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Abstract—Recent literature on flocking in multi-agent systems
show that a minority of informed agents in a group of dynamic
agents can influence a majority to follow a virtual leader.
However, it is not reported how to select these informed agents
from the group in order to increase the number of agents which
will eventually follow the virtual leader. In this paper, we propose
a cluster-based informed agents selection method to achieve this
objective. The proposed method enables us to select informed
agents such that they are spatially evenly distributed within the
group of agents. We carried out extensive simulations to analyze
performances of the proposed method against the traditional
random-based informed agents selection method. Simulation
results show that the proposed method can increase the number
of agents which eventually follow the virtual leader for a given
number of informed agents. Therefore, the proposed cluster-
based informed agents selection method is useful for leading the
majority of a group with less number of informed agents.

Index Terms—Flocking, distributed control, informed agents,
virtual leader, clusters.

I. INTRODUCTION

Flocking is a collective behaviour that can be commonly

observed when groups of animals migrating or foraging. In

such groups, only few individuals have information about a

food source or a migrating route [1], [2]. It has been studied

that a few individuals in a fish school are adequate to control

the foraging behavior of the group [3]. These individuals

use different methods to exchange information within the

group. Couzin et al. showed that how group objectives can be

achieved when informed individuals have different preferences

[4].

The consensus problem in multi-vehicle systems with a

virtual leader was studied by Ren [5]. He showed the necessary

and sufficient conditions to achieve the consensus with a time-

varying virtual leader when only a fraction of vehicles have

access to the virtual leader. Later, Cao and Ren proposed

two distributed coordinated tracking algorithms for multi-agent

systems [6]. Their algorithms guaranteed global exponential

tracking with only a fraction of informed agents. In [7], Su et

al. modified the Olfati-Saber’s second flocking algorithm [8]

by providing navigational feedback only to a few randomly

selected agents. The uninformed agents which do not have

direct access to the information of the virtual leader, can still

follow the virtual leader if they are influenced by the informed

agents occasionally. Simulation results given in [7] also show

that the proportion of informed agents required to guide a

given fraction of agents decreases as the size of the group

increases. However, it is not obvious how to select a given

number of informed agents such that majority of the group

will follow a virtual leader.

We studied how informed agents selections can affect the

number of agents that eventually follow the virtual leader.

We conducted simulations for different fractions of informed

agents with different initial densities of randomly distributed

agents. We observed that an even selection of informed agents

based on their spatial distribution can help driving majority

of the agents to track a virtual leader effectively. This led

us to propose a novel method for selecting informed agents

in a group of dynamic agents based on their initial clusters.

Simulation results show that the proposed cluster-based selec-

tion method can drive a larger fraction of agents to follow a

virtual leader compared to the random-based selection method

proposed in [7].

The rest of the paper is organized as follows. Section II

recalls relevant background materials. The novel cluster-based

informed agents selection method for flocking with a virtual

leader is proposed in Section III. Results of our simulation

study are presented in Section IV. Concluding remarks are

given in Section V.

II. BACKGROUND

We consider a system of N mobile agents operating in R
n.

The motion of each agent is described by a double integrator

form
{

q̇i = pi,

ṗi = ui, i = 1, 2, . . . , N,
(1)

where qi, pi, ui are the position, velocity, and acceleration of

the agent i, respectively. The control protocol given in [7]

assumes that randomly selected M0 (1 < M0 ≤ N ) agents

are influenced by a virtual leader with following dynamics
{

q̇γ = pγ ,

ṗγ = fγ(qγ , pγ),
(2)

where qγ , pγ , fγ ∈ R
n are the position, velocity, and acceler-

ation of the virtual leader with (qγ(0), pγ(0)) = (qd, pd) and
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q̇γ = pd. The spatial neighbors of agent i at time t are defined

by

Ni(t) = {j : ‖qi − qj‖ < r, j = 1, 2, . . . , N, j 6= i}, (3)

where ‖ · ‖ is the Euclidean norm in R
n and r(> 0) is the

interaction range between two agents. We assume an identical

interaction range for all the agents, thus, j ∈ Ni(t) ⇔ i ∈
Nj(t). Due to the symmetry, interactions among agents can

be represented by an undirected dynamic graph G(t).
The distributed control scheme for multi-agent dynamic

systems proposed in [7] can be expressed as

ui = fgi + fdi + fγi . (4)

Here, fgi , f
d
i , f

γ
i are the gradient-based term, velocity consen-

sus term, and navigational feedback term, respectively. The

gradient-based term is used to control the position of a agent

i within its neighborhood, which can be defined as

fgi = −
∑

j∈Ni(t)

∇qiψα(‖qj − qi‖σ). (5)

For a parameter ǫ > 0, σ-norm of a vector z is given by

‖z‖σ = 1
ǫ

(

√

1 + ǫ‖z‖2 − 1
)

. Note that ‖z‖σ is differentiable

everywhere whereas ‖z‖ is not differentiable at z = 0. The

smooth pairwise attractive/repulsive potential function ψα(z)
is given by

ψα(z) =

∫ z

‖d‖σ

φα(s)ds, (6)

where d is the desired distance between agents. The potential

function reaches its global minimum at z = ‖d‖σ(< ‖r‖σ)
and global maximum at z = 0, and becomes constant for

‖z‖σ ≥ ‖r‖σ . In (6), φα(z) is given by

φα(z) =
1

2
ph

(

z

‖r‖σ

)

[

(a+ b)(z − ‖d‖σ + c)
√

1 + (z − ‖d‖σ + c)2
+ (a− b)

]

,

(7)

where 0 < a ≤ b, and c = |a− b|/
√
4ab. In (7), ph(z) can be

expressed as

ph(z) =















1, if z ∈ [0, h)
1
2

[

1 + cos
(

π z−h
1−h

)]

, if z ∈ [h, 1]

0, otherwise

(8)

where h ∈ (0, 1) [8].

The velocity consensus term in (4) is defined as

fdi =
∑

j∈Ni(t)

aij(q)(pj − pi), (9)

where q = [q1, q2, . . . , qN ]T ∈ R
nN . Terms of the adjacency

matrix of graph G(t) are given by

aij(q) =

{

0, if j = i

ph(‖qj − qi‖σ/‖r‖σ), otherwise.
(10)

In (4), the navigational feedback to track the virtual leader

is given by

fγi = −hi[c1(qi − qγ) + c2(pi − pγ)], (11)

where c1, c2 > 0 are constants. In contrast to Olfati-Saber’s

second flocking algorithm [8], the flocking algorithm given in

[7] assumes that only few agents are informed of (qγ , pγ). If

an agent i is an informed agent, hi = 1, otherwise, hi = 0.

Uninformed agents are divided as types I and II based on

their interactions with informed agents. A type I uninformed

agent has a joint path with an informed agent across a finite

sequence of nonempty, contiguous, and uniformly bounded

time-intervals [ti, ti+1) where ti+1 ≥ ti and i ≥ 0. In

contrast, there does not exist such a joint path between a

type II uninformed agent and an informed agent. In [7], Su

et al. showed that the velocities of all informed agents and

the type I uninformed agents are asymptotically approaching

the desired velocity pγ , even if only a small fraction of the

agents are selected as informed agents. The total number of

informed agents and type I uninformed agents are defined as

M(M0 ≤ M ≤ N). In this paper, we propose an algorithm

to improve M by enhancing the number of type I uninformed

agents.

III. CLUSTER-BASED SELECTION OF INFORMED AGENTS

The number of type I informed agents in a group of

dynamic agents clearly depends on the interactions between

informed agents and the rest of the group. According to our

observations, the number of such interactions varies upon

the positioning of informed agents within an initial spatial

distribution of the agents. If the informed agents are evenly

distributed throughout the space, there is a higher chance that

an uninformed agent gets inspired by an informed agents,

which ultimately results in a higher number of type I unin-

formed agents. In order to achieve that, we propose a cluster-

based informed agent selection method. Clustering groups a

set of objects according to certain properties of them such

that the objects in the same group show higher similarity [9].

In this work, we use clustering to partition agents based on

their initial position within the group. Afterwards, we select

an informed agent from each of those clusters. Here, we use a

k-means clustering algorithm [10] once at the beginning of the

simulation for clustering of the agents. Chen et al. [11] also

investigated on cluster consensus of discrete-time multi-agent

systems with several different subgroups.

The k-means algorithm can divide the agents into k parti-

tions based on the distance from each agent to k different cen-

troids. These centroids can be later used for selecting informed

agents. In this work, we select only a single informed agent

from each cluster. Hence, k = M0. The k-means algorithm

finds M0 clusters of agents, {C1, C2, . . . , CM0
}, by minimizing

their within-cluster sum of squares
∑M0

j=1

∑

∀i∈Cj
‖qi − µj‖2.

Here, µj ∈ R
n is the centroid of cluster Cj .

The k-means algorithm starts by initializing µj of cluster

Cj , ∀j(1 ≤ j ≤M0), such that

µ
(1)
j = {qs : s ∈ V, µ(1)

i 6= qs, 1 ≤ i ≤M0, i 6= j}. (12)

After the initialization of centroids, the k-means algorithm

proceeds by alternating between an assignment step and an

update step as described below.
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Fig. 1. Flocking of 50 agents with 5 randomly selected informed agents. At t = 20, there are 26 agents following the virtual leader.
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Fig. 2. Flocking of 50 agents. All the parameters remain same as in Fig. 1, but informed agents are selected on initial clusters. Arrowheads in the same
color belong to the same initial cluster. At t = 20, there are 42 agents following the virtual leader.

Assignment step:

Each agent s in the group is assigned to a cluster Cj such

that

C(l)
j = {s : ‖qs − µ

(l)
j ‖2 ≤ ‖qs − µ

(l)
i ‖2, ∀i, 1 ≤ i ≤M0}.

(13)

An agent can only belong to a single cluster in a particular

iteration l, hence s ∈ C(l)
j ⇒ s 6∈ C(l)

i if i 6= j.

Update step:

The centroids are estimated based on the positions of the

agents that are assigned to each cluster in the previous step,

such that

µ
(l+1)
j =

1

|C(l)
j |

∑

∀i∈C
(l)
j

qi. (14)

For a given threshold ξ ≥ 0, if |µ(l+1)
j − µ

(l)
j | ≤ ξ, ∀j(1 ≤

j ≤ M0), the algorithm terminates and the informed agents

are selected as

hi =







1, if i = argmin
s∈Cj

‖qs − µj‖,

0, otherwise.
(15)

IV. SIMULATION STUDY

We use computer simulations to evaluate and analyze the

performances of the proposed cluster-based informed agents

selection method against the random selection method [7]. A

set of simulations were performed on 50 agents (N = 50)

moving in a 2-dimensional (n = 2) space under the influence

of the control protocol (4). The number of informed agents

is set to M0 = 5, i.e. the fraction of informed agents δ =
M0/N = 0.1. Initial positions and velocities of the 50 agents

were randomly chosen according to uniform distribution from

the boxes [0, 30] × [0, 30] and [−2, 2] × [−2, 2], respectively.

The initial position of the virtual leader was set to qγ(0) =
[15, 15]T and the velocity to qγ(0) = [1, 1]T. The rest of the

parameters are as follows: r = 4.8, d = 4, ǫ = 0.1, h = 0.7,

a = 1, b = 2, c1 = 0.1, and c2 = 0.4. Simulation results for

random and cluster-based informed agents selection methods

are shown in Figs. 1 and 2, respectively. Solid lines in the

figures represent neighboring relations, arrowheads represent

velocities of the agents, and hexagrams represent positions

of the virtual leaders. The informed agents are marked with

circles. The initial distribution of the agents (at t = 0) was

kept the same for both simulations for a fair comparison. The

number of type II uninformed agents increases in both the

cases as time evolves, thus increasing the number of agents
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Fig. 3. Fraction of agents with desired velocity as a function of the initial
density of agents. All estimates are the results of averaging over 50 realizations
with N = 100 and δ = 0.1.

move with the virtual leader. At t = 20, the fraction of agents

move with the virtual leader is η = 0.52 when the informed

agents are selected randomly. When the informed agents are

selected using proposed cluster-based method, η = 0.84. In

this particular case, the cluster-based informed agents selection

method drives more number of agents to follow the virtual

leader compared to the random selection method.

We carried out extensive simulations to further verify the

above results by evaluating η against the initial density of

the informed agents ρ ∈ [0.01, 0.1]. Following parameters

remained fixed through out all simulations: N = 100, r = 4,

d = 3.3, ǫ = 0.1, h = 0.6, a = 1, b = 2, c1 = 0.1,

c2 = 0.4, and δ = 0.1. Initial positions and velocities of

the agents were randomly selected from a [0, L] × [0, L] box

(ρ = N/L2) and a [−0.5, 0.5]× [−0.5, 0.5] box, respectively.

The initial position and velocity of the virtual leader were

set at qγ(0) = [L/2, L/2]T and pγ(0) = [2, 2]T. Simulations

given in Fig. 3 illustrates that the cluster-based informed agent

selection method outperforms the random selection method

in terms of η, for all values of ρ. As ρ decreases, networks

become more sparse (e.g.: when ρ ≤ 0.2, 〈k〉 ≤ 0.4826), and

therefore, the uninformed agents are unlikely to get influenced

by the informed agents.

More simulations were performed to evaluate performances

of the proposed method by varying δ ∈ [0, 1]. All the

parameters remain similar to the simulations associated with

Fig. 3, except ρ is fixed at 0.05. According to the simulation

results given in Fig. 4, the cluster-based informed agent

selection method is capable of driving more agents to follow

the virtual leader compared to random selection of informed

agents regardless of the number of informed agents.

V. CONCLUSION

It has been widely studied that a minority of informed agents

in a group of dynamic agents can influence a majority to follow

a virtual leader. Investigations were carried out to examine

how a selection of informed agents can affect the proportion
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Fig. 4. Fraction of agents with desired velocity as a function of the fraction of
informed agents. All estimates are the results of averaging over 50 realizations
with N = 100 and ρ = 0.05.

of agents which will eventually follow the virtual leader.

Based on the observations, we propose a novel cluster-based

informed agents selection method for flocking of multi-agent

dynamic systems with a virtual leader. Computer simulations

were performed to evaluate performances of the proposed

method against an existing random-based method. Simulation

results show that in several circumstances the proposed method

can influence a larger proportion of agents to follow the virtual

leader compared to the random selection of informed agents.
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