
An ACO-based Off-line Path Planner for

Nonholonomic Mobile Robots

Nuwan Ganganath, Chi-Tsun Cheng, and Chi K. Tse

Department of Electronic and Information Engineering,

The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong

Email: nuwan.marasinghearachchige@connect.polyu.hk

Abstract—The path planning is an important issue as

it allows a robot to get from a point to another. Such a

path between two points has to be optimized based on

user defined requirements and environmental conditions.

Most of the existing solutions to path planning problem

assume robots to be holonomic. However, ordinary mobile

robots are kinematically constrained in practice. A novel

solution has been proposed for the path planning problem

based on existing ant colony optimization methods which

can be realized with practical mobile robots with the

aforementioned constraints. Simulation results show the

applicability of the proposed path planner to the non-

holonomic mobile robots. Performance of the proposed

algorithm has been compared with its preceding version.

The performance of the proposed path planner may be

further improved by fine-tuning its parameters.

Index Terms—ACO, path planning, field-of-view, non-

holonomic, mobile robots

I. INTRODUCTION

Path planning is one of the most discussed problems

in mobile robotics. It can be defined as an optimization

process in which the path between two points needs

to be decided such that predefined requirements are

satisfied [1]. In most of the previous solutions to path

planning problem, these requirements are limited to path

length only [2], [3]. However, in most of the real world

scenarios, the shortest path between two points may not

be the most desirable path. As an example, consider a

mobile robot operating in a military battle field. Even

though it is supposed to reach the soldiers with minimum

delay when support is needed, it also has to avoid being

captured by the enemies. On the other hand, the shortest

path always does not guarantee the minimum delay. It

also depends on the some other characteristics of the

trajectory, such as climbing and descending ratios and

turning angles [4].

In [5], Ganganath and Cheng proposed an off-line

path planner for mobile robots based on an ant colony

optimization (ACO) algorithm (ACO-2-Gauss). Unlike

its preceding version (ACO-Gauss) [4], where artificial

ants only make routing decisions at limited number of

parallel lines which are evenly distributed on a given ter-

rain, the ACO-2-Gauss path planner allows ants to select

their control points anywhere in the terrain. Comparing

to the ACO-Gauss path planner, ACO-2-Gauss provides

artificial ants with more flexibility to make their routing

decisions. Two-dimensional (2-D) Gaussian functions

used in pheromone distribution considerably improve the

path quality due to the extra degree of freedom. However,

ACO-2-Gauss assumes mobile robots to be holonomic.

In practice, most of the robots are kinematically con-

strained [6], [7]. This paper is an extension to the ACO-

2-Gauss path planner proposed in [5]. The aim of this

work is to generalize the ACO-2-Gauss by introducing a

field-of-view (FoV) concept for artificial ants so that the

proposed algorithm can be realized with most real-world

robots, which are kinematically constrained.

II. PROBLEM FORMULATION

A. Scenario Under Study

The scenario under study is a meshed 3-D model
mimicking a hilly landscape. The base of the terrain is
defined as a 1-by-1 unit2 square. The z–dimension of a
position (x, y) inside a terrain is controlled by,

z(x, y) = σ[a sin(y) + b cos(x) + c sin(d
√

x2 + y2)]2, (1)

where a, b, c, d are arbitrary constants. Parameter σ is the

normalizing factor such that z(x, y) will lie within the

range [0, 1].

B. Desirability of a Path

Similar to its preceding versions, the purpose of the

ACO-2-Gauss path planner is to find the optimum tra-

jectory from an arbitrary starting point Ps to an arbitrary

target point Pt within the given terrain such that it satisfy

the predefined requirements. In this work, desirability of

a path is calculated based on three such requirements
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(desirability factors), namely, path length, turning angle,

and climbing and descending ratio.

Since the length of a path is proportional to the wear

and tear and the energy consumption of a robot, it is

always desirable to have shorter paths. Therefore, the

first desirability factor (ρ1) is defined as,

ρ1(η) = dproj(Ps, Pt), (2)

where dproj(Ps, Pt) is the length of the projection of the

path η on the x–y plane which is connecting Ps and

Pt. In this paper, a path is represented using a B–Spline

curve, which is first introduced by Schoemberg [8]. An

illustration of a B–Spline curve with n = 6 control points

(c1, · · · , c6) is shown in Fig. 1.

As the control points are populated along a B–Spline

curve, an angle formed by three consecutive control

points can be used as an estimate of a turning angle. A

path with sharp turning angles is undesirable, especially

because they are difficult to achieve with nonholonomic

robots. Therefore, given a path η with n control points

(c1, · · · , cn), its second desirability factor (ρ2) is defined

as,

ρ2(η) = 180◦ − min
i=2,···n−1

∠ci−1cici+1. (3)

Paths with frequent climbing and descending are unde-

sirable to mobile robots as they can result in more energy

consumption. Also it is difficult to maneuver robots on

steep hills/slops. Therefore, the robot trajectory should

be planned in a way that the climbing and descending

ratio is low. After the control points of a B–Spline curve

are decided, a fixed number of evaluation points are used

to represent the piecewise polynomial curves between
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Fig. 1. An illustration of a trajectory between Ps and Pt. The dashed

line in blue is representing the path. The solid line in red is showing

the interpolation of the control points.

adjacent control points. Given a path η with k evaluation

points (e1, · · · , ek), its third desirability factor (ρ3) is

defined as,

ρ3(η) = max
i=1···n−1
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∆zi and ∆di are illustrated in Fig. 1.

In order to obtain a desirable trajectory, we need to

minimize all of the above mentioned factors. Therefore,

the cost function δ used in this paper is defined as,

δ(η) =

∑

3

i=1
wiρi(η)

∑

3

i=1
wi

, (5)

where w1, w2, and w3 are the weights. Here, the opti-

mization problem is to find an optimum path ηopt which

satisfy

ηopt = argmin
η

δ(η). (6)

III. THE PROPOSED PATH PLANNER FOR

NONHOLONOMIC MOBILE ROBOTS

A. Background of ACO Algorithms

ACO algorithms are inspired by the pheromone com-

munication between ants regarding a desired path be-

tween their colony and a food source [9]. Initially ants

travel randomly in their environment. Once an ant find

a food source, it starts to release pheromone on their

path between the food source and the colony. If several

trips are performed on the same route, the pheromone

concentration on that route increases accordingly. Other

ants may follow the same path by sensing previous

pheromone and they release more pheromone onto the

path. Since pheromone decays with time, older paths are

likely to disappear from the terrain [10].

Ordinary ACO algorithms performs well in network

based routing problems which has finite number of

routing options at each intersection of a given network

[4]. However, these routing networks limits the routing

options of the ants. In ACO-Gauss [4], these constrained

are released to a certain extent by introducing Gaussian

functions which lies along so called control point lines

(CPLs). CPLs are distributed evenly along the x–axis and

parallel to the y–axis of the terrain. Instead of moving

from one vertex to another in a routing network, an ant

is moving from one CPL to another. An ant is allowed

to select any point on the next CPL as its next hop. At

the end of an iteration, the ants will leave pheromone,

which is in form of Gaussian functions, onto the CPLs.

In ACO-2-Gauss [5], the flexibility of the routing deci-

sions are further enhanced by introducing 2-D Gaussian

functions. Here, ants are allowed to select any point on

the circumference of a circle on the x–y plane with a

radius of r centered at the current location as its next
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Fig. 2. An illustration of CPCs in two consecrative time steps. The

FoV of an ants is considered as 2α. r is the radius of CPCs.

hop. Such a circle is defined as the control point circle

(CPC). An ant will decide its moving direction based

on the distribution of the pheromone concentration on

the circumference of the current CPC. An ant will select

n−2 CPCs from the terrain and move toward Pt. The last

CPC will hop to Pt directly. Including Ps and Pt, a path

will consists of n control points. Once an ant has reach

Pt, its control points are used to construct a trajectory

using B–Spline. The path will be evaluated based on

(5). Artificial pheromone will then be distributed at

the centers of the CPCs as 2-D Gaussian functions.

Ants in the following iterations will decide their moving

direction based on the pheromone residue in the terrain.

After several iterations, it releases a path construction

ant (PCA) to generate the final path.

B. Generalized ACO-2-Gauss Path Planner

In ACO-2-Gauss, ants are allowed to select any point

on the circumference of current CPC based on the

pheromone distribution. However, the paths generated

using such an algorithm might not be successfully real-

ized with nonholonomic robots. Therefore, we introduce

an FoV concept to all the ants, including the path

construction ants so that we can obtain realizable paths

using ACO-2-Gauss algorithm.

Let (xi, yi) is the current location of any arbitrary ant

and (xi−1, yi−1) is its location in previous time step. Our

aim is to calculate the next location, (xi+1, yi+1), so that

it lies in the FoV (2α) of the given ant (see Fig. 2). Since

(xi, yi) is at the center point of the line which connects

(xi−1, yi−1) and (a, b),

xi−1 + a = 2xi and yi−1 + b = 2yi. (7)

Since the next hop should be located within the given

FoV,
√

(xi+1 − a)2 + (yi+1 − b)2 ≤ 2r sin(
α

2
). (8)

By using (7) and (8), we can obtain the final condition,

which is needed to be satisfied by the coordinates of the

next hop.

Initially, (x0, y0) are set to the coordinates of Ps. As

we always position Ps somewhere closer to y-axis in

this study, we assume x−1 = x0 − r and y−1 = y0 in

order to calculate (x1, y1) such that calculated location

using (7) and (8) always lies inside of the given terrain.

As an ant further moves in the terrain, it might reach

closer to a border of the terrain and it might not be

able to find its next location inside its FoV. In such

situations, we reset its FoV to 360o for a single time step,

which can result in greater turning angles than expected.

Detailed procedures of the generalized ACO-2-Gauss are

elaborated as follows:

Step 1 Given Ps and Pt, initialize the optimization pro-

cess by distributing pheromone [5] at Pt. Set

iteration number T = 1.

Step 2 Release q ants at Ps. Set counter i = 0. Set

(x0, y0) to the coordinates of Ps. Take x−1 =
x0 − r and y−1 = y0.

Step 3 For each ant, check weather the circumference of

the current CPC within their FoV lies within the

boundaries of the terrain. If it is, jump to Step 5.

Otherwise, continue to Step 4.

Step 4 Reset its FoV to 360o for a single time step.

Repeat to Step 3.

Step 5 Calculate the pheromone concentration at the

circumference of the current CPC within their

FoV. Convert the pheromone concentration into

a probability distribution function (PDF). Select

the next moving direction based on the PDF and

move forward by r. Set i← i+ 1.

Step 6 If i ≥ n−2, proceed to Step 7. Otherwise, repeat

Step 3.

Step 7 Select Pt as the next hop. Evaluate the path using

(5). Distribute pheromone [5] at all its CPCs

except Ps and Pt.

Step 8 Release a PCA at Ps. Set counter i = 0
Step 9 Unlike other ants, PCAs decide their routing

directions based on the global peak of the PDFs

and move forward by r. Set i← i+ 1.

Step 10 If i ≥ n − 2, proceed to Step 11. Otherwise,

repeat Step 9.

Step 11 Select Pt as the next hop. Evaluate the path using

(5). If the result is satisfactory or if the max-

imum iteration number Tmax has been reached,

terminate. Otherwise, update pheromone concen-

tration of all Gaussian functions in the terrain [5].

Set T → T + 1 repeat Step 2.



TABLE II

SIMULATIONS RESULTS OF THE PROPOSED PATH PLANNER FOR DIFFERENT FOV VALUES

FoV 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600

ρ1(ηopt) 1.2942 1.2668 1.2491 1.2435 1.2414 1.2784 1.3696 1.4378 1.4338 1.3726 1.3190 1.2948

ρ2(ηopt) 64.070 51.630 54.960 59.510 78.590 87.470 101.890 115.180 140.200 154.310 167.890 179.980

ρ3(ηopt) 1.6717 1.7371 1.6724 1.5653 1.4705 1.5177 1.6473 2.0178 2.2245 2.2850 2.3833 2.4193

δ(ηopt) 17.08 13.98 14.78 15.89 20.64 22.89 26.57 30.02 36.32 39.84 43.23 46.25

TABLE I

SIMULATION PARAMETERS

Parameters Values

terrain constants (a, b, c, d) 0.5, 1.5,−0.5, 2.5
weighting (w1) 8
weighting (w2) 4
weighting (w3) 4
maximum iteration number (Tmax) 5

no. of ants per iteration (q) 5
no. of CPCs per path (n− 2) 8
pheromone evaporating rate 1.75
order of B-spline curves 4

IV. SIMULATION RESULTS

The proposed path planner has been implemented and

simulated using Matlab. It is provided with the terrain

introduced in Section II-A. The coordinates of Ps and

Pt are set to (0.01, 0.45) and (0.99, 0.95), respectively.

The desirability of a path is evaluated based on the

factors discussed in Section II-B. The weight of the

each desirability factor is kept equal during all the

experiments for a fair comparison. Variables and tuning

parameters used in the simulations are shown in Table I.

The proposed algorithm is tested for different FoV values

ranging from 30o to 360o. Simulation results are shown

in Table II. When, FoV = 360o, the path planner under

test is equivalent to its preceding version, ACO-2-Gauss.

According to the simulation results, the proposed

path planner shows improved performance over ACO-2-

Gauss. Having FoV set close to 360o gives unnecessary

freedom to the ants and allow them to search in loops,

which results in longer path lengths and larger turning

angles. Therefore, it can be observed that the value

of δ(ηopt) increases with the value of FoV ≥ 600. In

contrast, having FoV set too narrow (FoV < 600) limits

the search space of the ants. Especially, when ants are

close to the boundary of the terrain, they might fail to

find the next hop in the first scan and leads to greater

turning angles. Interestingly, according to the simulation

results, we can conclude that the proposed path planner

is able to produce better performances even when FoV

< 180o, which matches closely with the properties of

ordinary nonholonomic mobile robot robots.

V. CONCLUSIONS

In this paper, a path planner for nonholonomic mobile

robots based on an ant colony optimization method is

proposed. In the proposed path planner, an artificial

ant in the optimization process is only provided with a

limited FoV. Such extra constraint on FoV can effectively

avoid ants from going into loops during the search

process. Simulation results show that path planners with

extreme FoV values may, however, yield poor results.

With an appropriate selection of FoV value, the proposed

path planner shows significant improvements in the com-

puter simulations over the other path planner under test.

However, the performance of the proposed path planner

needs to be further verified with the nonholonomic

mobile robots in real world scenarios.
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