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Non-contractual setting
Firms operating in non-contractual settings apply customer reactivation initiatives such as
email messages to stimulate customers who have become inactive temporarily or perma-
nently to resume their transaction activities. Thus, firms need to know which customers are
inactive, and when a customer becomes inactive. Existing approaches struggle to distin-
guish active from inactive customers and do not provide time-scale estimates of when to
send reactivation mails. To address these shortcomings, we develop an approach to target
and time the sending of reactivation mails. Building on control chart methods, we intro-
duce a gamma–gamma control chart, modelling the average customer interpurchase time
and the variation therein to determine activity boundaries. Crossing these boundaries sig-
nals a potential change in a customer’s purchasing activity, providing a signal to initiate
customer reactivation. A field experiment in the greetings and gifts industry, supported
by several additional analyses, illustrates the improved performance of our approach when
it comes to signaling customer activity against a wide range of competing models. The
improved performance of our method occurs particularly in settings where customers vary
strongly in purchase and inactivity patterns.
� 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Many organizations operating in non-contractual settings (e.g., retailing, catalogs, charity donations) proactively commu-
nicate with customers who reduced their transaction frequency temporarily or stopped their transactions entirely. Such
proactive communication, termed customer reactivation (e.g., Blömeke, Clement, & Bijmolt, 2010), is addressed frequently
in professional publications (Pokornyik, 2017; Stevens, 2017). However, academic guidance on customer reactivation is
limited.

Customer reactivation requires identifying which customers are active and inactive1. However, a customer’s true activity
state cannot be directly observed due to the non-contractual setting. Beyond potential inactivity, customer reactivation also
requires knowledge of when the customers changed their transaction levels. Given that customers can transact at any time with
the organization, are heterogeneous in their transaction frequencies, and do not transact at set time intervals, detecting such a
change in transaction patterns is not straightforward. In this paper, we address these questions with the aim of implementing
effective customer reactivation initiatives.
er these
om their
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The implementation of customer reactivation initiatives depends on 1) identifying inactive customers, 2) determining the
time they reduced their activities, and 3) initiating communication with the customer. Since e-mail is used in 90% of cus-
tomer reactivation initiatives (next to e.g., phone calls and physical mailings)2, we focus on communication through mail
in this paper. The identification of inactive customers in non-contractual settings has been studied extensively. Accordingly,
model-based approaches are common, giving rise to stochastic latent attrition models, such as the Pareto/NBD model
(Schmittlein, Morrison, & Columbo, 1987) and its variants (e.g., the BG/NBD model, see Fader, Hardie, & Lee, 2005a). However,
Wübben and Von Wangenheim (2008) find that such models perform poorly when predicting individual-level future transac-
tions, which is required for determining customer-level inactivity. The authors instead recommend the use of business rules,
such as the time-since-last-transaction (hiatus) heuristic, where a customer is assumed to have churned after � days/weeks/-
months without transacting.

Research is scarcer regarding the time at which customers become inactive, as well as the consequences of sending a
mailing in response. Studies have acknowledged the importance of intervention timing, as prolonged reduced activity
adversely affects recency and decreases future transaction likelihood (Bult & Wansbeek, 1995; Fader, Hardie, & Lee,
2005b; Neslin et al., 2013). Furthermore, the time between successive mailings affects the overall customer equity (Drèze
& Bonfrer, 2008). Finally, the literature suggests that guidance on intervention timing should provide an exact time (i.e.,
day/week/month) or calendar date rather than the activity probabilities produced by stochastic models, as managers make
decisions—including those on customer reactivation—using exact time scales (e.g., Korkmaz, Kuik, & Fok, 2013). Indeed, the
managerial question is when an action should be taken. For marketing scheduling purposes, this is more easily communi-
cated in terms of a calendar date (e.g., January 5) rather than a probability (e.g., 0.63). Given that mailing actions are imple-
mented at short notice, such estimates should be readily available as well. Latent attrition models do not provide exact time-
scale estimates, as they focus on detecting if defections occur rather than when they occur. The question then arises on how
to provide such time-scale estimates linked to the moment at which a customer becomes inactive and on whether sending a
mailing in response to this event can restore customers’ transaction frequencies. We develop an approach that generates
such time-scale estimates.

Our approach relies on techniques developed in the statistical quality control literature (Montgomery, 2009). This stream
of research is concerned with monitoring and controlling (industrial) processes in the face of process variability, making it
ideally suited to our goals. In particular, we focus on the so-called control charts (Shewhart, 1931), which are used to monitor
a process variable (e.g., the average concentration of tin in a chemical bath) and detect situations where the process does not
adhere to its requirements (Wieringa, 1997). We fuse this control-chart approach with existing models for purchasing in
non-contractual settings (e.g., Colombo & Jiang, 1999; Fader, Hardie, & Lee, 2005b) to develop a customer-monitoring system
that provides frequent updates on the (in)activity of customers at the time scale. The system provides a signal when a cus-
tomer’s transaction activity is deemed to be reduced given his/her regular transaction pattern, which is used as an indicator
to send a reactivation mail. Thus, we take advantage of the latent attrition models’ ability to detect defections while address-
ing their limitation of not providing information on when defection occurs.

We demonstrate the validity of our approach using empirical and simulation studies. A field test in the greetings and gifts
industry demonstrates the efficacy of our approach in a real-life setting. We find a 1.9-percentage-point increase in customer
activity compared with the current firm policy, as well as a 3.5-percentage-point increase compared with the control group
(no mailing received). Using the field test data, we subsequently use offline policy analysis (e.g., Hitsch & Misra, 2018) to
compare our approach with a range of competing models identified from the literature. We find that the control-chart
approach compares favorably to the competing methods in terms of determining customer activity, including recent causal
machine-learning methods (Cui et al., 2020; Wager & Athey, 2018). Finally, we investigate the performance of our approach
for different customer segments using a simulation approach3. We find that the improved performance of our approach rel-
ative to a set of benchmarks arises in situations characterized by heterogeneous purchase and/or inactivity processes, whereas
the benchmark models fare better in settings where purchase and inactivity times do not differ strongly between customers.
Furthermore, improved performance arises for longer (�52 weeks) calibration and prediction periods; performance is equiva-
lent to the benchmarks for shorter periods. Based on these findings, we provide managerial guidance to effectively implement
customer reactivation.

The remainder of this paper is organized as follows. In Section 2, we review the existing literature related to customer
reactivation. Section 3 introduces the control-chart method and outlines the development of our approach. We also intro-
duce a mixture version of our approach to account for time-varying transaction states. Section 4 introduces the data and
the empirical setting for our study, while Section 5 provides the results of our analyses. We conclude in Section 6 with a dis-
cussion of the implications of our work and provide directions for future research.

2. Prior studies related to the customer reactivation process

Customer reactivation aims to motivate customers who have reduced or ceased transacting to resume their transactions
by sending themmailing (Blömeke et al., 2010). The successful implementation of customer reactivation initiatives in a non-
2 https://www.targetmarketingmag.com/article/2016-customer-acquisition-retention-and-the-best-roi/.
3 We thank the two anonymous reviewers for suggesting the offline policy analysis and the simulation approach.
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contractual setting requires firms to 1) identify which customers have become inactive, 2) determine the specific time the
inactivity occurred, and 3) contact these customers with a reactivation mailing at that point in time. Our work is informed by
two marketing research streams: 1) research focusing on identifying which customers should be approached with a market-
ing incentive and 2) studies focusing on when to target customers (Ascarza et al., 2018). The main insights from these liter-
ature streams that inform our approach are discussed below. We combine insights from these research streams with
techniques from the statistical quality control literature (i.e., control charts) in Section 3 and show how the control charts
can help develop a method for customer reactivation.

2.1. Studies determining whom to target in non-contractual settings

The challenge of which customers to target at what time has been investigated across different studies (see Table 1). Two
main underlying literature streams emerge here, namely, 1) studies in the direct mailing domain and 2) studies in the cus-
tomer management domain. Determining which customers to target is an important challenge in the direct mailing domain
(Bult & Wansbeek, 1995). For example, studies have shown that consideration of customers’ mailing and transaction histo-
ries is important when determining which customers to approach with mailings (e.g., Gönül & Shi, 1998; Gönül, Kim & Shi,
2000; Gönül & Ter Hofstede, 2006; Simester, Sun, & Tsitsiklis, 2006), as they may influence the effectiveness of such actions
(Van Diepen, Donkers, & Franses, 2009). Our approach takes this information into account as well. The main aim of these
existing studies is to enhance overall profitability by maximizing the benefits of increased transaction value minus the cost
of sending mailings.

Most studies offer recommendations about mailing volume, such as the optimal number of mailings (e.g., Neslin et al.,
2013; Van Diepen, Donkers, & Franses, 2009), and ignore when to send these mailings. However, two exceptions exist.
Drèze and Bonfrer (2008) show at an aggregate level that the time between mailings affects the overall customer equity,
while (Gönül et al., 2000) use segment-specific timing estimates to determine when to send a mailing. Nevertheless, both
approaches do not inform managers faced with scheduling these mailings about when to send them (i.e., the calendar date)
to individual customers, which is our objective in this paper.

The customer management domain has more extensively studied the question of who (and when) to target customers.
Existing models, mainly of the latent attrition/buy-till-you-die type (BTYD, Fader, Hardie, & Lee, 2005a), provide the prob-
ability of making future transactions or P(Alive). P(Alive) is useful for customer base valuation (e.g., Fader, Hardie, & Lee,
2005) and can guide which customers to target, but these latent attrition models do not provide information on when to
target such customers. The fact that it is a probability instead of a deterministic number makes it difficult to translate into
a binary active/inactive decision required for determining when a customer should be targeted. Prior work thus suggests 1)
determining a cut-off value for P(Alive) to aid the translation to a binary decision (Reinartz & Kumar, 2000; Wübben & Von
Wangenheim, 2008) or 2) estimating a reactivation probability with an appropriate cut-off (Ma, Tan, & Shu, 2015).

However, Wübben and Von Wangenheim (2008) show that such cut-off approaches only capture aggregate behavior
accurately, making them less suited for our intended goal of identifying individual customers who changed their purchasing
activity level. Korkmaz et al. (2013) recognize this problem and extend several BTYD models to predict the next individual
purchase time.

2.2. Studies determining when to target in non-contractual settings

For reactivation purposes, it is not only important to determine which customers are less committed but also when they
change their transaction behavior (Neslin et al., 2013). While cut-off-based methods provide this information when a cus-
tomer’s probability is below the cut-off value, continuous model updates are required to produce up-to-date forecasts to
detect the moment at which the cut-off value is reached. The approach of Korkmaz et al. (2013) suffers from a similar lim-
itation. Furthermore, given that past literature has mainly focused on mailings with substantial production costs (physical
mail, catalogs, and phone calls), our focus on e-mail shifts the focus from whom to target to when to target as an important
criterion, as the production costs of approaching the wrong customer are negligible in monetary terms. Revenues generated
by reactivation campaigns are then determined by customer response, and firms would want to avoid over- or undersending
reactivation mailings in this scenario to avoid irritation or lost opportunities.

Alternative techniques for accurately determining customer inactivity have been explored, aimed at modeling the time
between transactions (interpurchase time or IPT). Allenby, Leone, and Jen (1999) pursue these alternatives in the direct mail-
ing domain, while Platzer and Reutterer (2016) and Reutterer, Platzer, and Schröder (2021) do so in the customer manage-
ment domain. The former study uses a generalized gamma model to model purchase timing but does not use this
information to guide targeting decisions. The two latter studies examine the concept of purchase timing regularity, showing
that including purchase timing using IPT provides additional information to improve the performance of the stochastic pur-
chase models. To this end, these papers introduce the Pareto-GGG and the MBG/CNBD-k models, respectively, but do not
consider the question of when customers should be targeted. Building on these former insights, we develop a reactivation
model that uses IPT as the underlying measure. The advantage of considering IPT (measured as days/weeks/months) is that
cut-off transformations need not be applied to our model outcomes, as the model produces estimates at the time scale rather
than probabilistic predictions (e.g., Allenby, Leone, & Jen, 1999). Expanding these prior studies, our approach provides
insights on whom to target and at what time.
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Table 1
Selected prior studies related to the customer reactivation process.

Focus on when to
target

Focus on whom to
target

Customer activity as
outcome

Profit as
outcome

Field test
used

Domain

Allenby, Leone, & Jen
(1999)

U Direct mail

Ascarza & Hardie (2013) U U Customer
management

Ascarza (2018) U U U Customer
management

Blömeke et al. (2010) U U U Direct mail
Bult & Wansbeek (1995) U U Direct mail
Drèze & Bonfrer (2008) U U Direct mail
Fader, Hardie, & Lee

(2005a)
U Customer

management
Gönül & Ter Hofstede

(2006)
U U Direct mail

Gönül et al. (2000) U U U U Direct mail
Gönül & Shi (1998) U U Direct mail
Korkmaz et al. (2013) U U U Customer

management
Lemmens & Gupta (2020) U U U Customer

management
Ma et al. (2015) U U Customer

management
Neslin et al. (2013) U U Direct mail
Platzer & Reutterer (2016) U Customer

management
Reinartz & Kumar (2000) U U Customer

management
Reutterer, Platzer, &

Schröder (2021)
U Customer

management
Schmittlein et al. (1987) U Customer

management
Seetharaman &

Chintagunta (2003)
U Customer

management
Simester et al. (2006) U U U Direct mail
Van Diepen et al. (2009) U U U Direct mail
Wübben & Von

Wangenheim (2008)
U U Customer

management
This study U U U U U Customer

management
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Time-scale predictions can also be generated without relying directly on IPT. Seetharaman and Chintagunta (2003) show
that the proportional hazards model (PHM), which accounts for heterogeneity, provides a good way to model transaction
event timing. However, they do not compare their models to those previously discussed but only to other PHMs, making
their relative performance unknown. Second, following Korkmaz et al. (2013), the Pareto/GGG and MBG/CNBD-k models
can be adapted for reactivation timing by predicting the next transaction time, but they have not been used for this purpose
thus far. Third, hidden Markov models (HMM, e.g., Ascarza & Hardie, 2013) can also provide time-scaled estimates. However,
to our knowledge, this has not been pursued previously in the customer management setting. We include all these models in
our comparison in Section 5.3 to identify their ability to provide accurate transaction timing in our setting.

We note that all the methods discussed thus far (including our own approach) form the basis of the intervention (here:
mailing) decision on the risk of a customer: What is the likelihood that a customer turns inactive/defects regardless of any
targeted firm intervention? However, recent studies (Ascarza, 2018; Lemmens & Gupta, 2020) argue that intervention deci-
sions should be based on lift: What is the difference in response due to an intervention? Lift estimates can be obtained by
combining field experimental data with machine learning approaches. Ascarza (2018) shows that targeting lift is more effec-
tive in reducing customer churn, while Lemmens and Gupta (2020) show that combining lift with a profit-based loss func-
tion can yield superior profits. While these prior studies investigate the impact of which customers to target (i.e., those with
the highest lift), they do not investigate whether the timing of the intervention matters. Nevertheless, we compare our
approach to the lift-based approaches in Section 5.3.

3. Developing a control chart method for customer reactivation

The prior section highlights the existing knowledge and challenges related to determining customer activity. In this sec-
tion, we introduce the control charts from the statistical quality control literature as a means to monitor customer behavior
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over time and argue that control charts can be useful tools for determining customer (in)activity. Subsequently, we discuss
the development of our control chart approach for customer reactivation.

3.1. Statistical quality control and control charts

Determining a suitable time at which individual customers should be approached with a reactivation mailing requires an
inactivity signal for each customer at the/any point in time when the reactivation decision is made, which can be daily,
weekly (as in our field test), biweekly, or monthly. Given the typically large number of customers in a customer base, this
process requires continuously monitoring a substantial number of units (i.e., customers). Monitoring numerous units is
the focus of the statistical quality control literature.

This stream of literature is concerned with monitoring industrial processes and intervening when disturbances are
detected to ensure their continuation (Montgomery, 2009). Statistical quality control approaches are used to monitor inven-
tory stocks (Ernst, Guerro, & Roshwalb, 1993), wafer stepper production (Does et al., 1999), and the tin-plating of surface-
mounted diodes (Wieringa, 1997). Marketing applications include the selection of marketing test panel members
(Marcuse, 1945), monitoring market shares and promotions (Crespy Stearns, & Krebhiel, 1995), and yearly monitoring of
aggregate customer satisfaction scores (Sharma, Niedrich, & Dobbins, 1999). Different from these prior marketing studies,
we monitor the transaction behavior of several individual customers near-continuously instead of monitoring the
aggregate-level variables at limited time points (e.g., monthly, yearly), resulting in individual-level predictions of future
transaction behavior.

In the statistical quality control literature, various methods have been developed to efficiently monitor several units
simultaneously. One of the earliest andmost prominent examples is the control chart (Shewhart, 1931). A control chart mon-
itors the performance of a process through a target variable, such as the average concentration of a chemical substance. By
measuring this target variable at different points in time and plotting the resulting time series, a chart is created. The chart
also includes predetermined bounds (control limits) within which the process is allowed to fluctuate. If the target variable
crosses one of these bounds, a signal is generated, and an intervention by the process owner can bring the process back
within its bounds. A fictitious example control chart is shown in Fig. 14. Situations wherein one of the bounds is crossed indi-
cate that the process is not performing according to normal operations; thus, it is said to be out of control. This excess variation is
due to what Shewhart (1931) calls special causes (e.g., the chemical concentration deviates strongly from the mean (target) con-
centration due to some external contamination).

However, some variability is allowed, given that each process suffers from normal variation that is inherent to the process
(common causes; Shewhart, 1931). The bounds of the control chart are determined such that special causes can be distin-
guished from common causes of variation. Action is only required if the presence of a special cause of variation is detected by
the control chart. More importantly, one should not interfere with the process as long as it is in control (i.e., moves within the
boundaries determined by the variation due to common causes). Doing so would only lead to additional variation and poten-
tially destabilize the process (‘‘tampering with the process”; Deming, 1982).

3.2. Using control charts for customer reactivation

Control charts can also be used to monitor the purchasing behavior of individual customers, providing a suitable solution
for our problem of deciding which customers to approach with a reactivation action. By design, control charts intend to mon-
itor a variable over time. Adapting this to the problem of determining the changes in a customer’s activity level, we track the
IPTs. A time series of IPT observations are formed by tracking this variable at the individual customer level across transaction
occasions.

Thus, we derive customer-specific trajectories of transaction behavior with associated bandwidths around them. Using
these bandwidths, we can convert the IPT from a time-scale measure to a binary active/inactive decision. This conversion
occurs at the point where the time since the customer’s last transaction exceeds the bandwidth of that customer’s normal
transaction behavior. That is, if one of the control chart limits is crossed, indicating an increased probability of a special cause
for that customer, we consider this a signal that firms can use to initiate an intervention. Earlier intervention is not advisable
in this case because a transaction could have been delayed due to common cause variation in transaction behavior.

This separation of signals is important for effective customer management. As Ascarza, Iyengar, and Schleicher (2016)
show, firms should not react to all changes in customer behavior. They find that recommending mobile phone price plans
to decrease customer churn can actually increase churn. In their application, the adverse effect of the recommendations
is caused by making customers who are unaware (not inactive in our setting) become aware of their unsuitable phone plans.
This is an example of ‘‘tampering with the process” (Deming, 1982), which may have negative consequences (e.g., customer
churn). The control chart approach addresses this situation by separating common and special causes of variation. Firms
should not interfere in a stable process and only target customers who change their normal behaviors. Interventions initiated
4 An important difference between this fictitious example and the control chart we develop is that our control chart boundaries are allowed to change over
time, which is not the case for the standard control chart used in the statistics quality control theory. Sections 3.3 and 3.4 discuss how this is achieved, while
Section 5.1 and Fig. 3 illustrate our control charts.
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Fig. 1. A fictitious control chart with fixed upper and lower control limits.
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before a plausible inactivity signal is present will not only target inactive customers but also make them either ineffective or
even cause adverse effects.

3.3. Developing a control-chart method for customer reactivation timing

Given our objective of developing a control-chart approach for reactivation purposes, we need to select a variable that
characterizes a customer’s transaction behavior. The control chart then monitors this variable to guide the timing of reacti-
vation actions (Montgomery, 2009). Based on our discussion in Section 2.1, we use IPT as a measure of transaction timing.

We develop our model by first considering the characteristics of the statistical process underlying our variable of interest
for the situation when the customer is active. Our model development is based on the following assumptions, adapted from
Fader, Hardie, and Lee (2005b):

� For a given transaction occasion, the time since the last transaction varies around the average customer-specific IPT.
� The average IPT varies across customers but not over time for a specific customer (given that we model the customer’s
normal purchasing behavior affected by common causes only).

The latter assumption implies that there is a true process mean to be estimated, with noisy variation around the mean.
We relax this assumption in Section 3.6, where we consider the impact of ‘‘hot” and ‘‘cold” transaction states. To accurately
model the time between transactions, the properties of the process distribution (i.e., IPT in our case) must be considered. In
Fig. W3a in the Web Appendix, we summarize this distribution based on the data described in detail in Section 4.1.2. The
distribution appears to be right-skewed, and the time between transactions is always non-negative. These characteristics
indicate that a normal distribution is not suitable to model IPT. Thus, we adopt the gamma distribution to model this process
(e.g., Platzer & Reutterer, 2016; Zhang et al., 2007). Another attractive feature of the gamma distribution is that it relaxes the
assumption of a Poisson-distributed transaction process (with exponential IPTs) to be non-Poisson (Platzer & Reutterer,
2016; Reutterer, Platzer & Schröder, 2021), which accounts for irregularity in transaction timing.

This assumption would have been sufficient when considering the transaction process of a single customer. However,
given that we are seeking to model the transaction processes of several customers, it seems unreasonable to assume a similar
distribution for each customer (see Assumption 2 above). We assume that heterogeneity in transaction processes exists
across the population (e.g. customers have different expected IPTs) and that this can be modeled with another gamma dis-
tribution. We thus follow Fader, Hardie, and Lee (2005b) and use the gamma–gamma model of Colombo and Jiang (1999).
One advantage of this is that we can obtain closed-form solutions for our key expressions later5.

To develop a control chart that can monitor the IPT process, we first consider the general form of such a chart. In this
study, we focus on the simplest form following Shewhart (1931). This control chart plots the individual observations along
with an upper control limit (Montgomery, 2009), which we can write as 6
5 We
in Table

6 Con
conside
CC xið Þ ¼ l xið Þ þ c � r xið Þ ð1Þ
validate the gamma–gamma assumption for our empirical data and find that this distribution shows a good fit to the distribution of the data presented
3. The results are provided in the Web Appendix W3.
trol charts also have a lower bound (see Fig. 1), defined as CC xið Þ ¼ l xið Þ � c � r xið Þ. However, as purchase time is naturally bounded at 0, we only
r charts with an upper control limit.
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In this equation, l and r can be replaced with suitable estimators of this quantity depending on the underlying process
distribution, while xi represents the variable monitored in the control chart of customer i (IPT in our case). The width of the
control chart c is often taken as 3 based on the assumption that successive observations of the process are identically and
normally distributed. Under this assumption, this condition corresponds to a false alarm probability (i.e., giving a signal
when no signal should be given) of 1 – 0.9973 = 0.0027, that is, false alarms are highly unlikely, and a signal from a control
chart should be a cause for concern (Shewhart, 1931). Given our earlier exposition on the non-normality of our underlying
distribution, we will replace each of these quantities with forms suitable to our desired application. Thus, we derive expres-
sions for l and r based on the gamma–gamma model to deal with non-normality and propose a procedure to determine c,
given this non-normal data structure.

3.4. Deriving l and r for the gamma–gamma model

We derive expressions for the mean and the standard deviation of a process that can be characterized by a gamma–
gammamodel. We use these expressions to determine the average IPT of a customer after xi transactions, as well as the vari-
ation therein, which is needed for calculating the control limits of the chart.

Following Fader and Hardie (2013), let ni denote the number of transactions of a customer i and let Ti1; Ti2; � � � ; Tini denote

the time between each transaction7. Define T
�
i ¼

Pni
j¼1

Tij
ni
as an estimate of the (unobserved) true average IPT of a customer i,

denoted as ni. We are interested in two quantities related to ni: its conditional mean denoted as E TijjT
�
i ¼ t

�
i;ni

� �
and its condi-

tional variance denoted as Var TijjT
�
i ¼ t

�
i;ni

� �
. These two quantities will serve as estimates for l and r. To arrive at these expres-

sions, we formalize the model of Colombo and Jiang (1999) as follows:

1. We assume that Tij � gamma p; mið Þ with shape parameter p and rate parameter mi. This implies E Tijjp; mi
� � ¼ ni ¼ p

mi
,

which gives �Ti � gamma pni; minið Þ.
2. We assume that mi � gamma q; cð Þ.

Under these conditions, Fader, Hardie, and Lee (2005b) show the following:
7 We
from th

8 Occ
custom
E Tijjp; q; c; t
�
i; ni

� �
¼

p cþ ni t
�
i

� �
pni þ q� 1

¼ q� 1
pni þ q� 1

� �
pc

q� 1
þ pni

pni þ q� 1

� �
t
�
i; ð2Þ
which provides our desired expression for l. Estimation of the parameters p, q, and c will be discussed subsequently. Note

that as ni increases, more weight is placed on the actual observed average IPT t
�
i while less weight is placed on the population

mean. Hence, we use the population mean as our expected IPT for customer i when we observe a few transactions from a

customer. The more transactions we observe, the more importance is given to the customer-specific average IPT t
�
i. Sec-

tion 5.1 illustrates how this feature leads to individual and adaptive boundaries for our control charts. We then derive a

closed-form expression for Var Tij
� ��T�i ¼ t

�
i;niÞ, the full derivation of which is provided in Web Appendix W1:
Var Tijjp; q; c; t
�
i; ni

� �
¼

p pþ pni þ q� 1ð Þ cþ ni t
�
i

� �2

pni þ q� 2ð Þ pni þ q� 1ð Þ2
: ð3Þ
The square root of this expression provides our estimate for r. To obtain maximum-likelihood estimates of the parame-

ters p, q, and c, the marginal distribution of t
�
i is required. Fader, Hardie, and Lee (2005b) derive that this marginal distribu-

tion is equal to
f T
�
i ¼ t

�
ijp; q; c; ni

� �
¼ C pni þ qð Þ

C pnið ÞC qð Þ
cq t

�
i

pni�1
npni
i

cþ t
�
ini

� �pniþq ð4Þ
Where C is the gamma function. The likelihood to optimize for M customers given their observed number of transactions

ni and average IPT t
�
i is thus given as follows8:
L p; q; cjni; t
�
i

� �
¼

YM
i¼1

f T
�
i ¼ t

�
ijp; q; c; ni

� �
ð5Þ
focus on repeat transactions here; hence, Tij denotes the time between the first and second purchases. Customers with only one purchase are excluded
e analysis, as it is not certain that they will make another purchase.
asionally updating the model parameters using a new sample of customers more representative of the current customer base may be required as new
ers come in and older customers leave the firm.
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Based on the parameter estimates obtained by maximizing Equation (5), we compute our quantities of interest in Equa-

tions (2) and (3) above, E Tijjp; q; c; t
�
i;ni

� �
and Var Tijjp; q; c; t

�
i;ni

� �
.

3.5. Estimating c for the gamma–gamma model

Having obtained estimates for l and r in Equation (1), we now need to obtain the width of the control chart boundaries c.
In general, this width can be set to a fixed number, such as 3 (e.g., Shewhart, 1931), but can also be selected based on a sam-
ple of observations known to be in-control, combined with a suitable false alarm rate (e.g., P(false alarm) = 0.0027;
Montgomery, 2009). As the number 3 is based on the normal distribution theory, and we are dealing with non-normal data
in our setting, an in-control sample will be used to determine the value of c. However, a new challenge arises, as the notion of
in-control is difficult to define in our case. Based on historical transaction data (e.g., Section 4.1.2), we do not know which
customers (or observations from these customers) are behaving as ‘‘normal” and which are not. Furthermore, customers vary
in transaction frequency, and we cannot reliably determine a false alarm rate due to the short time horizons for several cus-
tomers. Using only customers with long time horizons biases our estimates, as doing such would ignore a substantial portion
of customers.

We develop a simulation approach whereby we generate our own in-control observations based on the distribution of the
observed transaction behaviors of customers in the data and determine the value for c based on this simulated sample. For a
given set of simulated customers, a series of transaction occasions with IPTs that align with the IPTs observed in the histor-
ical data must be generated. To that end, the number of transactions can be generated according to the negative binomial
model (NBD), following the Pareto/NBD and BG/NBD models (Fader, Hardie, & Lee, 2005a; Schmittlein et al., 1987).9

We obtain the parameters of the NBD model by fitting it to the customer transaction data. Subsequently, this estimated
model is used to simulate new, long (10 years) transaction trajectories for 5,000 simulated customers with IPTs that match
the behavior of customers in the data. We calibrate the control charts on these simulated transaction trajectories and select c
using a grid search, such that most of these observations are within the bounds of the control chart (i.e., are in-control). We
follow the existing theory by requiring that c is chosen, such that 99.73% of the observations are within the bounds of the
control chart (Shewhart, 1931).

3.6. Model extension: Mixture gamma–gamma model

One assumption underlying our model is that the customer-specific ‘‘true” IPT is stable over time. However, research (e.g.,
Fader, Hardie, & Huang, 2004; Schweidel & Fader, 2009) indicates that customers may show evolving states of transaction or
even ‘‘hot” and ‘‘cold” transaction spells. To accommodate such behavior, we propose a mixture variant of the gamma–
gamma model that allows IPT to emerge from a mixture gamma distribution, which formalizes the idea of various IPT states
for a given customer10. We formulate this variant as follows:

1. We assume that Tij
PK

k¼1wkZijk with Zijk � gamma pk; mikð Þ and
PK

k¼1wk ¼ 1. This implies that

E Tijjpk; mik
� � ¼ ni ¼

PK
k¼1wk

pk
mik

2. We assume that mik � gamma qk; ckð Þ

11In this specification, each observed time may arise from one of the k states, allowing a more flexible IPT distribution. The
relevant control chart components become:
9 We
and sim
10 We
11 We
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22
64

3
75� l2: ð7Þ
The parameters for this model can be estimated using an expectation–maximization algorithm (Dempster, Laird, & Rubin,
1977) by augmenting Equation (5) with latent class membership variables zik. We include this model as an additional bench-
mark in our offline policy analysis (see Section 5.3) because the original data collection was run using the one-segment
model.
choose the NBD model here because it aligns with the distribution of our data. Fig. W3C in Web Appendix 3 shows the alignment between the actual
ulated data. The simulation distribution should be adapted accordingly when the original transaction data have a different transaction distribution.
thank an anonymous reviewer for suggesting this idea.
also estimate a model with fixed heterogeneity (i.e., qk ¼ q;v ik ¼ v i), but this model performs strictly worse in terms of AIC and BIC.
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4. Data and empirical setting

We use two empirical datasets and several simulated datasets for our analyses. The first empirical dataset is a historical
dataset, which we use to calibrate the control chart using real-life data. The second empirical dataset comes from a field test
wherein we assessed the performance of the control-chart approach compared with the current business rule applied by the
firm, as well as a control group.

4.1. Real-life setting and empirical datasets

4.1.1. Background of the focal firm
The European online retailer that provided the datasets for this study offers printed greeting card services to customers.

Optionally, the customers can decide to send their greeting card with an accompanying larger gift. Similar to many firms, the
company is concerned with stimulating customers with reduced purchasing activity levels. Currently, the retailer tries to
prevent customers from becoming inactive by sending a so-called reactivation mailing after a customer has not transacted
for two months (eight weeks).12 Such an e-mail primarily serves as a reminder to the customer and offers free postage on the
next order, aiming to motivate the customer to purchase from the retailer again.

4.1.2. Historical dataset
We analyze the historical behavior of the 16,790 customers involved in the field test before starting the test. Beyond the

transaction data (and variables derived thereof), limited demographic information is also available. Table 2 provides the
summary statistics for this dataset. This dataset is used to illustrate the estimation of the control charts in Section 5.1, pro-
viding insights in the salient characteristics of the control charts.

4.1.3. Field test dataset
We perform a randomized field test comparing our proposed approach (the model group) to the current status quo at the

retailer (the business rule group, sending an e-mail after two months) and a control condition in which no e-mails are sent.
Comparisons of the model and business rule groups to the control condition allow us to investigate the relative effect of reac-
tivation targeting customer activity. Fig. 2 presents a graphical overview of the field test and its main outcomes.

The field test is run for two months, from October 1 to November 30, 2016. We choose this period due to the absence of
any major holidays (e.g., Valentine’s Day, Christmas) or events (e.g., high school graduation ceremonies) that are strongly
associated with products from the focal firm and could interfere with the field test. Thus, these months reflect the normal
business months for the focal firm13.

The firm selects 16,790 customers from its database and assigns them randomly to three experimental groups (see Fig. 2).
To check whether the randomization is successful, we compare the three groups’ key variables in Table 3 and find no signif-
icant differences between the groups on average. In Web Appendix W2, we also provide insights into the distribution of
these variables across groups, where a few differences are significant for purchase volume, net sales, and frequency. Overall,
we conclude that the groups are comparable on most dimensions before the field test.

Customers selected for the field test are randomly drawn from the group of customers that 1) transacted at least once in
the previous year and 2) had at least two transactions during their term at the firm. The firm considers the first criterion a
good proxy to separate potentially active customers from inactive customers, while the second criterion ensures that only
customers who repurchase are included in the field test. We further restrict the eligible group to customers whose final
transaction occurred at most two months before the start of the field test and whose control-chart-predicted transaction
time fell within the two months of the field test (i.e., we focus on customers at risk of turning inactive). This way, when cus-
tomers are assigned to either the business rule or the model group, they would actually be approached during the field test.

Given the promising initial results of the analysis of the historical data (see Section 5.1), substantially more customers are
allocated to the model group, as the firm is convinced of the performance improvements of our approach and wants to limit
the usage of their (potentially poor) approach to reactivation. This is not uncommon in field experiments that are conducted
in cooperation with business partners. For example, Ascarza, Iyengar, and Schleicher (2016) assign almost 85% of their cus-
tomers to the treatment condition. All customers included in the field test are approached only once during the test. Cus-
tomers do not receive any other targeted marketing actions, including reactivation e-mails, from the firm six months
before or during the field test to avoid any confounding effects.

Our field test dataset thus consists of the following information: the assigned group of a customer; whether the customer
is active during the field test; when active, the net spending of that customer; and for the model and business rule groups, in
which week (1–9) the customer received a reactivation mail.
12 Discussions with firm managers reveal that two months is chosen because this duration seems ‘‘good” and is not based on actual transaction data. Hence, it
is independent of the number and timing of transactions, thereby not affecting the observed IPTs for individual customers.
13 We validate this assertion by applying time-series outlier detection using LOESS seasonal and trend decomposition on aggregate daily sales for the years
2012–2015. There are no outliers during October and November; however, the outliers are concentrated in February (Valentine’s) and December (Christmas).
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Table 2
Characteristics of the historical dataset.

Mean Standard deviation Minimum Maximum

Interpurchase time (weeks)a 3.57 4.73 0 100
Cumulative purchase volumea 3.74 3.29 0.13 100
Cumulative net salesa 9.73 6.43 0 100
Relationship length (years) 4.57 2.03 0.07 7.16
Recency (weeks) 6.51 1.18 0.29 8
Frequency 42.74 29.10 4 423
Gender (male) 0.09 0.83 0 1
Greetings-only customer 0.47 0.50 0 1
Greetings-and-gifts customer 0.53 0.50 0 1
Gifts-only customer 0.001 0.008 0 1

a This number has been transformed into an index for confidentiality reasons. The index was set to 0 at the 0-point and to 100 at the maximum value.
b Net sales are corrected for costs incurred by the firm (e.g., discounts).

Fig. 2. Overview of the groups in the field test.

Table 3
Pre-test descriptive statistics for the control, model, and business rule group based on historical data.

Control Model Business Rule Difference p-value

Cumulative purchase volume (index) 3.61 3.88 3.63 0.768
Cumulative net sales (index) 11.51 12.43 11.68 0.379
Relationship length (years) 4.51 4.61 4.55 0.375
Interpurchase time (weeks, index) 11.95 11.56 11.90 0.558
Recency 6.52 6.54 6.43 0.344
Frequency 41.23 42.22 41.50 0.673
N 4,445 8,112 4,233

Notes: Appendix W2 provides the distribution for each variable.
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4.2. Simulated datasets

We use a simulation study to shed light on the performance of our approach under different conditions. We generate 640
synthetic ‘‘worlds” consisting of different parameter combinations of the underlying data-generating process, giving rise to
1,600,000 unique simulated customers. Given the importance of variation in transaction timing, we adapt the simulation
design of Platzer and Reutterer (2016), who built on the design of Fader et al. (2005a). The details of our simulation approach
are provided in Web Appendix W4.

In our simulation, we estimate a series of models on simulated calibration data and subsequently use these models to
make holdout predictions in terms of customer activity. We discuss our benchmark models after the analysis of the field test
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data. Following Korkmaz et al. (2013), we generate individual-level timing predictions for these benchmark models and
compare them to the actual holdout activity time. For each benchmark model, we compute the relative lift in mean average
error (MAE) as MAE_lift = 1 – MAEcchart/MAEbench, where MAE is defined as MAE =

PN
i¼1 x�i � xi

�� �� with x�i the first predicted
holdout activity time and xi as the actual activity time. Higher lift values indicate better performance of the control chart
over the specific benchmark.

5. Results

5.1. Illustrating control-chart estimation and salient features

We use the historical dataset to calibrate the control charts to illustrate their estimation and usage. We estimate the con-
trol charts for the 8,112 customers in the model group of the field test. First, the parameters for the gamma–gamma control
chart are obtained by optimizing Equation (5). These estimates correspond to bp = 15.73, bq = 1.62, and bc = 0.57. Afterward, the
boundaries for the control chart are determined using the procedure outlined in Section 3.5, obtaining the estimate bc = 4.4.
These four parameters specify the control chart, which we can compute for every customer by plugging Equations (2) and (3)
into Equation (1).

The boundaries in our case are slightly wider compared with the case of the normal distribution (bc = 3; Shewhart, 1931).
Shewhart (1931) assumes that the sequence of observations is independent, which is not the case in our situation; thus, we
need wider control limits (Wieringa, 1999). Fig. W3C in Web Appendix 3 shows that the mass of the simulated data aligns
with the actual data, but as intended, the simulated data contain more customers with longer transaction horizons. This con-
dition aligns with the idea that some customers still need to settle into a regular transaction cycle, for example, due to being
in a trial phase (Schweidel & Fader, 2009).

Fig. 3 shows two control charts: one for a customer with below-average IPT (customer A) and one for a customer with
above-average IPT (customer B). The former illustrates what happens for a customer who has short transaction cycles, while
the latter illustrates what happens for a customer with long transaction cycles.

Both plots illustrate the salient characteristics of the control chart. First, the time since the last transaction increases each
week until a new transaction occurs and then drops to zero. Second, both plots show the estimated average time between
transactions (Equation (2) as a solid line that evolves when new information arrives. Third, and most importantly, the upper
bound for the control chart is visible. Two important characteristics of the boundaries are that a) they differ between cus-
tomers and b) they change over time for individual customers. Both characteristics emerge from Equations (2) and (3). The

differences between customers arise due to differing IPTs (t
�
i), while changes over time within customers arise due to updates

when new IPTs (Tij) are observed, providing additional information on a customer’s normal transaction pattern. Consistent
with Equation (2), the starting boundaries are wider due to reliance on customer-base level estimates and then adapt to
more customer-specific boundaries when transactions occur. This characteristic also allows the control chart to adapt to
time-related events that affect a customer’s normal transaction pattern (e.g., seasonality, special events) by shifting the
boundaries once a new transaction has occurred. This is, for example, apparent for customer A around week 25, where a per-
manent upward boundary shift potentially caused by a special event is observed. Furthermore, this customer exhibits some
seasonality in its transaction pattern, which we consider a common cause variation (see Section 2.3) and, thus, should not be
a reason for reactivation. The control-chart boundaries adapt to this pattern by including these observations inside the
boundaries.

The boundaries of the plots also differ. Although the time between transactions for customer B (lower panel) never
crosses the upper boundary of the control chart, the chart for customer A crosses the boundary several times. Thus, while
we would never attempt reactivation for customer B, we would do so for customer A, specifically at the point in time at
which the boundary is crossed. It is at that point that we are unsure whether the customer will transact again, and reacti-
vation may stimulate a transaction. Intuitively, this difference between both customers makes sense. Given the long period
between customer B’s transactions, we can still reasonably expect a transaction to occur in the future. Reactivation would
likely not be effective, given this customer’s normal transaction pattern.

By contrast, given the short transaction cycles of customer A, a longer time between transactions (e.g., around week 75)
can be indicative of the customer becoming inactive, and reactivation can be warranted.

5.2. Field test results

5.2.1. Model-free analysis
Our outcome variable of interest is a binary activity indicator: whether or not the customer transacted during the field

test. This is in line with our and the firm’s objective to reactivate customers who did not transact recently and, thus, can
be at risk of not transacting again in the future. The randomized nature of our field test enables direct activity comparisons
of customers across the three conditions to gain model-free insights into the field test results (see Fig. 2).

On average, model-based targeting is more effective than the business rule targeting method: 63.5% of the customers in
the model group transacted compared with 61.6% of the customers in the business rule group and 60.0% of the customers in
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Fig. 3. Control charts for two randomly selected customers A and B.
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the control group. A three-way chi-square test indicates significant differences between groups (v2 2ð Þ ¼ 15:77, p < 0:01). A
follow-up pairwise proportion test (corrected for multiple comparisons using Benjamini and Hochberg’s (1995) method)
confirms that the difference between the model and the business rule groups is significant (p ¼ 0:049), and the difference
between the model and control groups is significant (p < 0:01). No significant difference has been observed between the
business rule and the control groups (p ¼ 0:148). Therefore, on average, the model-based targeting approach outperforms
the business rule approach while also increasing the total number of active customers compared with not taking any action.
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5.2.2. Model-based analysis
While these results provide initial evidence of the effectiveness of our reactivation approach, they do not control for

potential confounding factors that influence activity, nor do they consider customer heterogeneity. Therefore, we also esti-
mate a formal model relating activity to a set of control factors. We control for variables typically used in the CRM literature,
namely, relationship length, IPT and RFM variables14, and gender (Blattberg, Kim, & Neslin, 2008). Furthermore, we explore
heterogeneity in the treatment effects by adding the interactions between the dummies indicating the groups and the control
factors to our model. We estimate the following linear probability model:
14 Onl
custom
given th
Activityi ¼ b0 þ bmTMi þ bbTBi þ bcXc
i þ ei; ð6Þ
where Activityi is a binary variable that indicates whether a customer transacted during the experiment, TMi and TBi are bin-
ary variables that indicate the model and business rule groups, respectively, and Xc

i is a vector containing the control vari-
ables (relationship length, IPT, RFM, and gender). The vector b contains the intercept b0, the average treatment effects for the
model and business rule groups bm and bb, and the main effects for the control variables bc. Finally, the error term ei is
assumed to follow a normal distribution. Continuous variables are mean-centered to represent the effects for the ‘‘average”
customer.

Table 4 presents the results for the linear probability models. The results in the first column confirm that, compared with
the control group, activity is significantly higher for the model group but not for the business rule group. Using the business
rule group as the baseline for our treatment variables (Column 3) reveals that the difference between the model and the
business rule groups is significant (b ¼ :024; p ¼ :007). The second column shows the robustness of these effects when con-
trolling for pre-test factors that potentially influence activity. This is reassuring and suggests that our result is not an artifact
of a failure of randomization. The difference between the model and business rule groups remains significant
(b ¼ :031; p ¼ :003, column 4).

Some pre-test factors also influence activity directly. We find that customers who have been with the firm longer and
those with a higher transaction frequency have a higher probability of transacting during the field test period. By contrast,
customers with a higher average IPT, greetings-only customers, customers who transacted longer ago, and male customers
have a lower probability of purchasing during the field test.

Overall, we confirm the findings of the previous section that, on average, the model-based targeting method significantly
increases the transaction probability of customers.

5.3. Comparison with existing approaches using offline policy analysis

How well does the control-chart approach outlined above fare in separating active customers from inactive customers
when we compare its performance with that of existing approaches identified in the literature? We investigate this by split-
ting our samples into training and holdout samples (e.g., Fader, Hardie, & Lee, 2005a) and investigating how well different
approaches predict the likelihood of activity (i.e., risk) in the holdout sample. However, this ignores the fact that our decision
to reactivate a customer is based on the presumption that sending a reactivation mailing generates a positive incremental
response (i.e., positive lift), that is, the customer resumes purchasing due to the intervention. Thus, as Ascarza (2018) and
Lemmens and Gupta (2020) argue, we should compare models on their ability to generate lift, which can be done using
(field) experiments.

Ideally, we would run experiments with all possible benchmarks as conditions, but such is often expensive and infeasible.
For example, our field test only includes two active conditions (the control chart and the business rule), which means we
cannot compare our approach directly with other existing methods, as discussed in Section 2.

To overcome this shortcoming, we follow the aforementioned studies and conduct an offline policy analysis (Li et al.,
2012; Hitsch and Misra, 2018; Yoganarasimhan et al., 2022). Offline policy analysis allows for the arbitrary testing of many
other targeting policies—in our case, based on different models from prior literature—using data from only one randomized
test that did not include these policies as conditions. The key insight of Hitsch and Misra (2018) is that only the usable obser-
vations from the randomized test are used (i.e., those observations for which the targeting policy of the randomized test is
the same as for the policy we want to test against). Invariably, this leads to a loss of observations. However, Hitsch and Misra
(2018) show that we can correct for this loss of observations by weighting the usable observations with an inverse proba-
bility weight (e.g., Horvitz & Thompson, 1952; Robins, Rotnitzky, & Zhao, 1994) based on the probability of being usable.

Formally, let Ti 2 0;1f g denote whether customer i is targeted during the field test or not. Based on the targeting status,
we derive the activity of customer i as follows:
p1 Tið Þ ¼ Yi 0ð Þ if Ti ¼ 0
Yi 1ð Þ if Ti ¼ 1

	

and the associated net profit for a margin m and targeting cost c as
y information on cumulative net sales is available. Hence, we use a categorical variable with the categories greetings-only, gifts-only, and mixed
ers for monetary value to avoid collinearity problems with relationship length and frequency. The two latter categories have higher value customers,
e price difference between greetings and gifts.
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Table 4
Linear probability model results for customer activity drivers.

(1) Activity (main
effect)

(2) Activity
(controls)

(3) Activity (main effect, business rule
baseline)

(4) Activity (controls business rule
baseline)

Intercept 0.600 (0.007) *** 0.613 (0.007) *** 0.615 (0.007) *** 0.635 (0.008) ***

Control group 0 (baseline) 0 (baseline) �0.015 (0.010) �0.012 (0.010)
Model group 0.035 (0.009) *** 0.042 (0.010) *** 0.024 (0.003) *** 0.031 (0.010) ***

Business rule group 0.016 (0.010) 0.011 (0.010) 0 (baseline) 0 (baseline)
Gender (male) �0.023 (0.013) �0.021 (0.013) *
Relationship

lengtha
0.005 (0.002) * 0.012 (0.002) ***

Interpurchase timea �0.003 (0.002) * �0.018 (0.002) ***

Greetings-only
customer

�0.029 (0.007) *** �0.029 (0.007) ***

Gifts-only customer �0.607 (0.482) * �0.643 (0.481)
Recencya �0.004 (0.000) *** �0.004 (0.000) ***

Frequencya 0.001 (0.000) *** 0.000 (0.000) **

N 16,790 16,790
Adjusted R2 0.0001 0.016

Notes: a All continuous variables are mean-centered, so the main effects refer to the average customer. Standard errors in parentheses. *** p < 0.01; **
p < 0.05; * p < 0.10.

15 http

N. Holtrop and J.E. Wieringa International Journal of Research in Marketing 40 (2023) 570–589
p2 Tið Þ ¼ mYi 0ð Þ if Ti ¼ 0
mYi 1ð Þ � c if Ti ¼ 1

	

We now introduce a targeting policy p : Xi ! 0;1f g, which indicates whether a customer with characteristics Xi should be
targeted, p Xið Þ ¼ 1, or not, p Xið Þ ¼ 0. We then observe the total activity (j ¼ 1) or net profit (j ¼ 2) for all N customers in the
field test as follows:
Î j pð Þ ¼
XN
i¼1

1� p Xið Þð Þ � pj 0ð Þ þ p Xið Þ � pj 1ð Þ� �
: ð8Þ
Hitsch and Misra (2018) show that for targeting policies p not being part of the field test, we can compute P using those
observations for which Ti ¼ p Xið Þ. For several observations, however, it will hold that Ti–p Xið Þ. We can correct Equation (5)
for this using inverse probability weights based on the probability that a customer is targeted in the field test 0 < e < 1:
Pj pð Þ ¼
XN
i¼1

1� Ti

1� e
1� p Xið Þð Þ � pj 0ð Þ þ Ti

e
p Xið Þ � pj 1ð Þ

� �
ð9Þ
Using Equation 9, we compute the activity (net profit) for a variety of targeting policies p, estimating e using a logistic
regression model and the customer covariates available. For the targeting cost c, we consider four values: 0.01, 0.33,
0.605 and 0.938. The first value equals the cost of a regular reminder e-mail without incentive15, the second value equals that
of a typical 10% discount given by the firm, the third value equals the cost of free postage, and the fourth value combines a 10%
discount with free postage. We select p based on models previously identified in Section 2:

1. Pareto/NBD (Schmittlein et al., 1987)
2. BG/NDB (Fader, Hardie, & Lee, 2005a)
3. Pareto/GGG (Platzer & Reutterer, 2016)
4. Pareto/NBD with reactivation (Ma, Tan, & Shu, 2015)
5. MBG/CNBD-k (Reutterer, Platzer, & Schröder, 2021)
6. HMM (Schwartz, Bradlow, & Fader, 2014)
7. Generalized gamma model (Allenby, Leone, & Jen, 1999)
8. Survival model, i.e., heterogeneous discrete-time proportional hazard model with expo-power baseline hazard

(Seetharaman & Chintagunta, 2003)
9. Uplift models (Guelman, Guillén, & Pérez-Marín, 2015; Ascarza, 2018)

10. Causal random forest (Wager & Athey, 2018)
11. Causal survival model (Cui et al., 2020)

Broadly, we can classify these models as models built directly upon the time dimension (Models 7, 8, and 11), models that
provide individual-level parameters or predictions (Models 3, 6, 9, and 11), and traditional stochastic models that estimate
aggregate-level parameters (Models 1, 2, 4, and 5). Our approach should foremost be compared with the first set of models,
s://www.emailvendorselection.com/cost-per-mille-cpm/.
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given their focus on predicting transaction time rather than transaction propensity. One exception is the HMM from the sec-
ond set, which can also directly estimate transaction time (but does not specifically build upon the time dimension).

The causal random forest (Model 10) and causal survival model (Model 11) are newer variants of the uplift model. We
include these models because while the uplift model (Model 9) maximizes the lift impact of targeting (i.e., whom to target),
1) it is sensitive to non-random treatment assignment (Zhang, Li, & Liu, 2021) and 2) does not provide an answer to the ques-
tion of when to target. Causal random forests address the first issue by including propensity scores, correcting for potential
non-random treatment assignments based on observables. The survival model also addresses the second issue by including a
time-to-target estimate (i.e., the remaining survival time) while still targeting based on the treatment effect.

A suitable targeting policy p requires transforming model predictions to a binary classification signaling whether a cus-
tomer would be targeted during the field test period or not. Models 6, 7, 8, and 11 provide direct estimates of the time at
which a customer should be targeted, and p ¼ 1 if this time falls within the field test period. For Models 1–5, we rely on
the method developed by Korkmaz et al. (2013) to derive individual-level transaction timing estimates, which we translate
to a policy p by setting p ¼ 1 if a transaction timing estimate is within the field test period but transaction did not occur by
the predicted time. For Model 9, we rely on uplift random forests (Guelman, Guillén, & Pérez-Marín, 2015) that provide
individual-level estimates for two probabilities: the probability of activity in case of 1) targeting and 2) not targeting. Sub-
tracting these probabilities yields the incremental effect (or lift). The corresponding targeting policy p is then directed at cus-
tomers for which lift is positive. The policy for Model 10 is derived similarly using models tuned with 10-fold cross-
validation for the hyperparameters. Finally, we add the control chart, mixture control chart, and business rule to our
comparison.

For our offline policy evaluation, we use data from the business rule and control groups only. For the latter group, we only
include customers who are inactive for eight weeks to ensure comparability between groups. We exclude the control chart
group as it was determined by our approach, and we want to avoid biasing our findings. We use a bootstrap approach with
100 training and holdout samples, estimating our models on 50% of customers and then using the remaining 50% to generate
the predictions based on Equation 9. Models 1, 2, 4, and 6 include the treatment group variables, while Models 7–11 include
the pre-test covariate information (including a treatment group indicator) to ensure the comparability of the models. We
report in Table 5 the results for the most directly comparable models (the time dimension models) and the best-
performing models from the other group. Appendix 5 provides the full results for all models.

Our control chart approach outperforms almost all other time-dimension models in terms of the number of active cus-
tomers (3,331 or 65.5%) and net profit (€10,957.99). However, two exceptions occur. First, while the control chart identifies
more active customers, it does not outperform the best-fitting mixture control chart (with k = 2 segments) in terms of profit.
Second, the control chart shows equivalent performance to the causal survival model on both activity (3,229 or 63.5%,
p = 0.868) and profit (€10,726.02; €9,198.95; p > 0.10), except for profits in the highest-cost scenarios (€329.19, p < 0.00,
(€382.73, p < 0.00).

With respect to other model types (particularly the latent attrition models Pareto-NBD and HMM), we find that the con-
trol chart performs better in terms of activity but only in terms of profit when costs are higher. Only one model strictly out-
performs the control chart model in terms of active customers, namely, the uplift model, with a significantly higher number
of active customers (4,576 or 90.1%). At the same time, while net profit is significantly higher in the lowest-cost scenario
(€15,826.73), this profit difference disappears in when reactivation costs increase, and the control chart even generates sig-
nificantly higher profits in the highest cost scenario (€9,828.10 versus €7,718.43.10, p < 0.00). This result confirms earlier
findings (Ascarza, 2018; Lemmens & Gupta, 2020) that targeting lift instead of risk (as the control-chart approach does)
can yield better performance in terms of activity (but not profit per se). Notably, however, the uplift approach only provides
insight on whom to target and, thus, does not directly meet the objective we set for our approach (determining when to tar-
get). If we compare the control-chart approach with the causal survival model, which is the time-dimension model closest to
the uplift model, the difference between both approaches disappears. Therefore, we can conclude that the control-chart
approach approximates lift-based targeting while also indicating when a customer should be targeted.

5.4. Conditions influencing control-chart performance

The previous sections highlight that the control chart approach is a competitive alternative to most approaches when it
comes to predicting the timing of reactivation interventions. However, under what conditions does our approach perform
better or worse? We shed light on this question using the results from the simulated datasets. For our simulation, we bench-
mark against one model out of each category in Table 5. We select causal survival, HMM, and Ma et al.’s (2015) Pareto-NBD
model. We do not include the uplift and causal random forests given the binary (not time-scale) nature of their predictions.

Figs. 4 and 5 summarize our findings. Similar to Reutterer, Platzer, and Schröder (2021), we report our results in terms of
CART models.

We explain the lift metric for each benchmark model in terms of the shape and rate simulation design parameters for the
regularity parameter k � Gamma t; cð Þ, the transaction rate k � Gamma r;að Þ, and the dropout rate l � Gamma s; bð Þ,
as well as the number of weeks in the training and test set, respectively. The Pareto-NBD model is discussed in Web Appen-
dix W6 for space reasons.
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Table 5
Best-performing benchmark models in offline policy analysis.

Holdout # active
customers
(sd)

Holdout %
activity (sd)

Holdout net
profit (sd)b

(c = 0.01)

Holdout net
profit (sd)b

(c = 0.33)

Holdout net
profit (sd)b

(c = 0.605)

Holdout net
profit (sd)b

(c = 0.938)

Models accounting for time dimension
Control chart 3331 (88.5) 0.655 (0.116) 10,957.99 (690.5) 10,859.19 (1404.6) 10,392.84 (1167.64) 9,828.10 (893.8)
Control chart

(mixture, k = 2)a
2995 (145.7)* 0.590 (0.285) 10,091.48 (493.8) 9,304.41 (394.4) 8,628.92 (309.6) 7,949.21 (285.8)

Two-month hiatus 2582 (37.2)** 0.508 (0.007) 8,812.38 (149.1)* 7,669.16 (148.3)* 6,686.70 (147.9)** 5,497 (147.8)**

Causal survival 3229 (149.5) 0.635 (0.029) 10,726.02 (545.5) 9,198.95 (465.5) 329.19 (242.5)** 382.73 (18.34)**

Survival model 2584 (55.9)** 0.509 (0.011) 8,809.51 (222.5)* 5,075.53 (144.1)** 4,356.15 (128.9)** 3,870.07 (177.9)**

Generalized Gamma 2472 (35.6)** 0.487 (0.007) 8,415.76 (152.8)* 7,156.57 (149.1)** 6,070.53 (146.5)** 5,414.56 (450.1)**

Individual level prediction models
Uplift Random Forest 4576 (319.2)** 0.901 (0.063) 15,826.73 (1047)* 13,593.18 (849.5)y 11,658.92 (698.9) 7,718.43 (314.2)*
HMM 2897 (41.64)* 0.570 (0.008) 9,955.87 (179.9)y 8,450.42 (175.7)y 7,119.45 (164.6)** 6,477.29 (673.0)**

Aggregate level prediction models
Pareto-NBD (Ma et al.) 2992 (229.6)** 0.589 (0.045) 10,935.10 (1018.1) 8,151.67 (763.5)** 7,892.89 (574.1)** 7,476.41 (468.7)*

Notes: The holdout active customers (activity percentage) column reports the mean number (percentage) of predicted active holdout customers across
bootstrap iterations under a specific policy. The holdout net profit column reports the associated net profit of these customers for three different cost
parameters: 0.01, 0.33 and 0.605. P-values computed from the bootstrap difference between the benchmark model and the control chart with respect to
either number of active customers or net profit.
y p < 0.10; * p < 0.05; ** p < 0.01.

a This was the best fitting mixture control chart based on AIC and BIC.
b Profit values are scaled by a constant to maintain confidentiality.

Fig. 4. Regression tree for lift versus the causal survival model.
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Benchmarking against the causal survival model. Fig. 4 summarizes our results for the causal survival model. The control
chart performs very similarly to the causal survival model for 45% of the cases (lift = 1), mainly characterized by short
(26 weeks) training and test periods. Performance improvements (lift > 1) arise only when the control chart has sufficient
(>26) weeks to calibrate. In these cases, performance improvements arise when the dropout rate shape is < 0.5 and the trans-
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Fig. 5. Regression tree for lift versus the HMM.
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action rate shape r > 0.5, as indicated by the terminal nodes on the right side of Fig. 4. The coefficient of variation for the
gamma distribution is 1/

ffiffiffiffiffiffiffiffiffiffiffiffiffi
shape

p
. Thus, higher shape parameters indicate more homogeneity in the distribution. The stron-

gest improvements thereby occur for more homogeneous transaction distributions and for more heterogeneous dropout dis-
tributions. As a result, relative to the causal survival model, the control chart can better deal with heterogeneous dropout,
which aligns with our findings in Section 5.1 regarding control chart adaptability. However, transaction distributions should
be more homogeneous, and there should be a sufficient number of weeks prior to when predictions are made to calibrate the
control chart. Otherwise, the performance between models is equivalent.

Benchmarking against the HMM. Fig. 5 summarizes our benchmark results for the HMM. Improvements in the control chart
relative to the HMM are driven primarily by lower values of the regularity distribution shape parameter (t < 3:3, right side of
Fig. 5). This result indicates a relatively better improvement for heterogeneous transaction regularity distributions. Although
the control chart shows similar performance to the HMM for shorter train and test time horizons (<39 weeks), the perfor-
mance of the control chart improves notably with longer time horizons. The reduced performance of the HMM in this setting
aligns with the findings of Netzer, Srinivasan, and Lattin (2008), who report that HMM predictions suffer in longer and
heterogeneous samples because the model struggles to leverage heterogeneity in holdout predictions.

Overall, the results of the simulations (including the Pareto/NBD reported in the Web Appendix) show that the control
chart can systematically outperform the benchmarks, mostly in situations where heterogeneity in the transaction and/or
dropout processes play a strong role. We attribute this to the model’s adaptability to individual customer’s transaction tra-
jectories. When transaction and/or dropout distributions are more homogeneous, benchmark models should be preferred
over the control chart. Finally, for shorter calibration and prediction periods, the control chart performs mostly equivalent
to the benchmarks; its performance improves with longer time horizons.

6. Discussion

6.1. Extending and corroborating extant research

Customer reactivation refers to the proactive communication with customers who reduced their transaction frequency
temporarily or stopped their transactions entirely (Blömeke et al., 2010). To aid marketing practitioners struggling with
implementing customer reactivation, we introduce a gamma-gamma control chart model for customer reactivation timing,
combining insights from customer management with those from statistical quality control theory. This model addresses the
shortcoming of existing models that have poor performance when predicting individual customer activity (Wübben & Von
Wangenheim, 2008).

A field experiment establishes the efficacy of our approach. Compared to a control group, customer activity increased by
3.5 percentage points. Relative to the current business rule, this increase was 1.9 percentage points. Hereby, we extend the
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finding of Drèze and Bonfrer (2008), who show the aggregate level impact of mailing timing, to the individual level. While
the average effect is positive, exploratory analyses in Web Appendix W7 uncover treatment effect heterogeneity (Luo, Lu, &
Li 2019; Wager & Athey, 2018), indicating that further activity gains can be obtained by targeting specific subgroups.

We also benchmark the performance of the control chart approach to existing models using offline policy evaluation
(Hitsch & Misra, 2018) and simulations. Offline policy analysis shows that existing stochastic models for customer base anal-
ysis (Table 5) struggle with predicting individual activity, and have lower profits. Although such models provide good tools
for customer base management, they are thus less suited for reactivation targeting. Our control-chart approach generates a
larger number of active customers compared to most benchmarks, although this does not always increase profits. These
observations confirm the finding of Drèze and Bonfrer (2008) that activity and revenue behave asymmetrically under
adapted timing. Finally, simulation results show that the control chart performs better than the benchmarks when transac-
tion and/or dropout distributions are more heterogeneous rather than homogeneous, and when time horizons are longer
(�52 weeks).

Our findings corroborate existing research in three ways. First, we confirm earlier studies showing that lift-based meth-
ods outperform risk-based methods (e.g., Ascarza, 2018; Lemmens & Gupta, 2020). Indeed, an uplift model generates more
active customers than the control chart (Table 5). Importantly however, 1) this only translates into profit increases for low
reactivation costs, and 2) it does not inform managers when to target a customer, which our control chart does, and better so
than its lift-based equivalent (causal survival model). Second, corroborating the findings of Ascarza, Iyengar, and Schleicher
(2016), in Web Appendix W8 we show that proactively targeting customers too early (rather than just targeting them)
reduces transaction probability. Targeting too late has no significant impact, in line with Drèze and Bonfrer (2008), who find
that long intercommunication times are less problematic than short ones. Third, corroborating Kumar, Bhagwat, and Zhang
(2015, p. 52), we find that reactivation incentives matter, as they generate different firm profit outcomes (Table 5).

6.2. Limitations and future research

Within the scope of this paper, some limitations remain. First, our field experiment did not investigate the impact of 1)
sending multiple reactivation mailings, and 2) sending reactivation mailings based on expected profit (e.g., Lemmens and
Gupta 2020), which future research could investigate. Second, sample selection for the field experiment was restricted to
ensure comparability between experimental groups (Section 5.2), limiting the interpretation of our results to a subgroup
of customers. Third, our model does not incorporate covariates, but Web Appendix W9 sketches how this could be done.
Fourth, customer transaction behavior could endogenously change due to our new targeting approach (Lewis, 2005),
although we deem this unlikely in our setting as customers would find it difficult to infer the reactivation targeting approach
from the other mailing signals sent by the firm (Meyer and Hutchinson 2016).
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