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A B S T R A C T

At the FRS Ion Catcher (FRS-IC), projectile and fission fragments are produced at relativistic energies, separated
in-flight, energy-bunched, slowed down, and thermalized in the ultra-pure helium gas-filled cryogenic stopping
cell (CSC). Thermalized nuclei are extracted from the CSC using a combination of DC and RF electric fields
and gas flow. This CSC also serves as the prototype for the CSC of the Super-FRS, where exotic nuclei will be
produced at unprecedented rates making it possible to go towards the extremes of the nuclear chart. Therefore,
it is essential to efficiently extract thermalized exotic nuclei from the CSC under high beam rate conditions, in
order to use the rare exotic nuclei, which come as cocktail beams. The dependence of the extraction efficiency
on the intensity of the impinging beam into the CSC was studied with a primary beam of 238U and its fragments.
Tests were done with two different versions of the DC electrode structure inside the cryogenic chamber, the
standard 1 m long and a short 0.5 m long DC electrode systems. In contrast to the rate capability of 104 ions/s
with the long DC electrode system, results show no extraction efficiency loss up to the rate of 2 × 105 ions/s
with the new short DC electrode. This order of magnitude increase of the rate capability paves the way for new
experiments at the FRS-IC, including studies of exotic nuclei with in-cell multi-nucleon transfer reactions. The
results further validate the design concept of the CSC of the Super-FRS, which was developed to effectively
manage beams of even higher intensities.
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1. Introduction

With the FRS Ion Catcher (FRS-IC) [1,2], high-precision experiments
of thermalized exotic nuclei are performed at the final focus of the
symmetric branch of the in-flight fragment separator (FRS) [3] at the
GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.
The FRS-IC consists of a gas-filled Cryogenic Stopping Cell (CSC) [4,
5], a Radio Frequency Quadrupole (RFQ) beamline, and a Multiple-
Reflection Time-Of-Flight Mass Spectrometer (MR-TOF-MS) [6–8]. The
CSC also serves as the prototype for the next-generation CSC [9] of
the Super-FRS [10]. Exotic nuclei produced at relativistic energies by
projectile fragmentation and fission are separated in-flight by the FRS.
These nuclei are stopped in the CSC by the ultra-pure helium gas at
cryogenic temperatures and are then transported via the RFQ beamline
to the MR-TOF-MS for high-precision direct mass measurements.

As a universal method to convert fast exotic beams to low-energy
and low-emittance beams for precision experiments with stored ions,
e.g., mass measurements and decay and laser spectroscopy [11], gas-
filled stopping cells have been widely used to slow down and thermalize
exotic nuclei produced by fusion-evaporation, in-flight fragmentation
and fission [12–17]. One of the challenges of this approach is the oper-
ation with high beam intensities, as space-charge and plasma effects can
deteriorate the efficiency [18–23]. The CSC of the FRS-IC is operated
at cryogenic temperatures to achieve high cleanliness of the stopping
gas. Strong DC push fields are created by a DC-cage in the CSC for fast
ion extraction. The DC-cage consists of ring electrodes (e.g., a short
DC-cage in Fig. 1) with different voltages applied to form the DC push
fields. At the end of the DC-cage, an RF carpet is used to guide the
ions out of the CSC via the small hole in the middle of the RF carpet.
The RF carpet with small electrode spacing (i.e., 0.25 mm) provides a
strong repelling force and allows to reach the highest buffer gas density
(i.e., stopping efficiency).

The ability to handle incoming beams of high intensity without
deteriorating ion extraction efficiency (i.e., high rate capability) opens
up possibilities for new experiments, where the nuclear reactions take
place in the stopping volume of the CSC. Examples of such experiments
include in-cell multi-nucleon transfer (MNT) reactions [24] and spon-
taneous fission [2,25,26] studies, where an ionization rate density of
107 He+3 -e− pairs/cm3/s (considering the volume of the DC-cage of
2.7 × 104 cm3) is generated by the stopping of spontaneous fission
fragments and MNT fragments. A new dedicated DC-cage has been
developed [27] for the high-rate experiments above to surpass the
limitations of a standard DC-cage. The rate capability of both systems
has been studied experimentally, and the results are presented in this
paper.

2. Experiment

Two experiments (i.e., Experiment I and Experiment II) have been
performed with a 238U primary beam to study the rate capability of
the CSC at the FRS-IC in 2016 and 2021 with the experimental setup
described in detail in Refs. [1,4,5,28]. In past investigations [29], beam
pulses with very short duration on the millisecond scale have been
used to simulate high-rate DC beams. In the experiments presented
here, more realistic experimental conditions with a spill length of a few
seconds were used. In both experiments, the optimum range of the ions
for efficient stopping in the CSC was tuned by varying the homogeneous
degrader installed in front of the CSC. Thus the ratio of stopped ions to
injected ions was maximized. The overall efficiency of the thermaliza-
tion and extraction process, given by the product of stopping efficiency
and extraction efficiency, was measured for different beam intensities.
The beam intensities were measured with a plastic scintillator mounted
in front of the CSC. The stopping efficiencies were determined from a
measurement of the range distribution and the known areal density of
the stopping cell. The overall efficiencies were determined by counting
the ions extracted from the CSC with the MR-TOF-MS. The extraction
2

Fig. 1. Photo of the short DC-cage installed on the flange of the CSC. The DC-cage
consists of 27 ring electrodes with a pitch (i.e., the central distance between the
neighboring electrodes) of 2 cm. The ‘‘golden’’ RF carpet and the entrance electrode
(with a beam window) installed on the two ends of the DC-cage are shown as well.

efficiencies could then be calculated as the ratio of overall efficiency to
stopping efficiency.

In Experiment I, the extraction efficiencies were investigated for
different rates of the 238U primary beam at 300 MeV/u with a spill
length of 1 s. Thermalized 238U ions were extracted from the CSC and
measured with the MR-TOF-MS. As uranium is one of the most reactive
elements, it tends to form molecules from reactions with contaminants
contained in the helium gas. The extraction efficiencies were calcu-
lated from the total count rates of all observed forms (i.e., 238U2+,
238UO2+, 238UOH2+, and 238UO2+

2 ) identified via high precision mass
measurements with the MR-TOF-MS. In this experiment, the long DC
electrode structure was used in the CSC (i.e., long DC-cage), which has
a stopping volume with a length of 105.4 cm and a diameter of 25 cm.
The CSC was operated with a helium areal density of 3.16±0.35 mg/cm2

(corresponding to a pressure of 59 ± 6 mbar at a temperature of 94
K) and a DC push field of 20.0 V/cm. Three different values of the
repelling RF voltage (i.e., 94 Vpp, 40 Vpp, and 28 Vpp) were applied to
the RF carpet. This assists in verifying that the decrease in extraction
efficiency is attributable to space-charge effects within the bulk of the
stopping volume rather than an insufficient repelling force exerted by
the RF carpet, which could impact the ion motion in that region.

A short DC electrode structure (i.e., short DC-cage shown in Fig. 1)
with a length of 48.2 cm and a diameter of 26.7 cm was used in
Experiment II. This short DC-cage shortens the extraction path and
allows applying a higher DC push field in the CSC. In addition, the
pitch (i.e., the central distance between the neighboring electrodes)
of the short DC-cage are reduced to half of the longer one used in
previous experiments and the diameter is slightly increased; together
these increase the effective radius of the stopping volume by 15% and
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Fig. 2. Rate capability achieved with the long DC-cage (filled squares and circles) and the short DC-cage (filled diamonds). Simulations (open squares) done for previous
nvestigations with the long DC-cage agree well with experimental results (filled squares). The corresponding ionization rate is given in helium trimer ions He+3 per second. He+3
ons are generated from the ionization of the helium gas when stopping the ions. He+3 is the main charge carrier under the conditions of the CSC.
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hus the effective area by 30%. This further increases the rate capability
f the system. The extraction efficiencies were investigated with a
35U secondary beam produced by a 238U primary beam at different
ntensities with a spill length of 5 s and 12 s. 235U ions were produced
ia 238U projectile fragmentation at 1000 MeV/u in a beryllium target
ith an areal density of 0.664 g/cm2. The target was followed by a
.223 g/cm2 Nb stripper to reach the highest charge state at this energy.
35U ions were separated in flight using twofold magnetic rigidity
nalysis and a 2 g/cm2 Al wedge degrader located at the central focal
lane of the FRS. The identification of the ions was performed using the
tandard particle detectors of the FRS. After further slowing down in the
egrader at the final focal plane, the ions were injected into the CSC.
he CSC was operated with a helium areal density of 1.12±0.12 mg/cm2

corresponding to a pressure of 36 ± 4 mbar at a temperature of 75 K)
nd a DC push field of 30.4 V/cm. The RF carpet was operated with
00% transmission efficiency. In Experiment II, extraction efficiencies
ere calculated from the count rates of 235UO2+ measured with the
R-TOF-MS. No other molecular forms besides 235UO2+ were observed.

. Results and discussion

Fig. 2 shows a compilation of the results of past investigations done
n 2014 [29] and new measurements performed in the present work.
n addition, the corresponding ionization rate is given in helium trimer
ons He+3 per second. To eliminate effects from the stopping in the
SC and transport from the CSC to the MR-TOF-MS, the extraction
fficiencies are normalized to a rate at which the CSC has the full
xtraction efficiency. For Experiment I, data points of the three different
epelling RF voltages were normalized to the extraction efficiencies
easured at beam intensities of about 2.5 × 103 ions/s, respectively.
he normalization of data from Experiment II was done with the
xtraction efficiency measured at the beam intensity of 2.2 × 103

ons/s. The total efficiency for extraction and transmission of the ions
rom the CSC to the MR-TOF-MS and their detection amounts to 0.69%
nd 0.85% for Experiment I and Experiment II, respectively.
3

The rate capabilities were found to be independent of the repelling
F voltage applied to the RF carpet. As shown (by filled circles) in
ig. 2, the decreasing trend of the extraction efficiency is independent
f the repelling RF voltage applied to the RF carpet. As seen from the
igure, the new measurements (filled blue and green circles) performed
n Experiment I with the long DC-cage agree with the simulation results
open squares) and the former experimental data with short beam spills
filled squares). Up to an incoming beam rate of about 104 ions/s of
38U injected into the CSC, the extraction efficiency stays constant.
owever, the extraction efficiency decreases at higher rates. The agree-
ent between pulsed and DC beam and the simulation further supports

he correct understanding of the system by space-charge effects. With
ncreasing the beam rate, these effects cause a severe deflection of the
hermalized ions towards the DC electrodes, thus only ions stopped in
he region close to the RF carpet can be efficiently extracted.

In contrast to the long DC-cage, the extraction efficiency is sig-
ificantly improved with the short DC-cage, and there is no loss in
xtraction efficiency up to an incoming beam rate of 2 × 105 ions/s
s shown with the filled diamonds in Fig. 2. Simulations show the rate
imit can reach 107 - 108 ions/s [27]. However, higher beam intensities
ould not be tested as the radiation limit of the experimental cave was
eached. The improvement is due to (i) the smaller pitch design that
educes the near-field distortions (confirmed by simulations) and allows
fficient transport of the ions stopped closer to the DC electrode, (ii) the
arger diameter of the DC electrodes that enlarges the stopping volume
f the CSC in the radial direction, (iii) the higher DC push field that
eads to faster removal of He ion–electron pairs and (iv) the shorter
C-cage that brings the stopping volume closer to the RF carpet (as
an be seen from the Fig. 1 in Ref. [29]). The short DC-cage design
i.e., the smaller pitch and the larger diameter of the DC electrode)
ncreases the stopping volume in the radial direction, which is crucial
or efficient stopping and extracting the energetic fission and MNT
ragments produced inside the CSC.

The results of Experiment I validate the simulation model used to
roject the rate capability of the next-generation CSC for the Super-
RS [9]. Compared to the present CSC with the standard (long) DC-
age, the next-generation CSC will exhibit notable enhancements in
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terms of two times shorter ion paths and three times stronger elec-
tric fields. Additionally, multiple RF carpets will cover a larger area
relative to the stopping volume. According to the simulations, these
advancements combined will further reduce ion losses caused by space-
charge effects, enabling the next-generation CSC to meet the required
rate capability of 107 ions/s. A configuration of the present CSC with
the short DC-cage is aligned closely with the design concepts of the
next-generation CSC. Therefore, the successful use of the short DC-cage
in Experiment II surpassing the rate capability of the long DC-cage by
more than an order of magnitude provides additional support for the
selected design concepts.

4. Conclusions and outlook

The rate capability of the CSC at the FRS-IC has been studied
with the 238U primary beam and its projectile fragments with a spill
length scale of seconds. With the standard long DC-cage, the extraction
efficiency decreases for a beam rate higher than 104 ions/s. In contrast,
no extraction efficiency loss is observed up to a rate of 2 × 105 ions/s
with the newly developed short DC-cage. This new rate capability is
achieved by employing a shorter and wider DC electrode structure,
which has better tolerance of the space-charge effects. This paves the
way for exotic nuclei studies at the FRS-IC with in-cell multi-nucleon
transfer reactions. The new results not only provide experimental con-
firmation of the advantages of the CSC with the short DC-cage, but also
complete the validation of the simulation model and justify its use for
the next-generation CSC [9] of the Super-FRS at FAIR.
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