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Abstract—Mobile sensor networks (MSNs) are commonly used
for monitoring an area of interest (AoI) in security and surveil-
lance systems. Maximizing the area coverage is one of the
primary objectives of such systems. With the added mobility
over traditional stationary sensor nodes, mobile nodes can adjust
their positions inside the AoI to increase the overall coverage. In
this paper, we propose an emergent motion control algorithm
for MSNs utilized in surveillance applications. The proposed
algorithm is inspired by the anti-flocking behaviour of solitary
animals. It facilitates robust distributed control for the MSNs
to maximize the network coverage. Computer simulations were
performed to analyze performances of the proposed algorithm.
Simulation results show that under certain conditions, a MSN
with the proposed algorithm can achieve similar network cover-
age as one with centralized anti-flocking control. Furthermore,
the proposed distributed control algorithm provides improved
scalability and adaptivity over the centralized anti-flocking con-
trol and coordinated motion control models.

Index Terms—Mobile sensor networks, surveillance systems,
coverage, distributed control, anti-flocking

I. INTRODUCTION

Mobile surveillance systems embrace mobile sensor net-

works (MSNs) which are capable of self-organizing them-

selves to cope with rapid topology changes. They play an

important role in applications where manual deployment of

nodes are difficult, such as military applications, environ-

mental monitoring in disaster areas, and real-time monitoring

of hazardous materials [1]. The main focus of this paper is

devoted to maximize the network coverage of MSNs. Even

though the coverage problem in stationary sensor networks

has been widely studied, only few attempts have been made

to improve the coverage of MSNs. Most of the previous

work use artificial potential fields [2], [3] or virtual forces

[4], [5] to distribute sensors to desired locations in order to

achieve an improved network configuration. Although these

methods enable MSNs to adapt to a dynamic environment and

enhance the network coverage, they cannot guarantee complete

coverage of an area of interest (AoI) with limited number of

nodes.

Dynamic coverage algorithms enable MSNs to monitor

relatively large areas with few mobile nodes. Wang et al.

proposed a bidding protocol for deploying mobile sensors [6].

Stationary sensors detect the coverage holes locally and bid

mobile sensor nodes to move. Mobile nodes receive bids from

several stationary nodes and then move to the coverage hole

with the highest bid. The sensors move under the influence

of such bidding protocol may generate zigzag motion patterns

which are highly energy consuming. Miao et al. proposed a

coordinated motion control protocol which executes a sweep

searching strategy over the AoI [7]. Although coordinated

motion control protocols perform well in structured and known

environments, they cannot be used in real world surveillance

systems which often associated with highly dynamic environ-

ments. Furthermore, such protocols are not robust as node

failures may occur due to hostilities in the AoI. In contrast to

coordinated protocols, random motion control models can be

utilized in unknown environments [8], [9]. However, they are

not efficient strategies because there is a possibility that one

or more nodes may revisit the same area instead of exploring

unvisited areas.

Miao et al. proposed an emergent motion control model for

maximizing the area coverage of mobile surveillance systems,

which is inspired by solitary behaviours of some animals

[10]. Many social animals show collective behaviours while

migrating and foraging, such as birds flocks, fishes schools,

and bacteria swarms [11]. In contrast, solitary animals, such

as spiders, chipmunks, and tigers, try to be away from each

other in everyday search for securing resources like food,

water, and space [12], [13]. Solitary foraging strategies of

these animals are beneficial to all members of their species

in order to maximize their covering area and minimize the

overlapping in explored areas. They use different strategies for

territorial marking and communicating with other individuals.

Male tigers mark their territory by spraying urine on trees and

marking trails with scat. This high-level cooperation behaviour

of solitary animals is called anti-flocking behaviour [10].

In [10], Miao et al. introduced the following heuristic rules

that governs the dynamics in anti-flocking:

1) Collision avoidance: avoid collisions with others;

2) De-centering: attempt to move apart from neighbours;

3) Selfishness: move to a direction which can maximize own

gains.

They used a software-based agent management platform to

simulate the anti-flocking behavior for a group of mobile

sensor nodes. It outperforms a random motion control model

in maximizing the area coverage and is claimed to be more

adaptive to the environment compared to coordinated motion
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control protocols. However, their implementation is based

on centralized control which is not desirable for real world

mobile sensor networks. In this paper, we introduce a proper

mathematical interpretation to the anti-flocking rules proposed

by Miao et al. In contrast to the implementation in [10],

the proposed algorithm is designed for distributed control of

MSNs. Therefore, the proposed algorithm is scalable and ro-

bust, which make it applicable in many real world applications.

Furthermore, we introduce the concept of information maps

which are inspired by the territorial marking behaviour of

solitary animals.

The rest of the paper is organized as follows. In Section

II, we revisit some background materials on the topology of

mobile sensor networks and introduce the concept of infor-

mation maps. The novel distributed anti-flocking algorithm

is proposed in Section III. Results of our simulation study

are presented in Section IV. Concluding remarks are given in

Section V.

II. PRELIMINARIES

A. Topology of Mobile Sensor Networks

We consider a group of N mobile sensor nodes with

isotropic radial sensors of range rs > 0. These nodes are mov-

ing in n dimensional Euclidean space with double integrator

dynamics
{

q̇i(t) = pi(t),

ṗi(t) = ui(t), i = 1, 2, . . . , N,
(1)

where qi(t), pi(t), ui(t) ∈ R
n are the position, velocity,

and control input of the node i at time t. For notational

convenience, we often use qi(t) = qi, pi(t) = pi and so on.

We assume identical and isotropic radio communication

range/intraction range rc(≥ rs) for all the nodes. Hence,

spatial neighbors of node i at time t can be defined as

Ni(t) = {j : ‖qi − qj‖ < rc, j = 1, 2, . . . , N, j 6= i}, (2)

where ‖ · ‖ is the Euclidean norm in R
n. Due to symmetry,

j ∈ Ni(t) ⇔ i ∈ Nj(t). During the course of motion,

Ni(t) keeps changing with relative distances between nodes.

A dynamic graph of nodes, G(t) = {V, E(t)}, can be de-

fined by using a set of vertices V = {1, 2, . . . , N} whose

elements represent the nodes in the group, and a set of edges

E(t) ⊆ V × V such that (i, j) ∈ E(t) ⇔ i ∈ Nj(t) which

represent the neighboring relations between nodes. Due to the

identical interaction range between nodes, G(t) is undirected,

∀t > 0.

B. Information Maps

The node i keeps track of its navigation and sensing history

using a local information map mi, which can be represented

as a discretized field with similar dimensions to the AoI. Same

information map can be used to record the historical data of

one’s neighbours. First, let us consider the individual updating

of mi. Each cell in mi at time t is denoted by mi(x) where x
is the center coordinates of the cell and X is a set of all such
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Fig. 1. An illustration of an information map (N = 3 and n = 2).

x values which lie within a given AoI. At t = 0, mi(x, 0) =
ω(> 0), and for all t > 0, mi is updated as

mi(x) =

{

0, if ‖qi − x‖ < rs,

mi(x, t− δt) + θδt, otherwise,
(3)

where 1
δt

is the sensing frequency and θ is a positive constant.

If Ni(t) 6= ∅, node i can exchange its information with

node j while ‖qi − qj‖ < rc and update its own map such

that mi(x) = min (mi(x),mj(x)) , ∀x ∈ X and ∀j ∈ Ni(t).
Such a fused information map of three nodes moving in 2-

dimensional (2D) space at t = 10 is illustrated in Fig. 1. In

the figure, relatively lower values of m1(x, y, 10) correspond

to recently explored areas in the AoI by one of the sensor

nodes, and vice versa.

III. THE PROPOSED DISTRIBUTED ANTI-FLOCKING

ALGORITHM

In this section, we present a distributed algorithm for anti-

flocking in free-space for a group of mobile sensor nodes

performing surveillance and monitoring tasks in an AoI. In

the proposed algorithm, each node applies a control input that

consists of three terms

ui = f ci + fdi + fsi . (4)

Each of these terms corresponds to the rules of anti-flocking

introduced in [10].

Collision avoidance among nodes is achieved using the term

f ci = −∇qiV (q), (5)

which is inspired by the gradient-based term in Olfati-Saber’s

free-flocking algorithm [14]. For a given configuration of the

nodes, q = [q1, q2, . . . , qN ]T ∈ R
nN , a non-negative smooth

collective potential function V (q) is given by

V (q) =
∑

j∈V\{i}

ψα(‖qj − qi‖σ). (6)



For a non-negative parameter ǫ, σ-norm of a vector z is

given by ‖z‖σ = 1
ǫ

(

√

1 + ǫ‖z‖2 − 1
)

. Note that ‖z‖σ is

differentiable everywhere whereas ‖z‖ is not differentiable

at z = 0. The smooth pairwise attractive/repulsive potential

function ψα(z) is given by

ψα(z) =

∫ z

‖d‖σ

ph

(

s

‖d‖σ

)

φ(s− ‖d‖σ)ds, (7)

where d(≤ rc) is the minimum desired distance between nodes

and ph(z) can be expressed as

ph(z) =















1, if z ∈ [0, h),
1
2

[

1 + cos
(

π z−h
1−h

)]

, if z ∈ [h, 1],

0, otherwise,

(8)

where h ∈ (0, 1) [14]. In (7), the uneven sigmoidal function

φ(z) is expressed as (1/2)[(a+ b)σ1(z+ c) + (a− b)], where

0 < a ≤ b, c = |a− b|/
√
4ab, and σ1(z) = z/

√
1 + z2.

The decentering term in (4) can be defined as

fdi = −
∑

j∈Ni(t)

aij(q)(qj − qi). (9)

For a positive constant λ, terms in the adjacency matrix of

graph G(t) are given by

aij(q) =















cos
(

π
2
‖qj−qi‖σ

‖rc‖σ

)

exp(−λ‖qj − qi‖σ),
if ‖qj − qi‖σ ≤ ‖rc‖σ,

0, otherwise.

(10)

The selfishness term in (4) is aimed to maximize the gain of

each sensor node. Our anti-flocking algorithm is designed for

mobile sensor networks to maximize their coverage and target

detection rate within an AoI. Hence, the selfishness term is

aimed to drive each node towards recently unexplored areas

close to it. Thus, fsi can be defined as

fsi = −c1(qi − qsi )− c2pi, (11)

where c1, c2 are positive constants and qsi is the position of an

intermediate target of the node i at time t which is selected

based on its and its neighbours’ exploration history. In order to

estimate the position of the intermediate target qsi , we define

a benefit function using mi(x) such that

pbi (x) = mi(x)[γ + (1− γ) exp(−α‖qi − x‖ − β‖qsi − x‖)],
(12)

where α, β are positive constants. The value of α controls

the influence of the spatial gap between a node and its

intermediate target while the value of β is used to control

possible oscillatory behaviors of the intermediate target as time

evolves. A parameter γ ∈ (0, 1) prevents remote parts of mi

from attenuating to 0. The intermediate target is decided based

on a cell on the local information map of each node, that can

maximize pbi (x), i.e.

qsi = argmax
x∈X

pbi (x). (13)

Using (5), (9), and (11), the control input of the proposed

anti-flocking algorithm given in (4) can be summarized as

ui = −
∑

j∈V\{i}

∇qiψα(‖qj − qi‖σ) (14)

−
∑

j∈Ni(t)

aij(q)(qj − qi)− c1(qi − qsi )− c2pi.

One should note that the control protocol given in (14)

assumes different intermediate targets for each node at time t.

IV. SIMULATION RESULTS

Computer simulations were carried out to evaluate and

analyze performances of the proposed distributed anti-flocking

algorithm against a centralized anti-flocking algorithm. In

centralized anti-flocking, it is assumed that navigation and

sensing history of mobile nodes are tracked using a central

information map mc, in contrast to distributed algorithm which

assumes every sensor node uses its own local map. Therefore,

all the sensor nodes have access to the information of all other

nodes in the network ∀t > 0. Hence, the benefit function

for selecting the next intermediate target for centralized anti-

flocking is modified as

p̃bi (x) = mc(x)[γ + (1− γ) exp(−α‖qi − x‖ − β‖qsi − x‖)],
(15)

which enables sensor nodes to estimate their intermediate

goals more accurately compared to the nodes under distributed

control.

In simulations, the anti-flocking algorithms under test are

provided with an AoI with dimensions of 40 × 40 m2. The

corresponding information map consists of 80× 80 cells. i.e.

each cell has dimensions of 0.5× 0.5 m2. Initial positions of

the mobile nodes and their intermediate targets were randomly

selected within the AoI. Extensive simulations were performed

by evaluating the time to scan the AoI completely with

N ∈ [3, 10] number of sensor nodes. For a fair comparison,

following parameters were fixed through out all the simula-

tions: rs = 5 m, d = 5 m ǫ = 0.1, a = 1, b = 2, h = 0.6,

c1 = 0.3, c2 = 0.5, α = 0.04, β = 0.01, γ = 0.2, ω = 1,

θ = 5, and λ = 1. Initial velocities of the mobile nodes were

randomly selected from the box [−0.01, 0.01]× [−0.01, 0.01]
ms−1. Results were obtained by varying rc ∈ [5, 60] m

(rc = 60 m guarantees a fully connected network because

60 >
√
40× 40). Simulation results of the two anti-flocking

algorithms are given in Fig. 2.

According to the simulation results, the average time spent

by the MSN under centralized control to scan the AoI com-

pletely is independent of the interaction range (rc) of sensor

nodes. However, they have to use a long range communica-

tion module to access to the central information map which

carries sensing and navigation history of the other nodes in

the network. The MSN under proposed distributed control

can achieve exactly the same performances as its centralized

counterpart, when the network is fully connected (rc = 60).

This is obvious as every node has access to the local maps of

every other nodes when they are fully connected. Interestingly,
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Fig. 2. Average time spent by (a) centralized and (b) distributed anti-flocking algorithms to scan the AoI completely as a function of the number of mobile
sensors. Simulation parameters are given in Section IV. All data points presented are the results of averaging over 100 realizations.

distributed control can generate very similar performances

even for much smaller values of rc (e.g.: rc = 10 or 20 m).

As rc → rs, MSNs under distributed control show relatively

poor coverage performances as the nodes do not get enough

opportunities to interact with their neighbours because of

strong repulsion forces. Moreover, the MSNs under distributed

control can scan the AoI even faster than their centralized

counterparts with slightly higher number of sensor nodes

(compare the results of centralized control with N = 3 and

rc = 10 m against distributed control with N = 4 and rc = 10
m in Fig. 2, and so on).

V. CONCLUSION

A novel distributed anti-flocking algorithm is proposed for

maximizing the area coverage of MSNs utilized in surveillance

applications. The concept of information maps inspired by

territorial marking behaviour of solitary animals, is introduced

to minimize the overlap of coverage area of sensor nodes.

The proposed distributed control algorithm is scalable, robust,

and adaptive to the environment. Simulation results show that

under certain conditions, a MSN under the proposed dis-

tributed control can achieve similar performances as one with

centralized control. It can also compensate the performance

gap with MSNs under centralized control by using slightly

higher number of sensor nodes. Nevertheless, the operational

cost of a sensor node under distributed control is lower as it

does not require to access the central information map which

is located remotely.
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