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Orthogonal polynomial bases
for data-driven analysis and control

of continuous-time systems
P. Rapisarda, Member, IEEE , H.J. van Waarde, and M.K. Çamlibel, Senior Member, IEEE

Abstract— We use polynomial approximation theory
to perform data-driven analysis and control of linear,
continuous-time invariant systems. We transform the
continuous-time input- and state trajectories into discrete
sequences consisting of the coefficients of their orthog-
onal polynomial bases representations. We show that the
dynamics of the transformed input- and state signals and
those of the original continuous-time trajectories are de-
scribed by the same system matrices. We investigate infor-
mativity, quadratic stabilization, and H2-performance prob-
lems for continuous-time systems. We deal with the case
in which machine-precision accuracy in the representation
of continuous-time signals can be achieved from the data
using a finite number of basis elements, and the case in
which the approximation error is non-negligible.

Index Terms— Continuous-time linear systems, polyno-
mial orthogonal basis, data-driven control, informativity,
quadratic stabilization, H2-performance.

I. INTRODUCTION

Data-driven control is a very active area of research, with
considerable attention being given especially to the discrete-
time case (see [1]–[8]). Recently, also continuous-time data-
driven control problems have been investigated. The standard
approach in this case involves sampling of at least the input
and state trajectories (see e.g. Section 2.2 of [9]; Section II.A
of [10]; Remark 2 p. 913 of [4]; Section 2 of [11]; Section I
of [12]; Section I of [13]). It is often assumed that also the
state derivative can be directly measured (see formula (6.d)
of [9]; Section II.A of [10], Remark 2 p. 913 of [4]; Section
F of [14]; Section I of [12]; formula (15) of [15]; Remark
3 of [16]; Section I of [13]), even if this is possible only in
few practical situations (e.g. mechanical systems). If the state
derivative is not directly measured, its values at the sampling
instants are estimated using discretization methods (see e.g.
Appendix A of the extended version of [11]). To bound the
resulting approximation error, assumptions are made on the
system dynamics (e.g. the intersample behavior, see formula
(21) of the extended version of [11]; knowledge of bounds on
the norms of the state and the input matrix, see the introduction
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to Appendix A therein), making the approach not fully data-
driven.

A realistic data-driven framework for control of continuous-
time systems should not require the direct measurement of
the state derivative, impossible in most situations; and, at
least in the noiseless case, it should not assume insight in
the system dynamics in order to design controllers. It should
be possible to design continuous-time controllers directly and
only from data, with minimal assumptions thus exploiting the
opportunities offered by continuous-time control (e.g. using
analogue devices to implement the controller, and exploiting
well-established design techniques). Our aim in this paper
is to show that polynomial orthogonal bases (POBs in the
following) provide useful tools to build such a framework for
data-driven control of continuous-time systems. To the best of
the authors’ knowledge, only in a couple of recent publications
dealing with the stochastic case (see [17], [18]) have POBs
been used to solve data-driven control problems; ours is the
first use of POBs for data-driven control in a deterministic
setting. POBs are widely used in applied mathematics, engi-
neering, and physics (see e.g. [19]–[21]), and in system and
control theory (see [22]–[26]). Some features of POBs relevant
for data-driven control are the following (formal statements
and references for these properties are deferred to Section II,
where the basics of POBs are summarized):

1) Numerically accurate and computationally efficient algo-
rithms are available to compute POB representations of
signals from their samples.

2) The convergence rate depends on the regularity of the
function; approximation error bounds are available for
truncated representations.

3) Differentiation can be reformulated as product of the
(infinite) vector of representation coefficients with an
(infinite) basis-dependent differentiation matrix.

4) Error bounds for the approximation error of the derivative
computed using a truncated series are computable directly
from the function itself.

A crucial conceptual step in our approach is the trans-
formation of the continuous-time input- and state trajectories
into discrete sequences consisting of the coefficients of their
POB representations. We use the transformed input- and state
trajectories, and exploit the properties of POBs listed above,
to offer the following contributions:

1) We show that the (POB representation of the) state
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2 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

derivative trajectory can be computed directly from the
(POB representation of the) state trajectory. If the latter
is sufficiently regular, the (POB representation of its)
derivative can be computed up to machine precision.
Otherwise, an approximation can be computed, with an
error bound computable directly and only from the data.

2) We show that the sequences of coefficients of the in-
put, state and state derivative trajectory satisfy equations
involving the same system matrices as the continuous-
time system. This structural identity is crucial: it allows
to analyze system properties and to design controllers
directly from the input- and state trajectories.

3) We exploit such equivalent dynamical representation in-
volving POB representations to develop an informativity
point of view (see [27]) for continuous-time systems.
Ascertaining system properties such as controllability,
stabilizability, and so forth can be done directly from
data1.

4) We leverage the matrix S-lemma of [6] to solve quadratic
stabilization problems and H2-performance problems
when the approximation error introduced by series trunca-
tion is non-negligible. Our solution is entirely data-driven
and no a priori knowledge of the system dynamics is
assumed. We also show how to deal with noisy data; in
such case some insight into the dynamics of the unknown
plant is necessary to solve the problem.

A. Structure of the paper
In the first part of the paper we summarize the foundations

of orthogonal polynomial bases, and those properties used in
the rest of the paper. In Section II we introduce some basic
definitions and properties, and exemplify these for Chebyshev
and Legendre bases. In Section III we introduce differential i-
s-o representations, an equivalent representation of input-state
equations in an orthogonal basis.

In the second part of the paper we consider systems analysis
and control problems. We formulate the informativity problem
in Section IV. In Section IV-A we study informativity for sys-
tem identification. In Section IV-B characterize informativity
for controllability. In Section IV-C we characterize informa-
tivity for state feedback stabilization, when the derivative of
the state trajectory can be computed to machine precision.
We study the problem of feedback stabilization under non-
negligible approximation errors in Section V, and the design
of controllers with H2-performance specifications in Section
VI. We summarize our results in Section VII.

B. Notation
We denote by N, R and C respectively the set of natural,

real and complex numbers, and by R[s] the ring of polynomials
with real coefficients. Rn, respectively Cn, denote the space of
n-dimensional vectors with real, respectively complex, entries.
Rn×m denotes the set of n × m matrices with real entries;
Rn×∞ the set of real matrices with n rows and an infinite

1A different approach to informativity for continuous-time system stabi-
lization, based on samples of the input, state and state derivative trajectories,
is proposed in [13].

number of columns; and R∞×∞ the set of real matrices with
an infinite number of rows and columns. The transpose of a
matrix M is denoted by M⊤, its complex conjugate transpose
by M∗, and its pseudoinverse by M†.

We denote by I an interval (t0, t1), with t0, t1 ∈ R.
We denote by L2(I,R) the space of square-integrable real-
valued functions defined on I equipped with the standard inner
product ⟨·, ·⟩. The inner product on L2(I,R) defined by a
weight-function w is denoted by ⟨·, ·⟩w:

⟨f, g⟩w :=

∫
I
f(t)g(t)w(t)dt .

The notation and definitions extend in a natural way to
vector-valued functions. The space of real square-summable
sequences is denoted by ℓ2(N,R).

If f ∈ L2(I,R) has a square-integrable derivative, the vector
of coefficients of the orthogonal basis representation of d

dtf is
denoted by f̃ (1).

II. POLYNOMIAL ORTHOGONAL BASES

A. Fundamentals of polynomial orthogonal bases

For simplicity of exposition we concentrate on the case of
scalar functions; definitions and properties can be straightfor-
wardly generalized to the multivariable case, and are intro-
duced only when necessary.

Let I = (t0, t1), with t0, t1 ∈ R; an orthogonal basis for
L2(I,R) is defined by

1) a set of basis elements bk ∈ L2(I,R), k ∈ N;
2) a weight function w : I → R;
3) an inner product on L2(I,R) defined by

⟨f, g⟩w :=

∫
I
f(t)g(t)w(t)dt ,

such that ⟨bj , bk⟩w = γjkδj,k, j, k ∈ N, where δ·,· denotes
the Kronecker delta, and γjk > 0, j, k = 0, . . ..

A basis {bk}k∈N is complete if its linear span is dense in
L2(I,R).

For proofs of the following statements, see Section 6 of
[28].

Theorem 1: The following statements are equivalent:
1) {bk}k∈N is complete;
2) If f ∈ L2(I,R) and ⟨f, bk⟩w = 0 ∀ k ∈ N, then f = 0;
3) If f ∈ L2(I,R), there exist unique f̃k ∈ R, k ∈ N,

such that the sequence
{∑N

k=0 f̃kbk

}
N∈N

converges in

the mean to f ; moreover, f̃k = ⟨f, bk⟩w.
Given a complete orthogonal basis {bk}k∈N and f ∈ L2(I,R),
we call f =

∑∞
k=0 f̃kbk, where f̃k ∈ R, k ∈ N is defined as in

statement 3) of Theorem 1, the orthogonal basis representation
of f . We call f̃k the k-th coefficient of f in the orthogonal
basis representation.

Let {bk}k∈N be a complete orthogonal basis on I; then for
all f ∈ L2(I,R) Bessel’s equality

∫
I f(t)

2w(t)dt =
∑∞

k=0 f̃
2
k

holds (see Theorem 23 in Section 6 of [28]). The following
result is a straightforward consequence of completeness and
Bessel’s equality; it implies that limk→∞ f̃k = 0.
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Proposition 1: If {bk}k∈N is complete, then Π defined by

Π : L2(I,R) → ℓ2(N,R)
f → f̃ , (1)

is a bijective isometry between L2(I,R) and ℓ2(N,R).
If each element bk of the basis is a polynomial, we call
{bk}k∈N a POB. In the rest of this paper, we only consider
POBs.

Example 1 (Chebyshev polynomials): Let I = (−1, 1). The
Chebyshev polynomials Ck ∈ R[t], k ∈ N are defined by (see
[29]): C0(t) := 1, C1(t) := t, and Cn+1(t) = 2tCn(t) −
Cn−1(t), n ≥ 2. They are orthogonal with respect to the
inner product defined by w(t) = 1√

1−t2
, and form a complete

basis for L2(I,R). Shifted Chebyshev bases can be defined
for intervals I = (t0, t1) with t0, t1 ∈ R by the transformation
t → 2

t1−t0
t − t1+t0

t1−t0
. In the following, we only consider the

case I = (−1, 1).
Example 2 (Legendre polynomials): Let I = (−1, 1); the

Legendre polynomials Lk ∈ R[t], k ∈ N are defined by (see
e.g. [30]) L0(t) = 1, L1(t) = t, and

d

dt
Ln+1 =

d

dt
Ln−1 + (2n+ 1)Ln . (2)

They are orthogonal in the standard L2(I,R) inner product,
and form a complete basis for L2(I,R). Shifted Legendre bases
can be defined for intervals I = (t0, t1) with t0, t1 ∈ R by the
transformation t → 2

t1−t0
t− t1+t0

t1−t0
.

Remark 1 (Computation of coefficients): We substantiate
statement 1) in the first list of Section I. For the Chebyshev
and Legendre bases, computing the coefficients f̃k does not
require the evaluation of

∫
I f(t)bk(t)w(t)dt: they can be

computed by interpolating f on an appropriate sampling
grid (see (3.4) p. 14 of [31], and Section 2.3 of [20],
respectively). For the Chebyshev basis, the coefficients can
be efficiently computed using the FFT (see Section 3.3 of
[31])2. Consequently, the number of coefficients that can be
computed is only limited by the size of the sampling grid,
and by the computational power available to interpolate the
associated data.

Remark 2 (Lipschitz continuity and uniform convergence):
If the function f is Lipschitz continuous and the basis {bk}k∈N
consists of the Chebyshev or Legendre polynomials, then
statement 3) of Theorem 1 can be strengthened: the sequence{∑N

k=0 f̃kbk

}
N∈N

converges absolutely and uniformly (see
Theorem 3.1 p. 17 in [31]).

Let f ∈ L2(I,R), and {bk}k∈N be a POB; denote by b the
infinite vector of functions

b :=
[
b0 b1 . . .

]⊤
, (3)

and by f̃ the infinite vector defined by

f̃ :=
[
f̃0 f̃1 . . .

]
. (4)

With these positions, we write

f =

∞∑
k=0

f̃kbk = f̃b . (5)

2A description of the process used to compute the coefficients of the
Chebyshev expansion up to machine precision is given in pp. 18-20 of [31].

The meaning of this equality depends on the function space
that f belongs to (almost everywhere for f ∈ L2(I,R),
pointwise for Lipschitz functions). The right-hand side of (5)
is the POB representation of f , sometimes called also the
polynomial transform of f (see p. 69 of [20]).

When dealing with vector functions, we use the following
notation. Denote by fi, i = 1, . . . , n the i-th component
of f ∈ L2 (I,Rn), and let fi =

∑∞
k=0 f̃i,kbk be its POB

representation; we write

f =

f̃1,0 f̃1,1 . . .
...

... . . .

f̃n,0 f̃n,1 . . .


︸ ︷︷ ︸

=:f̃

b . (6)

B. Approximation by projection; error bounds

Let f ∈ L2(I,R) be represented by (5); we call

πN (f) :=

N∑
k=0

f̃kbk , (7)

the truncation or projection of (the series for) f to degree N .
We associate with πN the map

ΠN : L2(I,R) → R1×(N+1)

f →
[
f̃0 . . . f̃N

]
. (8)

In view of statement 3) of Theorem 1 and of Remark 2, we
conclude that the approximation error, defined by

f − πN (f) =

∞∑
k=N+1

f̃kbk , (9)

decays with N . For the Chebyshev and the Legendre basis, a
general principle is that the smoother the function, the faster
the approximation error goes to zero with N . Consequently,
“well-behaved” functions can be represented up to machine
precision by truncated series (see also Remark 1). The fol-
lowing remarks justify the first and second part of statement
2) in the first list in Section I, respectively.

Remark 3 (Rate of convergence): For ν-differentiable
functions, the ∞-norm of the approximation error is O(N−ν)
(“algebraic convergence”), see Theorem 7.2 p. 53 of [31] and
Section 5.4.2 of [20], respectively. For analytic functions,
the ∞-approximation error is O(ρ−N ) for some 0 < ρ < 1
(“geometric convergence”), see Theorem 8.2 p. 57 of [31] for
the Chebyshev basis. For C∞-functions, the approximation
error goes to zero faster than O(N−k) for every finite k
(“exponential convergence”), see p. 47 of [20]. Similar results
can be established for less regular functions using Sobolev
spaces (see Appendix A.11 of [20], and Sections 5.4.2
and 5.5.2 therein for the Legendre and Chebyshev cases,
respectively).

Remark 4 (Error bounds): The upper bounds on the ap-
proximation error by truncation referred to in Remark 3
are expressed only in terms of properties of the function
(and its derivatives). For differentiable functions (algebraic
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convergence), the bound is in terms of the total variation (1-
norm) of the derivative of the function (see e.g. formula (7.4)
p. 53 of [31]). For analytic functions (geometric convergence)
the bound is in terms of the maximum value of the function in
a bounded subset of C (“Bernstein ellipse”, see p. 56 of [31]),
see formula (8.1) p. 57 of [31]. For less regular functions in
Sobolev spaces, see Sections 5.4.2 and 5.5.2 of [20].

C. Differentiation

We justify statement 3) in the first list of Section I. Assume
that f ∈ L2(I,R) is differentiable and that d

dtf ∈ L2(I,R).
Because of completeness and the unicity of the orthogonal
basis representation (statement 3) in Theorem 1), the following
differentiation in the transform space equality holds:

d

dt
f =

∞∑
k=0

f̃k
d

dt
bk , (10)

see p. 77 of [20]. Since bk is a polynomial, d
dtbk is also a

polynomial, and can be written as linear combination of the
basis elements: there exist dk,j ∈ R such that

d

dt
bk =

∞∑
j=0

dk,jbj , k ∈ N . (11)

Recall (3) and define the infinite vector

d

dt
b :=

[
d
dtb0

d
dtb1 . . .

]⊤
, (12)

and from (11), define the infinite matrix

Db :=
[
dk,j

]
k,j∈N . (13)

With these positions, (11) can be written as d
dtb = Dbb, and

(10) is equivalent with

d

dt
f = f̃

d

dt
b = f̃Dbb =

[
f̃
(1)
0 f̃

(1)
1 . . .

]
︸ ︷︷ ︸

=:f̃(1)=f̃Db

b . (14)

From Proposition 1 it follows that the operator d
dt on L2(I,R)

induces an operator Db defined by:

Db : ℓ2(N,R) → ℓ2(N,R)
f̃ → f̃Db , (15)

i.e. the POB representation of the derivative of a function is
directly computed from the POB representation of the function
itself.

Example 3 (Differentiation for Legendre polynomials):
The following equalities can be proved with an induction
argument:

d

dt
L2k+1 =

k∑
j=0

(4j + 1)L2j k ≥ 0 ,

d

dt
L2k =

k−1∑
j=0

(4j + 3)L2j+1 k ≥ 1 ,

(see also formulas (2.3.17)-(2.3.18) p. 77 of [20]). Denote
L :=

[
L0 L1 . . .

]⊤
; then

d

dt
L =



0 0 0 0 0 . . .
1 0 0 0 0 . . .
0 3 0 0 0 . . .
1 0 5 0 0 . . .
0 3 0 7 0 . . .
1 0 5 0 9 . . .
...

. . . . . . . . . . . . . . .


︸ ︷︷ ︸

=:DL

L . (16)

The nonzero entries of DL increase linearly with the row- and
column-indices. □

Example 4 (Differentiation for Chebyshev polynomials):
Define C :=

[
C0 C1 . . .

]⊤
. Using formula (2.4.22) p. 87

of [20], it can be proved that the entries of the differentiation
matrix for the Chebyshev polynomial basis are: d0,k = 0 for
all k ∈ N; if ℓ is even, then dℓ,k = 2ℓ if k < ℓ is even,
0 otherwise; and if ℓ is odd, then dℓ,0 = ℓ, dℓ,k = 2ℓ if
k ≤ ℓ − 1 is even, and dℓ,k = 0 otherwise (see also formula
(2.4.22) p. 87 of [20]). Consequently,

DC =



0 0 0 0 0 . . .
1 0 0 0 0 . . .
0 4 0 0 0 . . .
3 0 6 0 0 . . .
0 8 0 8 0 . . .
5 0 10 0 10 . . .
...

...
...

...
...

. . .


. (17)

The nonzero entries of DC increase linearly with the row- and
column-indices. □

D. Approximation error for the derivative of the projection
We discuss statement 4) of the first list in Section I. Let

N ∈ N; using the notation introduced in (8), partition

f̃ =:
[
ΠN (f) f̃ ′

]
and f̃ (1) =:

[
ΠN ( d

dtf) f̃ (1)′
]
, (18)

where f̃ ′, f̃ (1)′ ∈ R1×∞. Partition Db accordingly:

Db =:

[
D11 D12

D21 D22

]
, (19)

i.e. D11 ∈ R(N+1)×(N+1), D12,D⊤
21 ∈ R(N+1)×∞, D22 ∈

R∞×∞. The nonzero coefficients of πN ( d
dtf) are the entries

of ΠN (f)D11+ f̃ ′D21; the nonzero coefficients of d
dt (πN (f))

are the entries of ΠN (f)D11. It follows that differentiation
and projection do not commute: d

dt ◦ πN ̸= πN ◦ d
dt . We call

d
dt (πN (f))−πN

(
d
dtf

)
the derivative approximation error. If

f̃k goes to zero quickly relative to the linear increase of the
entries of Db (see Remark 3 and Examples 3 and 4), a large
enough N exists for which both f̃k and f̃

(1)
k are below machine

precision: in such cases f̃ and f̃ (1) have compact support
for practical purposes. Then πN ( d

dtf) ≃
d
dt (πN (f)), and the

differentiation and truncation operators “almost” commute on
f . In all other cases, an upper bound on the norm of the
commutator πN ◦ d

dt −
d
dt ◦πN is needed. The following result
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holds for the Chebyshev basis, and it is stated under some
technical assumptions discussed in Remark 5; some additional
comments are given in Remark 6.

Proposition 2: Let {Ck}k∈N be the Chebyshev basis. Let
f ∈ L2(I,R) and let N ∈ N, N ≥ 1. Assume that f and f (1)

are absolutely continuous, and that V
(
f (2)

)
:=

∥∥∥d2f
dt2

∥∥∥
1
=∫ 1

−1

∣∣∣d2f
dt2 (τ)

∣∣∣ dτ < ∞. Partition f̃ and f̃ (1) as in (18) and DC

as in (19). Then the 2-norm of f̃ ′D21 is ≤ 2V (f(2))√
π(N−1)

.
Proof: Use Theorem 7.2 p. 53 of [31] to conclude that∥∥∥∥f (1) − d

dt
(πN (f))

∥∥∥∥
∞

≤
2V

(
f (2)

)
π(N − 1)

.

Use Proposition 1 and the partitions (18) and (19) to con-
clude that

∥∥f (1) − d
dt (πN (f))

∥∥
L2,w

equals the ℓ2-norm of the

sequence
[
f̃ ′D21 ΠN (f)D12 + f̃ ′D22

]
.

If g ∈ L2,w(I,R), then ∥g∥∞ is finite, and

∥g∥L2,w(I,R) ≤
(∫ 1

−1

∥g∥2∞w(τ)dτ

) 1
2

≤ ∥g∥∞
√
π .

Consequently,

2V
(
f (2)

)
π(N − 1)

≥
∥∥∥∥f (1) − d

dt
(πN (f))

∥∥∥∥
∞

≥ 1√
π

∥∥∥∥f (1) − d

dt
(πN (f))

∥∥∥∥
L2,w(I,R)

.

Observe that
∥∥f (1) − d

dt (πN (f))
∥∥
L2,w(I,R) equals the sum of

the 2-norm of f̃ ′D21 and of the ℓ2-norm of the sequence
ΠN (f)D12+f̃ ′D22; since the latter is nonnegative, the desired
inequality follows.

Remark 5 (On the assumptions of Proposition 2): The as-
sumptions on f and d

dtf being absolutely continuous can be
relaxed by working in Sobolev spaces of square-integrable
functions possessing a certain number of derivatives in the
sense of distributions, see Section 2 of [32], especially Lemma
2.3 p. 75 therein.

Remark 6 (On the error bound of Proposition 2): In
Proposition 2 the error bound is expressed only in terms
of properties of the second-order derivative of f (see also
Remark 4 and Section 2 of [32]). Consequently, it can be
computed directly from the data. In view of the applications
we consider in Section V of this paper, the fact that the
bound is a truly data-driven one is an advantage over the
results of [11] (see Appendix A therein), that require insight
in the unknown system dynamics in the form of bounds on
∥A∥2 and ∥B∥2.

Two issues for further research are to ascertain how tight the
error bound is (see e.g. p. 53 of [31]), and how to accurately
estimate it. In Example 7 we illustrate one approach to the
estimation of the bound: using the first N +1 coefficients we
compute an approximation to f (2) as d2

dt2 (ΠN (f)); and we
estimate V (f (2)) by the total variation of d2

dt2 (ΠN (f)).

III. ORTHOGONAL BASIS I-S REPRESENTATIONS

Consider the continuous-time input-state (i-s) equation

d

dt
x = Ax+Bu , (20)

where x(t) ∈ Rn, u(t) ∈ Rm. Since the system (20) is linear,
given u ∈ L2(I,Rm), the trajectories x and d

dtx satisfying (20)
are also square-integrable on I. We denote the corresponding
POB representations by

x̃ := {x̃k}k∈N , x̃(1) := {x̃(1)
k }k∈N , ũ := {ũk}k∈N . (21)

The following Theorem is crucial for the rest of the paper.
Theorem 2: Let {bk}k∈N be a complete POB for L2(I,R).

Let (20) be an i-s system. The following statements are
equivalent:

1) u, x satisfy (20);
2) The sequences defined in (21) satisfy

x̃(1) = Ax̃+Bũ

2a) The sequences defined in (21) satisfy

x̃Db = Ax̃+Bũ . (22)
Proof: The equivalence of statements 2) and 2a) fol-

lows from completeness of {bk}k∈N and (14). To prove the
equivalence of 1) and 2a), conclude from the completeness
of {bk}k∈N and statement 3) of Theorem 1 that u, x satisfy
(20) if and only if the basis representations of d

dtx, x, and u
satisfy

x̃Dbb = Ax̃b+Bũb ,

from which (22) follows.
We call (22) the POB representation of (20).

Remark 7 (Why orthogonal bases?): By Theorem 2, we
can associate to (20) an equivalent representation that involves
the same matrices A, B of (20). In other words, the dynamics
of the original system and the representation of the “trans-
formed” system involving the POB representations of the state
and input trajectories are described by the same matrices. The
linearity of the state equations and of differentiation, and the
equivalence (14) between differentiation in the time-domain
and matrix multiplication in the orthogonal basis domain were
crucial in establishing this result.

We set the stage for data-driven analysis and control of
continuous-time systems using POBs. Let {bk}k∈N be a
complete polynomial orthogonal basis; let the data-generating
continuous-time system be described by (20). We assume
that a noiseless (state, input) trajectory pair (x, u) has been
measured, and that a finite number N + 1 of coefficients of
its orthogonal basis representation (x̃, ũ) has been computed
(see Remark 1). From the truncated coefficient sequences
{x̃}k=0,...,N and {ũ}k=0,...,N we define the matrices

X :=
[
x̃0 . . . x̃N

]
∈ Rn×(N+1)

U :=
[
ũ0 . . . ũN

]
∈ Rm×(N+1) . (23)

We compute an approximation of the truncation of the orthog-
onal basis representation of d

dtx as XD11 (see Section II-D,
and (19)). Note that since the state trajectory of a linear system
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6 IEEE TRANSACTIONS ON AUTOMATIC CONTROL

consists also of exponential trajectories, that cannot be exactly
represented by any finite combination of polynomials, such an
approximation error always occurs. Two situations can arise,
depending on the approximation error between the derivative
of the projection and the projection of the derivative being
negligible or not.

The first situation occurs when the trajectory x is sufficiently
regular, i.e. its orthogonal basis coefficients decay faster than
the linear increase of the entries of D (see Section II-D).
x is smoother than, and d

dtx as smooth as u: regularity of
x ultimately depends on the differentiability of u. Since in
many cases u can be chosen as an experimental input, this
first situation is not necessarily unrealistic3. Our data-driven
analysis of system properties in Section IV is performed under
the assumption of negligible derivative approximation error.

We recognize that the second situation is of great practical
importance, and in Sections V and VI we bring our error
analysis of Section II-D and the matrix S-lemma of [6], [33]
to bear on the problem of designing stabilizing state feedback
laws when the derivative approximation error is non negligible.
We also discuss the case when the trajectory x is affected by
noise in Remark 9 in Section V.

IV. DATA-DRIVEN ANALYSIS FOR EXACT DATA

Let Σ be a set of continuous-time systems containing a
data-generating unknown system S, and denote by D a set
of trajectories generated by S. Denote by ΣD ⊆ Σ the set
of all systems that could have generated the data; note that
S ∈ ΣD. Denote by ΣP ⊆ Σ the set consisting of all systems
sharing a given property P (e.g. all stable, or controllable, or
stabilizable systems in Σ).

Definition 1 (Informativity for a property P): The data D
is informative for P if ΣD ⊆ ΣP .
The informativity problem consists in providing necessary and
sufficient conditions on D under which the data are informa-
tive for property P . In this section we solve it for various
instances of the property P , assuming that the derivative
approximation error is negligible. We call this the exact data
case.

In the rest of this paper, the data D consists of the
coefficients of the state and input-trajectory defined in (23):

D := (X,U) .

We call an input-state model associated with the matrices
(Â, B̂) unfalsified by D if XD11 = ÂX+ B̂U . We denote by
ΣD the set consisting of all pairs (Â, B̂) unfalsified by D:

ΣD :=

{
(Â, B̂) | XD11 =

[
Â B̂

] [
X
U

]}
. (24)

A. Informativity for system identification
The data (X,U) are informative for system identification if

ΣD contains only one element. Recall that an approximation
error for the state derivative always occurs when working with

3Assuming this situation is from the conceptual point of view as strong as
assumption 2 and condition ii) in Lemma 4 of [18], namely that the data are
exactly representable by a truncated polynomial chaos expansion.

truncated series. Consequently, even if the data are informative
for identification, whether the unique element of ΣD is a good
approximation of the data-generating system or not depends
on how small the truncation error is (see also Example 7).

The following result is the differential version of Proposition
6 in [27]; we omit the proof since it is completely analogous.

Proposition 3: The data (23) are informative for system
identification if and only if

rank
[
X
U

]
= n+m . (25)

Moreover, if (25) holds, for any right inverse
[
X
U

]†
of

[
X
U

]
it holds that [

A B
]
= XD11

[
X
U

]†
.

Example 5: Consider the unstable system

d

dt
x =

[
0 1
1 0

]
x+

[
1
0

]
u ,

let x(0) =
[
1 0

]⊤
and u(t) = e−2t; then x1(t) =

− 2
3e

−2t + e−t + 2et

3 and x2(t) = e−2t

3 − e−t + 2et

3 . Since
u is infinitely differentiable, also x is, and machine-precision
accuracy of the Chebyshev representation of x, u and d

dtx can
be achieved with a relatively small amount of data. Indeed,
using the Chebfun toolbox (see [34]), it can be verified
that N = 19 samples are enough to compute a machine-
precision Chebyshev representation of the signals, see Table
I4. We can estimate a posteriori the accuracy of the derivative

TABLE I
CHEBYSHEV COEFFICIENTS FOR EXAMPLE 5

ũ x̃1 x̃2

2.2796 5.9039 · 10−1 3.3784 · 10−1

−3.1813 1.7441 8.2344 · 10−1

1.3779 −4.6611 · 10−1 3.6880 · 10−1

−4.2548 · 10−1 2.6887 · 10−1 −6.7932 · 10−2

1.0146 · 10−1 −5.8514 · 10−2 3.1994 · 10−2

−1.9651 · 10−2 1.2920 · 10−2 −5.6456 · 10−3

3.2003 · 10−3 −2.0586 · 10−3 1.0518 · 10−3

−4.4928 · 10−4 2.9845 · 10−4 −1.4443 · 10−4

5.5399 · 10−5 −3.6600 · 10−5 1.8400 · 10−5

−6.0884 · 10−6 4.0552 · 10−6 −2.0111 · 10−6

6.0339 · 10−7 −4.0134 · 10−7 2.0095 · 10−7

−5.4444 · 10−8 3.6288 · 10−8 −1.8106 · 10−8

4.5083 · 10−9 −3.0038 · 10−9 1.5024 · 10−9

−3.4490 · 10−10 2.2992 · 10−10 −1.1490 · 10−10

2.4520 · 10−11 −1.6344 · 10−11 8.1727 · 10−12

−1.6278 · 10−12 1.0852 · 10−12 −5.4261 · 10−13

1.0125 · 10−13 −6.7502 · 10−14 3.3751 · 10−14

−5.7732 · 10−15 3.8488 · 10−15 −1.9244 · 10−15

4.0246 · 10−16 −2.6830 · 10−16 1.3415 · 10−16

approximation by comparing the values of the coefficients of
the derivative of the projections of x1 and x2 with those of
the analytical derivatives d

dtx1(t) = 4
3e

−2t − e−t + 2
3e

t and
d
dtx2(t) = − 2

3e
−2t+ e−t+ 2

3e
t. The weighted 2-norms of the

differences are 1.2157 ·10−14 and 7.2397 ·10−15, respectively.

4N is chosen automatically by Chebfun, see Footnote 2. The number of
samples equals the number of coefficients, see Remark 1.
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The singular values of
[
X
U

]
are 4.3786, 1.6092 and 5.1243 ·

10−1, consequently condition (25) is satisfied and the data are
informative for system identification. Using the formula for Â
and B̂ in the second part of Prop. 3, one obtains

Â =

[
−3.8195 · 10−16 1

1 −4.5317 · 10−15

]
B̂ =

[
1

−2.2438 · 10−16

]
,

that coincide up to machine precision with the matrices (A,B)
of the data-generating system. □

B. Informativity for controllability

Denote by Σcont the subset of ΣD consisting of all con-
trollable pairs (A′, B′). We call the data D informative for
controllability if every unfalsified model is controllable, equiv-
alently ΣD ⊆ Σcont. To characterize informativity for control-
lability, we first establish a characterization of controllability
alternative to the classical Popov-Belevitch-Hautus (PBH) test.

Denote by Bx the projection of the solution space of (20)
onto the component x:

Bx := {x : I → Rn | ∃ u : I → Rm s.t. (20) holds} .

Proposition 4: The following statements are equivalent:

1) (A′, B′) is controllable;
2) For all λ ∈ C, rank

[
A′ − λI B′] = n;

3) If v ∈ Cn and λ ∈ C are such that v∗
(

d
dtx− λx

)
= 0

for all x ∈ Bx, then v = 0.
Proof: The equivalence of 1) and 2) is well known.

We prove that 3) ⇒ 2). Let v ∈ Cn and λ ∈ C be such
that v∗

[
A′ − λI B′] = 0. Left-multiply both sides of d

dtx =
A′x + B′u by v∗; conclude that v∗ d

dtx = v∗A′x + v∗B′u =
v∗A′x = v∗λx, and consequently that v∗

(
d
dtx− λx

)
= 0

for all x ∈ Bx. This implies v = 0, and consequently
rank

[
A′ − λI B′] = n for all λ ∈ C.

To prove 2) ⇒ 3), let v ∈ Cn and λ ∈ C be such that
v∗

(
d
dtx− λx

)
= 0 for all x ∈ Bx. It follows that v∗ d

dtx =
v∗A′x+ v∗B′u = v∗λx. This implies that

v∗
[
A′ − λI B′] [x

u

]
= 0 ,

for every (x, u) satisfying d
dtx = A′x+B′u. We prove that for

every
[
x⊤ u⊤]⊤ ∈ Rn+m there exists a trajectory of (20)

such that x(0) = x and u(0) = u. Let u′ be any function such
that u′(0) = u. The differential equation d

dtx
′ = A′x′ +B′u′,

with initial condition x′(0) = x has a unique solution x′.
Consequently (u′, x′) satisfies the differential equation, and
(u′(0), x′(0)) = (u, x).

It follows that if v∗
[
A′ − λI B′] [x

u

]
= 0 for every (x, u)

satisfying (20), then v∗
[
A′ − λI B′] [x

u

]
= 0 for every[

x⊤ u⊤]⊤ ∈ Rn+m. Consequently v∗
[
A′ − λI B′] = 0,

and necessarily v = 0.

Theorem 3: The data (23) are informative for controllability
if and only if

rank (XD11 − λX) = n for every λ ∈ C . (26)
Proof: We first prove sufficiency. Let

(
Â, B̂

)
∈ ΣD.

Assume that there exists v ∈ Cn and λ ∈ C such that
v∗

[
Â− λI B̂

]
= 0. Multiply both sides of this equation

on the right by
[
X
U

]
to conclude that v∗

(
ÂX + B̂U

)
=

v∗XD11 = v∗λX . Since rank (XD11 − λX) = n, it follows
that v = 0. Consequently, rank

[
Â− λI B̂

]
= n for every

λ ∈ C, and
(
Â, B̂

)
is controllable.

To prove necessity, let v ∈ Cn and λ ∈ C be such that
v∗ (XD11 − λX) = 0. Let

(
Â, B̂

)
∈ ΣD; it follows that

v∗XD11 = v∗ÂX + v∗B̂U = v∗
[
Â B̂

] [X
U

]
= λv∗X ,

equivalently v∗
[
Â− λI B̂

] [X
U

]
= 0, and consequently

also vv∗
[
Â− λI B̂

] [
X
U

]
= 0. We show that the last

equation implies the existence of an unfalsified, uncontrollable
model for (X,U). Assume first that λ ∈ R. Then v ∈ Rn;
without loss of generality we can assume that ∥v∥2 = 1.
Define

A′ := Â− vv⊤
(
Â− λI

)
and B′ := B̂ − vv⊤B̂ ; (27)

it is straightforward to check that (A′, B′) ∈ ΣD. It is
also straightforward to check that v⊤

[
A′ − λI B′] = 0,

contradicting the fact that all unfalsified models for (X,U)
are controllable, since (X,U) is informative for controllability.
The proof for the case λ ∈ C, Im(λ) ̸= 0 is analogous to that
of Theorem 8 in [27], and is omitted.

Remark 8: Informativity for stabilizability is defined in
Section III of [27]. Its characterization can be obtained fol-
lowing arguments completely analogous to those used to prove
Theorem 3. We do not enter into such details. □

C. Informativity for state feedback stabilization
The data (X,U) in (23) are informative for state feedback

stabilization if there exists K ∈ Rm×n such that

(A′, B′) ∈ ΣD =⇒ A′ +B′K is Hurwitz .

We call such a K a stabilizing feedback for ΣD.
The following result is instrumental in establishing our char-

acterization of informativity for state feedback stabilization.
Lemma 1: Assume that (X,U) are informative for state

feedback stabilization, and let K ∈ Rm×n be a stabilizing

feedback for ΣD. Then im

[
In
K

]
⊆ im

[
X
U

]
.

Proof: Let (A′, B′) ∈ ΣD. Let (A0, B0) be such that[
A0 B0

] [X
U

]
= 0; then (A′ + αA0, B

′ + αB0) ∈ ΣD for

all α ∈ R. Since K is a stabilizing feedback for ΣD, it follows
that for all α ∈ R

A′ + αA0 + (B′ + αB0)K = A′ +B′K︸ ︷︷ ︸
=:F

+ α(A0 +B0K)︸ ︷︷ ︸
=:F0

,
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is Hurwitz. Now define Fα := 1
α (F + αF0). For larger

positive values of α, Fα is Hurwitz, and consequently all
eigenvalues of F0 have nonpositive real part. For larger
negative values of α, Fα is also Hurwitz, and consequently
all eigenvalues of F0 have nonnegative real part. It fol-
lows that all eigenvalues of F0 are purely imaginary. Since[
A0 B0

] [X
U

]
=

[
F⊤
0 A0 F⊤

0 B0

] [X
U

]
= 0, we conclude

that also all eigenvalues of F⊤
0 F0 are purely imaginary. Since

F⊤
0 F0 is symmetric, its eigenvalues are all real; we conclude

that zero is the only eigenvalue of F⊤
0 F0. The only symmetric

matrix with such property is the zero matrix. Conclude that
F0 = 0, and consequently, that A0+B0K = 0 for all (A0, B0)

such that
[
A0 B0

] [X
U

]
= 0. It follows that the orthogonal

subspace to im

[
X
U

]
is contained in the orthogonal subspace

of im
[
In
K

]
, and consequently that im

[
In
K

]
⊆ im

[
X
U

]
.

Theorem 4: (X,U) are informative for state feedback sta-
bilization if and only if there exists Θ ∈ RN×n such that the
following linear matrix inequalities hold:

XΘ = (XΘ)
⊤ ≻ 0

Θ⊤D⊤
11X

⊤ +XD11Θ ≺ 0 . (28)

Moreover, K ∈ Rm×n is a stabilizing feedback for ΣD if and
only if K = UΘ(XΘ)

−1, for some Θ ∈ RN×n satisfying
(28).

Proof: We first prove sufficiency. The first LMI in (28)
implies that X has full row rank; it is straightforward to
check that Θ(XΘ)

−1 is a right-inverse of X . Define K :=
UΘ(XΘ)

−1. Let (A′, B′) ∈ ΣD; multiply XD11 = A′X +
B′U on the right by Θ(XΘ)

−1, obtaining XD11Θ(XΘ)
−1

=
A′ +B′K. We show that A′ +B′K is Hurwitz. Multiply the
second LMI in (28) on the left by (XΘ)

−⊤ and on the right
by (XΘ)

−1, and conclude that the matrix

(XΘ)
−⊤

Θ⊤D⊤
11X

⊤︸ ︷︷ ︸
=(A′+B′K)⊤

(XΘ)
−1

+ (XΘ)
−⊤

XD11Θ(XΘ)
−1︸ ︷︷ ︸

=(A′+B′K)

is negative-definite. Define P := (XΘ)
−1; the first LMI

in (28) implies that P induces a Lyapunov function for
A′ +B′K. It follows that K stabilizes every (A′, B′) ∈ ΣD.
This argument also proves the sufficiency part of the second
statement of the Theorem.

We prove the necessity of the first statement of Theorem
4. Let K be a stabilizing gain for ΣD; from the inclusion
proved in Lemma 1 it follows that X has full row rank,
and consequently there exists a right-inverse X† of X such
that K = UX†. Moreover, for every (A′, B′) ∈ ΣD it
holds that A′ + B′K = XD11X

† is Hurwitz. It follows that
(A′ +B′K)

⊤ is also Hurwitz, and consequently there exists
P = P⊤, P ≻ 0, such that

(
XDfinX

†)P + P
(
XDfinX

†)⊤ ≺
0. Define Θ := X†P ; then the second inequality in (28) holds.
Since P = XΘ ≻ 0 also the first inequality in (28) holds.

To prove the necessity of the second statement of Theorem
4, observe that K = UX† = U

(
ΘP−1

)
= UΘ(XΘ)

−1.

Example 6: We use the same setting and data of Ex. 5.
Using Yalmip (see [35]) with sedumi solver, we obtain the
following solution of the LMIs (28)

Θ =



5.2887 · 10−1 −8.7668 · 10−1

1.6588 · 10−1 7.7412 · 10−1

−8.5485 · 10−1 1.7862

−5.0064 · 10−17 1.7838 · 10−7

1.9233 · 10−15 −5.4341 · 10−8

2.1337 · 10−16 1.0751 · 10−8

1.5428 · 10−15 −1.8505 · 10−9

1.0612 · 10−15 2.6120 · 10−10

−4.6407 · 10−16 −3.2656 · 10−11

1.3602 · 10−15 3.6048 · 10−12

−2.0531 · 10−15 −3.7456 · 10−13

1.3785 · 10−15 4.3800 · 10−14

−5.1669 · 10−16 −6.9998 · 10−15

6.3417 · 10−16 5.5146 · 10−15

−1.6384 · 10−16 −1.3864 · 10−15

2.3831 · 10−16 1.9964 · 10−15

−1.3345 · 10−15 −1.1174 · 10−14

−6.3151 · 10−16 −5.2879 · 10−15

−1.7277 · 10−16 −1.4467 · 10−15



.

We conclude that the data is informative for stabilization.
Using the second part of Theorem 4, we compute

K = UΘ(XΘ)
−1

=
[
−0.5 −2

]
.

Such K stabilizes the pair (Â, B̂) identified from the data in
Example 5: the eigenvalues of Â+ B̂K are −0.25± 0.9683j.
It can be verified that K also stabilizes the data-generating
pair (A,B), with the same closed-loop eigenvalues. □

V. QUADRATIC STABILIZATION VIA THE MATRIX S-LEMMA

In Section II-A we argued that given enough computational
power and samples, in the noiseless case the Chebyshev
representation of the signals x and u can be computed to high
accuracy. A possible source of inaccuracy is the approximation
of the Chebyshev coefficients of d

dtx by those of the derivative
of the projection of x (see Section II-D). In this section we
show how to solve the quadratic stabilization problem in this
case, using the matrix S-lemma (see [6], [33]) and the error
analysis developed in Section II-D.

We briefly summarize the notation pertinent to, and the
statement of, the matrix S-lemma. Let M,N ∈ R(q+r)×(q+r)

be two symmetric matrices partitioned as

M =

[
M11 M12

M⊤
12 M22

]
, N =

[
N11 N12

N⊤
12 N22

]
, (29)

where the (1, 1)-blocks are q × q and the (2, 2)-blocks are
r × r. Define Zr(N ) and Z+

r (M) respectively by

Zr(N ) :=

{
Z ∈ Rr×q |

[
Iq
Z

]⊤
N

[
Iq
Z

]
⪰ 0

}

Z+
r (M) :=

{
Z ∈ Rr×q |

[
Iq
Z

]⊤
M

[
Iq
Z

]
≻ 0

}
.

The following result is Corollary 4.13 p. 15 of [33].
Proposition 5: Let M, N be symmetric matrices parti-

tioned as in (29). Assume that M22 ⪯ 0, N22 ⪯ 0, that
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N11 − N12N †
22N⊤

12 ⪰ 0, and that kerN22 ⊆ kerN12. The
following statements are equivalent:

1) Zr(N ) ⊆ Z+
r (M);

2) There exist α ≥ 0 and β > 0 such that

M− αN ⪰
[
βI 0
0 0

]
.

Using an analogous partition to (18), and recalling the
definition of ΠN in (8), we write

x̃ =
[
ΠN (x) x̃′] = [

X x̃′]
ũ =

[
ΠN (u) ũ′] = [

U ũ′] . (30)

Using the partition (19) of the differentiation matrix, write

ΠN (x)D11 = AΠN (x) +BΠN (u)− x̃′D21 ;

define
W− := −x̃′D21 ∈ Rn×(N+1) ; (31)

and write, analogously to equation (2) p. 163 of [6]:

W− = ΠN (x)D11 −AΠN (x)−BΠN (u)

=
[
I A B

] XD11

−X
−U

 . (32)

Recall from Proposition 2 that there exists a constant c,
determined by the total variation of the components of the
second derivative of x and N , such that the 2-norm of −x̃′D21

is less than or equal to c, equivalently[
I W−

] [cI 0
0 −I

] [
I

W⊤
−

]
⪰ 0 . (33)

Redefine the set of explanatory models for the data (X,U)
(see (24)) by

ΣD,c :=

{
(Â, B̂) | XD11 =

[
Â B̂

] [X
U

]
+W− (34)

for some W− ∈ Rn×(N+1) satisfying (33)
}

.

Definition 2: (X,U) are informative for quadratic stabi-
lization if there exist K ∈ Rm×n and P ∈ Rn×n, P = P⊤ ≻
0 such that(

Â+ B̂K
)
P + P

(
Â+ B̂K

)⊤
≻ 0 ,

for all (Â, B̂) ∈ ΣD,c
5.

It is straightforward to check that Definition 2 is equivalent to
the existence of a P and K such that:

P = P⊤ ≻ 0 (35)
(A+BK)P + P (A+BK)⊤ ≺ 0 .

The second inequality in (35) can be written as

[
I A B

]  0 −P −PK⊤

−P 0 0
−KP 0 0

 I
A⊤

B⊤

 ≻ 0 .

5As in [6], we use the “transpose” of the standard Lyapunov equation.

Define

N :=

I XD11

0 −X
0 −U

[
cI 0
0 −IN+1

]I XD11

0 −X
0 −U

⊤

=:

[
N11 N12

N⊤
12 N22

]
. (36)

Use (32) to rewrite (33) as

[
I A B

]
N

 I
A⊤

B⊤

 ⪰ 0 .

Note that
N22 = −

[
X
U

] [
X⊤ U⊤] ⪯ 0 ; (37)

moreover, N12 = XD11

[
X⊤ U⊤], and consequently,

kerN12 ⊇ kerN22 . (38)

Finally, observe that

N11 −N12N †
22N⊤

12 ⪰ 0 , (39)

since ΣD,c ̸= ∅ by Definition 2. Now define

M :=

 0 −P −PK⊤

−P 0 0
−KP 0 0

 =:

[
M11 M12

M⊤
12 M22

]
,

and observe that
M22 ⪯ 0 . (40)

Since the inequalities (37)-(40) hold, all the assumptions of
Proposition 5 are satisfied. We obtain the following charac-
terization of informativity for quadratic stabilization, and an
LMI-based design procedure.

Theorem 5: Define N by (36). The following statements
are equivalent:

1) (X,U) are informative for quadratic stabilization;
2) There exists P ∈ Rn×n, L ∈ Rm×n, α, β ∈ R such that

P = P⊤ ≻ 0, α ≥ 0, β > 0 and the LMI 0 −P −L⊤

−P 0 0
−L 0 0

− αN ⪰

βI 0 0
0 0 0
0 0 0

 , (41)

is satisfied.
Moreover, if P and L satisfy the LMI (41), then K := LP−1

is a stabilizing feedback gain for all (A,B) ∈ ΣD,c.
Example 7 (Example 6 revisited): We use the same data-

generating system and continuous-time trajectories as in Ex-
amples 5 and 6. A non-negligible error in the derivative ap-
proximation arises when considering only N = 4 coefficients.

To estimate the error bound of Proposition 2, we proceed as
follows. We compute the Chebyshev coefficients of d2

dt2ΠN (xi)
(the second derivative of the truncation of xi) by matrix
multiplication, as ΠN (xi)D2

11, i = 1, 2. We compute the total
variation of these two functions by integration over (−1, 1)
of the absolute values of the corresponding polynomials; the
resulting values are 6.99166 and 2.96517, respectively. The
corresponding error bounds of Proposition 2 are 0.556379 and
0.235961, respectively.
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To define N in (36), we first choose6 cmax = 0.556379.
We use Yalmip (with sedumi solver) to set up the LMIs in
statement 2) of Theorem 5. The system of LMIs is feasible,
and the solutions are

P =

[
9.4552 · 10−1 −1.9180 · 10−1

−1.9180 · 10−1 4.2712 · 10−2

]
L =

[
−4.7401 3.9634 · 10−1

]
.

The state feedback gain corresponding to P and L is K =
LP−1 =

[
−35.143 −148.53

]
. The data-generating system

(A,B) defined in Example 5 belongs to ΣD,c defined by (34).
The corresponding closed-loop eigenvalues are

σ(A+BK) = {−30.269,−4.8740} .

It can be verified that the data are such that rank
[
X
U

]
=

3, and consequently are informative for identification, with
explanatory system described by

A′ :=

[
2.5989 · 10−1 8.3569 · 10−1

8.6458 · 10−1 6.9179 · 10−2

]
B′ :=

[
9.4008 · 10−1

6.9179 · 10−2

]
.

(A′, B′)∈ΣD,cmax
, and it can be verified that

σ(A′ +B′K) = {−40.060,−2.9229} .

The model described by

A′′ :=

[
−2.3532 · 10−1 1.8178
8.6458 · 10−1 6.9179 · 10−2

]
B′′ :=

[
9.2279 · 10−1

6.9179 · 10−2

]
,

also belongs to ΣD,cmax
, and it can be verified that

σ(A′′ +B′′K) = {−39.819,−3.0515} .

Choosing cmin and solving the matrix inequalities (41), we
obtain

P ′ =

[
7.1395 · 10−1 −1.4333 · 10−1

−1.4333 · 10−1 3.9683 · 10−2

]
L′ =

[
−3.8543 2.8644 · 10−1

]
.

The state feedback gain corresponding to P ′ and L′ is K ′ =
L′P ′−1 =

[
−14.370 −44.685

]
. The model (A′′, B′′) does

not belong to ΣD,cmin
, but (A,B) and (A′, B′) do; moreover,

σ(A+BK ′) = {−10.002,−4.3676}
σ(A′ +B′K) = {−13.746,−2.5249} .

6We can verify a posteriori that this choice of values for c is correct. We
first compute with Chebfun up to machine precision the coefficients of the
Chebyshev representation of d

dt
xi, i = 1, 2. As in Example 5, 19 coefficients

are enough. An estimate of the i-th row of W− ∈ R2×10, i = 1, 2, is given
by the coefficients of x

(1)
i from the 4th to the 19th. With this definition of

W− we compute

W−W⊤
− =

[
1.8468 · 10−2 −8.1446 · 10−3

−8.1446 · 10−3 3.5952 · 10−3

]
.

This matrix has eigenvalues 2.7297 · 10−6 and 2.2060 · 10−2, and con-
sequently the inequality (33) holds for cmax = 0.556379, and also for
cmin = 0.235961.

Remark 9 (The noisy case): Assume that the trajectory x is
affected by disturbances, i.e. that x̂ = x+ϵ is measured instead
of x, where ϵ is an unknown disturbance. It follows from the
definition of the POB coefficients that˜̂x = x̃+ ϵ̃ ,

and consequently that the coefficients of the POB representa-
tion of d

dt x̂ are˜̂xD = x̃D + ϵ̃D = Ax̃+Bũ+ ϵ̃D
= A˜̂x+Bũ+ (ϵ̃D −Aϵ̃) .

Define the matrices X̂ and U analogously to (23), and assume
for simplicity of exposition that the derivative approximation
error is negligible, i.e. the nonzero coefficients of d

dt x̂ are
the entries of X̂D11. Under such assumptions, the matrix S-
lemma approach illustrated in this section can be straight-
forwardly adapted to deal with this situation. Note that the
definition of W− depends on (ϵ̃D −Aϵ̃), and consequently
some insight into the dynamics of the unknown plant must
be available to compute an error bound as in (33). The
necessity of assumptions on the noise is established also in
the approach developed in [13], see Example III.6, Lemma
IV.10 and Corollary IV.11 therein.

VI. QUADRATIC STABILIZATION AND PERFORMANCE

We incorporate H2-performance specifications in the
quadratic stabilization problem, under the assumption that the
state derivative error XD11−AX−BU is non-negligible. To
cast the problem in the orthogonal representation setting of
Theorem 2, define the p-dimensional continuous-time perfor-
mance output z by

z = Cx+Du ;

using completeness of the basis {bk}k∈N and the fact that z
is a linear function of x and u, conclude that z̃ is a linear
combination of x̃ and ũ, with the same matrices as z: z̃ =
Cx̃+Dũ.

The quadratic stabilization with H2-performance index γ
problem is stated as follows: compute, if it exists, a state
feedback law u = Kx such that the closed loop dynamics
d
dtx = (A+BK)x are stable, and the 2-norm of the transfer
function from u to z is less than a given γ ∈ R:

∥(C +DK)(sI − (A+BK))−1∥2 < γ .

It is well known (see e.g. Proposition 3.13 p. 77 of [36]) that
the problem is solvable if and only if there exists P ∈ Rn×n,
P = P⊤ ≻ 0; K ∈ Rm×n; and Z = Z⊤ ∈ Rp×p such that[

(A+BK)⊤P + P (A+BK) P
P −γIn

]
≺ 0 , (42)

and[
P C⊤ +K⊤D⊤

C +DK Z

]
≻ 0 , trace(Z) < γ . (43)

This result leads to the following definition.
Definition 3: (X,U) are informative for H2-performance

γ if there exist K ∈ Rm×n, P ∈ Rn×n, P = P⊤ ≻ 0,
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and Z = Z⊤ ∈ Rp×p such that (42) and (43) hold for all
(Â, B̂) ∈ ΣD,c.
Define Y := P−1 and L = KY ; pre- and post-multiplying

(42) by
[
P−1 0
0 Im

]
yields the equivalent matrix inequality[

(AY +BL) + (AY +BL)⊤ In
In −γIn

]
≺ 0 ; (44)

a Schur complement argument shows that this LMI is equiva-
lent with (AY +BL)+(AY +BL)⊤+ 1

γ In ≺ 0, equivalently
with[

I A B
] − 1

γ In −Y −L⊤

−Y 0 0
−L 0 0


︸ ︷︷ ︸

=:M

 I
A⊤

B⊤

 ≻ 0 ; (45)

note that M22 =

[
0 0
0 0

]
⪯ 0. Pre- and post-multiplying the

first LMI in (43) with
[
P−1 0
0 Ip

]
one obtains[

Y (CY +DL)⊤

CY +DL Z

]
≻ 0 . (46)

Define N by (36), M by (45), and recall (37)-(39). The
assumptions of Proposition 5 are satisfied; we obtain the fol-
lowing characterization of informativity for H2-performance,
and an LMI-based design procedure.

Theorem 6: Define N by (36) and M by (45). The follow-
ing statements are equivalent:

1) (X,U) are informative for H2 performance γ;
2) There exists Y ∈ Rn×n, Z = Z⊤ ∈ Rp×p, L ∈ Rm×n,

α, β ∈ R such that Y = Y ⊤ ≻ 0, α ≥ 0, β > 0 and the
LMIs− 1

γ In −Y −L⊤

−Y 0 0
−L 0 0

− αN −

βI 0 0
0 0 0
0 0 0

 ⪰ 0

[
Y (CY +DL)⊤

CY +DL Z

]
≻ 0 , trace(Z) < γ , (47)

are satisfied.
Moreover, if Y and L satisfy the LMIs (47), then K :=
LY −1 is a feedback gain achieving H2-performance γ for
all (A,B) ∈ ΣD,c.

Example 8 (Example 7 revisited): Define

C :=
[
1 1

]
, D := 1 .

We use the same data of Example 7, requiring a closed-
loop H2-norm smaller than γ = 2. We first choose cmax =
0.556379, and solve the LMIs (44), (46) and trace(Z) < γ
with Yalmip. We obtain

P = Y −1 =

[
4.2505 · 1011 9.4837 · 1011
9.4837 · 1011 4.3716 · 1012

]
K = LY −1 =

[
−5.5372 −12.153

]
.

The gain K stabilizes (A,B) and (A′, B′) and (A′′, B′′):

σ(A+BK) = {−2.7686± 1.8676j}
σ (A′ +B′K) = {−2.8585± 8.6227 · 10−1j}
σ (A′′ +B′′K) = {−3.8974,−2.2191} .

We compute the H2-norm with Matlab:

1.6929 = ∥(C +DK) (sI − (A+BK))
−1 ∥2

1.7274 = ∥(C +DK) (sI − (A′ +B′K))
−1 ∥2

1.7116 = ∥(C +DK) (sI − (A′′ +B′′K))
−1 ∥2 .

Choosing cmin = 0.235961 we obtain

P ′ = Y
′−1 =

[
4.6525 7.1667
7.1667 30.799

]
K ′ = L′Y

′−1 =
[
−3.5299 −5.9493

]
,

with closed-loop eigenvalues

σ(A+BK ′) = {−1.7649± 1.3544j}
σ (A′ +B′K) = {−1.7004± 1.0521j} ,

and H2-norm

1.2679 = ∥(C +DK ′) (sI − (A+BK ′))
−1 ∥2

1.2853 = ∥(C +DK ′) (sI − (A′ +B′K ′))
−1 ∥2 .

VII. CONCLUSIONS

We used polynomial approximation theory tools to trans-
form the continuous-time input- and state signals to the
sequences of coefficients of their polynomial orthogonal basis
representation. In Section III we proved Theorem 2 stating
that the dynamics of the original (continuous-time) input- and
state signals and the representation of the transformed ones are
associated with the same system matrices. We exploited this
crucial result in Section IV, where we provided data-driven
characterizations of continuous-time linear systems properties,
and in Theorem 4 we designed state feedback controllers for
continuous-time systems directly from data, without the need
to directly measure the state derivative. When non-negligible
derivative approximation errors occur, they can be modelled as
disturbances, and treated effectively via the matrix S-lemma;
we solved the quadratic stabilization problem (Theorem 5 in
Section V), and the H2-performance problem in Section VI
(Theorem 6).
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