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Abstract—Data clustering is a frequently used technique in
finance, computer science, and engineering. In most of the
applications, cluster sizes are either constrained to particular
values or available as prior knowledge. Unfortunately, traditional
clustering methods cannot impose constrains on cluster sizes. In
this paper, we propose some vital modifications to the standard k-
means algorithm such that it can incorporate size constraints for
each cluster separately. The modified k-means algorithm can be
used to obtain clusters in preferred sizes. A potential application
would be obtaining clusters with equal cluster size. Moreover,
the modified algorithm makes use of prior knowledge of the
given data set for selectively initializing the cluster centroids
which helps escaping from local minima. Simulation results on
multidimensional data demonstrate that the k-means algorithm
with the proposed modifications can fulfill cluster size constraints
and lead to more accurate and robust results.
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I. INTRODUCTION

Data clustering can be identified as a learning method
which groups a set of data in such a way that the data in the
same group show higher similarity in certain properties when
considering with data in other groups [1]. These groups are
commonly referred to as clusters in data mining [2]. Clustering
plays an important role in many applications such as big data
clustering [3], document clustering [4], image segmentation
[5], and sensor clustering in wireless sensor networks [6], [7].
Over the previous several decades, numerous data clustering
algorithms have been proposed by the researchers. One may
refer to [2] for a comprehensive review on data clustering
algorithms.

k-means is one of the well known clustering method due
to its simplicity. It is based on the idea of centroids which are
used to define clusters in this work. It partitions a given set of
data into k clusters using the distance from each data point to
k different centroids (or means). The term “k-means” was first
used by by James MacQueen in [8]. However, the basic idea
behind this algorithm goes back to Polish mathematician Hugo
Steinhaus [9]. Even though the k-means is efficient, it may
converge to local minima producing counterintuitive results,
mainly due to the randomness in its initialization. Also, it has
very loose control on cluster sizes.

In many real world applications, sizes of the clusters
are available either as prior knowledge or as constraints.
The results of existing clustering methods may be further

enhanced by using additional information harvested from the
data set [10], whereas these additional information must be
incorporated when they come as constraints. In this paper,
we modify a standard k-means algorithm such that it can
constrain each individual cluster to a predefined size. The
modified k-means algorithm can partition a given set of data
into clusters with same size or different sizes according to
predefined requirements or prior knowledge about the data
set. Furthermore, the proposed algorithm has relatively lesser
chance of getting trapped in local minima as the centroids are
selectively initialized with data points from each cluster using
the prior knowledge. Therefore, the modified k-means cluster-
ing algorithm can produce more reasonable results compared
to the standard k-means algorithm.

The rest of the paper is organized as follows. Section II
presents the problem formulation. Section III briefly reviews
the standard k-means algorithm. Modifications to the k-means
algorithm are introduced in Section IV such that it can incor-
porate the size constraints of each cluster. Simulation results
are presented and performances of the proposed algorithm
are analyzed in Section V. Concluding remarks are given in
Section VI.

II. PROBLEM FORMULATION

Let x = {1, %2,...,2Z,} be a given data set of n objects
where z; € R™. In a data clustering problem without any
cluster size constraints, the objective of a clustering algorithm
is to find £ (1 < k < n) clusters, ¢ = {c1,¢2,...,¢k},
such that the similarity among objects in each cluster is
maximized. Similarity measuring criteria can be different from
one clustering algorithm to another. Here, the total size of the
data set |c| = 3y, [c;], where |c;| denotes the size of a cluster
¢j and 1 < j < k. Thus, |¢| = |x|. In the data clustering
with cluster size constraints, the maximum cluster size ¢ is
available for each cluster c;. Therefore, a size constrained data
clustering algorithm has to satisfy an extra constraint |c;| < (;,

such that 2521 ¢ > x|

III. THE k-MEANS ALGORITHM

Similar to many other clustering algorithms, the k-means
algorithm utilizes an iterative procedure. In each iteration, it
tries to minimize the within-cluster sum of squares, i.e.
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in order to maximize the similarity among objects in each
cluster. Here, p; € R™ is the centroid of a cluster ¢; and
|| - ||? is the squared Euclidean norm. The standard k-means
algorithm can be described in three steps as given below.

Initialization step:

In the initialization step, the k-means algorithm initializes
4 of cluster c;, such that
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Different variations of the k-means algorithm may use different
methods. However, the most common method is to use distinct
random data points from x to initialize each centroid. After the
initialization of the centroids, the k-means algorithm proceeds
by alternating between an assignment step and an update step.

Assignment step:

In this step, each data point is assigned to the cluster whose
centroid yields the least within-cluster sum of squares.
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Note that z,, is assigned to only one cluster ¢;” in time step

t,ie x, & cgt) where ¢ # j. In another time step, x;,, may be
assigned to another cluster that minimizes the within-cluster
sum of squares. Here, a data point cannot belong to more than
one cluster in a single time step.

Update step:

In the update step, the k-means algorithm calculates the
centroids for the next iteration according to the data assigned
to each cluster in the assignment step of the current time step.
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For a given threshold & > 0, if |u§-t+1) — ,ug-t)\ < &, V9,

1 < j < k, the algorithm terminates its iterative process as
it has already converged to a minimum. Otherwise, it iterates
back to the assignment step and sets ¢ = ¢ + 1.

IV. A MODIFIED k-MEANS ALGORITHM

A modified k-means algorithm is proposed here for data
clustering with cluster size constraints. We change the initial-
ization and assignment steps of the standard k-means algorithm
which is described in Section III to fulfill the size constraints
of each cluster.

Initialization step:

In the initialization step, instead of initializing centroids
with random data points from the given data set, we use the
prior knowledge about the data set to assign initial centroids
such that

W =z, wp € ¢, V5,1 < j < k). 5)

Here, we assume that prior knowledge of at least few data
points per each cluster is available to the user which is

TABLE 1. SIMULATION PARAMETERS.

Dimension Number of Number of data

Simulation (m) clusters (k) points (n) ‘
: > 3 2000 0
T 3 4 1100 0

practical in typical real world scenarios. The modified k-means
algorithm requires the knowledge of only a single data point
from each cluster. Such a selective initialization can greatly
reduce the possibility of converging to local minima producing
counterintuitive results.

Assignment step:

In the assignment step, each data point is assigned to the
cluster whose centroid yields the least within-cluster sum of
squares only if |c§»t)| < (;j where 25:1 ¢; > |x|. Therefore,
& = {ap < Ny — " I° < Ny — V7, 1V < 1 < i < oA
While implementing, this can be easily achieved by sorting the
values of ||z, —ul(-t) |2 in ascending order for all i (1 < i < k)
and iterating through the sorted array till it finds a cluster which
satisfies the size constraints |c§-t)| < (. For an example, one
may use merge sort algorithm whose worst case performance is
O(klog(k)) [11], for sorting ||z, — ul(-t) |? values in ascending
order. Note that as k < n in many practical applications, thus
it does not have considerable impact on the runtime of the
algorithm. Similar to the standard algorithm, each data point
is assigned to only one cluster in a single time step.

In this modified version of the algorithm, we keep the
update step and the termination criteria unchanged from the
standard procedure.

V. SIMULATIONS AND PERFORMANCE ANALYSIS

We evaluate and analyze the performances of the modified
k-means algorithm against the standard k-means algorithm
using computer simulations. Simulation settings and simulation
results are presented in this section.

A. Simulation Settings

Two situations were set up using the two different data sets
and simulation parameters are shown in TABLE 1. In the first
simulation, a two dimensional data set with 2000 data points
was selected for clustering which consists of five clusters.
In the second simulation, a three dimensional data set with
1100 data points was selected for clustering which consists of
four clusters. Both the standard k-means algorithm described
in Section III and modified k-means algorithm described in
Section IV were implemented using Matlab. In the termination
conditions of both algorithms, £ was set to 0 which is the
minimum possible value it can take.

B. Simulation Results

The standard k-means algorithm which is described in
Section III, the modified k-means algorithm with cluster size
constrains but with the random initialization, and the modified
k-means algorithm with cluster size constrains and the selective
initialization which is described in Section IV are tested with



TABLE II SIMULATION RESULTS.

Sim. Cluster Cluster size Final cluster size
index (j) constraint ((;) k-means [ modified k-means

1 280 343 280

2 431 435 431

1 3 67 347 67
4 891 544 891

5 331 331 331

1 100 200 100

I 2 100 102 100
3 300 198 300

4 600 600 600

the parameters given in TABLE I. Simulation results are
summarized in TABLE II. Spatial distribution of the data used
in Simulation I and Simulation II are graphically illustrated
in Fig. 1 and Fig. 2, respectively. Data points which are
represented in same color and symbol belong to the same
cluster.

According to Fig. 1, all the algorithms under test have
detected five clusters in the first simulation. The modified
k-means algorithm with random initialization results in poor
clustering even though the cluster sizes are constrained (see
Fig. 1(b)). It is obvious that the modified k-means algorithm
with selective initialization has achieved more intuitive results
in this experiment against the standard algorithm (see Fig.
1(c)). The fourth cluster which consists of 891 data points
(triangles in Fig. 1(c)) has partitioned into two clusters by
the standard k-means algorithm (triangles and rhombuses in
Fig. 1(a)). The main reason behind this counterintuitive result
is the random initialization of the cluster centroids. In the
initialization step, two centroids are initialized with random
data points from this cluster, which is comparatively larger and
has considerable spatial gap with other clusters. After several
iterations, as we can observe in the results, it has trapped in a
local minimum. Since the number of clusters are fixed in both
of these algorithms, one false detection of clusters may lead to
another false detection. This can be observed in Fig. 1(a) where
clusters 1 and 3 are merged into a single cluster (represented
by using circles). According to the results given in TABLE
II, the modified k-means algorithm (with random or selective
initialization) has detected all the clusters correctly according
to the size constraints while the standard algorithm has con-
siderably deviated from these cluster constraints. However, it
is not a surprise as the standard algorithm does not incorporate
any size constraints on the clusters.

In the second experiment, the algorithms under test were
tested using three dimensional data with four clusters. Similar
to the first experiment, the modified k-means algorithm with
random initialization results in poor clustering. However, with
selective initialization, the modified algorithm has achieved
more intuitive results in this experiment against the standard
algorithm. The third cluster which consists of 300 data points
(squares in Fig. 2(b)) partitioned to two different clusters by
the standard k-means algorithm (squares and rhombuses in
Fig. 2(a)). It is the same reason that the random initialization
of centroids has caused this counterintuitive result. In the
initialization step, two centroids are initialized with random
data points from this cluster, which is comparatively larger
and has considerable spatial gap with other clusters. After
several iterations, it has trapped in a local minimum where
it is partitioned into two different clusters while two small
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Fig. 1. Results of Simulation I: (a) using a standard k-means algorithm,

(b) using the modified k-means algorithm with random initialization, and (c)
using the modified k-means algorithm with selective initialization.

clusters are merged together to achieve the fixed number of
clusters. This can be observed in Fig. 2(a) where clusters 1
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Fig. 2. Results of Simulation II: (a) using a standard k-means algorithm,
(b) using the modified k-means algorithm with random initialization, and (c)
using the modified k-means algorithm with selective initialization.

and 3 are merged into a single cluster (represented by using
pentagrams). According to the results given in TABLE II, the
modified k-means algorithm has detected all the clusters cor-

rectly according to the size constraints in the second simulation

while the standard algorithm has considerably deviated from
these cluster constraints.

One should note that Fig. 1(a) and Fig. 2(a) represent only
two possible outcomes of the standard k-means algorithm.
Depending upon the initial data points selected for initial
centroids, results of different experiments with same data
set can be worse or better, even similar to the results of
the modified algorithm. However, in the case of modified
algorithm with selective initialization, results are more stable
because it uses prior knowledge for initialization of centroids.
Moreover, it incorporates fixed cluster sizes while the cluster
sizes are arbitrary in the original one.

VI. CONCLUSIONS

Traditional data clustering methods cannot fulfill the size
constraints on clusters. In this paper, we introduce a robust
algorithm for data clustering with constrained cluster sizes.
The proposed algorithm is developed based on the the stan-
dard k-means algorithm. We modified the standard algorithm
such that it can incorporate cluster size constraints. In the
initialization step of the modified algorithm, it uses the prior
knowledge to assign data points as the the initial centroids of
the clusters, unlike random data point assignment in a standard
k-means algorithm. In the assignment step, it assigns a new
data point to the cluster whose centroid yields the least within-
cluster sum of squares only if the current cluster size has not
violated its size constraint. Otherwise, it go for the next best
option till it finds a cluster which has not yet met its size
constraint. Simulation results verify the superior performance
of the modified algorithm over the standard k-means algorithm.
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