A,B) in the brain slab photographs (compared to their relative
onfiguration in the MRI volume) requires the estimation of local large
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Fig. 7. Stage 4 pre-processing – hemisphere- 
specific deformable registration of a coronal 
brain slab photograph to a structural MRI 
volume. The red contour represents the grey- 
white matter boundary as it is seen on the 
brain slab photograph (A). Due to the closing 
of the interhemispheric fissure ( green arrow- 

head ), the bilaterally driven Stage-3 registra- 
tion result (B) is not uniformly accurate ( purple 

arrowheads ). (C,D) Stage-3 registrations with 
hemisphere-specific masking produce accurate 
results. (E,F) Hemisphere-specific Stage-3 reg- 
istration reveals large differences in the slic- 
ing plane between the left and the right hemi- 
spheres, which is most likely caused by the 
antero-posterior shearing of the hemispheres 
during dissection. (G) Merging hemisphere- 
specific slice-to-volume transformations results 
in a single smooth transformation of the slice 
that preserves the accuracy of the alignment 
in both hemispheres irrespective of variations 
in the interhemispheric gap or the antero- 
posterior shearing of the hemispheres ( encir- 

cled ). 

8 



I.N. Huszar, M. Pallebage-Gamarallage, S. Bangerter-Christensen et al. NeuroImage 265 (2023) 119792 

Fig. 8. Registration error expressed as median contour distances (in mm) shown for 14 callosal and 14 hippocampal sections after the linear ( white background ) and 
non-linear ( green background ) steps of Stage 1. The non-linear registration error is reported for a range of different regularisation weights. 
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isplacements in Stage 3. However, this goes against the design prin-
iples of Stage 3, which defines the 3D displacement field sparsely to
revent local large deformations under the assumption that they are
hysically implausible. 

.7.3. Pre ‐processing 

As a preparation for Stage 4, we run Stage 3 twice with hemisphere-
pecific 3D masks ( Fig. 7 C,D) to maximise the registration accuracy
ithin the hemispheres. Using an auxiliary script (provided via Git) we

reate a single whole-slice Stage-3 chain from the weighted combina-
ion of the hemisphere-specific Stage-3 transformations. This ensures
hat the alignment remains precise in both hemispheres irrespective of
ariations in the interhemispheric gap or the antero-posterior shearing
f the hemispheres ( Fig. 7 G), which is particularly important for regis-
ering histology sections that were extracted from the midline. Finally,
e load the histology data as a TImage and initialise it in MRI space by

oncatenating the optimised chains from Stages 1-2 and the whole-slice
tage-3 chain. 

.7.4. Registration 

Stage 4 imports the so initialised histology image and the structural
RI volume. To reduce the complexity of the direct histology-to-MRI

egistration, a new Stage-4 chain is introduced that consists of the fol-
owing transformations: a 3D displacement field (defined sparsely by a
andful of control points, typically 16, scattered evenly across the histol-
gy domain), a 3D rotation (about the centre of the histology domain),
nd a 3D translation. The parameters of the new chain are set to pro-
ide a nearly equivalent mapping between histology and MRI space as
he combined Stage 1–3 chain. By reducing the degrees of freedom of
he non-linear transformation (from pixelwise in Stage 1 to 16 points in
tage 4), we reduce small-scale distortions of the histology image that
ave most likely arisen from anatomical disparities with the blockface
hotograph or the granularity of the histology stain. Finally, the param-
ters of the initialised Stage-4 chain are fine-tuned in a 4-step optimi-
ation sequence that is similar to what was described for Stage 3. Here,
he rigid search range is narrowed down, such that the histology section
n MRI space is only allowed to travel ± 2 mm perpendicularly to its ini-
ial orientation, accounting for the anatomical discrepancies that may
e present as a result of sectioning the tissue block at greater depths. 

.7.5. Experiments 

We ran Stage-4 optimisations on all 87 PLP-stained histology images
hat we had previously registered to MRI (TRUFI) data using Stages
–3. We refrained from a quantitative evaluation of Stage 4, because
9 
he error of defining corresponding anatomical landmarks between MRI
nd histology was found to be on the same order of magnitude as
he displacements themselves by Stage 4. Therefore, Stage-4 outcomes
ere visually compared with the Stage 1–3 outputs with special at-

ention to the amount of distortions and the alignment of anatomical
ontours. 

. Results 

.1. Stage 1 

The panels in Fig. 8 show the registration error (MCD) for the linear
nd non-linear optimisation steps of the histology-to-block registration
outine (Stage 1) for the 14 callosal and the 14 hippocampal sections.
ctual registration results with different regularisation weights can be
iewed in Supplementary material 4. Registration errors were also com-
ared for different regularisation weights ( 𝛼) in both anatomical regions.
he linear registration steps constituted a gradual improvement in the
lignment of the images. The non-linear substage significantly improved
he accuracy of the registration, confirming the distorted state of the
istology images. For the callosal sections, the difference between the
CD after the rotation search and the similarity transform was min-

mal, and the affine substage seemed to have a stronger influence on
he images that were highly misaligned after the previous stages. An
nspection of these images revealed that shears were interfering with
he correct estimation of the rotation and the scale factor in the first
ubstages, which were successfully compensated by the affine substage.
he regularisation weight had an optimum at 0.3 < 𝛼 < 0.4 (median
CD 0.22–0.23 mm). At the highest regularisation value of 𝛼 = 1.0 the

lignment was still noticeably better compared to the result of the affine
egistration, especially for sections with larger initial misalignment (as
videnced by shrinkage of the interquartile ranges and the top bar).
his is in keeping with the existence of bulk deformations (e.g., a slight
ending of a gyrus) in the mounted tissue slice that cannot be compen-
ated by global transformations but are still captured by the highly regu-
arised non-linear substage. On the contrary, high regularisation cannot
ccount for some finer distortions of tissue (e.g., anisotropic stretching).
he pixelwise Jacobian determinants were positive across the images
or all 𝛼 > 0.2, indicating that no topological errors are induced by the
egistration. 

The registration of the same callosal sections with two different ANTs
aradigms yielded consistently higher MCDs (SyN + Mattes: 0.4 mm,
yN + CC: 0.25 mm) than the results obtained by our Stage 1 rou-
ine (0.23 mm). The same trend was observed for hippocampal sec-
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Fig. 9. Comparison of histology-to-block registration by Stage 1 and various ANTs paradigms. Top : distribution of the registration error (MCDs in mm) corresponding 
to the four registration paradigms tested on 14 callosal and 14 hippocampal slides. Bottom : a visual comparison of registration results on representative callosal and 
hippocampal sections obtained with TIRL Stage 1 and ANTs SyN CC registration. The red and blue contours represent manual segmentations of the grey-white matter 
boundary in the tissue block photo and the PLP-stained histology images, respectively. These and similar contours were used to compute the MCDs. 
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ions as well, although the registration errors were generally higher
n this anatomical region (SyN + Mattes: 0.65 mm, SyN + CC: 0.6 mm,
tage 1: 0.4 mm). The distribution of MCDs ( Fig. 9 ) also reveals that
he ANTs registration paradigms were generally less robust than the
tage-1 routine, with more frequent misregistrations in the affine stage.
upplementing the ANTs SyN + Mattes registration paradigm with TIRL-
enerated binary masks did not improve, rather aggravated affine ini-
ialisation errors in both anatomical regions. Representative registration
esults are shown in Fig. 9 . The runtimes for the two software were com-
arable: averaging around 1 min for ANTs, and around 1 min and 15 s
or Stage 1. 

.2. Stage 2 

Upon careful observation, 81 out of 87 block-to-slice registrations
ere highly accurate: grey-white boundaries were well-aligned and

haracteristic small features of the images, such as penetrating vascular
tructures, were generally seen within a 4-pixel range ( < 0.2 mm) from
ach other, which in MRI terms translates to sub-voxel precision even
or our high-resolution TRUFI data (0.25 mm/voxel). Fig. 10 shows rep-
esentative registration results from various anatomical regions. MCD
10 
easurements on 12 randomly chosen examples confirmed the < 0.2 mm
ccuracy. In the remaining 6 out of 87 cases, the registration could not
ucceed due to some form of human error, such as incorrect labelling
f the brain slab photograph or the tissue block, and misidentification
f the corresponding slab or block surface. After fixing these, Stage 2
ielded equally accurate results for these images as well. 

In our robustness experiment, the automatic block initialisation rou-
ine could successfully identify as many as 8 different sampling sites on
he same brain slab, and all corresponding tissue blocks could be as-
igned to the correct sampling site. Comparing the initial and final posi-
ions of all 87 blocks at their respective sampling sites, we further found
hat the error of the automatic block initialisation routine was consis-
ently low, with a median value of 0.49 mm, and a 95th percentile of
.54 mm. 

The resilience of the registration algorithm against initialisation er-
ors is vital for robust performance at Stage 2. To test this resilience,
e simulated 100 different initialisations for each of the previously
entioned 8 blocks and recorded whether they led to a successful

MCD < 0.2 mm) or an unsuccessful registration of the blocks. Fig. 11
hows that the overwhelming majority of the simulated registrations
ere successful for all blocks, and most unsuccessful registrations oc-
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Fig. 10. Accuracy of Stage-2 registration of tissue blocks in various anatomical regions. (A) Tissue block photograph showing the left visual cortex. Grid spacing: 
5 mm. (B) Left visual cortex region of the corresponding brain slab photograph shown after alignment with (A). (a,b,c): colour-coded edge-enhanced overlay of (A, 
red) and (B, green) within the marked regions, demonstrating the alignment of perforating vessels. The yellow colour emerges from red-green overlap, indicating 
accurate alignment between anatomical contours. (C-D) Registered right hippocampus block. (E-F) Registered left parahippocampal gyrus. 

Fig. 11. Resilience of the Stage-2 registration algorithm against simulated block initialisation errors. The purple crosses mark the true centre of the blocks on the 
brain slab photographs. The green dots represent random initialisations associated with a successful (MCD < 0.2 mm) registration result, whereas red dot s correspond 
to unsuccessful registrations. The red graphs represent 100 − #failures within a given radius from the true centre. The dashed grey lines indicate the median and the 
95th percentile values of the true block initialisation error measured on the whole dataset. 

11 
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Fig. 12. Stage-3 (slice-to-volume) registration 
result of an actual coronal brain slab photo- 
graph. The grey-white matter boundary ( red 
contour ) was segmented by hand on the brain 
slab photograph (A) and overlaid on the re- 
sampled MRI data after each optimisation step 
(B–D) to assess the accuracy of the registra- 
tion. Notable misalignments are indicated by 
the yellow arrowheads . Through-plane deforma- 
tions (D) are essential for an accurate registra- 
tion of this brain slab photograph. (E) The con- 
servative range of Jacobians suggest moderate 
in-plane deformations, while the 3D deforma- 
tions of the slicing plane (F) are remarkable 
(the scale shows displacements in mm). 
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urred when the blocks were initialised far away from the centre of the
ampling site. Importantly, no failures were observed within the me-
ian initialisation error mark for any of the blocks. Two failures were
bserved for blocks b and c , and one for block g within the 95th per-
entile radius. For blocks with less salient anatomical features (b, c, d)
here was a marked decrease in the success rate ( Fig. 11 , plots) beyond
he 95th percentile error mark, which only occurred after 7.5 mm for
he blocks that presented with clear contrast. 

The results of the robustness experiment indicate that with the de-
ault configurations, Stage-2 block registrations are highly accurate
 < 0.2mm). Failures can be more prevalent for blocks with less salient
natomical features, but only if the insertion site is offset by more than
.5mm. If a misregistration occurs due to erroneous initialisation, man-
al intervention is needed to provide a more appropriate initial position
or a block. Alternatively, the grid search of the rotation and translation
arameters may be expanded to attempt to increase the robustness of the
ipeline, though this will be at the expense of additional computational
ost. 

.3. Stage 3 

.3.1. Registration results with actual brain slab photographs 

Fig. 12 shows an example brain slab photograph registered to MRI.
he cutting plane was oblique, as evidenced by the asymmetric ap-
earance of the lateral ventricles, the hemispheres were completely
etached, and the cerebellum was not represented in the photograph
 Fig. 12 A). Similar phenomena were found to be common across the
ataset. Stage 3 was run with default configurations, and the accuracy
f the registration was assessed qualitatively by overlaying grey-white
atter contours after each registration step. The rigid and affine reg-
12 
stration steps estimated the obliqueness of the cut surface accurately
nough to reproduce the gross shape of the hemispherical cross sections
ith the asymmetric appearance of the lateral ventricles ( Fig. 12 B).
owever, a closer inspection of the reconstructed MRI slice with the
ontours reveals several regions where the affine registration was less
ccurate (yellow arrowheads in Fig. 12 B). In most of these regions, the
ontours are not only misaligned but anatomically different – a hall-
ark that the slicing plane could not be fully estimated by the affine

ransformation, most likely because it is curved. Accordingly, the mis-
lignments in these regions persisted after optimising in-plane defor-
ations ( Fig. 12 C). On the contrary, the free-form deformation step

ould achieve an almost perfect alignment of the grey-white contours
 Fig. 12 D). The presented final registration accuracy is representative of
ll 209 slices that we processed with Stage 3. Generally, the slices were
egistered with through-plane deformations exceeding the MRI voxel
ize, and in this specific case, they were as large as 6.5 mm. The Ja-
obian exhibited a conservative ± 10% dilation/shrinkage of the slice
hroughout the entire 2D/3D transformation ( Fig. 12 E), indicating the
on-linear deformations were predominantly related to slice curvature.
he spatial distribution of in-plane and through-plane deformations ap-
ears to be consistent with a combination of two factors: the bulk defor-
ations of the brain while it is loaded into a plastic mould for scanning,

s well as the compression and shearing of the hemispheres while the
rain is cut ( Fig. 12 F). 

.3.2. Registration results with simulated brain slices 

Using simulated slices, which were generated by resampling the
tructural MRI data of a single subject onto a series of analytically de-
ned surfaces ( Fig. 13 ), we could further quantify the registration ac-
uracy and robustness. Starting from a perturbed position and orienta-
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Fig. 13. Quantifying Stage-3 (slice-to-volume) registration error using four different sets of simulated slices. Each series (straight planar, oblique planar, straight 
quadratic, oblique quadratic) consists of 10 simulated slices in the postero-anterior direction. The median registration error (MRE) is plotted for each slice after each 
optimisation step (0: perturbed initial state, 1: rigid, 2: affine, 3: in-plane deformations, 4: 3D deformations). The gradual convergence of the MRE towards zero in 
all cases demonstrates the robustness of Stage 3 as well as the added value of each optimisation step. 
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Table 1 

Median slice registration error (MRE, in mm) after each optimisation step of 
Stage 3. Step 0 refers to the initial state, and the numbers represent the extent 
of slice perturbations. The optimisation steps are 1: rigid, 2: affine, 3: in- 
plane deformations, 4: 3D deformations. The output of step 4 was accepted 
as the final output from Stage 3 in all cases. 

Slice series 

Step Straight Oblique Straight quadratic Oblique quadratic 

0 5.366 7.397 4.935 7.805 
1 0.058 0.012 1.570 1.611 
2 0.013 0.004 1.558 1.604 
3 0.013 0.004 1.641 1.667 
4 0.015 0.008 0.125 0.126 
ion, all slices registered well with no exceptions, and the MRE showed
 steady decline across consecutive optimisation steps ( Table 1 ). 

lanar slices. Following the initial perturbation of the 10 straight
lices ( Table 1 , column 1), the MREs were uniformly distributed be-
ween 2.5 and 12 mm with an average MRE of 5.36 mm. Despite the
arge variation, all 10 slices could be registered equally well by the
igid substage (MRE = 0.058 mm), which was further improved to
RE = 0.014 mm by the affine optimisation. The MRE stayed roughly

onstant through the non-linear optimisation steps. As for the oblique
lices ( Table 1 , column 2), despite the larger initial perturbations (av-
rage MRE = 7.397 mm), the rigid optimisation step successfully reg-
stered all 10 slices (MRE = 0.013 mm), and the affine optimisation
ade a further improvement (MRE = 0.004 mm), which stayed roughly

onstant during the non-linear steps. These results underpin that the lin-
ar optimisation steps converge to the desired optimum, regardless of
13 



I.N. Huszar, M. Pallebage-Gamarallage, S. Bangerter-Christensen et al. NeuroImage 265 (2023) 119792 

Fig. 14. Stage 4 can improve the accuracy of histology-to-MRI registration. Top row : visual cortex, Bottom row : hippocampus. In both cases, the histology sections 
were sampled from deeper inside the tissue block, hence they exhibit a slightly different anatomical pattern than the corresponding tissue block photographs that 
were used in Stage 1. The red centre lines are provided to guide the eye. The main areas of improvement after Stage 4 are highlighted by the orange circles . Also note 
that tissue contours appear less distorted in the Stage 4 results, because Stage 4 deformations are defined with fewer degrees of freedom to mitigate any previously 
overestimated deformations of the tissue. 
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hether the initialisation is close or further away, and that Stage 3 does
ot introduce unnecessary slice deformations. 

uadratic slices. The straight ( Table 1 , column 3) and oblique series
 Table 1 , column 4) showed a common trend of the MRE, but this was
ualitatively different from that of the planar sections ( Fig. 13 ). The ran-
om perturbations were somewhat larger for the oblique series (MRE:
.94 vs. 7.81 mm), but this difference completely vanished after the
igid substage (MRE: 1.57 mm vs. 1.61 mm), indicating that the ro-
ation components were accurately estimated for the oblique slices de-
pite their coexisting curvature. The MREs after the rigid alignment were
omparable in size to the deflections of the planes ( < 3 mm), and nei-
her the affine transformation (MRE: 1.56 mm vs. 1.60 mm), nor the
n-plane deformations (MRE: 1.64 mm vs. 1.66 mm) could make any
mprovement. In fact, the in-plane optimisation slightly increased the
egistration error by falsely attributing slice curvature related misalign-
ents to in-plane deformations. These were reverted and successfully

onverted to orthogonal displacements in the 4th optimisation step, as
ndicated by the MREs of 0.125 mm and 0.126 mm for the straight and
blique series, respectively. This result demonstrates that Stage 3 can
onverge on physically realistic curvatures of the brain slices from an
nitial planar estimate, and the curvatures can be estimated with sub-
oxel ( < 0.25 mm) precision. 

.4. Stage 4 

We observed significant improvements in the alignment of histology
nd MRI features after the Stage-4 optimisation of Stage 1–3 results, for
14 
ections where the primary source of error was the anatomical discrep-
ncy between the histology and the tissue block photograph ( Fig. 14 ).
tage 4 also dramatically improved the registration accuracy for his-
ology sections that were sampled from across the interhemispheric fis-
ure (e.g., anterior cingulate cortices, corpus callosum). Regions with
imited anatomical features, however, struggled to drive the non-linear
teps of Stage 4, and often led to exaggerated deformations. This led us
o conclude that the linear optimisation steps of Stage 4 provided the
est overall match between PLP and TRUFI data in our dataset, but fur-
her steps can easily be specified in the Stage 4 configurations for other
atasets. 

We resampled multi-modal MRI data onto the registered histology
omain by concatenating and applying the Stage-4 optimised chains
ith the respective inter-modality linear transformation matrices ob-

ained from FLIRT. The MRI modalities included both scalar and vector
uantities, the latter of which were adequately rotated in 3D by the
ombined transformation chain. Using an adapted version of the Stage
 script (available via Git) we could also register histology sections of
arious stains onto the domain of the respective PLP-stained section.
ince this was originally used for the registration with MRI, we could
chieve a pixel-to-voxel mapping between any pair of histology and MRI
odality by concatenating the histology-to-histology and histology-to-
RI chains ( Fig. 15 ). 

. Discussion 

In this paper, we presented a novel image registration framework,
IRL, and used it to create a histology-to-MRI registration pipeline that
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Fig. 15. Example of a registered MRI-histology stack of the left visual cortex, consisting of five histology stains (PLP, Iba1, CD68, SMI-312, pTDP-43), various 
relaxometry (T1, T2, T2 ∗ , QSM), and diffusion MRI modalities (MD, AD, RD, FA, V 1 ). All images are pixelwise aligned (the red centre lines are provided to guide the 
eye). V 1 : PLP-stained histological section of the left visual cortex overlaid with a map of principal fibre orientations derived from post-mortem diffusion MRI data 
via diffusion tensor fitting. The fibre orientation vectors are automatically rotated by TIRL in accordance with the transformations of the histology slide. 
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as specifically designed to work with sparsely sampled histology data,
nlike most existing methods that require serial histological sectioning.
evertheless, there is nothing to prevent one from registering adjacent

ections of densely sampled histology data to MRI using TIRL, as we re-
ently demonstrated in a macaque brain dataset with preliminary results
 Howard et al., 2019 ; Huszar et al., 2022 ). 

Our results with deformable 2D-to-3D registration demonstrate the
alue of compensating for 3D slice deformations to achieve submillime-
re accurate alignment between histology and MRI. Our method does
ot rely on specialised cutting or stain automation hardware for tissue
rocessing and reduces the imperfections of alignment that arise from
reehand brain cutting, making it suitable for integration into routine
europathological practice. 
15 
Using all four stages of the pipeline, histology sections can be reg-
stered to volumetric MRI data with a reasonable degree of automa-
ion, provided that suitable photographic intermediaries are available,
nd input configurations (such as the regularisation weight for Stage 1,
nd the slicing configuration for Stage 3) are optimised for the given
ataset. The necessity to optimise configurations by trial and error may
mpact the degree of automation in our pipeline. We therefore followed
ore FSL design principles to provide very carefully considered defaults,
hich will hopefully minimise this impact, while making our pipeline
ore widely adaptable to the range of data acquisition standards in the
eld of post-mortem imaging and microscopy. 

With suitable manual initialisation, Stage 4 could also be used as a
tand-alone semi-automated tool in the absence of photos to directly
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o  
egister histology images to volumetric MRI data. We have success-
ully tested this specific use case on macaque ( Huszar et al., 2022 ) and
ouse brain data (unpublished) using whole-hemisphere and whole-

rain histology slides (the respective scripts and configurations are pub-
icly available from the tirlscripts Git repository). Nevertheless, the ac-
uracy and robustness of direct histology-to-MRI registration by TIRL
emains to be verified against quantitative metrics on human data and
mall-format histology images. 

TIRL was designed to be a general image registration tool that can
upport a wide range of applications, which could include a range of
pecies, organ systems, and pathologies. The implementation of the
IND cost function ( Heinrich et al., 2012 ) in TIRL ensures that our

ipeline is compatible with a diverse range of image modalities, and
he modular implementation of the library allows further intuitive and
traightforward customisation of its components. 

In our efforts to make TIRL as general as possible, we had to make
ccasional trade-offs with computational efficiency. Nevertheless, we
ade significant efforts to include computational optimisations where
ossible, such as parallel processing, chunked interpolation, function
aching, optimising sub-chains of linear transformations by affine re-
lacement, and avoiding interpolation of displacement fields where the
eld is defined over the same domain as the image. Our experiments
ere carried out on a Dell T7500 workstation computer with two hexa-

ore Intel X5670 CPUs (2.93 GHz) and 64 GB of RAM. The typical run-
imes were ∼2 min for stage 1, ∼30 min for stage 2 (with 6 insertion
ites), 1–2 h for stage 3 (using 50 control points), and ∼15 min for stage
. For relatively undistorted slices, it is possible to reduce the runtime
f stage 3 by using fewer control points ( ≤ 16) to optimise deformations.
tages 1–3 can be run in parallel, while Stage 4 requires the outputs of
he earlier stages. 

Based on our personal experience, future users should observe the
ollowing data acquisition principles to achieve high-quality registration
esults with our pipeline: 

(1) Histology sections should be sampled as close as possible
( < 1 mm) to the photographed surface of the tissue blocks. Care
should be taken to avoid tears, folds, and large dislocations of the
tissue as well as staining artefacts during the histological process-
ing. If possible, heavily artefacted samples should be repeated.
Minor artefacts may be compensated by masking, for which we
provided an overview in Supplementary Material 5. At least one
stain with sufficient anatomical contrast (in brain, grey-white
matter) must be available for registration with MRI. This spe-
cific stain can then guide the alignment of other stains without
this contrast. 

(2) Dissection: Standardising the position and orientation of the
brain cuts makes it easier to initialise slice-to-volume registra-
tions (Stage 3). 

(3) Photographs: Photographs should be taken at high resolution,
under diffuse lighting conditions, on a clean, matte surface. The
background should have a distinct colour from the brain tissue
to allow segmentation. Brain slabs should be photographed on
both sides, avoiding glare from any lighting. The approximate
mm/pixel resolution of the photographs should be recorded. The
slices should be identified with labels within the photographs
to avoid mix-up. Alternatively, serial blockface images may be
used instead of brain slab photographs, as long as they exhibit a
salient cross-sectional anatomical pattern (e.g., the cortical rib-
bon, or the cross sections of ventricles or subcortical nuclei, etc.),
by which the position and orientation of the slice can be uniquely
determined. 

(4) MRI: MRI should be acquired at high resolution (0.25–1
mm/voxel) with strong contrast of relevant anatomy. Specimens
should ideally be scanned in a container that is tailored to the
shape of the specimens to avoid excessive deformations (small
deformations can be corrected by the pipeline). The container
16 
should be filled with a susceptibility-matched, signal-free fluid
(e.g., perfluorocarbon such as Fluorinert) ( Iglesias et al., 2018 ),
and air bubbles should be avoided ( Wang et al., 2020 ). 

We have committed to sharing our multi-modal MRI-histology
ata via the Oxford Digital Brain Bank ( https://open.win.ox.ac.uk/
igitalBrainBank/#/datasets/pathologist ). Both TIRL and the MRI-
istology registration pipeline are distributed in the form of Git reposi-
ories, and as part of FSL (v6.0.4 and above). We hope that this will facil-
tate MRI-histology research and encourage the development of further
nalysis tools built on top of TIRL, paving the way toward more histo-
ogically validated imaging studies in the future. 

. Conclusion 

A novel image registration framework, TIRL was presented through
ts application to create a configurable, largely automated pipeline
or registering sparsely sampled histology sections to volumetric post-
ortem MRI data. The pipeline accounts for 3D deformations of thin

issue sections, does not require manual intervention in most cases,
nd achieves submillimetre registration accuracy through photographic
ntermediaries, which can be readily acquired as part of routine neu-
opathological practice. The customisability of the pipeline and the un-
erlying software framework present a great appeal for future histology-
RI investigations. 
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