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Abstract: Shor’s factoring algorithm is one of the most anticipated applications of quantum comput-
ing. However, the limited capabilities of today’s quantum computers only permit a study of Shor’s
algorithm for very small numbers. Here, we show how large GPU-based supercomputers can be
used to assess the performance of Shor’s algorithm for numbers that are out of reach for current and
near-term quantum hardware. First, we study Shor’s original factoring algorithm. While theoretical
bounds suggest success probabilities of only 3–4%, we find average success probabilities above 50%,
due to a high frequency of “lucky” cases, defined as successful factorizations despite unmet sufficient
conditions. Second, we investigate a powerful post-processing procedure, by which the success
probability can be brought arbitrarily close to one, with only a single run of Shor’s quantum algorithm.
Finally, we study the effectiveness of this post-processing procedure in the presence of typical errors
in quantum processing hardware. We find that the quantum factoring algorithm exhibits a particular
form of universality and resilience against the different types of errors. The largest semiprime that
we have factored by executing Shor’s algorithm on a GPU-based supercomputer, without exploiting
prior knowledge of the solution, is 549,755,813,701 = 712,321 × 771,781. We put forward the challenge
of factoring, without oversimplification, a non-trivial semiprime larger than this number on any
quantum computing device.

Keywords: quantum computing; quantum algorithms; Shor’s factoring algorithm; high performance
computing; computer simulation; parallelization

MSC: 81P68; 68Q12; 11A51

1. Introduction

The challenge of factoring integers is one of the oldest problems in mathematics [1,2].
Famous mathematicians such as Fermat, Euler, and Gauss have made substantial contribu-
tions to the problem, and even algorithms discovered by the ancient Greeks—the Euclidean
algorithm and the sieve of Eratosthenes—are still in use today. The state-of-the-art algo-
rithms are based on the general number field sieve [3] and have recently achieved the
factorization of RSA-250 from the famous RSA factoring challenge [4]. Still, all known
algorithms exhibit at best subexponential time and space complexity [4,5]. The difficulty of
solving this type of problem using classical computers is an integral aspect of modern data
and communication security [6,7].

In 1994, Peter Shor proposed an algorithm to factor integers on quantum computers
with an exponential speedup [8–10] over the best known classical algorithms. Factoring
an L-bit integer N with the conventional Shor algorithm [10] requires at least 3L qubits:
L = blog2 Nc+ 1 qubits to represent N, and t = d2 log2 Ne ≈ 2L qubits for the Quantum

Mathematics 2023, 11, 4222. https://doi.org/10.3390/math11194222 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11194222
https://doi.org/10.3390/math11194222
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3855-5100
https://orcid.org/0000-0002-2351-3162
https://orcid.org/0000-0003-3476-524X
https://orcid.org/0000-0001-8461-4015
https://orcid.org/0000-0003-1444-4262
https://doi.org/10.3390/math11194222
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11194222?type=check_update&version=2


Mathematics 2023, 11, 4222 2 of 38

Fourier Transform (QFT), plus O(L) qubits for the modular exponentiation [6,11]. Kitaev,
Griffiths, and Niu realized that by replacing the QFT with a semiclassical Fourier transform,
only a single qubit can be reused t times to obtain the same result [12,13] (also known as
qubit recycling [14,15] or dynamic quantum computing [16]). It is thus possible to run Shor’s
algorithm with only L + 1 qubits to factor L-bit integers (which is less than required by the
best adiabatic algorithm [17,18]). We refer to this variant as the iterative Shor algorithm.

The iterative Shor algorithm has been executed on real quantum computing devices to
factor 15, 21, and 35 [15,19,20], without relying on oversimplification [21]. Implement-
ing the algorithm for integers beyond 35 continues to pose substantial experimental
challenges [6,22].

To study the performance of Shor’s algorithm for much larger integers than those
feasible for testing on real quantum devices, we have developed a massively parallel
simulator called shorgpu [23], specifically designed to execute the iterative Shor algorithm
on multiple GPUs. Using shorgpu, we have examined over 60,000 factoring scenarios for
integers up to Nmax = 549,755,813,701, significantly surpassing previous achievements using
statevector simulators [24–26], matrix product states [27,28] (in [28], the authors simulated
60 qubits to factor N = 961,307), and tensor networks [29,30]. Note that Nmax is still “small”
for cryptographic purposes. In order to handle integers of the size of Nmax, shorgpu uses a
new technique (see Section 2) to perform the distributed memory communications.

To factor Nmax, the conventional Shor algorithm would need 117 qubits. The iterative
Shor algorithm, however, needs only 40 qubits. It is important to note that the resulting
quantum algorithm is still an honest implementation of Shor’s algorithm: it produces the
same results, does not require exponentially large classical resources (given a large enough
quantum computer) and, most importantly, does not exploit a priori knowledge of the
factors [21].

We emphasize that for all our simulations, we do not require the solution of the
factoring problem to be known. If one presumes knowledge of the solution, and one is
not interested in simulating the effect of quantum errors, it is possible to study even larger,
cryptographically relevant cases using Qunundrum [31].

The procedure used to factor integers is shown in Figure 1: first, a factoring problem
is selected, consisting of a semiprime N = p× q to factor and a random integer 1 < a < N
comprime to N (i.e., gcd(a, N) = 1). Using this as input, shorgpu executes the iterative
Shor algorithm with n = L + 1 qubits to produce several bitstrings. Each bitstring j is
processed using either Shor’s [8–10,32] or Ekerå’s [33,34] post-processing method, which
may or may not produce a factor of N (see the yellow section in Figure 1). An important
step on the way is to extract a candidate r for the order r̂ = ordN(a). Here, ordN(a) denotes
the order of a modulo N, defined as the smallest exponent r̂ > 0 such that ar̂ mod N = 1.

Note that “success” is not guaranteed by Shor’s algorithm; in particular, the sampled
bitstring might produce an r 6= r̂ that is not the order, or r might be odd, in which case
Shor’s post-processing method is not guaranteed to work. However, if the blind application
of Shor’s factoring procedure still yields at least one factor, we count this execution as a
“lucky” case. As shown below, a “lucky” factor is found much more often than expected.

In principle, the green section in Figure 1 representing shorgpu can be completely
replaced by a sufficiently large, error-corrected quantum computing device. With this
in mind, we put forward the challenge of indirect quantum supremacy [35] (a.k.a. limited
quantum speedup [36]) for a future quantum computer. Here, “indirect” means that the
simulator (running on a conventional computer) is required to simulate an ideal quantum
computational model that executes the same quantum algorithm as the quantum computer,
without using any prior knowledge of the solution. More specifically, the challenge for a
gate-based quantum computer would be to factor, using Shor’s algorithm without over-
simplification [21], an “interesting” semiprime—where “interesting” means that the two
distinct prime factors shall have the same number of digits—that is larger than the largest
semiprime that can be factored by the quantum computer simulator.



Mathematics 2023, 11, 4222 3 of 38

  

select
problem

produces bitstring with t bits

extract
order

find
factors

shorgpu simulating a 40-qubit quantum computer on 2048 GPUs

Iterative Shor algorithm

GPU #0
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Figure 1. Scheme to test Shor’s algorithm. After selecting an L-bit semiprime N = p× q to factor
and a random integer 1 < a < N coprime to N (blue), a quantum computer or quantum computer
simulator with n = L+ 1 qubits runs the iterative Shor algorithm (red) and produces several bitstrings
j with t bits (green). Here, “iterative” means that one qubit is measured and reused t times to produce
the t classical bits of each j. Every bitstring j is analyzed using either Shor’s [8–10,32] or Ekerå’s [33,34]
post-processing method (yellow), independent of whether certain algorithmic requirements on j are
satisfied or not. Here, k (r) denotes the numerator (denominator) obtained from a continued fraction
expansion of j/2t. Note that the expression for the factors in the yellow section is specific to Shor’s
post-processing; for Ekerå’s post-processing, gcd(abr/2c ± 1, N) has to be replaced by gcd(xri

i − 1, N),
where xi 6= a is a random element of Z∗N and ri is usually a multiple of the largest odd divisor of r
(see below). We remark that conceptually, it does not matter whether the green section is performed
by a quantum computer simulator or a real quantum computing device.

1.1. Related Work

There is a large body of literature on Shor’s quantum factoring algorithm; the related
work can be roughly classified into five main categories. In this section, we give a survey of
their main goals and discuss several individual results.

1. Theory: the first class of articles focuses on theoretical perspectives such as algorithmic
modifications and improved lower bounds on the success probability [11,14,37–60],
many of which consider the case that some parameters of Shor’s algorithm are modified
and certain trade-offs are made. This class contains work that estimates the number of
resources required when using different levels of quantum computer technology [6,22].
This line of work culminates in Ekerå’s post-processing algorithms [34], by which the
success probability for a single run of the quantum part can be brought arbitrarily close
to one (see below).

2. Simulation: second, Shor’s algorithm has been studied by using simulators running on
conventional computers. Some use universal quantum computer simulators [24–26,61],
sometimes also called Schrödinger simulators, since they propagate the full quantum
statevector. Another approach is to use so-called Feynman simulators, which can only
access certain amplitudes from the full statevector, but may require fewer computational
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resources; they are often based on tensor networks or matrix product states [27–30].
Finally, there is software designed to directly sample from the probability distributions
generated by Shor’s algorithm (cf. Equation (26) below) and various extensions thereof.
This class contains the suite of programs called Qunundrum [31,62], which can simulate
distributions for large, cryptographically relevant cases. Note, however, that the solution
to the factoring problem (i.e., the order or the discrete logarithm) must be known in
advance, and the effect of errors in the quantum part cannot be simulated.

3. Alternative Algorithms: a third line of work studies alternative ways to use gate-based
quantum computers to solve the factoring problem. Some of them use Shor’s discrete
logarithm quantum algorithm [62–64], which is also an instance of the hidden sub-
group problem [65]. In the Ekerå-Håstad scheme [63], the idea to factor a semiprime
N = pq is to pick a random g ∈ Z∗N , compute y = gN+1 mod N with unknown order
r, and then obtain d ≡ logg y ≡ pq + 1 ≡ pq + 1− φ(N) ≡ p + q (mod r) (using
that r | φ(N) = (p− 1)(q− 1) [66]). If r > p + q (which is the case for many g), we
have d = p + q, and additionally knowing N = pq allows one to compute p and q.
Another alternative way to solve the factoring problem is given in [67] and is based
on the classical number field sieve [3]. In particular, Bernstein et al. propose to use
Grover’s quantum search algorithm [68] (and/or Shor’s algorithm for a much smaller
subproblem) to accelerate the number field sieve. This proposal is asymptotically
worse in time complexity than using Shor’s algorithm directly, but it requires fewer
qubits and is therefore possibly easier to realize in near-term physical devices. Finally,
Li et. al. [69] presented an algorithm with an exponential speedup (beyond the frame-
work of the hidden subgroup problem [65]) that solves the square-free decomposition
problem—a problem related to factoring in which the task is to find, for any integer
N > 0, the unique integers Nr and N2

s of the square-free decomposition N = Nr N2
s .

4. Gate-Based Experiments: fourth, there have been several experimental efforts to
implement Shor’s factoring algorithm on existing gate-based quantum computer
devices [15,19,20,70–76]. However, many of these have made use of prior knowledge
about the factors to simplify the experimental setup [21]. In the extreme case (namely
when a base a ∈ Z∗N with order ordN(a) = 2 is used), this reduces the computational
problem to the equivalent of flipping coins. Experiments that have not used such an
oversimplified method can be found in [15,19,20].

5. Other Experiments: finally, quantum annealers and adiabatic quantum computers
have been used to study alternative factoring algorithms [17,77–82]. The quantum
annealing approach requires at most O(L2) qubits to factor an L-bit number. Quantum
annealing and adiabatic quantum computation are technologically significantly ahead
of gate-based quantum computing, in that larger quantum processing units with more
than 5000 qubits exist and that they can solve much larger problems [83,84]. In particu-
lar, numbers up to and above 200,000 have been factored on the D-Wave 2000Q [78,79]
and 1,005,973 has been factored using D-Wave hybrid [80]. Although significantly
larger than the numbers factored on gate-based quantum computers (without over-
simplification), these numbers are still much smaller than Nmax = 549,755,813,701
factored in this work using shorgpu.

1.2. Outline

This paper is structured as follows. In Section 2, we describe the algorithmic details
of shorgpu. In particular, we explain how to implement the modular multiplication as a
systematic communication scheme between the compute nodes. In Section 3, we present our
results from over 60,000 quantum computer simulations using up to 2048 GPUs. Section 4
contains our conclusions.

2. Materials and Methods

For almost all results reported in this work, we use shorgpu to simulate the iterative
Shor algorithm (the source code is available online [23]). It propagates an n = L + 1-
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qubit statevector |ψ〉 consisting of 2L+1 complex numbers through the quantum circuit for
factoring an L-bit number shown in Figure 2. Each step in the quantum circuit corresponds
to an operation on |ψ〉. In this section, we describe each of these operations in a linear
algebraic context. The probability distribution generated by Shor’s algorithm is derived
and visualized in Appendix A.
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Figure 2. Quantum circuit of the iterative Shor algorithm. The circuit consists of L + 1 qubits that
undergo t separate stages cbit = 0, . . . , t− 1, in which the classical bit jcbit is measured. Each stage
starts with the first qubit in the initial state |+⟩ and ends with this qubit being measured (middle row).
Between initialization and measurement, each stage consists of a controlled modular multiplication
with some power of a (see Equation (6)), then a rotation gate controlled by all previously measured
classical bits (see Equation (8)), and finally a Hadamard gate. The resulting bit jcbit is used to
assemble the classical bitstring j = jt−1 · · · j0 (top row).
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Figure 2. Quantum circuit of the iterative Shor algorithm. The circuit consists of L + 1 qubits that
undergo t separate stages cbit = 0, . . . , t− 1, in which the classical bit jcbit is measured. Each stage
starts with the first qubit in the initial state |+〉 and ends with this qubit being measured (middle row).
Between initialization and measurement, each stage consists of a controlled modular multiplication
(bottom row) with some power of a (see Equation (6)), then a rotation gate controlled by all previously
measured classical bits (see Equation (8)), and finally a Hadamard gate. The resulting bit jcbit is used
to assemble the classical bitstring j = jt−1 · · · j0 (top row).

As the total memory is the bottleneck of such statevector simulations, the 2L+1 complex
numbers |ψ〉 are distributed over the memory of up to 2048 GPUs (cf. Figure 1). Communi-
cation between the GPUs is managed using the Message Passing Interface (MPI) [85].

We use the Jülich Universal Quantum Computer Simulator (JUQCS) [24,25,86] for
verification. JUQCS was previously used to simulate the conventional Shor algorithm for
N ≤ 65,531 with up to n = 48 qubits on the Sunway TaihuLight and the K computer [25].
A few features had to be added to JUQCS to be able to also simulate the iterative Shor
algorithm. The latter made it possible to simulate one bitstring for N = 4,194,293 with
n = 23 qubits in about 720 s (using four A100 GPUs). However, our JUQCS implementation
of the oracle which performs the modular exponentiation becomes highly inefficient as
the number n of qubits increases because it does not distribute well over many cores or
GPUs. In contrast, the new, dedicated algorithm described below generates a bitstring in
about 0.4 s for the same problem and the same number of GPUs. For the largest problem
simulated (N = 549,755,813,701 with n = 40 qubits), shorgpu generates a bitstring in about
200 s using 2048 GPUs. We verified that the iterative Shor algorithm simulated with
shorgpu produces the same results as JUQCS for problems of the size that can be simulated
with JUQCS.

2.1. Initialization

To simulate the iterative Shor algorithm for factoring an L-bit semiprime N, shorgpu
simulates the full quantum circuit with n = L + 1 qubits shown in Figure 2. This is
conducted by computing all complex coefficients of the statevector

|ψ〉 = ∑
kL ···k0=0,1

ψkL ···k0 |kL · · · k0〉 =




ψ0···00
ψ0···01

...
ψ1···11


. (1)

These 2L+1 complex double-precision numbers ψkL ···k0 are distributed over NGPU ∈ {2, 4, 8,
. . . , 2048} GPUs. The distributed memory communication between the GPUs uses CUDA-
aware MPI. In our approach, each GPU is identified by its MPI rank, i.e., an nglobal-bit
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integer called mpi_rank = 0, . . . , NGPU − 1. Here, nglobal denotes the number of so-called
global qubits (see [24,25,86]). We have NGPU = 2nglobal GPUs. The other nlocal = n− nglobal
qubits are called local qubits, since each GPU holds in its local memory all 2nlocal complex
coefficients




ψbin(mpi_rank)0···00
ψbin(mpi_rank)0···01

...
ψbin(mpi_rank)1···11


. (2)

The GPUs (i.e., the MPI processes) are further divided into two separate groups, identified
by the most significant bit of the MPI rank,

bin(mpi_rank) = mpi_x bin(mpi_xrank). (3)

Here, mpi_x = 0, 1 identifies the group and 0 ≤ mpi_xrank < NGPU/2 identifies the GPU
within each group. Thus, shorgpu requires at least two GPUs to work (unless a single GPU
is used with 2 MPI processes in overscheduling mode). The reason for the separation into
two groups is that the implementation of the controlled modular multiplication gate (see
below) requires an all-to-all communication between all GPUs with mpi_x = 1.

At the start of the simulation, the statevector |ψ〉 is initialized in the state |+〉 |0 · · · 01〉,
where |+〉 = (|0〉+ |1〉)/

√
2. This means that we set

ψ00···01 =
1√
2

, (4)

ψ10···01 =
1√
2

, (5)

and all other coefficients to zero. This type of initialization is always used unless shorgpu
is used to assess the effect of quantum initialization errors (for information on this mode,
see Section 2.6 below).

2.2. Controlled Modular Multiplication Gate

The first gate in each of the t stages in Figure 2 is the controlled modular multiplication
gate (also called oracle gate), controlled by the first qubit. Mathematically, its operation is
defined by

CUa |x〉 |y〉 =





|0〉 |y〉 (x = 0)
|1〉 |ay mod N〉 (x = 1 and 0 ≤ y < N)

|1〉 |y〉 (x = 1 and N ≤ y)

, (6)

where x denotes the first qubit, y = 0, . . . , NGPU/2 denotes the other qubits, and a ∈
{a2t−1

mod N, a2t−2
mod N, . . . , a} stands for one of the powers of a in Figure 2. Note that

each individual modular exponentiation is always precomputed for any realization of
this circuit (we use the shift-and-multiply algorithm). This is independent of whether the
circuit is executed by a quantum computer simulator or a real quantum computer (see
also [6,19,20]).

Looking at Equation (6), we see that the oracle gate performs a permutation of all
complex coefficients among the GPUs in the mpi_x = 1 group. shorgpu implements this
unitary operation by computing, on each GPU, all indices of the coefficients that are sent
to other GPUs (stored in a GPU buffer oracle_idxsend) and those that are received from
other GPUs (stored in a GPU buffer oracle_idxrecv) using the precomputed modular
inverse ainv = a−1 mod N, which is efficiently computable using the extended Euclidean
algorithm. The MPI communication scheme for an example with 16 GPUs is shown in
Figure 3.
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Figure 3. Illustration of the MPI communication scheme for the implementation of the controlled
modular multiplication gate given by Equation (6) for the quantum circuit to factor N = 55 = 5× 11
with a = 16. This circuit needs n = 7 qubits, i.e., the first qubit for the measurement (middle line
in Figure 2) and L = 6 qubits to represent N. There are NGPU = 16 GPUs in this example, so we
have nglobal = 4 global and nlocal = 3 local qubits (note that this is only for illustration purposes; in
practice one would use much fewer GPUs for 7 qubits). Shown is the implementation of the last oracle
gate in Figure 2 (the controlled modular multiplication with a = a20

= 16) from the perspective of
GPU#11. ψx,y denotes, in the notation of Equation (1), the statevector coefficient ψx bin(y). Red arrows
represent coefficients that are sent from GPU#11 to another GPU (whose index is computed from
ay mod N). Blue arrows represent coefficients that are sent to GPU#11 from another GPU (whose
index is computed from a−1y mod N). Purple arrows represent coefficients that stay on GPU#11.
Note that GPU#15 is not involved in the communication because N ≤ y for all ψx,y of GPU#15, so the
oracle gate does not permute these coefficients (the last case in Equation (6)).

The complexity of the permutation depends on the value of a. For instance, in the
special case that the order of a is a small power of 2, we have a = 1 in many of the early
stages, so the oracle gate would not require MPI communication between different GPUs.
In general the communication scheme can be very complicated. Figure 3 shows a typical
instance where each GPU sends (red arrows) and receives (blue arrows) some coefficients
from other GPUs.

To implement this communication scheme between the GPUs, shorgpu uses non-blocking
point-to-point communication in a circular fashion using MPI_Isend and MPI_Irecv. Addi-
tionally, before the send operations, each GPU first arranges all coefficients that are sent to a
particular other GPU in a contiguous block of memory, schematically denoted by ψ(cont). This
is imperative since for large N, this part of the simulation takes a significant fraction of the
total run time. Alternative implementations using one-sided communication such as MPI_Put,
collective communication using MPI_Alltoallv, or communication based on custom MPI data
types (see [85] for more information) performed significantly worse in our experiments.

2.3. Rotation Gate

After the oracle gate, each stage (except the first stage) of the quantum circuit in
Figure 2 contains a sequence of rotation gates defined by

Rl =

(
1 0
0 e2πi/2l

)
. (7)



Mathematics 2023, 11, 4222 8 of 38

These are controlled by bits resulting from previous measurements. Specifically, at the
stage cbit = 0, . . . , t− 1, in which the classical bit jcbit is being measured, the sequence of
these controlled rotation gates reads

1+cbit

∏
l=2

CRl =
1+cbit

∏
l=2

(
1 0
0 e2πij1+cbit−l /2l

)
=

(
1 0
0 eiϕcbit

)
, (8)

where the phase ϕcbit at stage cbit amounts to

ϕcbit = 2π
1+cbit

∑
l=2

j1+cbit−l

2l =
π j(cbit)

2cbit
, (9)

and j(cbit) = jcbit−1 jcbit−2 · · · j1 j0 is the integer assembled from all classical bits measured
up to this point.

As the phase gate given by Equation (8) only affects coefficients ψkL ···k0 where the
first qubit index kL = 1, this operation only needs to be implemented by the GPUs in the
mpi_x = 1 group. This is performed directly after the implementation of the oracle gate,
when moving all coefficients out of the contiguous memory blocks ψ(cont), according to

Re(ψ1 bin(mpi_xrank) ∗···∗)

← cos(ϕcbit)Re(ψ(cont)
1 bin(mpi_xrank) ∗···∗)

− sin(ϕcbit)Im(ψ
(cont)
1 bin(mpi_xrank) ∗···∗),

(10)

Im(ψ1 bin(mpi_xrank) ∗···∗)

← cos(ϕcbit)Im(ψ
(cont)
1 bin(mpi_xrank) ∗···∗)

+ sin(ϕcbit)Re(ψ(cont)
1 bin(mpi_xrank) ∗···∗).

(11)

2.4. Hadamard Gate

The implementation of the Hadamard gate on the first qubit transforms the statevector
coefficients as

ψ0 bin(mpi_xrank) ∗···∗
← ψ0 bin(mpi_xrank) ∗···∗+ψ1 bin(mpi_xrank) ∗···∗√

2
,

(12)

ψ1 bin(mpi_xrank) ∗···∗
← ψ0 bin(mpi_xrank) ∗···∗−ψ1 bin(mpi_xrank) ∗···∗√

2
.

(13)

For every GPU in the mpi_x = 0 group, this requires two-sided MPI communication with
exactly one GPU in the mpi_x = 1 group.

2.5. Measurement Operation

At the end of each stage in Figure 2, the classical bit jcbit is measured, where
cbit = 0, . . . , t− 1 enumerates the stage. This amounts to adding up the probabilities

p1 = ∑
kL−1···k0=0,1

|ψ1 kL−1···k0 |2, (14)

which is an MPI reduction over all GPUs belonging to the mpi_x = 1 group. The probability
to measure 1 (0) is then given by p1 (p0 = 1− p1). This probability can be used to sample
jcbit, which is performed by drawing a uniform random number R ∈ [0, 1), and assigning
jcbit = 1 if this R < p1 and jcbit = 0 otherwise.
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2.6. Reset Operation

The reset operation performs both the von-Neumann projection of the statevector to
the result of the measurement and the reinitialization of the first qubit in |+〉 at the same
time. If the result of the measurement is given by jcbit = 0, 1, this operation is performed
by transforming all coefficients according to




ψ00···0
...

ψ01···1
ψ10···0

...
ψ11···1




←




ψjcbit0···0/
√

2pjcbit
...

ψjcbit1···1/
√

2pjcbit
ψjcbit0···0/

√
2pjcbit

...
ψjcbit1···1/

√
2pjcbit




. (15)

Of course, in the case of quantum errors, the coefficients have to be replaced accordingly
(cf. Equations (25a) and (25b)).

This operation requires an MPI transfer of all coefficients from the GPUs in the group
mpi_x = jcbit to the GPUs in the group mpi_x = 1− jcbit.

2.7. Initialization Errors

There are two different types of initialization errors that shorgpu can simulate, namely
an amplitude initialization error and a phase initialization error. In both cases, a slightly dif-
ferent initial state |+′〉 is used instead of |+〉 for the first qubit in all stages
cbit = 0, . . . , t − 1 of the circuit in Figure 2. The slightly erroneous state |+′〉 is pa-
rameterized in terms of an error parameter δ ∈ [0, 1]. Our motivation to prioritize the
recycled qubit for a study of initialization errors instead of the other “internal” qubits is
that this qubit is measured and reinitialized successively in every stage of the iterative
Shor algorithm.

2.7.1. Amplitude Initialization Error

We define an amplitude initialization error as the case in which, at the beginning of
each stage in Figure 2, the quantum state is not initialized in the equal superposition |+〉
but the slightly unequal superposition

|+′ampl(δ)〉 =
√

1 + δ

2
|0〉+

√
1− δ

2
|1〉 . (16)

This expression is motivated by the observation that quantum computer prototypes from
the NISQ era sometimes tend to prefer |0〉 over |1〉when brought to a uniform superposition
by multiple quantum gates [87]. Furthermore, one of the most prominent decoherence
and noise processes in qubit systems is a decay from |1〉 to |0〉, a so-called T1 relaxation
process [88–90].

2.7.2. Phase Initialization Error

As a second type of initialization error, we consider a phase initialization error
defined as

|+′phase(δ)〉 =
1√
2
|0〉+ eiπδ

√
2
|1〉 . (17)

This expression is motivated by the fact that in addition to the T1 relaxation process, de-
phasing processes are other prominent consequences of decoherence and noise in quantum
systems [88,89,91].
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2.7.3. Effective Single-Qubit Error Probability

For both initialization errors, the error parameter δ ∈ [0, 1] can be related to an effective,
single-qubit error probability, defined as the probability that the erroneous state would
correctly be observed as a |+〉 state when measured along the x axis:

perror
ampl(δ) = 1− | 〈+|+′ampl (δ)〉 |2 =

1−
√

1− δ2

2
, (18)

perror
phase(δ) = 1− | 〈+|+′phase (δ)〉 |2 =

1− cos(πδ)

2
. (19)

Note, however, that this interpretation is not unique; depending on the particular realization
of the quantum circuit, there may be more reasonable, alternative interpretations of δ in
relation to an effective error probability.

2.8. Measurement Errors

For quantum processors, a measurement is often a slow and susceptible process by
which destructive influences from the environment can enter the quantum system [92–96].
Moreover, it is particularly challenging to implement quantum non-demolition readout
required for midcircuit measurements [16,97]. We distinguish between two different types
of measurement errors, namely a classical error corresponding to a misclassification of
the quantum measurement result, and a quantum error that may occur during or before
each measurement.

2.8.1. Classical Measurement Error

We define a classical measurement error as a misclassification that occurs right after
the quantum measurement process with a given, constant error probability δ. It is defined
by flipping only the resulting bit jcbit, while leaving the internal quantum state unchanged.

Simulating a classical measurement error requires a second sampling step, by drawing
another uniform random number R2 ∈ [0, 1) and flipping the bit if R2 < δ. In case of
a misclassification error, we simply use j(observed)

cbit = 1− jcbit for the classical bitstring
in Figure 2. The quantum state, however, is left in its original state with the first qubit
projected on |jcbit〉.

Note that even such a single misclassification error can have non-trivial consequences,
since this error affects the angles of all subsequent rotation gates (see Figure 2). This has an
influence on the measurements of the following bits cbit+ 1, . . . , t− 1. Therefore, a single
bit flip error can induce a change in more than one classical bit of the output bitstring j.

2.8.2. Quantum Measurement Error

Quantum errors are conventionally modeled as operations ρ 7→ E(ρ) on the system’s
density matrix ρ = |ψ〉〈ψ|. If such an operation is a completely positive, trace-preserving
map, it is called a quantum channel or error channel (see [32,98,99] for more information).

We model a quantum measurement error by applying a depolarizing error channel in
every measurement process (which, on quantum computer hardware, is a time evolution
that can take a significant amount of time [96]). The depolarizing error channel is defined
by the quantum operation

Edep(ρ̃) = (1− px − py − pz)ρ

+pxσx ρ̃σx + pyσyρ̃σy + pzσzρ̃σz,
(20)

where ρ̃ is a single-qubit density matrix, (σx, σy, σz) are the Pauli matrices, and (px, py, pz)
represent the error probabilities for the respective Pauli errors. After the application of
Edep to the first qubit, the density matrix that describes the state of the full quantum
computer reads
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ρ = (Edep ⊗ I)(|ψ〉〈ψ|)
= ∑k̄k̄′ Edep

(
ψ0k̄ψ∗0k̄′ |0〉〈0|+ ψ0k̄ψ∗1k̄′ |0〉〈1|

+ψ1k̄ψ∗0k̄′ |1〉〈0|+ ψ1k̄ψ∗1k̄′ |1〉〈1|
)
⊗ |k̄〉〈k̄′| ,

(21)

where I is an identity operation on the remaining L qubits, and k̄, k̄′ = kL−1 · · · k0 enumerate
their 2L different indices.

A measurement of the first qubit is quantum-mechanically described by the measure-
ment operatorsM0 = |0〉〈0| ⊗ I andM1 = |1〉〈1| ⊗ I. Using Equation (20), we find the
probability to measure jcbit = 0, 1 as

p′jcbit = TrMjcbitρM†
jcbit

= (1− px − py)pjcbit + (px + py)p1−jcbit ,
(22)

where pjcbit = ∑k̄ |ψjcbit k̄|2 is computed according to Equation (14). A calculation of the
post-measurement state ρ′jcbit yields

ρ′jcbit =
MjcbitρM†

jcbit
Tr MjcbitρM†

jcbit

= p(correct)
jcbit |ψ(correct)

jcbit 〉〈ψ(correct)
jcbit |

+p(error)
jcbit |ψ

(error)
jcbit 〉〈ψ

(error)
jcbit | ,

(23)

where

p(correct)
jcbit =

(1− px − py)pjcbit
(1− px − py)pjcbit + (px + py)p1−jcbit

, (24a)

p(error)
jcbit =

(px + py)p1−jcbit
(1− px − py)pjcbit + (px + py)p1−jcbit

, (24b)

and

|ψ(correct)
jcbit 〉 = ∑̄

k

ψjcbit k̄√pjcbit
|jcbitk̄〉 , (25a)

|ψ(error)
jcbit 〉 = ∑̄

k

ψ(1−jcbit)k̄√p1−jcbit
|jcbitk̄〉 . (25b)

Here, the superscript “correct” (“error”) refers to the probability and the state in the case
that no error (an error) has occurred. Furthermore, the expressions show that both Pauli x
and y errors only occur in combination, so we define the joint quantum error probability
δ = px + py, by analogy with the classical case.

As in the classical case, a simulation of the quantum error process requires two sam-
pling operations: first, a random number R ∈ [0, 1) is sampled to assign the measurement
result with probability p′jcbit given by Equation (22), i.e., we assign jcbit = 1 if this R < p′1
and jcbit = 0 otherwise.

Second, a random number R2 ∈ [0, 1) is sampled to determine whether an error has
happened or not. If R2 < p(error)

jcbit , an error has happened while measuring jcbit, and
the simulation continues with the state |ψ(error)

jcbit 〉 given by Equation (25b). Otherwise, the
simulation continues with the state |ψ(correct)

jcbit 〉.
Note that the quantum error has a more direct influence on the quantum state than

the classical error, since the projection to either |ψ(correct)
jcbit 〉 or |ψ(error)

jcbit 〉 directly affects the
quantum state, not only implicitly through the angles of subsequent rotation gates.
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2.9. Details on Memory and Computing Time

The largest part of the memory needed by shorgpu is taken by the coefficients of the
statevector |ψ〉 (see Equation (1)). For a 40-qubit iterative Shor circuit, which can be used
to factor 39-bit integers, the statevector needs 240 complex double-precision floating point
numbers, so 16× 240 B = 16 TiB. For performance reasons, two statevector buffers are
used in the implementation of the oracle gate and the following single-qubit gates. In
addition to the two statevector buffers, shorgpu requires two 32-bit integer buffers for
the implementation of the oracle gate, called oracle_idxrecv and oracle_idxsend (see
above). Each of these takes another 4× 240 B = 4 TiB. The total GPU memory required is
thus slightly larger than 40 TiB. When using NGPU = 2048 GPUs, the required memory per
GPU is slightly larger than 20 GiB.

We performed all simulations on JUWELS Booster [100,101], a GPU cluster with
3744 NVIDIA A100 Tensor Core GPUs [102], each of which has 40 GiB of GPU memory.
Note that the implementation of the algorithm requires the number of GPUs to be a power
of two (cf. Section 2.1), so the maximum number of NVIDIA A100 GPUs that we can use
on JUWELS Booster is 2048. The total computing time used to perform the simulations
amounts to 594 core years (corresponding to 49.5 GPU years since each node contains four
A100 GPUs and 48 physical CPU cores). We note that the total computing time is 22% of the
2700 core years used for the recent factoring record of RSA-250—a number with 829 binary
digits from the famous RSA factoring challenge [4].

3. Results

In this section, we describe and interpret the results obtained from simulating Shor’s
algorithm according to Figure 1. For our analysis, we generated 61,362 factoring problems
(N, a), 52,077 of which were chosen to have uniformly distributed prime factors to ensure
unbiased results, and the rest comprise individual factoring problems for large semiprimes
(see Appendix B). We consider Shor’s original post-processing in Section 3.1 and Ekerå’s
post-processing in Section 3.2.

3.1. Using Shor’s Post-Processing

A given factoring problem for Shor’s algorithm consists of a semiprime N and a
random integer 1 < a < N coprime to N. For each such factoring problem (N, a), Shor’s
algorithm produces a sample of M bitstrings (we typically consider M = 1024 samples).
Each bitstring j is analyzed using the so-called standard procedure (see Appendix C). If all
checks on j from the standard procedure pass, the algorithm was successful and we count
the bitstring j as “success”. However, if certain checks on j fail, we still evaluate j and test if
it yields a factor of N. If it does, we count this factoring attempt as “lucky”. Figure 4a shows
a scatter plot of all “success” and “success+lucky” probabilities for all uniformly distributed
problems (n < 30 qubits) and the individual large problems (30 ≤ n ≤ 40 qubits).

Surprisingly, “lucky” occurs much more often than expected. In Figure 4b, we see that
on average only 25% of all bitstrings yield “success”. Including the “lucky” cases, however,
a factor of the semiprime N can be extracted from over 50% of all bitstrings on average.
Additionally, all average success probabilities are significantly larger than the theoretical
bound of 3–4% (see Appendix A.2). We hypothesize that asymptotically, the average success
probability for “success + lucky” approaches 50% from above (further evidence is given in
Section 3.1.1 below, where we give a classification of the different “lucky” scenarios and
show that the main contribution saturates around 25%). This observation is remarkable, as
it shows that factoring a semiprime with Shor’s algorithm is often successful, even though
the order-finding procedure actually fails.

Simulating Shor’s algorithm for semiprimes N between 536,870,861 and 549,755,813,701
requires substantial computational resources. Therefore, only individual cases are shown
in Figure 4a. These cases correspond to the largest “interesting” semiprimes for a given num-
ber of qubits n = 30, . . . , 40. A noteworthy case is the factoring problem for
(N, a) = (8,589,933,181, 3,974,323,683) (n = 34 qubits). Here, the “lucky” cases raise the
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success probability from 56.25% to 100% (yellow square) among all M bitstrings. Further-
more, the factoring problem for (N, a) = (274,877,906,893, 226,009,433,972) (n = 39 qubits,
second from the right) has a success probability of 0% when the sufficient conditions for
Shor’s algorithm are presupposed (green circle). However, when ignoring the violations of
these conditions, we find that Shor’s algorithm can indeed factor N with a “lucky” success
probability of 12.5% (yellow squares).

The unexpectedly large success probabilities when the lucky cases are included prompt
the question “how many bitstrings do we need to sample until a factor is found?” This
is a relevant question, since for large problems, computing time on both classical and
quantum computers is an essential resource. Figure 5a demonstrates that, for more than
half of all factoring problems examined, the first sampled bitstring already yields a factor
of N. Furthermore, in only 7.7% of all factoring problems (N, a), none of the 1024 bitstrings
produced a factor. In this case, the reason is usually that the choice of a was bad, which can
be estimated to happen with probability 50% (see Proposition A3 in Appendix A.2). Clearly,
the failure probability of 7.7% is much smaller than the theoretical estimate would suggest.
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Figure 4. Success probabilities for Shor’s factoring algorithm. For each factoring problem (N, a),
the success probabilities are given by the ratio of all M bitstrings (sampled from Shor’s algorithm)
that yield a factor. If a bitstring satisfies all conditions of Shor’s (original) algorithm, it is counted
as “success” (green circles). If the bitstring yields a factor, even if these conditions are not met,
it is counted as “success + lucky” (yellow squares). (a) Individual success probabilities for each
of the 61,362 factoring problems (N, a). The markers are placed at the positions of the factored
semiprime according to the top axis. The number of qubits required using both the iterative and the
conventional Shor algorithm is indicated on the bottom axis. (b) Average success probabilities for the
52,077 uniform factoring problems, averaged over all problems (N, a) for a given number of qubits n
(see text). Error bars indicate the root-mean-square deviations of the averages of a across different
semiprimes N for the same n. Blue triangles represent the success probabilities for all factoring
problems (N, a) that can be solved after a bitstring has yielded the order of a modulo N (which
always happened within the first 33 bitstrings, see Figure 5b). The red line represents the theoretical
bound for Shor’s post-processing, given by 2e−γ/π2 log log N (see Appendix A.2). Lines are guides
to the eye.
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Figure 5. Statistical analysis of how often Shor’s algorithm has to be executed to solve a factor-
ing problem. Shown is the number of bitstrings that had to be generated until (a), a factor of N,
or (b), the order of a modulo N could be found. The main plots show the statistics extracted from
all 52,077 uniformly distributed factoring problems (N, a), for which the total number of sampled
bitstrings is M = 1024. Insets show the same information (on a logarithmic scale) for subsets of
2500 problems that all require the same number of qubits n = 13 and n = 26 for the iterative Shor
algorithm (corresponding to n = 36 and n = 75 for the conventional Shor algorithm, respectively).

Figure 5b further reveals that, even when the order-finding procedure in Shor’s
algorithm fails, the first bitstring often still produces a factor. In 38% of all cases, the first
bitstring yields the order of a modulo N (leftmost bar). From Figure 4b, we know that
on average, 75% of all factoring problems can be solved after the order is known (blue
triangles). Thus we expect approximately 38%× 75% ≈ 29% of all factoring problems to be
solved by the correct order after the first bitstring. However, in Figure 5a, we see that 56%
of all problems are solved by processing the first bitstring. This percentage obviously is
much larger than 29%, implying that it is easier to find a factor with Shor’s algorithm than
to solve the underlying order-finding problem.

Another interesting result is observed when reducing the number of bits t in the sam-
pled bitstring below the recommended d2 log2 Ne (cf. Appendix C). This saves resources
in both versions of Shor’s algorithm. For the conventional Shor algorithm, it reduces the
required number of qubits and gates required for the QFT. For the iterative Shor algorithm,
it linearly reduces the number of quantum gates and thus the execution time.

Surprisingly, in almost all cases, reducing the number of bits t still allows for a
successful factorization. Three representative cases are shown in Figure 6. First, Figure 6a
shows that reducing t may even increase the frequency of “lucky” factorizations to over
99%, as it does for 10 ≤ t ≤ 13 in this case. Second, in Figure 6b, we see that even though
the success probabilities decrease with t, at half of the recommended number of classical
bits, that is at t = 14, there are still “lucky" cases, allowing for successful factorization.
Finally, in the case shown in Figure 6c, the success and lucky probabilities are essentially
constant for 4 ≤ t ≤ 28.

Although it is known that reducing t may still allow for non-zero success proba-
bilities [39,44,46,61], the surprising robustness (or even increase) of the “lucky” success
probabilities has not been appreciated. In conclusion, Shor’s algorithm can still be suc-
cessful (sometimes even more successful) if much less classical bits t are sampled than the
recommended t = d2 log2 Ne.
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Figure 6. Success probabilities of Shor’s algorithm when less than the recommended t = d2 log2 Ne
classical bits are extracted from the QFT. Every bar represents the fraction of 1 million sampled
bitstrings classified as “success” (green), “lucky” (yellow), and “fail” (blue). The factored semiprime
is N = 15,707 (such that t = 28) with (a) a = 831, (b) a = 832, and (c) a = 833. The corresponding
orders of a modulo N are indicated at the top. Increasing t beyond 28 does not further improve the
success probabilities.

3.1.1. Classification of the “Lucky” Scenarios

If a sampled bitstring j does not pass the standard tests required by Shor’s algorithm,
but still produces a factor with the procedure shown in Figure 1, we call this a “lucky” case.
As shown above, this happens much more often than expected. In this section, we explain
and classify the different scenarios that can happen.

For a given factoring problem with an L-bit semiprime N and an integer a coprime to
N, let r̂ be the multiplicative order of a modulo N. Furthermore, let r be the denominator
and k be the numerator extracted from the convergent k/r to j/2t using the continued
fractions algorithm from the standard procedure (i.e., the largest r < N such that k/r is a
convergent to j/2t with |k/r− j/2t| ≤ 1/2r2 [10]). We distinguish between three scenarios
in which the standard checks for Shor’s algorithm fail:

(n,e) r 6= r̂ is not the order but r is even,
(n,o) r 6= r̂ is not the order and r is odd,
(o,o) r = r̂ is the order but the order is odd.

In Figure 7, we show a breakdown of the average success probability for these scenar-
ios. We see that the (n,e) scenario makes up a large fraction of the successful factorizations
and its relevance grows for larger integers. In contrast, the (n,o) and (o,o) scenarios, where
the extracted r is odd, only matter for smaller integers. We explain the reasons for this in
the discussions of each individual scenario below.
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Figure 7. Breakdown of the average success probabilities for successful factoring scenarios. The
contributions to the average “success + lucky” probability (yellow squares) from Figure 4b are
divided into the “success” cases (gray), the lucky (n,e) cases (green), the lucky (n,o) cases (red), and
the lucky (o,o) cases (blue). Note that an L-bit semiprime requires n = L + 1 qubits for the iterative
Shor algorithm and roughly 3L qubits using the conventional Shor algorithm, as indicated on the
bottom axis. The largest odd semiprime that can be factored with a given number of qubits is shown
on the top axis. Lines are guides to the eye.

Figure 8 shows the number of cases for each scenario among the 52,077 uniformly
drawn factoring problems. We see that the cases where bitstrings yield a factor in the (n,e)
scenario are responsible for a significant fraction of all successful factorizations. Indeed,
as Figure 7 suggests, the relevance of this scenario also grows on average and tends to
saturate above 25% for larger L. We expect that this contribution persists for even larger
semiprimes.
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Figure 8. Classification of the different “lucky” scenarios. Shown is the absolute number of (a) (n,e)
cases, (b) (n,o) cases, and (c) (o,o) cases, which yield a factor even though the sufficient conditions for
Shor’s algorithm are not met. For each bit length L = 9, . . . , 29, the total number of cases is given
by 2500 uniformly distributed factoring problems (for smaller L, the total number is smaller than
2500 because all possibilities for factoring problems (N, a) are exhausted, see Appendix B). Every
bar represents a 10%-wide half-open interval (P − 10%, P] with P = 10%, 20%, . . . , 100% for the
percentage of all M = 1024 bitstrings that yield a factor in this case. For instance, the large leftmost
red bar at L = 11 and P = 10% in panel (b) means that in 1197 out of 2500 cases, up to 10% of all
sampled bitstrings yield a factor even though they represent an (n,o) case, i.e., they produce an odd
number r that is not the order. Similarly, the large rightmost blue bar at L = 9 in panel (c) means
that in 68 out of 2500 cases, more than 90% of all sampled bitstrings yield a factor even though the
correctly extracted order r = r̂ is odd.
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Contributions from the (n,o) and (o,o) scenarios seem to be responsible only for a
small number of successful factorizations, and mostly only for small semiprimes up to
L = 10. It is remarkable, however, that for many factoring problems that can be factored in
the (o,o) scenario, 50–100% of all bitstrings yield a factor (see Figure 8c).

To understand these effects, we discuss the different scenarios individually. The
goal is to obtain an understanding for why the different scenarios occur. The number-
theoretic ideas are similar to the algorithm used in [33], which can be traced back to Miller’s
algorithm ([103], Lemma 5).

3.1.2. The (n,e) Scenario

From the quantum circuit of Shor’s algorithm, one can compute the probability distri-
bution for the bitstrings j that are sampled at the measurement [104] (see Appendix A for
the derivation),

pr̂,t(j) =
r̂

22t

(
sin(πr̂jb 2t

r̂ c/2t)

sin(πr̂j/2t)

)2

+
2t − r̂b 2t

r̂ c
22t

sin(πr̂j[2b 2t

r̂ c+ 1]/2t)

sin(πr̂j/2t)
, (26)

where b2t/r̂c denotes the integral number of times that r̂ fits into 2t. Note that for a given
factoring problem (N, a) with t classical bits per bitstring, this distribution only depends on
the order r̂ of a modulo N. This is a consequence of the fact that the QFT in Shor’s algorithm
is used to determine the period of the function f (k) = ak mod N, which is exactly r̂.

The distribution in Equation (26) is shown for a few representative cases in Figure A1
in Appendix A. It is strongly peaked at r̂ bitstrings (see also [51])

j ∈ {round(k̂× 2t/r̂) : k̂ = 0, . . . , r̂− 1}, (27)

where k̂ enumerates the r̂ peaks. Given j, the continued fractions algorithm yields a
convergent k/r = k̂/r̂ to j/2t. However, if k̂ and r̂ have a common factor, the denominator
r from the extracted convergent will not be equal to the order r̂. For instance, this is the
reason that the “success” cases in Figure 4a are typically below 50%, since every second
peak corresponds to an even k̂, and an even order r̂ is a sufficient condition for success;
hence, at least a factor of two is lost in k̂/r̂. We note that with a very small probability, this
procedure may also yield an r > r̂ if the sampled bitstring j is not at one of the r̂ peaks
of pr̂,t(j).

To understand why r 6= r̂ may still yield a factor of N, we consider the case that the
order r̂ yields a factor of N (as Figure 4b shows, this case occurs with approximately 75%
frequency). In this case, we have

gcd(ar̂/2 − 1, N) = p, (28)

gcd(ar̂/2 + 1, N) = q, (29)

where p and q are the two prime factors of N. Let 2d be the largest power of 2 in r̂ such that
2 - r̂/2d (meaning 2 does no divide r̂/2d). Note that often, 2d ≥ 4 since the multiplicative
order of the whole group Z∗N is φ(N) = (p− 1)(q− 1), which is at least divisible by 4 (here,
φ(N) = |Z∗N | is Euler’s totient function). In this case, Equation (28) can be written as

gcd((ar̂/4 − 1)(ar̂/4 + 1), N) = p, (30)
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so either (ar̂/4 − 1) or (ar̂/4 + 1) contain the prime factor p. Since every second k̂ in
Equation (27) is even, it is likely that r ∈ {r̂/2, r̂/4, . . . , r̂/2d−1} (each case decreasing in
likelihood). If r = r̂/2, Equation (30) shows that by testing both gcd(ar/2 ± 1, N), a factor
will be found. If r = r̂/4, knowing that r is even, we can further write Equation (30) as

gcd((ar̂/8 − 1)(ar̂/8 + 1)(ar̂/4 + 1), N) = p, (31)

so if p does not happen to be in (ar̂/4 + 1), also a factor will be found. This reasoning can
be iterated up to the unlikely case that r = r̂/2d−1, where Equation (28) becomes

gcd( (ar̂/2d − 1)(ar̂/2d
+ 1)

×(ar̂/2d−1
+ 1) · · · (ar̂/4 + 1), N) = p.

(32)

Similarly, if r = r̂/3, we can write Equation (28) as

gcd((ar/2 − 1)(ar + ar/2 + 1), N) = p, (33)

in which case we also find a factor if p happens to be in the first part of the product. Finally,
if r = r̂/l with l > 4, we can write Equation (28) as

gcd( (ar/2 − 1)
×(ar/2×(l−1) + ar/2×(l−2) + · · ·+ ar/2 + 1), N) = p.

(34)

Note that as l grows, this case becomes increasingly unlikely since l would need to be a
factor of k̂ already. However, also in this case, there is a small chance that when evaluating
gcd(ar/2 − 1, N), a factor can be found. We remark that when r/2 = r̂/2l is prime, the
decomposition in Equation (34) is irreducible [66], such that no further polynomial in ar/2

including p can be factored out.
The distribution of the fractions r/r̂ (extracted from the data generated from the

uniformly distributed factoring problems) is shown in Figure 9a. Indeed, we see that very
often a small multiple of r is equal to the order r̂. In particular, the significance of fractions
up to r/r̂ = 1/11 seems to increase with L, i.e., with increasingly large semiprimes N. This
observation agrees well with the argument given in [33].

Interesting examples for the lucky (n,e) scenario are the individual problems for n = 34
and n = 39 discussed in Section 3.1. In particular, the n = 39 case with N = 274,877,906,893
= 364,303 × 754,531, a = 226,009,433,972 and order r̂ = 45,812,798,010 violates the condition
ar̂/2 6≡ −1 (mod N). As this is one of the sufficient conditions for Shor’s algorithm to
guarantee successful factorization, the corresponding “success” probability is zero (green
circle). However, 12.5% of the sampled bitstrings yield even integers r ∈ {r̂/3, r̂/5, r̂/111},
which still allow for a successful “lucky” factorization of N (the corresponding quadratic
residues ar do not have a trivial square root, i.e., ar/2 6≡ −1 (mod N)).

For large N, the (n,e) scenario makes up the majority of all “lucky” factorizations (see
Figure 7). We hypothesize that on average, the probability of “success+lucky” factorizations
asymptotically approaches 50% due to the (n,e) scenario.



Mathematics 2023, 11, 4222 19 of 38

Fraction r/r

> 1 1
2

1
3

1
4

1
5

1
6

1
7 1

8 1
9 1

10 1
11

L

5
10

15
20

25
30

0%

10%

20%

30%

40%

a                                                               Percentage of lucky
                                                               (n, e) bitstrings

Fraction r/r

> 1 1
2

1
3

1
4

1
5

1
6

1
7 1

8 1
9 1

10 1
11

L

5
10

15
20

25
30

0%

10%

20%

30%

40%

b                                                               Percentage of lucky
                                                               (n, o) bitstrings

Figure 9. Histograms of the fractions r/r̂ between the order r̂ and the denominator r extracted from
the continued fractions algorithm. Shown is the percentage of bitstrings for L ≥ 5 (normalized by
all “lucky” bitstrings) that yield a factor in the (a) (n,e) and (b) (n,o) scenario, respectively. Here,
r is not the order but often a large divisor of it. Additionally, the bars at the very left for r/r̂ > 1
represent the number of cases where the extracted r is actually larger than the order r̂, which may
occasionally happen when a bitstring j is sampled at a non-zero probability pr̂,t(j) that is not a peak
(cf. Figure A1b,c).

3.1.3. The (n,o) Scenario

In the (n,o) scenario, the bitstring j yields an integer r that is neither the order r̂ nor
even. Using the reasoning from the (n,e) scenario, this happens only if r | r̂/2d, so all d
powers of 2 must have been in k̂ from Equation (27) already (or d = 0, in which case r̂ is
odd). This is an unlikely scenario given that all k̂ ∈ {0, . . . , r̂− 1} occur with roughly the
same probability, see Figure A1 in Appendix A. Moreover, as Figure 8 shows, the frequency
of this scenario tends to zero for larger semiprimes N. However, it does occur for smaller
semiprimes with up to 25% frequency on average (see the red area in Figure 7), so it is
instructive to understand how a factor can be found in this case. In what follows, we
exclude the irrelevant case r = 1 as it will never yield a factor.

Let r = r̂/l where 2d | l and 2 - r (note that d = 0 is possible if the order r̂ is odd, but
we always have l ≥ 2 since r 6= r̂). In this case, using the procedure depicted in Figure 1,
we test

gcd(abr/2c ± 1, N) = gcd(a(r̂/l−1)/2 ± 1, N) (35)

to find a factor of N.
Since Equation (35) seems somewhat arbitrary from the perspective of the original

theory behind Shor’s algorithm, one might think that a factor may only be found by
coincidence. For instance, when N = p× q has a very small prime factor (say 3, 5, or 7),
then whatever number is computed by Equation (35) might have a chance of including the
small prime factor.

That this reasoning does not always hold is shown in Figure 10a, where we list the
percentage of bitstrings that yield a factor in the (n,o) scenario as a function of the smallest
prime factor of N. Indeed, we see that also larger prime factors can be found in certain
cases. The most important of these are the cases in which a has a small order with respect
to either p or q (purple squares, black crosses, and red pluses in Figure 10a). Indeed, one
can prove
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Theorem 1. If

min{ordp(a), ordq(a)} ∈ {1, 2}, (36)

then gcd(abr/2c ± 1, N) with r 6= r̂ odd yields a factor of N.

Proof. Without loss of generality, we assume ordp(a) ∈ {1, 2}. This implies that a ≡ ±1 (mod p)
(because if ordp(a) = 1, we have a ≡ 1 (mod p), and if ordp(a) = 2, we have a ≡ −1 (mod p)).
Hence,

xp := abr/2cmod p = (±1)br/2cmod p = ±1. (37)

Moreover, since r̂ = lcm(ordp(a), ordq(a)), where lcm denotes the least common multiple,
ordp(a) ∈ {1, 2} implies that ordq(a) ∈ {r̂, r̂/2}.

Thus we have ordq(a) ≥ r̂/2 ≥ r̂/l > r̂/l − 1 (where l ≥ 2 is defined above
Equation (35)), and therefore

xq := abr/2cmod q = a(r̂/l−1)/2 mod q 6= ±1 (38)

(since otherwise r̂/l − 1 would be a multiple of the order of a modulo q). Applying the
Chinese remainder theorem [66] to Equations (37) and (38), we obtain

abr/2c ≡ xq ppq + xpqqp (mod N), (39)

where pq is the inverse of p (mod q) and qp is the inverse of q (mod p). Using that ppq +
qqp ≡ 1 (mod N), we finally have

gcd(abr/2c ± 1, N) = gcd((xq ± 1)ppq + (xp ± 1)qqp, N). (40)

Thus, since xq 6= ±1, the case where xp ± 1 = 0 will yield the factor p.

One can estimate how often the situation given by Equation (36) happens. Choosing
a uniformly at random from {2, . . . , N − 1} with gcd(a, N) = 1 is equivalent to choosing
a mod p (a mod q) uniformly at random from {1, . . . , p − 1} ({1, . . . , q − 1}) with the ex-
ception of a mod p = a mod q = 1. Thus there are (p− 2)(q− 2)− 1 ∼ pq choices for a,
2p + 2q− 13 ∼ p + q of these satisfying either a mod p = ±1 or a mod q = ±1. Therefore,
the contribution of cases with min{ordp(a), ordq(a)} = 1, 2 becomes negligible for large p
and q. We remark that individual cases with min{ordp(a), ordq(a)} = 3, 4, . . . , may further
contribute to lucky (n,o) factorizations, as Figure 10a shows.

3.1.4. The (o,o) Scenario

In the (o,o) scenario, the bitstring j yields the order r = r̂ and the order is odd (see
also [15,54–56]). Interestingly, as Figure 10b suggests, this case can be fully classified:

Theorem 2.

gcd(abr/2c − 1, N) yields a factor⇔ 1 ∈ {a mod p, a mod q}. (41)

Note that a > 1 by construction, so one of {a mod p, a mod q} is larger than 1, and in particular
r > 1.

Proof. The “⇐” case is a special case of Theorem 1 from the (n,o) scenario. If a mod p = 1,
we have xp = 1 in Equation (37) and xq 6= ±1 in Equation (38), so gcd(abr/2c − 1, N) = p
by Equation (40).

We therefore only need to show the “⇒” case. Without loss of generality, let
gcd(abr/2c − 1, N) = p, so p | (abr/2c − 1). From this follows that abr/2c ≡ 1 (mod p), so
ordp(a) | br/2c = (r− 1)/2. However, we also have ordp(a) | r because r = lcm(ordp(a),
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ordq(a)). Since gcd((r− 1)/2, r) = 1 (using the Euclidean algorithm), this is only possible if
ordp(a) = 1, which means a mod p = 1.
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Figure 10. Classification of “lucky” factorizations for the case that the extracted integer r is odd, using
br/2c = (r− 1)/2 instead of r/2. Shown is the percentage of bitstrings that yield a factor as a function
of the smallest prime factor of the semiprime N = p× q. (a) The lucky (n,o) probabilities, classified
in terms of the minimum order of a modulo p and q (see legend; prioritized from top to bottom).
(b) The lucky (o,o) probabilities, fully classified in terms of the cases where 1 ∈ {a mod p, a mod q}
and r̂ is odd (blue crosses) and the rest (green pluses). In both (a) and (b), annotations indicate an
additional condition that is satisfied by many (but not all) cases at this percentage level (σ denotes an
odd integer). We use the notation ordp(a) to denote the order of a modulo p, i.e., the smallest integer
m such that am ≡ 1 (mod p).

Theorem 3. The “+” case, i.e., gcd(abr/2c + 1, N), never gives a factor in the case r = ordN(a) odd.

Proof. Assume gcd(a(r−1)/2 + 1, N) = p. This means that a(r−1)/2 ≡ −1 (mod p), and
thus ar−1 ≡ 1 (mod p). The former implies that ordp(a) - (r− 1)/2 and the latter implies
that ordp(a) | r− 1. Therefore, 2 | ordp(a). From r = lcm(ordp(a), ordq(a)) then follows
that 2 | r, but this is a contradiction because r was assumed to be odd.

Finally, we can show that it does not matter whether we round r/2 up or down, i.e.,
whether we take br/2c = (r− 1)/2 or dr/2e = (r + 1)/2 in Figure 1, since one of them
yields a factor whenever the other one also yields a factor:

gcd(abr/2c − 1, N) = gcd(abr/2c(adr/2e − 1), N)

= gcd(adr/2e − 1, N),
(42)

where we used that abr/2cadr/2e ≡ a(r−1)/2a(r+1)/2 ≡ ar ≡ 1 (mod N) and furthermore that
abr/2c cannot have a common factor with N (since a was chosen coprime to N),

A special, additional condition that yields a success probability of almost 100% with
the (o,o) scenario is when r̂ is prime, as indicated in Figure 10b. In this case, almost
all bitstrings j are sampled at the peaks of Shor’s bitstring distribution pr̂,t(j) given by
Equation (27) and directly yield the order r = r̂, because k̂ and r̂ are always coprime. The
only exceptions are either when j belongs to the first peak corresponding to k̂ = 0, or when j
lies in the neighborhood of one of the peaks of Equation (26) where the probability is small.

3.2. Using Ekerå’s Post-Processing

In 2022, Ekerå has proven a lower bound for the success probability that takes into
account additional, efficient classical post-processing procedures [34] (his implementation
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of the procedures can be found in [105]). While with Shor’s post-processing, a factor is
found with more than 50% probability on average after a single run (see Figure 5a), with
Ekerå’s post-processing, it is possible to increase this probability arbitrarily close to unity.
The bound reads

p(success | N) ≥
(

1− 1
π2

(
2
B
+

1
B2 +

1
3B2

)
− π2(2B + 1)√

2m+`

)

︸ ︷︷ ︸
j sampled ±B bitstrings around peak

(
1− 1

c log cm

)

︸ ︷︷ ︸
peak yields order r̂

(
1− 2−k

(
nF
2

)
− 1

2ς2 log2 ςL

)

︸ ︷︷ ︸
order r̂ yields factors of N

, (43)

where L is the bit length of N, m + ` = t is the number of classical bits obtained from Shor’s
algorithm, nF is the number of distinct prime factors of N (i.e., nF = 2 for semiprimes),
and B, c, k, ς ≥ 1 are constants of the post-processing algorithms that can be freely selected.
We choose m = L and ` = t− L so that the results are in line with the analysis presented
above. Note that the only technical requirement is 2m > r̂ and 2m+` > r̂2, so m = L− 1 is
possible [34]; this does not make a difference for the results that follow. We remark that the
three factors in Equation (43) are directly related to the three Propositions A1–A3 discussed
in Appendix A.2. We discuss each factor in turn.

The first factor in Equation (43) comes from the idea that whenever the bitstring j is
not sampled at one of the r̂ peaks (see Figure A1 in Appendix A), it is often sampled very
close to a peak. Thus, one can try out all bitstrings in the range {j− B, . . . , j + B} for some
small B. The probability to find the peak among these bitstrings can be estimated from
the distribution pr̂,t(j) in Equation (26). Instead of 4/π2 (see Equation (A20); this would
correspond to B = 0), we then obtain a larger probability, given by the first factor. Here, we
choose B = L, i.e., the number of bits in N.

The second factor in Equation (43) stems from the idea that, when the continued
fraction method does not yield the order r̂, it will often yield a large divisor r = r̂/D for
some small D (see Figure 9). Starting from r, Ekerå gives several classical algorithms in [34]
to efficiently recover the real order r̂ = r× D. The corresponding success probability is
given by 1− 1/c log cm, where c ≥ 1 is a parameter that is free to choose. Its derivation is
based on the probability that D is cm-smooth, meaning that D > 0 is not divisible by any
prime power larger than cm. For our numerical work we choose c = 1.

Finally, the third factor in Equation (43) follows from the algorithm presented in [33]
(see also [54]). This algorithm describes the factoring of an arbitrary composite integer N
(with nF ≥ 2 distinct prime factors) given the order r̂ of a single element a ∈ Z∗N selected
uniformly at random. The corresponding success probability depends on two parameters
k, ς ≥ 1 (ς is called c in [33]) that can be freely selected. For our numerical work we choose
k = 100 and ς = 1.

Probably the most important consequence of Ekerå’s result given by Equation (43) is
that, as the size of the factoring problem becomes very large, i.e., N, r̂ → ∞, the success
probability approaches one. This trend can already be seen in Figure 11a (gray line), which
shows that the bound is increasing—even though it is already quite large for our modest
choice of (B, c, k, ς) = (L, 1, 100, 1). Furthermore, the gray diamonds in Figure 11a represent
the actual success probabilities, obtained from applying Ekerå’s post-processing to the
largest scenarios studied above. They are all larger than 93% and thus even closer to unity
than expected (this potential underestimation was noted in [34]).
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3.3. Errors during the Execution of Shor’s Algorithm

With Ekerå’s post-processing [33,34], the expected success probability using only a
single run of the quantum part of the algorithm can be brought arbitrarily close to 100% by
properly selecting the constants (B, c, k, ς) (cf. Equation (43)). However, these probabilistic
estimates still require a successful execution of the quantum part of Shor’s algorithm. Since
fully error-corrected, fault-tolerant quantum computers will probably not become available
for several years to come [106–108], it is an interesting, relevant question to study how the
performance of the post-processing algorithms is affected by errors during the execution of
the quantum algorithm.

In this section, we consider five different models for errors arising in the quantum part
of Shor’s algorithm. Each of these is shown in the inset of Figure 11b, which schematically
marks the places in the iterative Shor algorithm (cf. Figure 2) at which the respective errors
may occur.

1. Classical measurement errors (blue squares) are defined as misclassifications occurring
directly after each quantum measurement process with a constant error probability
perror(δ) = δ (see Section 2.8.1).

2. Quantum measurement errors (yellow circles) are modeled as depolarizing quantum
noise during the measurement process with effective error probability perror(δ) = δ =
px + py (see Section 2.8.2).

3. Amplitude initialization errors (green upward-pointing triangles) are modeled by
initializing the recycled qubit not in the uniform superposition |+〉 = (|0〉+ |1〉)/

√
2,

but by increasing the amplitude of |0〉 as a function of δ. The effective error probability
is perror(δ) = (1−

√
1− δ2)/2 (see Section 2.7.1).

4. Phase initialization errors (red down-pointing triangles) are defined by introducing
a relative phase eiπδ between the states |0〉 and |1〉 in the initialization. The effective
error probability is perror(δ) = (1− cos(πδ))/2 (see Section 2.7.2).

5. Bit flip errors (purple stars) are defined by flipping each bit in the final bitstring j with
probability perror(δ) = δ. This error model, in contrast to the others, does not affect
the execution of the quantum part of the iterative Shor algorithm. While such an error
(e.g., a fault in the classical computer memory) may be considered unlikely, it is still
interesting to compare its consequences to the errors in the quantum part.

We consider the case that for each of these errors, Ekerå’s post-processing algorithm is
applied to the resulting bitstrings, without the user being aware that one or more errors
may have occurred.

Figure 11a shows the success probabilities for the different errors and problem sizes.
We see that errors with δ = 0.01 (which corresponds to 1% error probability for the blue
squares, yellow circles, and purple stars) can decrease the success probability below the
bound Equation (43) indicated by the solid gray line. Furthermore, the success probabilities
show a decrease as a function of problem size that rivals the increasing success probabil-
ity from the bound Equation (43). Nevertheless, Ekerå’s post-processing algorithm still
produces correct factors even in the presence of errors.

Figure 11b shows the scaling of the success probability as a function of the effective
single-qubit error probability for the 30-qubit case N = 536,870,903. For all errors, we see
that the performance of the factoring algorithm including Ekerå’s post-processing scales
similarly, despite the fundamental differences in the error models. This type of universal
behavior is an interesting and unexpected observation.
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Figure 11. Performance of Shor’s algorithm using Ekerå’s post-processing in the presence of errors.
(a) Success probability using Ekerå’s post-processing with (B, c, k, ς) = (L, 1, 100, 1) for the largest
scenarios from Figure 4a in the case of classical measurement errors with δ = 0.01 (blue squares), quan-
tum measurement errors with δ = 0.01 (yellow circles), amplitude initialization errors with δ = 0.1
(green upward-pointing triangles), phase initialization errors with δ = 0.1 (red downward-pointing
triangles), bit flip errors (purple stars) with δ = 0.01, or no errors (gray diamonds). Additionally,
the solid gray line shows the bound Equation (43) for semiprimes with nF = 2 prime factors, and
the vertical dashed gray lines show by how much the bound underestimates the actual performance
(cf. [34]). (b) Success probability as a function of the effective single-qubit error probability perror(δ)

for the 30-qubit case N = 536,870,903 from panel (a). The black dash-dotted line represents the success
probability in the case of independent destructive errors, (1− perror)t. The inset shows schematically
in which parts of the quantum circuit in Figure 2 each of the different errors happen.

It is also instructive to compare the simulation results to (1− perror)t (black dash-
dotted line in Figure 11b), which represents the probability to obtain a bitstring for which
no error occurred (under the assumption that errors for individual bits are independent).
Since we know from Figure 11a that the considered 30-qubit case is solved with 100%
success, (1− perror)t represents the assumption that errors are destructive, i.e., an error
in one of the bits prevents a successful factorization. Hence, the systematic gap between
the dash-dotted line and the other dashed lines in Figure 11b shows that the quantum
factoring problem can still be solved with Ekerå’s post-processing in the presence of errors.
The fact that the success probability is systematically larger than the one for independent
errors is encouraging, because an error at one stage in the iterative Shor algorithm affects
the operation of all subsequent gates that depend on previous measurement results (see
inset of Figure 11b). Such an error can thus propagate through the quantum algorithm
and induce further, correlated errors. Our simulation results reveal a certain resilience
when using Ekerå’s post-processing in combination with the iterative Shor algorithm for
factoring integers.

3.4. Discussion of Limitations and Future Directions

Some of our design choices, made to achieve a large-scale simulation of Shor’s algo-
rithm for many factoring scenarios, result in certain practical limitations to what we can
simulate. In this section, we list these design choices, state the accompanying limitations,
and discuss interesting future research directions that alternative choices could offer.

1. In a practical realization of Shor’s quantum circuit shown in Figure 2, most of the
work is expected to be in the implementation of the exponentiation in terms of
the controlled modular multiplications (see Section 2.2). Our choice to simulate
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the multiplications using direct permutations with no extra qubits, while allowing
the large-scale MPI scheme sketched in Figure 3, prevents the direct simulation of
quantum errors during the multiplications (which is why, in Figure 11, essentially
only initialization errors before and measurement errors after the multiplications are
shown). The alternative would be to implement a general multiplication circuit using
standard quantum gates and additional workspace qubits. To pursue this research
direction to allow the study of errors during the multiplications, an informative
exposition to start from is the construction by Gidney and Ekerå [6], which combines
and optimizes many techniques discovered over the past decades to implement the
modular multiplications.

2. Although Shor’s order-finding algorithm is the most prominent quantum algorithm
for factoring, a practical solution of the factoring problem on gate-based quantum
computers might rather use the Ekerå-Håstad factoring scheme [63] based on the
discrete logarithm quantum algorithm (see point 3 in Section 1.1). Instead of t ≈ 2L
stages in the iterative quantum circuit (cf. Figure 2) using the semiclassical Fourier
transform, this algorithm requires at most t ≈ 3L/2 stages, with a systematic option to
reduce t further at the cost of reducing the success probability below 99% [64]. In the
context of quantum circuit simulation, the Ekerå-Håstad scheme would save valuable
execution time (cf. Section 2.9), allowing for more statistics to be gathered for larger
factoring scenarios.

3. The shorgpu implementation used for this work maintains two full statevector buffers
psi and psibuf, which reduce the simulation time by enabling contiguous memory
transfer through the MPI network (see [23]). However, the total amount of memory
fixes the maximum number of qubits that can be simulated, which puts a limit on the
size of simulatable factoring problems. An alternative choice would be to use only a
single statevector buffer, thereby having to replace the contiguous memory transfer
with interleaved communication and computation. This choice (potentially combined
with reducing computing time by switching to the Ekerå-Håstad scheme, see previous
item) would allow the simulation of yet another qubit, to push the boundary of
simulatable factoring problems and the threshold of the proposed challenge one
step further.

4. Conclusions

In this paper, we have introduced a method to simulate the iterative Shor algorithm on
supercomputers with thousands of GPUs. The simulation software [23] allowed us to push
the size of factoring problems far beyond what has been achieved previously. We have used
the simulation software to perform an in-depth analysis of the iterative Shor algorithm.

Using Shor’s original post-processing [8–10,32], we have shown that a significant
amount of “lucky” factorizations raises the expected success probability from 3–4% to
above 50%. We have given number-theoretic arguments for the existence of the lucky cases,
and we hypothesize that they continue to contribute with approximately 25% beyond the
size of integer factoring problems investigated in this paper.

Using Ekerå’s post-processing [33,34], the success probability for a factoring scenario
can be brought close to unity using only a single bitstring obtained by executing the iterative
Shor algorithm. However, Ekerå’s post-processing method assumes that the quantum part
has been executed without errors, an assumption which is unlikely to hold for quantum
processors in the near future. Therefore, we have studied how additional classical and
quantum errors, as present in today’s quantum information processing hardware [106],
influence the performance of the post-processing procedure. Remarkably, we find that
Ekerå’s post-processing procedure exhibits a particular form of universality and resilience.
Here, “universality” means that the decrease in success probability is roughly indepen-
dent of the particular type of error and “resilience” means that the success probability is
systematically larger than the success probability expected from independent bit flip errors.
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Although these results might inspire confidence in the quantum factoring procedure,
the first successful factorization of a cryptographically relevant number—say RSA-2048
from the famous RSA factoring challenge—is still out of reach [6,22]. Therefore, a more
modest challenge towards true quantum supremacy might be to demonstrate that a real
quantum computing device can factorize an interesting semiprime which is larger than
Nmax = 549,755,813,701. In fact, since gate-based quantum computers might already require
full error correction for this purpose, it is conceivable that this challenge is first met by a
quantum annealer [17,77–82].
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Appendix A. The Probability Distribution Generated by Shor’s Algorithm

The construction of Shor’s algorithm starts by assuming that there are two quantum
registers of size t and L, respectively, in the initial state |ψ0〉 = |0〉 |0〉. The first step is to
bring the first register in a uniform superposition using Hadamard gates such that the
state becomes
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|ψ1〉 =
1

2t/2

2t−1

∑
k=0
|k〉 |0〉 . (A1)

Then, application of the oracle corresponding to the function f (k) = ak mod N brings the
state to

|ψ2〉 =
1

2t/2

2t−1

∑
k=0
|k〉 | f (k)〉 . (A2)

The next step is to apply the quantum Fourier transform to the first register, which yields

|ψ3〉 =
1
2t

2t−1

∑
k=0

2t−1

∑
j=0

e−2πikj/2t |j〉 | f (k)〉 . (A3)

Since f (k) is a periodic function with period r̂ (i.e., the multiplicative order of a modulo N),
the second register can only take r̂ different values. Combining all amplitudes with equal
second register gives

|ψ3〉 =
1
2t

r̂−1

∑
k=0

2t−1

∑
j=0

e−2πikj/2t
(

1 + e−2πir̂j/2t
+ e−2πi2r̂j/2t

+ · · ·+ e−2πi(s−1)r̂j/2t
+ e−2πisr̂j/2t

δ[k+sr̂<2t ]

)
|j〉 | f (k)〉 , (A4)

where s = b2t/r̂c, and δ[k+sr̂<2t ] indicates that the last term only contributes if k + sr̂ < 2t.
Identifying a geometric sequence for the first s terms, we have

|ψ3〉 =
1
2t

r̂−1

∑
k=0

2t−1

∑
j=0

e−2πikj/2t

(
1− e−2πisr̂j/2t

1− e−2πir̂j/2t + e−2πisr̂j/2t
δ[k+sr̂<2t ]

)
|j〉 | f (k)〉 . (A5)

Finally, to obtain the probability pr̂,t(j) to measure the bitstring j in the first register, we
trace out the second register,

pr̂,t(j) = 1
22t ∑r̂−1

k=0

∣∣∣∣ 1−e−2πisr̂j/2t

1−e−2πir̂j/2t + e−2πisr̂j/2t
δ[k+sr̂<2t ]

∣∣∣∣
2

= r̂
22t

(
sin(πsr̂j/2t)
sin(πr̂j/2t)

)2
+ 2t−sr̂

22t
sin(π[2s+1]r̂j/2t)

sin(πr̂j/2t)
.

(A6)

This result is the same as in [104], correcting some misprints in [24,109]. Note that the
singularities at sin(πr̂j/2t) = 0 are removable singularities.

The resulting bitstring distribution is shown for a few representative cases in Figure A1a–c.
It is strongly peaked at r̂ bitstrings given by

j ∈ {0, round(2t/r̂), round(2× 2t/r̂), . . . , round((r̂− 1)× 2t/r̂)} . (A7)

Note that when r̂ ≥ 2t, the distribution becomes a uniform distribution that is “peaked”
everywhere. Furthermore, when r̂ divides 2t (such that s = b2t/r̂c = 2t/r̂), only the
first term in Equation (26) contributes, with the same value of 1/r̂ at all r̂ peaks; all other
bitstrings then have probability zero (see Figure A1a).
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Figure A1. Representative bitstring distributions produced by Shor’s algorithm. Shown is the
probability distribution pr̂,t(j) given by Equation (A6) for t = 16 (such that the integer representation
of the bitstrings j ranges from 0 to 2t − 1 = 65,535) and multiplicative orders (a) r̂ = 16, (b) r̂ = 22,
and (c) r̂ = 63. Each distribution has exactly r̂ peaks (solid circles) given by Equation (A7). The
peaks are approximately 2t/r̂ bitstrings apart. Note that in (a), the peaks are equidistant, equally
large with probability 1/r̂, and all other probabilities are exactly zero. These properties are lost if
r̂ does not divide 2t evenly, as can be seen in the presence of small but non-zero bars next to the
peaks in (b,c). (d–f) The corresponding distributions p′r̂,t(αj) expressed in terms of αj = {r̂j}2t ∈
{−2t/2, . . . , 2t/2− 1} (see Equation (A10)). (g–i) The corresponding distributions p′′r̂,t(bj) expressed
in terms of bj = sigbits(αj) (see Equation (A12)).

Appendix A.1. Alternative Representations of the Probability Distribution

A useful, alternative representation of the probability distribution pr̂,t(j) in Equation (A6)
can be obtained by identifying all bitstrings j that yield equivalent arguments of the sine
functions. Due to the periodicity of the sine function, these arguments can be represented by

αj = {r̂j}2t = (r̂j + 2t/2)mod 2t − 2t/2, (A8)

where the notation {x}y denotes x mod y constrained to {−y/2, . . . , y/2− 1}.
All bitstrings j that yield the same αj can be enumerated by solving the equation

αj ≡ r̂j (mod 2t) for j ∈ {0, . . . , 2t − 1}. To do that, let 2d denote the largest power of two
dividing r̂. Then r̂/2d is coprime to 2t, so it has an inverse modulo 2t which we denote
by (r̂/2d)−1. Thus, we find αj(r̂/2d)−1 ≡ 2d j (mod 2t). This means that there is an integer
l ∈ Z such that 2d j = αj(r̂/2d)−1 + 2tl. From Equation (A8), we furthermore see that 2d | αj.
Dividing by 2d (note that we require r̂ < 2t; the other case has been discussed above) and
using that j ∈ {0, . . . , 2t − 1}, we thus obtain

j =

(
αj

2d

(
r̂

2d

)−1
+ 2t−dl

)
mod 2t. (A9)

Here, l = 0, . . . , 2d − 1 enumerates all 2d different bitstrings j.
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As each αj has multiplicity 2d according to Equation (A9), and each admissible αj must
be a multiple of 2d according to Equation (A8), we can write the probability distribution for
αj ∈ {−2t/2, . . . , 2t/2− 1} ∩ 2dZ as

p′r̂,t(αj) = 2d


 r̂

22t

(
sin(πsαj/2t)

sin(παj/2t)

)2

+
2t − sr̂

22t

sin(π[2s + 1]αj/2t)

sin(παj/2t)


. (A10)

This distribution is shown in Figure A1d–f. The first term has the typical structure of a
Fraunhofer diffraction pattern. Note in particular that all peaks given by Equation (A7)
correspond to the values of αj with −r̂/2 ≤ αj ≤ r̂/2 (see also [8–10]).

The advantage of using this representation is that it is the basis of a viable method to
sample from the distribution, even for cryptographically large bitstrings [31,33,34,62,64].
The key is that the distribution as a function of αj is quite regular and smooth, so it can be
numerically integrated to obtain a cumulative distribution function.

More precisely, one groups αj into logarithmically spaced regions identified by

bj = sigbits(αj) =

{
sign(αj)(blog2 |αj|c+ 1) (αj 6= 0)
0 (αj = 0)

, (A11)

which denotes the signed number of bits needed to represent the integer αj. This means that

2|bj |−1 ≤ |αj| < 2|bj | (note that for the numerical integration, one can use subregions of the

form 2|bj |−1+ξ/2ν ≤ |αj| < 2|bj |−1+(ξ+1)/2ν
[62], along with Simpson’s rule and Richardson

extrapolation [110]).
The corresponding distribution,

p′′r̂,t(bj) = ∑
sigbits(αj)=bj

p′r̂,t(αj), (A12)

is shown in Figure A1g–i. The characteristic property for large t is that most of the probabil-
ity mass is located around bj ≈ ±sigbits(r̂). In other words, most of the sampled bitstrings
j have approximately as many bits as the order r̂. This is independent of the particular value
of r̂ (unless r̂ contains an artificially large power of 2). This trend is already observable for
t = 16 in Figure A1i.

In the terminology of information theory, this means that a sampled bitstring j pro-
vides approximately t− |sigbits(r̂)| bits of information on the order r̂. This interpretation
provides another intuition for the success of Shor’s algorithm. For a typical factoring
problem for an L-bit semiprime N = p× q, bitstrings with t ≈ 2L classical bits in the rec-
ommended setting (see main text) are sampled. The multiplicative order r̂ always requires
less than L bits (the argument for this is that the largest possible order r̂ is the least common
multiple lcm(p− 1, q− 1), which is at least divisible by two, so it requires less bits than
N = p× q). Note that in [62], the “worst” case that |sigbits(r̂)| ≈ L is considered, and even
then two runs of the order-finding algorithm are sufficient.

The distribution pr̂,t(j) over bitstrings j with t = 16 bits is shown in Figure A1. We
used shorgpu to generate samples from the distributions pr̂,t(j) with up to t = 78 bits,
without knowing the solution to the specified factoring problem. If, however, the solution
to the factoring problem is known, one can use the trick explained above to generate
samples of pr̂,t(j) with up to t = 16,384 bits and beyond (see [62]).

Appendix A.2. Probability Theory for Shor’s Factoring Procedure

In this section, we relate the results extracted from the large data sets to relations and
theorems about Shor’s algorithm found in the literature. We first reformulate the theoretical
success probability for Shor’s original factoring procedure in terms of probabilities for
the different conditions. Then we relate each contribution to known theorems from the
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literature. This framework can be seen as the basis to interpret the results of Ekerå’s
post-processing stated in Section 3.2.

Given an integer N to factor, Shor’s algorithm states that one should first pick a
random a ∈ Z∗N and then run the quantum algorithm. Formally, the success probability for
one run of the quantum algorithm (i.e., one sampled bitstring j) therefore reads

p(success | N) = ∑
a∈Z∗N

p(success | a, N) p(a | N). (A13)

We pick a uniformly, so p(a | N) = 1/|Z∗N | = 1/φ(N), where φ(N) is Euler’s totient
function. Furthermore, the conditions for “success” stated in the literature [8–10,32] are
that the sampled bitstring j yields the order r̂ = ordN(a), r̂ is even, and ar̂/2 6≡ ±1 (mod N).
Thus,

p(success | N) =
1

φ(N) ∑
a∈Z∗N

p(j yields r̂ ∧ r̂ even∧ ar̂/2 6≡N ±1 | a, N). (A14)

We know that the bitstring j yields the order r̂ if j is sampled at one of the k̂ = 0, . . . , r̂− 1
peaks of pr̂,t(j) given by Equations (A6) and (A7), and the peak enumerator k̂ is coprime
to r̂ (so that the continued fraction method yields the convergent k/r = k̂/r̂ with r = r̂).
Hence,

p(success | N) =
1

φ(N) ∑
a∈Z∗N

p(j sampled at a peak︸ ︷︷ ︸
A

∧ k̂ coprime to r̂︸ ︷︷ ︸
B

∧ r̂ even∧ ar̂/2 6≡N ±1︸ ︷︷ ︸
C

| a, N), (A15)

where we defined the Propositions A1–A3, the probabilities of each of which have known
estimates (see below). Using the product rule [111], we have

p(success | N) = 1
φ(N) ∑a∈Z∗N p(j sampled at a peak | a, N)

× p(k̂ coprime to r̂ | A1, a, N)

× p(r̂ even∧ ar̂/2 6≡N ±1 | A2, A1, a, N).
(A16)

Substituting Equations (A20), (A24) and (A26) derived below, we arrive at the theoretical
bound for the success probability,

p(success | N) &
4

π2 ×
e−γ

log log N
× 1

2
. (A17)

Figure A2 shows the combined bounds from Propositions A1 and A2 in comparison
with the corresponding data extracted from the simulations. We see that when the bound
of 4/π2 for Proposition A1 in Equation (A20) is included, the estimate becomes very weak.
If it is not included (red crosses), the values lie only slightly above the data points (at least
for all uniform factoring problems with enough samples). In other words, the probability
of sampling j at one of the peaks is much larger than 4/π2.

The bound Equation (A17) takes values between 3 and 4% for semiprimes N between
220 and 240. Since the actual performance of Shor’s algorithm shown in Figure 4b is clearly
much better, it would be interesting to obtain better estimates and, in particular, to find
statements about the averages instead of lower bounds.
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Figure A2. Comparison of the bounds for Propositions A1 and A2 proven in the literature and the
corresponding frequencies extracted from the simulations. The 52,077 uniform factoring problems
plus the 13 individual large cases from Figure 4a are grouped as a function of increasing r̂ = ordN(a).
Yellow circles represent the average fraction of sampled bitstrings (normalized by a total of 1024 for
the uniform cases and 32 for the large cases) that yield the correct order r̂ (meaning that they satisfy
Propositions A1 and A2 in Equation (A15)); error bars show the corresponding standard deviation for
problems with the same r̂. Red crosses indicate the corresponding values of φ(r̂)/r̂. Green points, the
solid blue line, and the dashed black line indicate the bounds in Equations (A21)–(A23), respectively,
combined with the lower bound of 4/π2 for Proposition A1 in Equation (A20).

Proposition A1. j sampled at a peak.

A known lower bound for the probability pr̂,t(j) at one of the r̂ peaks is 4/π2 [8–10].
This result can be obtained from the distribution pr̂,t(j) given by Equation (A6): at a peak,
we have by Equation (A7) that the bitstring j satisfies j = round(2t k̂/r̂) = 2t k̂/r̂ + δ with
|δ| ≤ 1/2. Using | sin x| ≥ |x|/(π/2) when |x| ≤ π/2, | sin x| ≤ |x| for all x, and the
periodicity of | sin |, we have for the numerator and the denominator of the first term,

∣∣sin(π jr̂b2t/r̂c/2t)
∣∣ ≥ 2|δ| b2

t/r̂c
2t/r̂

≈ 2|δ|, (A18)

∣∣sin(π jr̂/2t)
∣∣ ≤ π|δ| r̂

2t . (A19)

We note that the second term of pr̂,t(j) in Equation (A6) is usually neglected in the literature
or simply assumed to be positive. Indeed, the signs of both numerator and denominator
are often dominated by the sign of δ. However, it may become negative for certain values
such as r̂ = 15, t = 5, and j = round(2t × 4/15). In any case, its contribution is negligible
with respect to the first term. Hence, we have pr̂,t(j) & 4/π2r̂. Since there are exactly r̂
peaks, we obtain

p(j sampled at a peak | a, N) &
4

π2 ≈ 40.5%. (A20)

We remark that considering bitstrings j that are only a few steps away from a peak may
also work (see [48] and also Section 3.2).

Proposition A2. k̂ coprime to r̂.

The probability that an integer k̂ = 0, . . . , r̂− 1 is coprime to r̂ is given by

p(k̂ coprime to r̂ | A, a, N) =
φ(r̂)

r̂
, (A21)
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since there are exactly φ(r̂) elements in Zr̂ that are coprime to r̂. There are several estimates
for this quantity in the literature. Shor [8,10] uses an estimate of the form

φ(r̂)
r̂

&
e−γ

log log r̂
, (A22)

where γ is Euler’s constant such that e−γ ≈ 0.561. This estimate is based on the fact that
lim(φ(r̂) log log r̂/r̂) = e−γ [66], Theorem 328. However, this is only an infimum limit, and
one can in fact show that there are infinitely many r̂ violating this bound [112]. Ekert and
Jozsa [9] mostly argue with φ(r̂)/r̂ > 1/ log r̂ (using the prime number theorem), but this
bound is only valid for r̂ & 106 and then becomes a rather weak bound. A better, strict
lower bound to φ(r̂)/r̂ has been proven by Rosser and Schoenfeld in [113],

φ(r̂)
r̂

>
1

eγ log log r̂ + 5
2 log log r̂

, (A23)

which is valid for all r̂ ≥ 2 except 223092870 (in which case 5/2 must be replaced
with 2.50637).

Due to the presence of log log r̂, both bounds in Equations (A22) and (A23) show
an extremely weak dependence on r̂ (e.g., for r̂ ∈ {102, 1011, 24096}, log log r̂ varies only
between 1 and 8). Therefore, either bound is suitable for the present estimate. For the
same reason, we may safely approximate log log r̂ ≈ log log φ(N) ≈ log log N such that
the bound becomes independent of r̂. Thus, we obtain

p(k̂ coprime to r̂ | A, a, N) &
e−γ

log log N
. (A24)

Proposition A3. r̂ even∧ ar̂/2 6≡ ±1 (mod N).

Combining the results for Propositions A1 and A2 (which are now independent of the
particular a ∈ Z∗N), the remaining part of Equation (A16) is

1
φ(N) ∑

a∈Z∗N
p(r̂ even∧ ar̂/2 6≡N ±1 | B, A, a, N). (A25)

We note that an erroneous bound of 1− 1/2nF was given for this probability in both Shor’s
original paper [8] and in the book by Nielsen and Chuang [32]. The correct versions were
given in Shor’s later paper [10] and in an errata list by Nielsen [114]. An extensive proof
can be found in the review by Ekert and Jozsa [9], which states the result as follows.

Theorem A1. Let N be odd with prime factorization N = pe1
1 pe2

2 · · · p
enF
nF . Suppose a is chosen at

random, satisfying gcd(a, N) = 1. Let r be the order of a mod N. Then

prob(r is even and ar/2 6≡ ±1 (mod N)) ≥ 1− 1
2nF−1 , (A26)

where “prob” means the frequency when enumerating all a ∈ Z∗N , which directly corresponds to the
sum present in Equation (A25). We remark that the condition ar/2 6≡ +1 is actually superfluous
since this case does not occur if r is the order (otherwise r/2 would already be the order).

Proof. The idea of the proof is to study the converse, namely that r is odd or ar/2 ≡ −1.
This only happens if all multiplicative orders rj of aj = a mod p

ej
j contain exactly the same

power of 2 as r. In other words, r/2d and rj/2dj are odd integers with dj = d. Summing
over all possible d (which may be different for different a) yields

prob(r is odd or ar/2 ≡ −1 (mod N)) = ∑
d

prob(d1 = d) · · ·prob(dnF = d). (A27)
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When enumerating all aj, the case dj = d occurs with frequency ≤ 1/2. Approximating the
last nF − 1 factors ≤ 1/2 and using the first factor prob(d1 = d) to remove the sum yields
the bound 1/2nF−1.

As the blue triangles in Figure 4 show, this statement is in agreement with the data,
since the average of 75% is above the bound of 50% for nF = 2 (some error bars might
extend to below 50% which is due to the fact that we do not simulate the full set of all
a ∈ Z∗N). Furthermore, the theoretical bound in Equation (A26) is also tight: for N = 21, we
have exactly 50% of all a ∈ Z∗21 that have either an odd order r or ar/2 ≡ −1. We do not
know whether one can prove the observed average frequency of 75% in Figure 4b, using
that N is generated by uniformly drawing the prime factors p and q from the integers.

Appendix B. Generation of the Factoring Problems

We have generated 61,362 factoring problems (N, a). Of these, 52,077 are referred
to as “uniform” factoring problems because they have been generated by a procedure,
to be described next, to ensure a uniform distribution of prime factors that is not biased
towards small primes. For a given number of bits L, we sample the first prime factor from
a uniformly distributed set of integers p ∈ {3, . . . , b

√
2Lc} until a primality test asserts that

p is prime. The second prime is similarly sampled from q ∈ {d2L−1/pe, . . . , b2L/pc} until
q > p and N = p× q is an L-bit semiprime.

We remark that the reason to consider semiprimes is that they yield the hardest factor-
ing problems when factoring is reduced to order finding. This is because many elements
in Z∗N have large orders, but the largest order λ(N) (i.e., the Carmichael function [115]) is
always less than N/2nF−1, where nF ≥ 2 is the number of distinct prime factors in N ([34],
Claim 7). Thus, if N has more than nF = 2 factors, the orders become smaller on average
and thus easier to find.

For each L = 4, . . . , 28, this procedure is conducted for 50 different N. For each N, we
subsequently draw 50 different a ∈ {2, . . . , N − 1} coprime to N. This procedure exhausts
all N for 4 ≤ N ≤ 8 and generates 2500 unique problems (N, a) for each L > 8. For each
problem, shorgpu generated M = 1024 bitstrings.

In addition to the uniform factoring problems, we generated 9285 individual problems
relevant for Figures 4a, 6, and 11. In particular, these problems include the individual
“large” cases with 30 ≤ n ≤ 40 qubits, for which we always choose the largest interesting
semiprimes N (see Table A1 in Appendix D). The number of sampled bitstrings is M = 32
(M = 128) for the results presented in Figure 4a (Figure 11a). In case none of these bitstrings
yields a factor, we continue with a second random a. This is the reason that for n = 31 and
n = 37, one pair of “success” and “success+lucky” markers is at 0% and only the second
pair is above 0%.

Appendix C. Standard Procedure: Shor’s Post-Processing

Executing Shor’s algorithm for a given factoring problem (N, a) yields a bitstring
j with t bits (the recommended number of bits is t = d2 log2 Ne, which comes from the
requirement that N2 ≤ 2t < 2N2 [10]; so we always have t ∈ {2L, 2L − 1} since N
is no power of two). From the continued fraction expansion of j/2t (using the integer
representation of the bitstring j), one takes the convergent k/r with the largest denominator
r < N [8–10] (we remark that in principle, it is better to stop at the largest denominator
r < 2t/2, otherwise one can construct pathological examples for smaller t for which going
up to N skips the order and yields an unrelated, larger integer; see also ([34], Lemma 6)).
The resulting r is often (cf. Figure 5b) equal to the order r̂ of a modulo N, i.e., the smallest
exponent such that ar̂ mod N = 1. The standard procedure dictates that if r is even,
ar mod N = 1, and ar/2 mod N 6= −1, then computing the greatest common divisors
gcd(ar/2 ± 1, N) has a high probability of yielding a factor of N. Recall that in this work, if
one of these checks on r fails but gcd(abr/2c ± 1, N) still produces a factor, the bitstring j is
counted as “lucky”.
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Appendix D. List of Semiprimes

In Table A1, we give a list of the largest interesting semiprimes with L < 50 bits, for
which a factorization using the iterative Shor algorithm shown in Figure 2 would need up
to n = 50 qubits.

Table A1. List of the largest interesting semiprimes (where “interesting” means that the two prime
factors are distinct and have the same number of decimal digits) that can be factored using the iterative
Shor algorithm for a given number of qubits n = L + 1, where L is the number of bits required to
represent the semiprime. For each semiprime N = p × q, t = dlog2 N2e is the recommended
minimum number of classical bits to read out (cf. Figure 2).

Qubits n Semiprime N Factor p Factor q t

5 15 3 5 8
6 21 3 7 9
7 35 5 7 11
8 35 5 7 11
9 253 11 23 16
10 493 17 29 18
11 1007 19 53 20
12 2047 23 89 22
13 4087 61 67 24
14 8051 83 97 26
15 16,241 109 149 28
16 32,743 137 239 30
17 65,509 109 601 32
18 131,029 283 463 34
19 262,099 349 751 36
20 524,137 557 941 38
21 1,048,351 1009 1039 40
22 2,097,101 1399 1499 42
23 4,194,163 1307 3209 44
24 8,388,563 2357 3559 46
25 16,777,207 4093 4099 48
26 33,554,089 3797 8837 50
27 67,108,147 8011 8377 52
28 134,217,449 11,119 12,071 54
29 268,435,247 12,589 21,323 56
30 536,870,861 22,717 23,633 58
31 1,073,741,687 27,779 38,653 60
32 2,147,483,551 32,063 66,977 62
33 4,294,967,213 57,139 75,167 64
34 8,589,933,181 89,597 95,873 66
35 17,179,869,131 125,627 136,753 68
36 34,359,737,977 117,517 292,381 70
37 68,719,476,733 242,819 283,007 72
38 137,438,953,319 189,853 723,923 74
39 274,877,906,893 364,303 754,531 76
40 549,755,813,701 712,321 771,781 78
41 1,099,511,623,591 1,002,817 1,096,423 80
42 2,199,023,255,179 1,286,533 1,709,263 82
43 4,398,046,510,399 2,014,013 2,183,723 84
44 8,796,093,021,439 2,217,443 3,966,773 86
45 17,592,186,044,353 2,005,519 8,771,887 88
46 35,184,372,088,787 3,769,453 9,334,079 90
47 70,368,744,177,439 8,388,593 8,388,623 92
48 140,737,488,355,141 11,150,957 12,621,113 94
49 281,474,976,708,763 15,847,327 17,761,669 96
50 562,949,953,421,083 16,619,039 33,873,797 98
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