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Abstract—Community structure can be observed in
many natural, biological and social networks. Studies sug-
gest that these communities may have organized in a hi-
erarchical manner while some communities overlap with
others. This paper introduces an algorithm to detect such
hierarchical and overlapping community structures in net-
works based on the concept of maximal cliques. It intro-
duces an alternate modularity for evaluating overlapping
community structures. Unlike existing algorithms for de-
tecting hierarchical and overlapping community structures,
the new algorithm is free of parameter tuning and random
seeds. Experiments conducted on two real-world networks
show that this algorithm is capable of providing satisfac-
tory and consistent results.

1. Introduction

Many real-world systems can be represented in terms of
networks, which consist of vertices connected together by
edges. A common feature in many networks is the commu-
nity structure, where the nodes within the same community
are more likely to be connected to each other than nodes
in between communities. Community structures reveal the
organization and interactions of vertices in a network. Un-
covering such communities is important to understand the
network properties. One of the most popular methods for
detecting community structure is proposed by Newman et
al. using a benefit function, namely modularity, to evaluate
quality of the community structure [1, 2, 3]. Later, several
modularity-based optimization algorithms were developed
to find community structures in networks.

While high attentions have been attracted to non-
overlapping community structures in networks, many real-
world networks consist of overlapping and hierarchical
communities [4, 5]. Vertices may belong to more than one
community if overlapping communities exist. Community
structure is said to be hierarchical if a community can be
further divided into sub-communities. Despite the applica-
bility in many real-world systems, due to the complexity of
the problem, very few attempts have been reported in the
literature which consider both overlapping and hierarchi-
cal community structures simultaneously. An early attempt
on hierarchical and overlapping community detection on
networks was made by Lancichinetti et al. [6]. Their al-
gorithm performs a local optimization on a fitness function
and the hierarchical organization is uncovered by tuning a

parameter to change the resolution. However, their algo-
rithm is not robust and the detection accuracy is not guar-
anteed due to the random selection of seed vertices. Shen
et al. proposed an extended modularity measure for evalu-
ating overlapping communities [7]. They also proposed an
algorithm called EAGLE to find overlapping and hierarchi-
cal community structures in networks. However, their work
suffers from two major drawbacks: the extended modular-
ity is unable to distinguish the goodness of the belonging
of vertices to each of the overlapping communities, and the
threshold for dropping small cliques need to be manually
tuned in EAGLE. More recently, Hung et al. introduced an-
other algorithm called DenShrink for detecting hierarchical
and overlapping community structures [8]. DenShrink uses
both density-based clustering and modularity optimization
to reveal community structures. However, similar to EA-
GLE, one needs to manually tune the threshold for detect-
ing micro-communities when using DenShrink.

This paper presents a novel algorithm for detecting over-
lapping and hierarchical community structures in networks.
The proposed agglomerative algorithm consists of two
phases: finding maximal cliques and constructing a den-
drogram. This algorithm is capable of providing robust
and consistent results as it does not make use of any ran-
dom seeds. Also, no parameter tuning is necessary for per-
forming the proposed algorithm. Here, a new modularity
measure is defined by extending the traditional modular-
ity, which is used to evaluate the quality of the overlapped
community decomposition. The new modularity is capable
of distinguishing the goodness of the belonging of vertices
to each of the overlapping communities.

The rest of the paper is organized as follows. In Section
2, the extension of modularity for overlapping community
detection is described. The novel algorithm for detecting
overlapping and hierarchical community structures is in-
troduced and discussed in Section 3. Section 4 presents the
results of the proposed algorithm on two standard bench-
marks. Concluding remarks are given in Section 5.

2. Extending the Modularity Measure for Decompos-
ing Overlapping Communities

The basic idea behind Newman’s modularity for quanti-
fying communities is the edge density in a subgraph of a
network compared to a null-model. Here, the null-model is
defined as a subgraph with same number of vertices, same
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number of edges, and same degree distribution as the orig-
inal subgraph, but edges are randomly placed. In such a
random graph, the probability of having vertex i connected
to vertex j is given by Pi j = kik j/4m2, where m is the total
number of edges in the network, and ki and k j are the de-
grees of vertices i and j, respectively. However, the same
probability for the original subgraph is given by ai j/2m,
where ai j are the terms in the network adjacency matrix.
Therefore, if V is the set of vertices of a graph, Newman’s
modularity is defined as

Q =
1

2m

∑
i, j∈V

[
ai j −

kik j

2m

]
δ(ci, c j), (1)

where vertices i and j belong to communities ci and c j,
respectively. If ci = c j then δ = 1, otherwise δ = 0. There-
fore, the above equality can be rewritten as

Q =
1

2m

∑
n

∑
i∈cn, j∈cn

[
ai j −

kik j

2m

]
. (2)

Strong community structure can be observed if Q is close
to 1. When the number of edges within a community gets
close to random, Q will tend to 0. Obviously, if all the
nodes in a network belong to a single community, then
Q =0.

In the case of overlapping communities, a vertex may
belong to more than one community. The strength of their
attachment to each community can be different depending
on the number of connections they have with each commu-
nity. Based on this observation, the original definition of
modularity for evaluating overlapping communities is ex-
tended as

Qo =
1

2m

∑
n

∑
i∈cn, j∈cn

[kc
i kc

j

kik j

] [
ai j −

kik j

2m

]
,

=
1

2m

∑
n

∑
i∈cn, j∈cn

kc
i kc

j

[
ai j

kik j
−

1
2m

]
. (3)

Here, kc
i =
∑

p∈Vcn
aip and kc

j =
∑

q∈Vcn
a jq, where Vcn is the

set of vertices in the community cn. Similarly to the tra-
ditional modularity Q, the proposed extended modularity
Qo = 0 when all the nodes belong to the same community
and gets a higher value to indicate a stronger community
structure.

3. The Algorithm

In this section, a two-phase agglomerative algorithm is
introduced to find the hierarchical and overlapping commu-
nity structure in a network. This algorithm is based on two
main concepts: maximal cliques and the extended modu-
larity. A clique can be identified as a subset of vertices in a
network such that every two vertices in the subset are con-
nected by an edge. A maximal clique is a clique which is
not a subset of any other clique.

In the first phase of the algorithm, it finds all the maxi-
mal cliques in the network. In many real-world problems,
finding maximal cliques is easy due to the sparseness of
the networks and many algorithms are proposed for that.
Here, the Bron-Kerbosch algorithm which is based on a re-
cursive backtracking procedure [9], is utilized. It provides
a set of maximal cliques for a given network. One should
note that a single vertex may be included in several maxi-
mal cliques, which are referred to as overlapping vertices.
Here, not all of the maximal cliques are taken into account.
If a maximal clique is made of the vertices from some other
maximal cliques, we discard it. (E.g.: If {1, 2, 3, 4, 5}, {5,
6, 7, 8}, and {2, 3, 5, 7} are three maximal cliques in a given
network, the proposed algorithm discard {2, 3, 5, 7} as all
of its vertices are already included in the first two cliques.)
In the implementation, the maximal cliques are stored in a
sorted array in descending order based on the number of
vertices in each clique. Then, it iterates through the array
and discards certain cliques based on the above-mentioned
criteria. This first phase considerably reduces the problem
size for the second phase of the algorithm.

In the second phase of the algorithm, the maximal
cliques generated in the previous phase are considered as
the initial communities for detecting the hierarchical com-
munity structure of the network. Similarly to the fast algo-
rithm introduced in [2], these initial communities are joined
together in pairs such that it results in greatest increase or
smallest decrease in the modularity of the network, and a
dendrogram is obtained. In contrast to the algorithm ex-
plained in [2], here it does not start from sole vertices and it
tries to maximize Qo instead of Q. If one community can be
represented as a subset of another community which is gen-
erated by joining two other communities together, the sub-
set community will also be absorbed into the larger com-
munity. (E.g.: If {1, 2, 3, 4, 5, 6} is generated by joining
communities {1, 2, 3} and {4, 5, 6} together, and if there is
another small community {2, 3, 6}, then the latter will also
be absorbed into {1, 2, 3, 4, 5, 6}.) The level of cut of the
dendrogram is decided according to the value of Qo as its
maximum value corresponds to the strongest community
structure of the network.

4. Results and Performance Analysis

This section discusses the results of the proposed algo-
rithm on two real-world networks. The new algorithm was
implemented in MATLAB and all the experiments were
conducted on a computer with 2.67 GHz processor, 12GB
memory, and Windows 7 operating system.

The first experiment was conducted on the Zachary
karate club network [10] (see Figure 1), which is com-
monly used as a benchmark for community detection meth-
ods. It consists of 34 vertices and 78 edges. After complet-
ing the first phase of the algorithm on the network under
test, the network is reduced to 23 communities, which are
given in the bottom layer of the dendrogram shown in Fig-
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Figure 1: The overlapping community structure detected by the proposed algorithm on the Zachary karate club network
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Figure 2: A dendrogram illustrating the hierarchical com-
munity structure of the Zachary karate club network

ure 2. Second phase of the algorithm reveals the hierarchi-
cal community structure by optimizing Qo. In the first step
of the second phase, it combines communities {1, 5, 11} and
{6, 7, 17} together, resulting in {1, 5, 6, 7, 11, 17}. Since
{1, 6, 7} and {1, 5, 17} are subsets of the resulted commu-
nity, they are absorbed into the same larger community, as
illustrated by dashed lines in the dendrogram. Therefore,
at the end of the first step in creating dendrogram, the num-
ber of communities reduces from 23 to 20. This process
continues until a single community remains. The value of
Qo corresponding to each step is recorded. The change of
Qo against the number of communities is shown in Fig-
ure 3. The cut-off line of the dendrogram is decided based
on the highest Qo for this network. The strongest com-
munity structure for the given network is detected when
Qo = 0.34662 which corresponds to three overlapping
communities with two overlapping nodes. This is illus-
trated in Figure 1. By investigating further into the hier-
archical community structure of the network, it can be ob-
served that the community {1, 5, 6, 7, 11, 17} (represented
in yellow color) joins with its neighboring community (rep-
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Figure 3: The extended modularity for the hierarchical
community structure detected by the proposed algorithm
on the Zachary karate club network

resented in cyan color) at a cost of ∆Qo = 0.0152, reduc-
ing the network to only two overlapping communities with
only vertex {3} remaining in overlapping between these two
communities.

The second experiment was conducted on Lusseau’s so-
cial network of dolphins [11] (see Figure 4), which is also
considered as a benchmark for community detection in
networks. It consists of 62 vertices and 159 edges. Af-
ter completing the first phase of the algorithm on the net-
work under test, the network is reduced to 43 communities.
Second phase of the algorithm discovers the hierarchical
community structure by optimizing Qo. The variation of
Qo against the number of communities is shown in Figure
5. The strongest community structure for Lusseau’s social
network of dolphins is detected when Qo = 0.4210, which
comprehends three overlapping communities with seven
overlapping nodes as illustrated in Figure 4. By moving
one step upward in the hierarchical community structure of
the network, the communities represented in pink and yel-
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Figure 4: The overlapping community structure detected
by the proposed algorithm on Lusseau’s social network of
dolphins

low join together at a cost of ∆Qo = 0.0455, reducing the
network to two overlapping communities with only vertex
{37} remaining in overlapping between these two commu-
nities.

5. Conclusions

In this paper, an algorithm for uncovering hierarchical
and overlapping community structures in networks is pro-
posed. This algorithm consists of two phases. In the first
phase, it detects the maximal cliques in the network. Max-
imal cliques that are not made of the vertices from some
other larger maximal cliques are proceeded to the second
phase. In the second phase, the algorithm creates a den-
drogram to represent the hierarchical community structure
of the network. A new modularity metric is introduced
for evaluating the overlapping community structure in each
level of the dendrogram. The experimental results show
that the proposed algorithm is capable of detecting hierar-
chical and overlapping community structures in networks.
Uncovering such a structure may help in understanding net-
work behaviors and dynamics.
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