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Background and Hypothesis:  Endophenotypes can help 
to bridge the gap between psychosis and its genetic predis-
positions, but their underlying mechanisms remain largely 
unknown. This study aims to identify biological mechan-
isms that are relevant to the endophenotypes for psychosis, 
by partitioning polygenic risk scores into specific gene sets 
and testing their associations with endophenotypes.  Study 
Design:  We computed polygenic risk scores for schizo-
phrenia and bipolar disorder restricted to brain-related 
gene sets retrieved from public databases and previous pub-
lications. Three hundred and seventy-eight gene-set-specific 
polygenic risk scores were generated for 4506 participants. 
Seven endophenotypes were also measured in the sample. 
Linear mixed-effects models were fitted to test associations 
between each endophenotype and each gene-set-specific pol-
ygenic risk score.  Study Results:  After correction for mul-
tiple testing, we found that a reduced P300 amplitude was 
associated with a higher schizophrenia polygenic risk score 
of the forebrain regionalization gene set (mean difference 
per SD increase in the polygenic risk score: −1.15 µV; 95% 
CI: −1.70 to −0.59 µV; P = 6 × 10−5). The schizophrenia 
polygenic risk score of forebrain regionalization also ex-
plained more variance of the P300 amplitude (R2 = 0.032) 
than other polygenic risk scores, including the genome-
wide polygenic risk scores.  Conclusions:  Our finding on 
reduced P300 amplitudes suggests that certain genetic vari-
ants alter early brain development thereby increasing schiz-
ophrenia risk years later. Gene-set-specific polygenic risk 
scores are a useful tool to elucidate biological mechanisms 
of psychosis and endophenotypes, offering leads for experi-
mental validation in cellular and animal models. 

Key words: schizophrenia/bipolar disorder/EEG/P300/ne
urodevelopment

Introduction

Psychotic disorders are highly heritable, with a herita-
bility estimate of approximately 80% for schizophrenia 
and bipolar disorder.1,2 Breakthroughs have been made 
by genome-wide association studies (GWAS) in under-
standing the genetic basis of psychosis, with 270 loci as-
sociated with schizophrenia and 64 loci associated with 
bipolar disorder identified so far.3,4 Although these find-
ings are promising, the functional effects of these vari-
ants in the pathophysiology of psychosis are still in the 
process of being understood.

Partitioning the effects of risk loci into distinct brain 
functional domains can provide important biological in-
sights into the mechanisms of psychosis. One such ap-
proach uses endophenotypes, ie, heritable phenotypes 
associated with a, putatively more complex, illness.5 As 
such, a biomarker is considered an endophenotype if  it 
is heritable and consistently shown to be altered in both 
patients and their unaffected relatives.6 Previous studies 
have established several endophenotypes for psychosis, 

such as verbal memory,7,8 executive functions,9 P300 amp-
litudes/latencies,10–13 and lateral ventricular volumes.14

Polygenic risk scores, the sum of the number of risk 
alleles weighted by their effect sizes, provide a method 
to test the genetic overlap between psychosis and its 
endophenotypes. However, previous studies testing as-
sociations between the polygenic risk scores for schizo-
phrenia/bipolar disorder and psychosis endophenotypes 
yielded mixed results.15–21 This could be because genome-
wide polygenic risk scores combine many risk alleles 
across the genome, but only a subset of them are associ-
ated with an endophenotype related to a specific biolog-
ical process.21

Gene-set-specific polygenic risk scores can be a useful 
tool to address the issue. They are the effect size-weighted 
sum of risk alleles restricted to genes within a partic-
ular gene set (often associated with a biological process), 
thus only containing a subset of risk alleles that might 
be relevant to a specific endophenotype. For instance, in 
a sample of 333 participants, Rampino et al found that 
both attentional performance and prefrontal cortex ac-
tivity during an attention control task were associated 
with the schizophrenia polygenic risk score of glutamate 
signaling.22 Merikanto et al calculated a schizophrenia 
polygenic risk score for the CACNA1l region and found 
that it was significantly associated with sleep spindle 
amplitude, duration, and intensity in a sample of 157 
adolescents.23 By contrast, 2 studies with 167 to 2725 
participants did not find an association between gene-
set-specific schizophrenia polygenic risk scores related to 
neurotransmission/neurodevelopment and brain volumes 
measured by magnetic resonance imaging (MRI).24,25

In summary, the utility of gene-set-specific polygenic 
risk scores needs further testing in a broader range of psy-
chosis endophenotypes. More gene sets should be studied, 
as previous studies only focused on a small number of 
hypothesis-driven gene sets. Therefore, by testing the as-
sociation between 7 known psychosis endophenotypes 
and gene-set-specific polygenic risk scores for schizo-
phrenia and bipolar disorder, the current study aims to 
identify the biological processes underlying the genetic 
risk for psychosis.

Methods

Participants and Clinical Assessments

Overall, 6935 participants were recruited by the Psychosis 
Endophenotypes International Consortium (PEIC) at 8 
research centers in Australia, Germany, the Netherlands 
(as part of the Genetic Risk and Outcome of Psychosis 
[GROUP] Study), Spain, and the United Kingdom. The 
study was approved by the local ethics committee at each 
research center. All participants provided written in-
formed consent before assessments. There were 3 clinical 
groups recruited in the sample: Patients with psychosis, 
their unaffected first-degree relatives, and controls. 
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Diagnoses were made based on the Diagnostic and 
Statistical Manual of Mental Disorders, fourth edition 
(DSM-IV)26 and structured clinical interviews.27–32 Details 
of diagnostic measures and inclusion and exclusion cri-
teria can be found in supplementary materials.

Cognitive Measures

Participants were assessed by the block design and digit 
span tasks in the Wechsler Adult Intelligence Scale, re-
vised version (WAIS-R)33 or third edition (WAIS-III).34 
The block design task measured participants’ visuospa-
tial ability and the digit span task measured participants’ 
short-term and working memory. As different research 
centers adopted slightly different versions of the block 
design and digit span tasks, we used percentage (raw 
score/max score) to represent participants’ performance 
in the 2 tasks. Participants were also assessed by the Rey 
Auditory Verbal Learning Test,35,36 which included the 
immediate and delayed recall tests (measuring short-term 
and long-term verbal memory).

EEG and MRI Data Collection and Processing

The P300 was measured using the auditory oddball 
task at 3 research centers, during which participants lis-
tened to a series of  high-pitched target/deviant tones 
(10%–20%) randomly embedded in many low-pitched 
non-target/standard tones (80%–90%).11,37–40 EEG data 
were collected with vertical electrooculography (EOG) 
from 17 to 20 scalp sites based on the International 10/20 
system,41 referenced to mastoids or earlobes. EEG was 
corrected for eye blink artifacts using regression-based 
weighting coefficients,42 as well as additional visual in-
spection. The P300 amplitude and latency were meas-
ured at the peak between 250 and 600 ms following the 
target tones at the Pz electrode. Lateral ventricular vol-
umes were measured at 5 research centers by MRI, which 
included the body and the frontal, occipital, and tem-
poral horns.43–58

Genotyping, Quality Control, and Imputation

Blood DNA samples of 6935 participants were col-
lected at all research centers and sent to the Wellcome 
Trust Sanger Institute (Cambridge, UK) for initial 
processing and quality control. Subsequently, samples 
were sent to Affymetrix Services Laboratory (www.
affymetrix.com) for genotyping. Genotypes were called 
using the CHIAMO algorithm modified for use with 
the Affymetrix 6.0 genotyping array.59,60 They under-
went standard quality control at UCL using software in-
cluding PEDSTATS,61 Evoker,62 LDAK,63 and PLINK.64 
Quality-controlled genotypes were uploaded to the 
Sanger Imputation Server (https://imputation.sanger.
ac.uk) for imputation.65 Pre-phasing and imputation 

were conducted according to the EAGLE2/PWBT pipe-
line based on the Haplotype Reference Consortium panel 
(r1.1).66,67 The imputed genotypes were converted to best-
guess format using a hard-call threshold of 0.8 and SNPs 
with an INFO score <0.8 were excluded. A total of 6 215 
801 SNPs and 4835 participants remained after quality 
control. Details of genotyping, quality control, and im-
putation can be found in supplementary materials and 
previous publications.17,68–70

Relationship Inference and Principal Component 
Analysis

To account for familial relatedness and population 
structure in the sample, we used the GENESIS R/
Bioconductor package to generate a kinship matrix and 
conduct principal component (PC) analysis.71,72 Based on 
the genotyped data that passed quality control, an unad-
justed kinship matrix was first generated using KING-
robust 2.2.5.73 The genotyped data were further pruned 
using the SNPRelate package in R 4.0.274 and analyzed 
with the unadjusted kinship matrix by the PC-AiR func-
tion to estimate the ancestrally representative PCs.71 We 
then estimated a new kinship matrix adjusted for the 
PCs by the PC-Relate function, which allows for more 
accurate estimation of  familial relatedness independent 
of  ancestral background.75 Details of  relationship in-
ference and PC analysis can be found in supplementary 
materials.

Selection of Gene Sets

We retrieved a group of  gene sets related to the central 
nervous system from previous publications,76–78 most of 
which were derived from the Mouse Genome Informatics 
Mammalian Phenotype database.79 We downloaded 
other lists of  curated gene sets from the following public 
access databases: Reactome,80 Kyoto Encyclopedia 
of  Genes and Genomes,81 Pathway Commons,82 and 
Panther.83 Gene sets from the “Cellular Component” 
and “Biological Process” categories were downloaded 
from Gene Ontology.84 To reduce the burden of  mul-
tiple testing correction, for gene sets downloaded from 
public databases we retained only those with at least 
one of  the following key terms: Brain, cerebral, nerve, 
nervous, neuron, neuronal, neural, glia, microglia, 
astrocyte, oligodendrocyte, axon, axonal, dendrite, 
dendritic, synapse, synaptic, neurotransmitter, or neu-
rotransmission. Gene sets with terms indicating the 
direction of  regulation (ie, positive or negative) were 
removed, as gene sets were only used to subset SNPs 
and the direction of  regulation of  the gene sets would 
not be relevant to polygenic risk scores. Based on these 
criteria, we included a total of  378 gene sets in our final 
analysis.
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Polygenic Risk Scoring

We used PRSice v2.3.385,86 to calculate the genome-wide 
polygenic risk scores for schizophrenia and bipolar dis-
order for each individual in the PEIC sample. GWAS 
summary statistics for schizophrenia and bipolar dis-
order were downloaded from the Psychiatric Genomics 
Consortium (PGC3).3,4 As the PEIC sample only in-
cluded participants of European ancestry and was part 
of the PGC3 sample, the GWAS summary statistics we 
used were generated based on the European partici-
pants of the PGC3 that excluded the PEIC sample. We 
excluded SNPs with an INFO score <0.8 or a minor al-
lele frequency <0.01 (in cases or controls) in the GWAS 
summary statistics, and performed clumping with an r2 
threshold = 0.1 in a 500 kilobase window. We applied a 
P-value threshold of 1 to include all SNPs that passed 
the quality control to calculate the genome-wide schiz-
ophrenia and bipolar disorder polygenic risk scores. We 
also applied a P-value threshold of .05 for the genome-
wide schizophrenia polygenic risk score and 0.1 for the 
genome-wide bipolar disorder polygenic risk score, as 
those P-value thresholds generated the polygenic risk 
scores that explained the most variance in disease risk in 
the previous publications by the PGC3.3,4

We then used the PRSet function in PRSice v2.3.3 to 
calculate the gene-set-specific polygenic risk scores.85,87 
Compared to other methods,88,89 PRSet is computationally 
efficient and performs clumping for each gene set to keep 
all independent signals.87 We calculated the scores of each 
gene set selected above for schizophrenia and bipolar dis-
order separately. The method used here was similar to that 
for the genome-wide polygenic risk scores, but restricted 
to SNPs that fall within a 10-kilobase window around 
each gene included in a gene set. SNPs were clumped in-
dependently for each gene set using an r2 threshold = 0.1 
in a 2-megabase window. We applied a P-value threshold 
of 1 for all gene-set-specific polygenic risk scores without 
excluding any SNPs after clumping, to maximize the 
number of SNPs included in each gene set.

In total, we generated 380 (378 gene-set specific, 2 
genome-wide) polygenic risk scores for schizophrenia 
and 378 (376 gene-set specific, 2 genome-wide) polygenic 
risk scores for bipolar disorder. Two gene sets were ex-
cluded from the bipolar disorder polygenic risk scores as 
no SNPs in the gene sets were found in the GWAS sum-
mary statistics and the PEIC sample.

Statistical Analysis

Our primary analysis tested associations between the 7 
endophenotypes and the polygenic risk scores. We stand-
ardized the polygenic risk scores based on the means and 
SDs of the control group. For each endophenotype, we 
fitted a linear mixed-effects regression model with each 
polygenic risk score as a fixed effect. For covariates, we 
included age, sex, clinical group, research center, and the 

first 4 ancestry PCs as fixed effects, and the kinship ma-
trix as a random effect. For significant associations, we 
also checked if  the associations were consistent across 3 
clinical groups and if  they were driven by specific genes 
in the gene set.

In our secondary analysis, we tested associations be-
tween the polygenic risk scores and participants’ case–
control status, including only patients and controls. 
We fitted a fixed-effect logistic regression model with 
case–control status as a binary outcome and each of  the 
gene-set-specific polygenic risk scores as a fixed effect. 
We included age, sex, research center, and the first 4 an-
cestry PCs in the model as covariates. The kinship ma-
trix was not included as participants in the patient and 
control groups were generally unrelated. Participants 
recruited in Munich or Pamplona were excluded from 
the analysis as the 2 centers recruited only patients or 
only controls.

We accounted for multiple testing using Bonferroni 
correction, generating a new significance threshold based 
on the number of polygenic risk scores tested for each 
endophenotype (0.05/(380 + 378) = 7 × 10−5), and addi-
tionally applied a more stringent threshold accounting 
for the number of endophenotypes (0.05/(380 + 378)/7 
= 9 × 10−6). We used Nakagawa’s R2 to indicate the vari-
ance of each endophenotype explained by each polygenic 
risk score,90 and Nagelkerke’s pseudo R2 for case–con-
trol status to indicate the improvement of the model 
by adding the polygenic risk score compared to the null 
model without it.91 We initially included an interaction 
term between polygenic risk score and clinical group in 
the model, but eventually dropped it as no significant 
interactions were detected after correction for multiple 
testing.

For all analyses mentioned above, we excluded parti-
cipants who did not pass genetic quality control or with 
missing data on any of the covariates included in the 
model. As different research centers collected different 
endophenotypes, the total number of participants ana-
lyzed in the models also varied across endophenotypes. 
All statistical analyses were conducted using R 4.0.2.72

Results

Overview

Polygenic risk scores were calculated for 4835 partici-
pants that passed genetic quality control. After excluding 
participants with missing data on relevant covariates, 
there were 4506 participants left for further analysis. Of 
the 4506 participants, there were 1182 (26%) patients, 
854 (19%) unaffected relatives, and 2470 (55%) controls, 
and the mean age of  the sample was 42.4 (SD = 15.8) 
years, with 2186 (49%) females and 2320 (51%) males. 
Among the patients, there were 906 (77%) diagnosed 
with schizophrenia, 107 (9%) with bipolar disorder, and 
169 (14%) with other psychotic disorders. table 1 shows 
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detailed information on sample characteristics by clin-
ical group.

The summary statistics of the 7 endophenotype meas-
ures by clinical group are shown in table 2, and the sample 
sizes vary across different endophenotypes (n = 510 to 
3088). In general, patients and relatives showed deficits 
in all endophenotypes compared to controls, which has 
been reported in our previous publications using the same 
sample.17,68,69

Associations Between Endophenotypes and Polygenic 
Risk Scores

Based on the significance threshold of  7 × 10−5 after mul-
tiple testing corrections, we found a significant negative 

association between the P300 amplitude and the schiz-
ophrenia polygenic risk score of  forebrain regionaliza-
tion in a sample of  510 participants (211 patients, 160 
relatives, and 139 controls; mean difference per SD 
increase in the polygenic risk score: −1.15 µV; 95% CI: 
−1.70 to −0.59 µV; P = 6 × 10−5; figure 1A). The schiz-
ophrenia polygenic risk score of  forebrain regionaliza-
tion also explained more variance of  the P300 amplitude 
(R2 = 0.032) than any other schizophrenia polygenic risk 
scores, including the genome-wide schizophrenia poly-
genic risk scores with a P-value threshold of  0.05 (R2 = 
0.015) and 1 (R2 = 0.019) (figure 1B).

As validation, we also checked if  the association 
between the P300 amplitude and the schizophrenia 

Table 1. Sample Characteristics by Clinical Group 

Variable Patient (n = 1182) Relative (n = 854) Control (n = 2470) Total (n = 4506)

Mean (SD) age (years) 33.5 (10.4) 45.7 (15.9) 45.5 (16.2) 42.4 (15.8)
Sex
  Female 388 (33%) 510 (60%) 1288 (52%) 2186 (49%)
  Male 794 (67%) 344 (40%) 1182 (48%) 2320 (51%)
Diagnosis
  Schizophrenia 906 (77%) 0 (0%) 0 (0%) 906 (20%)
  Bipolar disorder 107 (9%) 0 (0%) 0 (0%) 107 (2%)
  Other psychotic disorder 169 (14%) 0 (0%) 0 (0%) 169 (4%)
  Depressive disorder 0 (0%) 156 (18%) 158 (6%) 314 (7%)
  Anxiety disorder 0 (0%) 27 (3%) 12 (1%) 39 (1%)
  Substance misuse 0 (0%) 4 (1%) 11 (0%) 15 (0%)
  Anxiety and depressive disorder 0 (0%) 9 (1%) 3 (0%) 12 (0%)
  Personality disorder 0 (0%) 1 (0%) 0 (0%) 1 (0%)
  No Psychiatric disorders 0 (0%) 657 (77%) 2,286 (93%) 2,943 (65%)
Research center
  Edinburgh 31 (3%) 0 (0%) 17 (1%) 48 (1%)
  Heidelberg 24 (2%) 9 (1%) 22 (1%) 55 (1%)
  London 237 (20%) 197 (23%) 324 (13%) 758 (17%)
  Munich 0 (0%) 0 (0%) 962 (39%) 962 (21%)
  The Netherlands 370 (31%) 505 (59%) 974 (39%) 1,849 (41%)
  Pamplona 44 (4%) 0 (0%) 0 (0%) 44 (1%)
  Perth 309 (26%) 143 (17%) 163 (7%) 615 (14%)
  Santander 167 (14%) 0 (0%) 8 (0%) 175 (4%)

Note. The Netherlands included 4 study sites (Amsterdam, Groningen, Maastricht, and Utrecht) in the GROUP Study, which employed 
similar recruitment and assessment procedures.

Table 2. Summary Statistics of Endophenotype Measures by Clinical Group

Endophenotype

Patient Relative Control Total

n mean (SD) n mean (SD) n mean (SD) n mean (SD)

Block design (%) 488 54.0 (28.0) 592 51.5 (28.0) 2008 60.0 (21.4) 3088 57.4 (23.8)
Digit span (%) 263 47.5 (14.2) 58 41.4 (13.4) 1116 51.5 (14.6) 1437 50.4 (14.7)
Lateral ventricular volume (cm3) 322 17.1 (10.3) 174 18.2 (11.5) 279 15.5 (8.8) 775 17.1 (16.8)
P300 amplitude (μV) 211 10.8 (6.1) 160 12.1 (7.5) 139 13.4 (6.8) 510 11.9 (6.8)
P300 latency (ms) 212 382.3 (53.1) 164 386.5 (55.5) 139 358.2 (38.0) 515 377.2 (51.6)
RAVLT immediate recall score 633 21.9 (6.3) 621 25.2 (6.3) 964 26.0 (6.1) 2218 24.6 (6.4)
RAVLT delayed recall score 629 6.7 (3.1) 617 8.5 (2.9) 950 8.7 (2.8) 2196 8.1 (3.1)

Note. Participants’ performance in the block design and digit span tasks was measured by percentage (raw score/max score). RAVLT, Rey 
Auditory Verbal Learning Test.
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polygenic risk score of forebrain regionalization was con-
sistent across 3 clinical groups. The direction of the asso-
ciation was consistent in all groups, which also reached 
the nominal significance level (P < .05) in both patients 
and controls (supplementary figure S5). Notably, EMX1, 
one of the genes within the forebrain regionalization gene 
set, contained a locus that reached genome-wide signifi-
cance in the latest GWAS on schizophrenia.4 Indeed, an 
additional analysis showed that higher partitioned schiz-
ophrenia polygenic risk scores restricted to the EMX1 
region were associated with reduced P300 amplitudes at 
the nominal significance level (mean difference per SD 

increase in polygenic risk score: −0.66 µV, 95% CI: −1.27 
to −0.05, P = .033) (supplementary materials).

No significant associations were found between other 
endophenotypes and schizophrenia or bipolar disorder 
polygenic risk scores after correction for multiple testing 
(supplementary figure S1 to S4). The −log10(P-value) for 
those associations was not or very weakly correlated with 
the number of SNPs included in the polygenic risk scores, 
indicating that our results were not confounded by the 
number of SNPs in each score (supplementary mater-
ials). No associations passed the more stringent signifi-
cance threshold of 9 × 10−6.

Fig. 1. Associations between P300 amplitude and schizophrenia polygenic risk scores (A) and variance of P300 amplitude explained 
by schizophrenia polygenic risk scores (B). Gene-set-specific polygenic risk scores are grouped by the search terms they contain. CNS-
related polygenic risk scores were generated based on custom annotated gene sets from previous publications.76–78 On the x-axis, gene 
sets from the same source were arranged in descending order of the number of SNPs included in each polygenic risk score. CNS, central 
nervous system; PRS, polygenic risk score; Pt, P-value threshold. 
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Associations Between Case–Control Status and 
Polygenic Risk Scores

For associations with case–control status in a sample of 
1138 cases and 1508 controls, 55 gene-set specific poly-
genic risk scores for schizophrenia and 18 gene-set spe-
cific polygenic risk scores for bipolar disorder passed 
the 7 × 10−5 threshold after multiple testing corrections. 
However, the genome-wide polygenic risk scores were 
generally more significantly associated than the gene-set-
specific polygenic risk scores (figure 2A and figure 2B). 
The genome-wide polygenic risk scores also had a much 
bigger pseudo R2 than any of the gene-set specific pol-
ygenic risk scores, as shown in figure 2C and figure 2D. 
In general, stronger associations with case–control status 
were found for polygenic risk scores that included more 
SNPs (supplementary materials).

Discussion

The current study used gene-set-specific polygenic risk 
scores as a tool to investigate the biological mechanisms 
underlying endophenotypes that convey psychosis risk. A 
significant association was found between the P300 am-
plitude and the schizophrenia gene-set-specific polygenic 
risk score of forebrain regionalization. The reduction in 
P300 amplitudes is a well-established endophenotype for 
psychosis,10–13 and may predict transition to psychosis in 
individuals at ultra-high risk.92,93 However, no compelling 

theories have been developed to explain the underlying 
neurobiology of P300 deficits in schizophrenia, and our 
study indicates that they may be related to alterations in 
early brain development.

Forebrain regionalization is a critical stage in early 
brain development, during which highly regionalized gene 
expression modulates the patterning of discrete regions.94 
This involves several processes such as cell migration and 
neuronal differentiation, facilitating the separation of the 
forebrain into the telencephalon (cerebrum) and the di-
encephalon (thalamus, hypothalamus, epithalamus, and 
subthalamus).95 In line with the finding on the P300 am-
plitude, a recent transcriptome-wide association study by 
our group suggests that early neurodevelopment may also 
influence mismatch negativity, another EEG measure as-
sociated with auditory change detection.70 Moreover, the 
role of forebrain development in schizophrenia is sup-
ported by a study using human induced pluripotent stem 
cells (hiPSCs).96 In this study, the authors found that genes 
differentially expressed in neural progenitor cells and 
neurons between patients with schizophrenia and controls 
were enriched in the forebrain development pathway.97 
Interestingly, they found that hiPSC-derived neurons from 
patients exhibited altered electrophysiological measures 
related to Na+ channel function.97 It is plausible that such 
changes at the neuronal level may also influence higher-
level neurophysiological measures such as the P300, al-
though more research is needed to draw this link.

Fig. 2. Associations between case–control status and schizophrenia (A) or bipolar disorder (B) polygenic risk scores. Pseudo R2 of 
case–control status explained by schizophrenia (C) or bipolar disorder (D) polygenic risk scores. Gene-set-specific polygenic risk scores 
are grouped by the search terms they contain. CNS-related polygenic risk scores were generated based on custom annotated gene sets 
from previous publications.76–78 On the x-axis, gene sets from the same source were arranged in descending order of the number of SNPs 
included in each polygenic risk score. CNS, central nervous system; PRS, polygenic risk score; Pt, P-value threshold.
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Our additional analysis revealed that the partitioned 
schizophrenia polygenic risk score restricted to EMX1 
was negatively associated with the P300 amplitude at 
the nominal P-value threshold. This gene contains a 
genome-wide significant locus identified by the latest 
schizophrenia GWAS4 and is involved in several critical 
biological processes during early brain development, such 
as neuron differentiation and neural stem cell prolifera-
tion.98,99 Thus, given the strong evidence for the involve-
ment of the EMX1 gene in schizophrenia and in P300 
amplitude deficits, further research should seek to char-
acterize its functions using cellular and animal models as 
well as other endophenotypes in humans.

We found no significant associations for other 
endophenotypes measured in the current study. This could 
be explained by the relatively high heritability of the P300 
amplitude (69%)37 compared to other endophenotypes, 
such as specific cognitive abilities (average heritability es-
timates of 56%).100 Moreover, the lack of significant asso-
ciations with bipolar disorder polygenic risk scores might 
reflect the small number of patients with bipolar disorder 
in our sample, which limited the statistical power. Finally, 
it is worth noting that our significant finding did not sur-
vive the additional more stringent correction. Therefore, 
caution needs to be taken when interpreting our results, 
and future replication studies are needed.

As expected, our secondary analysis revealed that com-
pared to gene-set specific polygenic risk scores, genome-
wide polygenic risk scores were more strongly associated 
with and explained more variance of case–control status. 
Nevertheless, investigating the associations between 
gene-set-specific polygenic risk scores and case–control 
status may still help to pinpoint the core gene sets that 
are most relevant to disease mechanisms. Although this 
is beyond the scope of the current study, a previous study 
found that the schizophrenia polygenic risk scores gen-
erated based on predefined core gene sets outperformed 
polygenic risk scores of randomly generated gene sets of 
similar sizes.101

The present study has its limitations. Although the 
PEIC has a relatively large sample size, our study might 
still be underpowered to detect certain associations. More 
associations between endophenotypes and gene sets may 
arise in future studies with increased power through 
meta- or mega-analyses of  multiple samples. Moreover, 
while data from multiple research centers increased the 
overall sample size, this might have also increased het-
erogeneity. Nevertheless, we have controlled for poten-
tial confounders by including multiple covariates in the 
regression models, and a strength of  this study is that 
all blood samples underwent the same genotyping and 
quality control process. Finally, it is worth noting that 
other factors, such as gene–gene/gene-environment inter-
actions and rare variants associated with psychosis may 
also influence endophenotypes. Although those were not 
tested in the current study, our previous study using the 

same dataset found that schizophrenia-related rare copy 
number variants were associated with verbal memory 
deficits.69 Certain environmental exposures, such as med-
ication, could also affect endophenotype performance.102 
Although medication use was not recorded in the PEIC, 
we believe our finding on the P300 is still valid, as the 
association was consistent in unaffected relatives and 
controls who were medication-free (supplementary 
materials).

To conclude, the current study offered evidence for 
the utility of endophenotypes and gene-set-specific pol-
ygenic risk scores to illuminate the biological mechan-
isms underlying psychosis. We found that a reduced P300 
amplitude was associated with a higher schizophrenia 
polygenic risk score of forebrain regionalization, sup-
porting the neurodevelopmental hypothesis of schizo-
phrenia.103,104 Future studies with larger samples and more 
gene sets will advance our understanding of biological 
processes underlying endophenotypes for psychosis. We 
also need more mechanistic studies, such as those using 
animal models and human-induced pluripotent stem cells 
from patients with psychosis, to further illuminate how 
neurodevelopmental impairments affect endophenotypes 
and increase psychosis risk.

Supplementary Material

Supplementary material is available at https://academic.
oup.com/schizophreniabulletin/.
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