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Abstract  
Objective: This study developed a three-dimensional visualization method for presenting the geometric pattern of the 

relative dose generated by Monte Carlo (MC) simulation and validated the simulated dose values against the physical 

measurement. 

Methods: In fluoroscopy and interventional radiology examinations, relatively high level of occupational dose is 

delivered to healthcare workers due to prolonged radiation exposure in imaging procedures. As the spatial difference in 

dose is never negligible, the scatter radiation distribution under fluoroscopic exposures is thus worth investigating. MC 

simulation is a sophisticated statistical method, which has been widely applied for modeling scatter radiation in general 

X-ray examination room. However, the application and validation of MC simulation under fluoroscopy setting have not 

been found yet. In this study, a stack of tissue equivalent slabs were used as the object under fluoroscopic irradiation. 

EGSnrc-based DOSXYZnrc code was applied to simulate the scatter dose distribution and the physical measurement of 

radiation dose was performed using an ionization chamber radiation detector. 

Results: At 19 representative locations taking into account the work area and radiosensitive organs of healthcare workers, 

the trend compliance of the simulated with the measured dose values was examined using the correlation analysis. A 

significant monotonic association between the MC simulation and physical measurement of dose values was identified 

(rs=0.822 and P<.01). At the same horizontal distance from the irradiation axis, it was observed that the air dose was 

relatively higher at the level of gonad region than at the eye level. 

Conclusions: The proposed visualization approach illustrates a three dimensional dose simulation in local display density, 

which arouses the awareness about prolonged radiation exposure in clinical environment. The reliability and validity of 

the simulation were examined. 
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1 Introduction 

1.1 Clinical applications of fluoroscopy and its radiation dose  
Fluoroscopy examinations have become more common in diagnostic radiology since the 20th century due to the wide 
application of interventional and contrast studies to functionally study the human anatomy and assist the treatment of 
pathologies [1, 2]. However, the occupational dose was found the highest during the procedures involving the use of 
fluoroscopy units as shown in previous research studies [3, 4]. For instance, common fluoroscopy examinations including 
barium studies like barium enema and meal studies contribute to about 25% of the collective effective dose from 
man-made sources [5]. Besides, International Atomic Energy Agency (IAEA) stated that the patient mean effective dose in 
a fluoroscopy examination was found to be 100 to 390 times more than a routine postero-anterior chest X-ray examination 
and the UNSCEAR 2,000 report stated that fluoroscopic procedures were the major source of radiation dose to clinical 
staff in medicine [6]. Damages to eye lens and other body parts of medical staff are possibly induced by radiation after 
working in the fluoroscopy department for a few years unless adequate radiation protection is provided [7, 8]. Therefore, 
International Commission on Radiological Protection (ICRP) and National Radiological Protection Board (NRPB) have 
published recommendations and research on radiation protection methods and suggesting standards, especially for the 
advanced and complex examinations which deliver high radiation dose to staff, in order to give advice to healthcare 
workers to well protect themselves from radiation [9]. 

The radiation dose delivered to the staff mainly originates from the scatter radiation. The knowledge on the nature and 
geometric patterns of scattered radiation has long been inadequate and researchers have proposed different methods to 
identify the scattering properties based on different radiation sources. General X-ray machines, computed tomography and 
radionuclide imaging have been considered as the main foci in radiology studies [10-15]. However, study focusing on 
fluoroscopy has not been found yet. Previous researches were concerned about the impact of scattered radiation on patient 
dose [10, 11, 14, 16, 17] and radiographic image quality [14, 18, 19], and the physical properties of radiation [12, 20], but there has not 
been study on the occupational dose of radiology department staff. Besides, the results obtained in general X-ray study 
cannot represent validly in fluoroscopy because the properties of these two modalities are different. Fluoroscopy units use 
continuous pulsating radiation output and general X-ray machines delivers one-off radiation in time period of milliseconds. 
Besides, the internal structures, like anode angle selection, and the position of the X-ray tube are different in the two 
modalities.  

1.2 Physical measurement tools 
To precisely measure radiation dose physically, equipment like dose-area-product (DAP) meter, ionization chamber or 
thermo luminescent dosimeters (TLD) can be used [21]. The DAP meter ensures the consistency of the exposure output for 
scattering measurement. TLD can provide reading of scattered dose but there are several concerns over its feasibility in 
research studies. As each TLD pellet can only produce a reading after measurement, it is very time consuming for dose 
reading and annealing process in order to allow the re-use of the pellet for multiple measurements. Besides, the TLD is not 
sensitive enough to detect the low scatter air dose below the level detectable by TLD reading system. Since the ionization 
chamber has been considered a gold standard in measuring scattering in diagnostic radiology and can produce 
instantaneous and accurate dose readings [22, 23], it was properly used for massive parallel measurement of dose.  

1.3 Monte Carlo simulation in radiology studies 
Many research studies have been performed to investigate the radiation protection methods but the depth and significance 
of these studies were limited by medical ethical issues with respect to human rights [24]. It is because a research study 
putting human or animal subjects at risk of unnecessary radiation exposure violates the Declaration of Helsinki, a formal 
ethical guideline recognized by national legislation and World Health Organization [25].  Even if physical measurement 
could be taken in an ‘ethical’ way, the results would not be totally convincible due to the experimental design with 
numerous assumptions made, possible analytic error and errors from instruments. Besides, it would be difficult to take 
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readings at all possible locations within the work area of an examination room. Until the development of MC simulation 
techniques, comprehensive dosimetric study was thought to be impossible, dangerous or unethical [26]. Therefore, there is a 
need to adopt and validate the MC simulation code in radiology study in order to unveil its potential for testifying more 
radiation protection measures for healthcare workers.  

MC simulation, which was first applied and experimented in Buffon’s needle test in 1930s [27], involves the use of a series 
of mathematical equations under physics and probability theories. It relies on repeated random sampling to produce results 
using different computational algorithms. MC simulation methods include three major applications: optimization, 
numerical integration and generation of samples from a probability distribution. MC simulation in radiology studies 
numerically models photon transport according to radiative transfer equation (Boltzmann equation), which depicts the 
photon motion in biological tissues. Different outcomes can be obtained in a flexible way by changing any of the physical 
parameters, including exposure factors, incident beam energy, photon quantity and scattering medium. Thus, simulation 
can be applied not only for estimating the spatial patterns of scatter radiation [18], but also for studying the contrast, noise, 
dose and grid performance [28, 29]. In comparison with physical measurement approach, MC simulation provides more 
detailed dose information in cost-effective way [30]. Some codes, like EGS4 (Electron-Gamma Shower 4th version) and 
SIERRA, were developed to simulate the photon transport and scattering [27, 31]. As MC simulation involves plenty of 
branching and inter-relating equations and complex codes, there are doubts about its reliability and accuracy, demanding 
systematic validation.  

1.4 Three-dimensional visualization 
Computerized visualization makes human-unperceivable scatter radiation visible. A study presented an approach to 
visualize the simulated scatter radiation in a training system for mobile image intensifier [32]. Although the system was 
evaluated through questionnaire survey, there was no physical dose measurement for validating the rendered distribution. 
Therefore, the use of the system was limited to education purposes only. Another study proposed a device for predicting 
the scatter radiation based on the instantly measured values at particular locations and displaying two-dimensional (2D) 
contours and three-dimensional (3D) distributions of scatter radiation [33]. However, the 2D display presents the vertically 
projected contours of scatter radiation with equal intensities and the 3D display depicts the scatter X-ray paths in pencil 
beams. This study is aimed to develop a visualization technique for presenting the simulated dose values in virtual 3D 
scene.    

2 Methods 

2.1 Physical measurement instrumentation  
Measurement was carried out in the fluoroscopy examination room at the Union Hospital, Hong Kong. The fluoroscopy 
unit used was GE Medical INNOVA 4100-IQ model with an under-couch X-ray tube with target angle of 11.5o. Yearly 
quality assurance tests on the physical functioning and the consistence of radiation output were performed by service 
engineer. Besides, daily operational quality assurance tests with a standard aluminum phantom were conducted by the 
operators. 

A calibrated ionization chamber radiation detection system (“Radcal 9015”, California, USA) connected with a 180 cm3 
chamber was used for the measurement of air dose. Back-scattered radiation was kept to the minimum by application of 1 
mm lead equivalent lead rubber sheets over the likely scattering media, such as the edge of the X-ray table. 

Twenty pieces of 30 cm × 30 cm × 1 cm (length, width and thickness respectively) tissue equivalent slabs (PTW Co, 
Freiburg, Germany) were used in this study. They are homogeneous in density and tissue-equivalent. By attenuation tests 
on radiation exposure, 20 pieces of dry slabs was found in the attenuation ability to be equivalent to the abdomen of an 
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lens and reproductive organs, are likely to be found at these levels [34]. At each height, air dose readings using the 
ionization chamber were taken at different locations with distance 100 cm distant from the center of the stack and each at 
45o apart towards the center direction. The fluoroscopy settings could not allow the measurement at 180o at all levels, at 
90o anti-clockwise (AC) and 120o AC at gonad level because the bulk of the c-arm and the couch hindered the positioning 
of the ionization chamber at these locations. Ionization chamber was fixed with clamp and stand for stabilization during all 
measurements. And a mobile lead shield was placed closed to the X-ray tube at the side near the ionization chamber to 
minimize possible leakage and scatter radiation from the X-ray tube and other scattering media such as the X-ray couch. 
Exposure factors were set at 80 kVp and 5.6 mAs and the field of view (FOV) 40 cm × 40 cm. The protocol set was 
“General Abdomen” and the exposures were taken using “Image Acquisition Mode”. Ten readings were taken at each 
feasible location. 

2.3 Monte Carlo simulation 
Electron gamma shower (EGS) is a package of code system for MC simulation of coupled transport of electrons and 
photons with available energy range from 1 KeV to 10 GeV and this has been widely applied in diagnostic radiology and 
radiotherapy studies. The simulated photons are transported in steps of random length. EGSnrc is an updated version of 
EGS4 with improvement and extension in simulating charged particle transport and low energy cross-sections. EGSnrc 
code system takes into account the diagnostic energy range involving several radiation interaction processes, such as 
Bremsstrahlung production, positron annihilation, pair production, Compton scattering, coherent Rayleigh scattering and 
photoelectric effect. All these interaction processes are considered in the dose calculation. The probability of different 
types of particle interaction and their amounts of energy transfer are determined by the EGSnrc code system based on the 
simulated energy range and the properties of the interacting medium [35]. 

The DOSXYZnrc code is an EGSnrc-based code applied for simulating the X-ray units and calculating the radiation dose 
in and out of the medium. Graphic user interface (GUI) of DOSXYZnrc facilitates parameter input and interacting medium 
specification. The medium can be specified using numerical values of Cartesian coordinates or three-dimensional image 
data of voxels. External files describing the X-ray spectrum and medium geometry and compositions can be read by 
EGSnrc code system. Since the particle interaction is probabilistic, random number generator (RNG) seeds are used to 
randomly decide which interaction process or event will occur. In the simulation, the scatter air dose is calculated in terms 
of air kerma in its located voxel. The scatter air kerma is calculated based on the fluence with the scattered photon energy 
and the mass energy transfer coefficient [35-37]. 

To simulate the photon transport, the MC simulation program first launches photon packets by defining the initial position 
and direction of movement of photons, as shown in Figure 3. The step size, which is the distance travelled between defined 
media, is then determined. Within the media, absorption and scattering occur and the energy and the movement direction 
of the photons are changed. If the energy of the transmitted photons is below the pre-defined photon cut-off energy, the 
photons are considered terminated. On the other hand, if the energy of the transmitted photon is not below the cut-off 
energy, the photons will continue to interact with the media according to their newly defined position and direction, until 
its energy falls below cut-off energy.  

To start the simulation, a new default input file was created in the DOSXYZnrc GUI. Two media, the air and slabs, were 
modeled by the preparation code of EGS4, PEGS4 code. A point source with rectangular collimation was incident toward 
the slabs from the bottom. The 80 kVp X-ray spectrum showing the relative number of photons at different photon energy 
was imported into the program to simulate the probabilistic quantity of photons at the time of X-ray emission. 
Implementation of 108 histories controls the error values of the simulated scatter dose within an acceptable range. A 3d 
dose file was generated after the completion of simulation. The simulated dose values at the locations of physical 
measurement were read using Matlab. Simulation was performed for three times with different random number generator 
seeds. The average of repeatedly simulated dose values at each location was considered for further analysis.  
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Table 1. Dose values obtained from MC simulation and physical measurement, and SW test results 

Level (cm)  Angle (degree)  Average measured dose (nGy) ± SD  Simulated dose ×1016(mGy) 

90  0  770±6  3.480 

 
45 747±7 3.529 

 
90 704±6 3.333 

 
135 690±5 3.642 

  315 740±6 3.525 

120 0 619±5 2.397 

 
45 646±4 2.599 

 
90 625±5 2.563 

 
135 647±5 2.449 

 
240 718±6 2.312 

 
270 550±3 2.340 

  315 627±5 2.620 

155 0 494±3 2.007 

 
45 529±4 2.332 

 
90 520±3 2.139 

 
135 520±4 2.384 

 
240 506±4 2.014 

 
270 520±4 2.148 

  315 541±4 2.357 

SW test Statistic W 0.910 0.825 

  P-value 0.073 0.003 

3.2 MC simulation results 
A 3D array with dimensions 25 × 25 × 14 was simulated to model the dose distribution in a space of 250 cm × 250 cm × 

140 cm in size. The simulation was performed with the error controlled below 10%. The simulation process was repeated 

for 3 times with difference RNG seeds. The average simulated dose values over the 19 locations of interest were shown in 

Table 1. The SW test indicated non-normal distribution with P < .01. 

3.3 Correlation test 
Non-parametric test was used to examine the monotonic association between the measured and simulated dose values. 

Significant association was identified as Spearman’s correlation coefficient was found to be 0.822 (P < .01). 

3.4 Dose visualization 
The 3D dose matrix was further processed and a 3D-plot of dose distribution was constructed, as shown in Figure 4. It was 

observed that the virtual particles were denser at the lower level than the higher level. 
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pressurized ion chamber radiation detection system to increase the current produced and thus sensitivity of  
measurement [22].  

In the physical measurement, devices and associated accessories might affect in a small extent the total amount of scatter 
radiation to be accurately measured, such as the built-in dose-area-product (DAP) meter at the output of the X-ray tube and 
ionization chamber support. However, in the MC simulation, it would be difficulty to have exactly similar simulation set 
up as in the real experiment for physical measurements. 

4.3 Suggested further studies 
It is possible to use the Rando phantom as a better model of human body but its shape and structure are more complex than 
the slabs. The head component of the Rando phantom can be neglected due to relatively insignificant scattering [38]. With 
the use of program like “ctcreate”, Computed Tomography (CT) data sets can be imported to DOSXYZnrc code and the 
CT numbers or densities of components of the scanned medium can be considered for MC simulation. Thus, the scatter 
from the Rando phantom or the actual human body can be studied through simulation. 

5 Conclusion 
EGSnrc-based DOSXYZnrc code was found applicable in simulating a simple model under fluoroscopic exposures in the 
examination room. Thus, DOSXYZnrc code has the potential in simulating more complex objects, like humanoid phantom, 
which well simulates the human anatomy for more accurate dosimetric survey. However, the resolution of the simulated 
environment, i.e. the number of voxels, has to be increased to incorporate such complicated object structure. More precise 
modeling of X-ray unit and experiment environment should be considered to demonstrate the scatter distribution for 
establishing radiation protection guidelines purpose. Further, a 3D visualization technique was developed in this study to 
present the dose distribution intuitively. 
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