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Abstract

Cardiovascular disease (CVD) diagnosis and treatment are challenging since symptoms appear late in the disease’s progression. Despite
clinical risk scores, cardiac event prediction is inadequate, and many at-risk patients are not adequately categorised by conventional risk
factors alone. Integrating genomic-based biomarkers (GBBM), specifically those found in plasma and/or serum samples, along with
novel non-invasive radiomic-based biomarkers (RBBM) such as plaque area and plaque burden can improve the overall specificity of
CVD risk. This review proposes two hypotheses: (i) RBBM and GBBM biomarkers have a strong correlation and can be used to detect
the severity of CVD and stroke precisely, and (ii) introduces a proposed artificial intelligence (AI)—based preventive, precision, and
personalized (aiP3) CVD/Stroke risk model. The PRISMA search selected 246 studies for the CVD/Stroke risk. It showed that using
the RBBM and GBBM biomarkers, deep learning (DL) modelscould be used for CVD/Stroke risk stratification in the aiP3 framework.
Furthermore, we present a concise overview of platelet function, complete blood count (CBC), and diagnostic methods. As part of the AI
paradigm, we discuss explainability, pruning, bias, and benchmarking against previous studies and their potential impacts. The review
proposes the integration of RBBM and GBBM, an innovative solution streamlined in the DL paradigm for predicting CVD/Stroke risk in
the aiP3 framework. The combination of RBBM and GBBM introduces a powerful CVD/Stroke risk assessment paradigm. aiP3 model
signifies a promising advancement in CVD/Stroke risk assessment.
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1. Introduction
Cardiovascular diseases (CVD) are the leading cause

of death worldwide, contributing to 17.3 million deaths an-
nually and an estimated 23.6 million by 2030 [1,2]. CVD
will cost $920 billion in direct medical expenses by 2030,
thus making it a critical concern for the public health sys-
tem [3]. Coronary heart disease (CHD) is the leading cause
of CVD, with atherosclerosis, a chronic inflammatory con-
dition of the artery wall, among the most common causes of
death [4,5]. CVD is correlated with genetic, metabolomic,
environmental, behavioural, and lifestyle characteristics
[6,7]. The most utilized techniques for predicting CVD risk
are based solely on traditional risk factors like age, gen-
der, high cholesterol, high blood pressure, smoking, and
comorbidities such as diabetes mellitus [8] and hyperten-
sion [9,10]. This is because laboratory-based biomarkers
are costly and impossible in developing countries with “re-
source constraints” [11].

Most CVD risk-scoring measurement systems were
designed for Caucasians [12,13]. Meanwhile, various eth-
nicities, such as South Asian and Indian, were not consid-
ered during the development of these systems [14]. Due
to this error, there may be misdiagnoses and suboptimal
treatment outcomes, raising questions regarding the gen-
eralizability and validity of these models for non-cohort
data. Hence, the validity and usefulness of all these pre-
diction models in groups apart from white cohorts remain
unknown, which is a substantial constraint in the current re-
search [9]. It results in complex diagnoses and treatments
to under-estimation or over-estimation, the so-called misdi-
agnosis of CVD risk [15,16]. As a result, there is an obvi-
ous need to resolve the poorly managed misdiagnosis chal-
lenges [17].

Moreover, the relationship between traditional risk
factors and CVD outcomes is often assumed to be linear.
However, when we consider factors like ethnicity and ge-
netic predispositions, this relationship becomes more com-
plex and non-linear. The non-linear risk stratification is
better using artificial intelligence (AI) as it understands the
critical points and accordingly customizes the risk predic-
tions, enhancing the granularity and accuracy of CVD risk
assessment models.

Most recently, a paradigm shift has occurred to-
wards precision medicine, and the use of AI, in particu-
lar, has emerged as a viable solution to these problems
[18]. Former USA President Obama introduced the pre-
cision medicine initiative (PMI) in his 2015 State of the
Union speech [19,20]. PMI will be a “milestone” initia-
tive (if funded) that presents a unique potential for sci-
entists and clinicians to mobilize collective resources and
expertise to develop and spread the knowledge needed to
translate discoveries to reduce the worldwide burden of
CVD [21]. The precision medicine approach, with the
help of AI, can improve symptom-driven care by proac-
tively combining multi-omics assessments with clinical

[22,23], imaging [24–26], epidemiological [27,28], and
demographic variables [29]. Precision medicine allows
for earlier treatments for advanced diagnostics and tailor-
ing better and more affordable personal treatment [30–
32]. The concept of precision medicine is centred on
the predictive, preventive, and personalized (P3) approach
for the 360-degree care of the patient. Fig. 1 shows an
integration of various CVD biomarkers, namely office-
based biomarkers (OBBM), laboratory-based biomarkers
(LBBM), radiomics-based biomarkers (RBBM), genomics-
based biomarkers (GBBM), proteomics-based biomarkers
(PBBM), and environment-based biomarkers (EBBM) feed
to the AI model for the CVD/Stroke risk stratification in
the P3 environment [32]. Each patient attempts to help
clinicians understand how personalized medical informa-
tion variations might contribute to health and effectively
diagnose and anticipate the most effective approach for a
patient’s treatment [33].

We propose in this study a novel method using deep
learning (DL) to risk stratify the CVD/Stroke that combines
RBBM and GBBM as covariates. Furthermore, due to dif-
ficulties such as a lack of clinical assessment and validation
and imbalanced data sets, DL algorithms, particularly DL-
based prediction systems, can exhibit bias and lack gener-
alization. Therefore, we discuss the potential solutions to
these challenges [34,35]. As the importance of reducing
the size of DL-based prediction systems for miniature med-
ical devices such as edge devices, we investigated pruned or
compacted AI systems for CVD risk using multi-omics data
[36]. Finally, we use the explainability model [37] to illu-
minate AI’s “Black Box Nature” and, lastly, to implement
such paradigms into a cloud-based framework [38,39]. This
presented study aims to analyze DL systems for CVD risk
stratification using the UltraAIGenomics model by Athero-
Point™ (Roseville, CA, USA) with the goals of the aiP3,
reducing bias, increasing compression, and making the re-
sults clinically explainable in a cloud/telemedicine setting.

This review examines recent CVD risk assessment
advancements, focusing on integrating AI and precision
medicine. The key contributions of the paper are:

• Ethnic Diversity Integration: To address the under-
representation of ethnic diversity in current CVD risk mod-
els, this paper proposes an AI-powered framework that con-
siders various demographic factors, including genetics and
environment.

• Non-Linear Risk Stratification: This approach im-
proves accuracy in assessing non-linear risk across diverse
populations using sophisticated deep learning algorithms.

• AI-driven Customization: This approach uses AI to
comprehend important data points and personalize risk as-
sessments, providing accurate and flexible risk evaluations
for a range of patient profiles.

• Explainable AI Framework: Examines how to apply
explainable AI frameworks to improve clinician confidence
and speed up the uptake of AI-driven models for CVD risk
assessment.
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Fig. 1. The overview of composite biomarkers using an AI model for the preventive, personalized, and precise (aiP3) solution
leads to multiclass CVD risk assessment. CVD, cardiovascular disease; OBBM, office-based biomarkers; LBBM, laboratory-based
biomarkers; RBBM, radiomics-based biomarkers; GBBM, genomics-based biomarkers; PBBM, proteomics-based biomarkers; EBBM,
environment-based biomarkers.

The structure of this study can be outlined as follows:
Section 2 introduces the search strategy and presents the sta-
tistical distribution. Section 3 delves into radiomics-based
biomarkers as integral components for AI-powered CVD
diagnosis. Section 4 focuses on genomics-based biomark-
ers, which are key features for AI-based CVD diagnosis.
In Section 5, we explore the role of UltraAIGenomics and
the implementation of aiP3-based DL for CVD risk strati-
fication. Section 6 comprehensively discusses factors im-
pacting CVD, including explainability, pruning, blockchain
integration, and other miscellaneous factors. The progres-
sive growth of CVD risk calculators from conventional to
AI-based and its practical implications are presented in Sec-
tion 7. Section 8 delves into critical discussions about DL
models. Lastly, Section 9 concludes the presented study.

2. Search Strategy and Statistical
Distribution

The search strategy utilized by the PRISMA paradigm
is depicted in Fig. 2. Using keywords such as “cardio-
vascular disease”, “stroke”, “CVD”, “genomics and CVD”,
“radiomics and CVD”, “radiomics and stroke”, “genomics
and stroke”, “prevention medicine”, “preventive medicine
and CVD”, “personalized medicine and artificial intelli-
gence”, “atherosclerotic in genomics”, “radiomics and AI”,
“genomics and AI”, and “artificial intelligence”. PubMed
and Google Scholar were used to identify and screen rel-
evant papers. There was a total of 271 entries in the
database search, and there was a total of 448 items from
other sources. After using quality-specific parameters such
as timeliness and relevance, this number was decreased to
719 articles.

This review considered 430 publications in total. The
three criteria for elimination were: (i) unrelated research;

(ii) irrelevant papers; and (iii) inadequate data. This re-
sulted in the exclusion of 289, 160, and 34 studies, as in-
dicated by E1, E2, and E3, resulting in the final assess-
ment of 246 studies. These studies lack AI description or
do not demonstrate risk categorization for CVD or stroke in
RBBM and GBBM. Following the PRISMA methodology,
289 studies were eliminated from the screening process and
designated E1. Only irrelevant research is excluded from
the CVD/Stroke area of view. They are not addressed in
RBBM, GBBM, CVD, and stroke. In this investigation, we
are interested in articles linking CVD/Stroke with RBBM
and GBBM. If the research indicated a correlation between
Parkinson’s disease, cancer, and diabetes, the study was not
considered. This category had 160 studies, as indicated
by E2 in the PRISMA model. These studies lacked suf-
ficient information to be included in our analysis or failed
to demonstrate a connection between RBBM, GBBM, and
CVD/Stroke. Such conversations were not pursued because
neither RBBM nor CVD risk factors, such as LBBM, were
considered. In addition, they lacked adequate selectable AI
and CVD/Stroke characteristics for analysis that could be
utilized for CVD/Stroke risk stratification. This AI algo-
rithm may be a hybrid deep learning (HDL) or neural net-
work (NN) for CVD/Stroke risk classification. We found
24 research studies with inadequate data sets designated as
E3 in the PRIMSA model. We then performed a narrative
synthesis of the data, depending on the nature and quality
of the included studies.

3. Radiomics-Based Biomarkers as Features
for AI-Based CVD Diagnosis

Biomarkers are important in both disease diagnosis
and the development of drugs for the treatment of diseases.
Biomarkers can be categorized as prognostic, pharmaco-
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Fig. 2. PRISMA model for study selection. I, included; E, excluded; AI, artificial intelligence.

dynamic, or predictive from the perspective of precision
medicine [40]. This section discusses the CVD biomark-
ers (OBBM, LBBM, RBBM, and GBBM) utilized as AI
features for CVD risk assessment. Currently, the evalua-
tion of CVD risk factors such as age, gender, baseline sys-
tolic and diastolic blood pressure levels, serum cholesterol,
smoking status, and diabetes history is conventionally re-
quired to predict a patient’s CVD/Stroke risk over one to 10
years or a life-long period. In recent years, various radio-
logical methods have been invented and widely used to rule
out and/or identify preclinical atherosclerotic-based CVD
to advise optimal prophylactic therapy. Since the carotid
artery can be used for the prediction of coronary artery dis-
ease [41–44], the most commonly used imaging modalities
for its screening are magnetic resonance imaging (MRI)
[45–47], computed tomography angiography (CTA) [48–
52], optical coherence tomography (OCT) [53], and ultra-
sound (US) [54,55]. However, the US is the most common,
user-friendly, cost-effective, high-resolution, non-invasive
image acquisition modality capable of imaging and recog-
nizing atherosclerotic plaque [54,56,57]. Therefore, it of-
fers a wide range of applications for regular proactive mon-
itoring of atherosclerotic plaque for CVD risk assessment
[58–63].

As shown in Table 1 (Ref. [41,64–73]), the studies
use stochastics-based methods (SBM) to stratify the CVD
risk. Delsanto et al. [64] proposed a CULEX algorithm
for the feature extraction of carotid intima-media thick-
ness (cIMT) and wall thickness (cWT). The typical mar-
gin of error for cIMT estimations was 7%. This perfor-
mance was comparable to the gold standard reading. These
techniques yielded accuracies between 88.07% to 98.06%.
Most SBM studies use segmentation and multiresolution-
based scale-spacemethods for segmentation [41,65,74–78].
The scale-space-based methods were used to extract the
image-based phenotypes, mainly plaque burden, plaque
area (PA), carotid intima-media thickness (cIMT), intima-
media thickness variability (IMTV), stenosis, and lumen
diameter (LD) and its variations [41,65–69]. Other stud-
ies used Spearman’s [70], Shapiro-Wilk [71], and Kaplan-
Meier’s [72] statistical-based methods for the estimation of
cIMT, IMTV, and LD. Table 2 (Ref. [79–88]) shows the
studies that used DL-based radiomics (covariates) to seg-
ment carotid B-mode ultrasound (cBUS). Most of the stud-
ies used UNet [79–82,89,90], UNet++ [83], and convolu-
tion neural network (CNN) [84] as classifiers and segmen-
tation for the cIMT region in carotid scans.
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Table 1. Studies using non-AI-based (SBM) radiomics for segmentation and quantification (features) using cBUS.
SN Studies (Author and Citation) Year DS Artery

Segment
(CCA/ICA/CB)

IM Method (Algorithm) Feature (Covariates) Performance (ACC, p-value) Conclusion (Relationships)

1 Delsanto et al. [64] 2007 120 CCA US CULEX cIMT and cWT Error <7% cIMT and Plaque ROI extraction.
2 Molinari et al. [66] 2010 200 CCA US Scale-space cIMT, IMTV ACC: 88.90% Tissue characterization of plaque.
3 Ikeda et al. [73] 2013 218 CCA US Threshold cIMT ACC: 90.5% cIMT and Plaque ROI extraction and

segmentation.
4 Araki et al. [41] 2014 100 CCA IVUS Scale-space LD, PA ACC: 91.04% cIMT (R) vs. CCA > cIMT (L) vs.

CCA
5 Ikeda et al. [65] 2017 370 CCA US Scale-space cIMT ACC: 88.07%, AUC: 0.91 (p <

0.0001)
PA in Bulb > PA (CCA)

6 Acharya et al. [67] 2013 404 CCA US Scale-space cIMT, LD ACC: 98.70% High plaque volume narrowing PA
LD/IAD.

7 Ikeda et al. [68] 2015 649 CCA US Scale-space cIMT ACC: 98.86% PA in Bulb > PA (CCA)
8 Saedi et al. [69] 2018 100 CCA US Scale-space cIMT, LD SYNTAX score 15.76 + 4.82 SYNTAX score and cIMT have no

relation.
9 Lucatelli et al. [70] 2016 122 ICA US Spearman’s LA, LD ACC: 88.05%, AUC: 0.91 (p <

0.0001)
IMTV has a strong relationship with

LA volume.
10 Cloutier et al. [71] 2018 6101 CCA US Shapiro-Wilk PA, and cIMT (chi-square 450, p < 0.0001) >

(chi-square 450, p < 0.0001)
A carotid plaque has a stronger relation

with CAC.
11 Johri et al. [72] 2021 514 CCA US Kaplan-Meier MPH CI = 0.99–2.4, p = 0.06 MPH quantification of CCA helps to

predict CVD.
AI, artificial intelligence; cBUS, carotid B-mode ultrasound; SN, serial number; DS, data size; IM, imaging modality; IVUS, intra-vascular ultrasound; US,ultrasound; SBM, stochastics-based methods; cWT,
carotid wall thickness; cIMT, carotid intima-media thickness; LD, lumen diameter; CVD, cardiovascular disease; PA, plaque area; CCA, common carotid artery; IMTV, intima media thickness variability; CI,
confidence interval; CB, carotid bifurcation; CAC, coronary artery calcium; MPH, maximum plaque height; ICA, internal carotid artery; ACC, accuracy; AUC, area under the curve; ROI, region of interest; LA,
left atrium.
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Table 2. Studies using DL-based radiomics (covariates) for segmented features using cBUS.
SN Studies Year DS Artery

Segment
IM AI (ML/DL) Classifier Type Segment Features Performance Conclusion

1 Saba et al. [85] 2018 100 CCA US ML SVM, RF LD ACC: 98.32% Intra/inter-observer variability.
2 Biswas et al. [86] 2020 250 CCA US DL CNN, LR cWT, PB cIMT error <0.093 ± 0.06 77 mm,

AUC: 0.89 (p < 0.0001)
Joint detection cWT and PB.

3 Vila et al. [87] 2020 8000 CCA US DL CNN (Dense Net) cIMT ACC: 96.45%, AUC: 0.89 (p <

0.0001)
Plaque detection and cIMT

estimation.
4 Jain et al. [79] 2021 970 CCA US DL UNet, UNet+ PA ACC: 88%, AUC: 0.91 (p <

0.0001)
Detection of PA and segmentation.

5 Jain et al. [83] 2022 379 ICA US DL UNet, UNet+ PA AUC: 97%, AUC: 0.99 (p <

0.0001)
Detection of PA and segmentation.

6 Yuan et al. [80] 2022 115 CCA US DL UNet cIMT ACC: 97%, Dice 83.3–85.7 cIMT and plaque segmentation.
7 Molinari et al. [84] 2012 500 CCA US DL CNN cIMT and cWT ACC: 95.6%, AUC:0.83 (p <

0.0001)
cIMT and cWT measurement.

8 Gago et al. [81] 2022 8000 CCA US DL UNet PA, cIMT, and cWT estimation ACC: 79.00% Tissue characterization of plaque.
9 Shin et al. [88] 2022 1440 CCA US DL CNN Plaque viscous index ACC: 83.00%, AUC: 0.87 (p <

0.0001)
Viscoelasticity index.

10 Lainé et al. [82] 2022 2676 CCA US DL UNet cWT ACC: 86.00% Dilated U-net architecture is used
for cWT.

cBUS, carotid B-mode ultrasound; SN, serial number; DS, data size; IM, imaging modality; ICA, internal carotid artery; US, ultrasound; cWT, carotid wall thickness; cIMT, carotid intima-media thickness; LD,
lumen diameter; PB, plaque burden; PA, plaque area; CCA, common carotid artery; ICA, internal carotid artery; ACC, accuracy; AUC, area under the curve; AI, artificial intelligence; ML, machine learning; DL,
deep learning; SVM, support vector machine; RF, random forest; CNN, convolution neural network; LR, logistic regression.

6

https://www.imrpress.com


Jain et al. [79] presented an attention-channel-based
DL model for the UNet that can recognize carotid plaques
in images of the internal carotid artery (ICA) and the com-
mon carotid artery (CCA). The experiments include 970
ICA images from the United Kingdom, 379 CCA images
from diabetic patients in Japan, and 300 CCA images from
postmenopausal women in Hong Kong. This is an ethni-
cally unbiased, multi-center, multi-ethnic research study on
evaluating CVD/Stroke risk. The DL-based UNet model
shows higher accuracy (98.32%) for plaque segmentation
in the far walls of the arteries [85]. It has been demonstrated
that cIMT and carotid plaque derived as image-based phe-
notypes using carotid ultrasound, when integrated with con-
ventional CVD risk indicators [85–87], improved CVD risk
prediction [91–96].

4. Genomics-Based Biomarkers as Features
for AI-Based CVD Diagnosis

Some studies have focused on incorporating mul-
tivariate biomarkers, leading to multivariable prediction
models, to improve diagnosis and CVD risk stratification
[97,98]. Regarding in vitro biomarkers, the molecules can
be isolated from the serum and/or plasma of asymptomatic
subjects and CVD patients. The prediction models analyze
the diverse circulating molecules, where these multivari-
ate biomarkers represent the development of atherosclero-
sis and coronary arteries at various levels. Such GBBM in-
cludes cellular, biochemical, epigenetic, and transcriptional
biomarkers towards the development of CVD and is dis-
cussed below. Further, Table 3 (Ref. [99–135]) summa-
rizes the effect of GBBM on CVD.

4.1 Cellular-Based Biomarkers

In the progression of CVD, circulating cells pro-
duce a broad spectrum of biomarkers [136]. This reveals
that atherosclerosis and cardiovascular risk factors increase
monocytes [137]. Monocyte subpopulations with various
surface markers, functional changes, and gene expression
alterations play diverse roles in atherogenesis [138]. It
has been shown that serum leukocyte concentration and
neutrophil/lymphocyte ratio predict plaque susceptibility
[99,100]. Several studies show a correlation between CVD
risk factors, coronary lesion severity, and functional im-
pairment [99,101–103,139]. Flow cytometry has revealed a
link between the number of CD31 (+) cells and the density
of atherosclerotic arteries [104,140]. Kim et al. [105] show
the molecular markers to monitor the CD31(+) cell activity
in the blood of CHD patients. It reveals a strong link be-
tween the number of CD31(+) cells that trigger atheroscle-
rosis [103,106].

4.2 Biochemical-Based Biomarkers

Inflammatory biomarkers may be beneficial in di-
agnosing healthy individuals for CVD risk [141]. Sev-
eral biomarkers have been identified recently, although

none have been linked to imaging characteristics. Trans-
forming growth factor beta 1 (TGF-β1) [142], cellular ad-
hesion molecules (CAM) [143], monocyte chemoattrac-
tant protein-1 (MCP-1) [107], stromal cell-derived factor-
1 (SDF-1) [108], lectin-like oxidized low-density lipopro-
tein receptor 1 (LOX-1) [109], haemoglobin A1c (HbA1c)
[110–112], interleukin (IL) [113,114], and pentraxin 3
(PTX3) [115] are strongly associated with the development
of CVD in patients.

4.3 Epigenetic-Based Biomarkers
Epigenetic changes are important in CVD and

atherosclerosis [116,117]. Deoxyribonucleic acid (DNA)
methylation, histone changes, and non-coding RNA
(ncRNA) regulate epigenetic pathways [118]. Several stud-
ies evaluated the methylation proportion of genomic DNA
from blood cells [144]. There is a strong relationship be-
tween the DNA methylation process and CVD or acute
coronary syndrome (ACS) [145,146]. A methylation pat-
tern and a methylation signature can be used as predic-
tive biomarkers for increased cardiac events, ischemic heart
disease, stroke, and patient mortality [119]. Gallo et al.
[118] proposed a plasma MiR-17-92 cluster downregula-
tion, miR-126, miR-145, miR-133, miR-208a, and miR-
155 upregulation, linking these to CHD severity. Hu et al.
[120] explained the role of plasma miR-214 concentrations
in the bloodstream that correlated with the degree of coro-
nary stenosis.

4.4 Transcriptional-Based Biomarkers
Genome-wide transcriptomic analysis has identified

new disease biomarkers [120,121]. Multiple investiga-
tions on blood cell profiling of gene expression have
shown distinct transcriptional signatures in CVD patients
and healthy participants [122,147]. Yang et al. [123]
showed that the transcription biomarkers named my-
ocardin/GATA4/Nkx2.5 have higher levels in patients cor-
related with CVD disease severity. The upregulation of mi-
croarray EGR1 levels can easily differentiate ischemia from
non-ischemic CHD patients [122]. The expression pattern
correlated with CHD severity and gene function in vascu-
lar tissues demonstrated the synchronization between cir-
culating cells and the atherosclerotic artery wall; for bet-
ter identification and CVD risk prediction, one needs su-
perior genomic biomarkers [148,149]. Gene expression
alteration may serve as biomarkers for disease develop-
ment, progression, therapy efficacy, and environmental
moderator effects. Specifically, 365 genes were discov-
ered to be expressed differently between CHD patients and
healthy participants [124,150]. The carotid artery is a surro-
gate biomarker of coronary atherosclerosis when integrat-
ing cost-effective carotid B-mode ultrasound (cBUS) imag-
ing techniques, and GBBM can lead to precise CVD risk
stratification. However, the system becomes non-linear due
to the presence of multiple covariates. AI plays an impor-
tant role in reducing nonlinearity between covariates and
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Table 3. Studies showing Genomics-based biomarkers (features) responsible for CVD, CHD, and HF.
SN Studies Year REF Source Biomarker Nomenclature Observations Clinical Outcome

Class 1: Cellular-based biomarkers (CBBM)

1 Shantsila et al. [100] 2014 26
PBMC

CCR2-monocytes; CD14+CD16++;
CD14++CD16+CCR2+

CHD patients had lower levels of CD14 and
D14+CD16++CCR2-subpopulation expression.

Diagnosis2 Weber et al. [103] 2016 108
3 Williams et al. [102] 2021 104

4 Arbel et al. [99] 2012 28
Leucocytes

The ratio of Neutrophils to Lymphocytes
(N/L)

CHD severity and plaque vulnerability increase with
an elevated (N/L) ratio.

Predictions and Diagnosis.5 Teperman et al. [101] 2017 54
6 Tareen et al. [125] 2022 21

7 Berezin et al. [104] 2014 35
PBMC Endothelial progenitor cells (EPCs)

Reduction in cell count and functional disability in
CHD patients; linked to coronary lesion severity
and sub-stent plaque burden.

Future CV events/PCI follow-up is diagnostic/
predictive.8 Otto et al. [126] 2017 44

9 Kim et al. [105] 2014 28
Blood CD31+, hs-CRP

Elevated CD31+ cells in unstable angina patients;
links with atherosclerotic coronaries.

Predictions and Diagnosis of unstable angina.
10 Yuan et al. [106] 2020 34

Class 2: Biochemical-based biomarkers (BCBM)

SN Studies Year REF Source Biomarker nomenclature Observations Clinical Outcome

1 Blankenberg et al. [111] 2001 19
Serum sICAM-1/sVCAM-1 Significantly higher in unstable angina patients. Predictions and Diagnosis of ACS.

2 Hulok et al. [110] 2014 16

3 Yan et al. [107] 2021 113 Plasma MCP-1 RCA identifies coronary atherosclerosis in UA pa-
tients; ACS patients have high concentrations.

Predicative increased risk of mortality or
AMI.

4 Balın et al. [108] 2012 64
Serum LOX-1

Higher levels in CHD patients with more severe
disease.

Predictive and diagnosis of future CHD.
5 Sawamura et al. [109] 2015 85

6 Hudzik et al. [115] 2014 26 Plasma PTX3 Reduced level of PTX3 results in plaque vulnerability. Diagnostic

7 Cavusoglu et al. [113] 2011 57
Serum IL-10 Lowered in patients with ACS.

Predictive/diagnostic of long-term negative
outcomes.8 Kahles et al. [114] 2020 35

9 Dechkhajorn et al. [112] 2020 49 Serum IL-8 Increased levels in patients with CHD. Predictive/diagnostic of long-term out-
comes.

10 Ridker et al. [127] 2021 163
Serum IL-6

High concentration among patients with multivessel
atherosclerosis and calcified plaque, as measured
by CCTA.

Diagnostic
11 Moore et al. [128] 2019 09

Class 3: Epigenetic-based (Genetic) biomarkers (EpiBBM)

SN Studies Year REF Source Biomarker Nomenclature Observations Clinical Outcome

1 Lopes et al. [116] 2019 39 Lymphocytes LINE-1 Lower CHD methylation Identifies or predicts a higher risk of acute
events and fatality.

2 Kim et al. [117] 2010 26 Lymphocytes Alu/Sat2 Higher CHD methylation Diagnostic
3 Li et al. [129] 2021 43 Lymphocytes PLA2G7 Significant promoter methylation in CHD Gender and age-specific diagnos-

tic/predictive of CHD risk.
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Table 3. Continued.
SN Studies Year REF Source Biomarker Nomenclature Observations Clinical Outcome

4 Wang et al. [130] 2022 265 Lymphocytes ABCA1 Higher mutagenesis in CHD patients linked to low HDL; age-
ing, CHD in men.

Diagnostic

5 Gilham et al. [131] 2016 63
Plasma/Serum Microarray

MiR-17-92 cluster downregulation, miR-126,
miR-145, miR-155 upregulation, and miR-133 and
miR-208a upregulation are all linked to CHD severity.

Diagnostic
6 Larsen et al. [132] 2021 55

7 Gallo et al. [118] 2021 67 Serum mir-197/mir-223 Patients with CHD have elevated levels. Diagnostic

8 Doroschuk et al. [119] 2021 59 Plasma Realtime PCR High amounts of miR-17-5p are linked to the severity of CHD. Diagnostic

9 Zhao et al. [133] 2017 43
Plasma mir-214

Concentrations in the bloodstream that correlate with
the degree of coronary stenosis.

Diagnostic
10 Hu et al. [120] 2022 43

Class 4: Transcriptional-based biomarkers (TBBM)

SN Studies Year REF Source Biomarker Nomenclature Observations Clinical Outcome

1 Infante et al. [124] 2017 162 Leucocytes Homer1/IL-1β/TNF-α CHD patients have higher mRNA levels than healthy controls. Diagnostic
2 Holvoet et al. [134] 2016 34 Monocytes MT-COI Low levels associated with CHD. Predictive events related to CHD.
3 Yan et al. [135] 2014 71 PBMCs MSH2/XRCC1/ATM Increased upregulation in diabetic CHD patients. Diagnostic
4 Yang et al. [123] 2020 36 PBMCs Myocardin/GATA4/Nkx2.5 Higher levels of transcription in patients correlate with disease

severity.
Diagnostic

5 Frambach et al. [121] 2020 106 Monocytes Microarray ABCA1, ABCG1, and RGS1 are suppressed, but ADRB2 and
FOLR3 are increased.

Diagnostic

6 Fan et al. [122] 2021 44 PBMCs Microarray Upregulation of EGR1 levels can differentiate ischemia from
non-ischemic CHD patients.

Diagnostic

CVD, cardiovascular disease; CBBM, cellular-based biomarkers; SN, serial number; REF, reference; N/L, neutrophils to lymphocytes; CHD, coronary heart disease; PBMC, peripheral blood mononuclear
cells; HF, heart failure; AMI, acute myocardial infarction; UA, unstable angina; hs-CRP, high-sensitivity c-reactive protein; BCBM, biochemical-based biomarkers; EpiBBM, epigenetic-based biomarkers; EPC,
endothelial progenitor cell; ACS, acute coronary syndrome; sICAM-1, soluble intercellular adhesion molecule-1; sVCAM-1, circulating vascular cell adhesion molecule-1; MCP-1, monocyte chemoattractant
protein-1; RCA, right coronary artery; TBBM, transcriptional-based biomarkers; LOX-1, lectin-like oxidized low-density lipoprotein receptor 1; PTX3, pentraxin 3; IL, interleukin; CCTA, coronary computed
tomography angiography; LINE-1, long interspersed nuclear elements-1; ABCA1, ATP-binding cassette transporter A1; mir, micro RNA; IL-1β, interleukin-1 beta; TNF-α, tumor necrosis factor-alpha; MT-COI,
mtDNA encoded cytochrome c oxidase subunit I; MSH2, MutS homolog 2; XRCC1, X-ray repair cross-complementing protein 1; ATM, ataxia telangiectasia; RGS1, regulator of G-protein-1; ADRB2, beta-2
adrenergic receptor; CV, cardio vascular; PCI, percutaneous coronary intervention; CCR2, C-C chemokine receptor type 2; FOLR3, folate receptor gamma; PCR, polymerase chain reaction; ABCG1, ATP-binding
cassette protein G1; EGR-1, early growth response protein 1; HDL, hybrid deep learning.

9

https://www.imrpress.com


outcomes. The following section discusses the role of AI
in CVD risk stratification using the radiogenomics frame-
work. The role of OBBM, LBBM, RBBM, GBBM, and
EBBM is shown in Fig. 3. Previously, blood biomarkers
and carotid ultrasonography have been used to predict the
10-year risk to improve plaque identification for monitoring
atherosclerotic disease [151].

5. UltraAIGenomics: aiP3-Based Deep
Learning for CVD Risk Stratification

Advances in machine learning (ML) and DL have
been well-recognized in medical imaging [152–155]. Deep
neural networks (DNNs), a DL subgroup and work like a
human brain, are considered a DL core [156–158]. Recent
studies have used AI to risk stratify CVD in the RBBM [9–
11,159–163] and GBBM [27,30,164] frameworks. DL is
becoming more popular because it (i) extracts the features
automatically [165], (ii) can fuse with ML configurations
for classification [157,166], (iii) leverages UNet, and hy-
brid UNet-based DL strategies for segmentation [29,38],
and (iv) finally, it gives more accurate segmentation and
solo or ensemble-based classification due to its ability to un-
dergo forward and backward propagation by reducing dif-
ferent kinds of loss functions [79].

Typical Deep Learning paradigm for CVD risk strati-
fication: An Overall system DL is an effective strategy be-
cause it uses the underlying knowledge base to create au-
tomated features and offers a better training paradigm due
to a profound number of NN layers that adjust the nonlin-
earity among both variables (covariates) and the gold stan-
dard. Fig. 4 depicts a typical DL system. The input ac-
quisition consists of several biomarkers, namely, OBBM,
LBBM, carotid image-based phenotypes (CUSIP) under the
class of RBBM, medication utilization (MedUSE), GBBM,
PBBM, and EBBM.

5.1 Training and Prediction
The architecture consists of two halves. The left and

right half is the training subsystem, and the right is the pre-
diction subsystem. The DL training classifiers consist of
one of the DL classifiers, namely, long short-term mem-
ory network (LSTM), recurrent neural network (RNN),
gated recurrent units (GRU), bidirectional LSMT (BiL-
STM), bidirectional RNN (BiRNN), and bidirectional GRU
(BiGRU) (presented in the following subsection). Along
with the DL classifier bank, there are supervised clinical
risk labels representing ground truth (GT), such as heart
failure (or high CVD risk) and stroke [159,167]. This GT
representing the CAD includes computed tomography (CT)
coronary score [168] or quantification of CAD lesions using
intravascular ultrasound (IVUS) [169,170]. Several non-
linear training-based approaches have been shown in heart
disease risk stratification [10,160,163,171].

Deep Learning Classifier Banks
The RNN [172], BiRNN [173], LSTM [174], BiL-

STM [175], GRU [176], and BiGRU [177] models eval-
uate sequential data, such as electrocardiograph (ECG)
[176,178], text [174], speech [179], localization of my-
ocardial infraction [175] and handwriting [180,181]. These
models contain a set of continuous data patterns.

5.2 Radiomics-Based Biomarkers: DL-Based Plaque Wall
Segmentation and CUSIP Measurement

CUSIP refers to image-based carotid artery pheno-
types [63,68,182,183]. This training program is adaptable
to non-linear adaptation [10,160,163,171,184,185]. Fig. 5
(Ref. [43]) represents the cBUS scan and its corresponding
coronary atherosclerotic disease.

The DL system can be used to measure plaque burden,
plaque area, average and maximum cIMT, IMTV, geomet-
ric and morphological total plaque area (TPA), and steno-
sis/lumen diameter [186–188]. This DL system segments
the walls and then computes CUSIP [189,190]. The su-
pervised DL-based CVD risk stratification uses the GT for
training and performance evaluation.

5.3 Plaque Wall Segmentation in the UNet-Based Deep
Learning Framework

Jain et al. [29] proposed a U-shaped network (UNet)
model for detecting atherosclerotic plaque. The model uses
four layers of DL and a pair of encoders and decoders. Uti-
lizing the capabilities of automated feature extraction and
reconstruction of desired forms, UNet-based DL has re-
cently overtaken the medical image segmentation market
of imaging modalities [191].

Ronneberger et al. [192] first announced UNet as an
image segmentation method for comparison with conven-
tional standard segmentation techniques in 2015. The ar-
chitecture of this UNet is depicted in Fig. 6 (Ref. [29,193,
194]), showing the bridge network, encoders, decoders,
skip connections, loss function conditions, and binary con-
version (so-called “softmax layer”) are primary compo-
nents of UNet architecture. When coupled with the ability
to select the highest-level characteristics called max pool-
ing, this historical breakthrough of down and up convolu-
tion boosts the automated feature extraction process [192].

5.4 Long Short-Term Memory Classifier
The RNN model cannot work to learn long-term de-

pendencies, which results in a bridge problem when con-
necting old and new data [195,196]. This seldom causes the
vanishing gradient problem, in which error signals vanish
after backpropagation, leading to challenges in the model
design [179]. LSTM networks replace the hidden layer
node with a memory unit to improve the RNNmodel [197].
The cell’s state is the master key to archiving past data.
There are three gate architectures for using the sigmoid ac-
tivation function and the point-by-point product operation
to modify or remove data from the current state of the cell
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Fig. 3. Cardiac multivariate biomarker assessments (OBBM, LBBM, RBBM, andGBBM) for the risk stratification of atheroscle-
rosis disease. OBBM, office-based biomarkers; LBBM, laboratory-based biomarkers; RBBM, radiomics-based biomarkers; GBBM,
genomics-based biomarkers; PBBM, proteomics-based biomarkers; EBBM, environment-based biomarkers; BMI, body mass index;
eGFR, estimated glomerular filtration rate; ESR, erythrocyte sedimentation rate; cIMT, carotid intima-media thickness; IMTV, intima
media thickness variability; MPH, maximum plaque height.

[197]. The internal structure of an LSTM unit is depicted
in Fig. 7; the forget gate, input gate, and output gate can
be seen from left to right. An LSTM network could process
sequence information in the cumulative linear form to avoid
gradient vanishing and learn long-period information. The
LSTM can be trained to understand data over extended pe-
riods. The equation for the forget gate is given as follows:

ft = σ (ωf ∗ [ht−1, xt] + bf ) (1)

whereas, ft is the output value of the forget gate and
ht−1, is the output value for the preceding state, xt is in-
put value present state, ωf is a weight matrix, σ is the sig-
moid activation function, and bf represents bias vector. The
equation for the input gate is given as:

it = σ (ωi ∗ [ht−1, xt] + bi) (2)

kt = tanh (ωk ∗ [ht−1, xt] + bk) (3)

whereas it and kt are outputs of the input gate, ωk

and bk are the weight matrix and bias vectors, and tanh is
the activation function of the input gate. The equation for
the output gate is as follows,

Ot = σ (ωo ∗ [ht−1, xt] + bo) (4)

ht = Otσ ∗ tanh (Ct) (5)

whereOt is the output value of the output gate, ωo and
bo are the weight matrix and bias vector of the output gate’s,
σ is the sigmoid activation function, and ht indicates the
current output value of the present state. Now, the revised
state cell is,

Ct = ft ∗ Ct−1 + it ∗ kt (6)

whereasCt represents the state of the cell at the current
moment andCt−1 represents the state of the cell at the prior
instant.
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Fig. 4. DL-based architecture for CVD risk assessment. OBBM, office-based biomarkers; LBBM, laboratory-based biomarkers;
RBBM, radiomics-based biomarkers; GBBM, genomics-based biomarkers; PBBM, proteomics-based biomarkers; EBBM, environment-
based biomarkers; LSTM, long short-term memory network; RNN, recurrent neural network; GRU, gated recurrent units; Bi, bidirec-
tional; CVD, cardiovascular disease; DL, deep learning; GT, ground truth; AI, artificial intelligence; ROC, receiver operating character-
istic.

Factors Affecting DL Architecture and its Optimization

The challenge with DL solutions is that they need op-
timization during training using hyperparameters [38,80].
DL-based training requires several epochs, the best learning

rate, batch size, batch normalization, and dropout layers to
avoid overfitting or generalization without memorization.
[198,199]. Further, the patients with CVD risk with other
comorbidities cause the dynamics to be non-linear between
covariates and the gold standard [200]. Thus, to get the
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Fig. 5. CUSIP Measurement. (a) Carotid artery is a potential surrogate marker for the coronary artery. Also, the grayscale images are
shown for carotid longitudinal B-mode US scans and coronary IVUS transverse scan (b) B-mode carotid longitudinal imaging system
using linear ultrasound [43]. CUSIP, carotid image-based phenotypes; US, Ultrasound; IVUS, intra vascular ultrasound.

Fig. 6. UNet model for segmentation of the atherosclerotic plaque wall [29]. GT is ground truth, and Conv is convolution. The UNet-
based DL model can transmit features extracted from the encoder to the decoder phases and preserve the desired features during shape
reconstruction at the decoder phase. In contrast to geometric curves based on level sets, UNet-based DL does not require the positioning
of the first curves. Moreover, it needs the gold standard for training the UNet-based DL models [193,194]. DL, deep learning; GT,
ground truth; UNet, U-shaped network.

best DL architecture, one needs an extensive data frame-
work with several different diagnostic sources and multiple
data sets [201].

6. Explainability, Pruning, Bias, and
Miscellaneous Factors Affecting CVD
6.1 The Role of Artificial Intelligence Explainability

Explainability is critical to CVD risk assessment be-
cause it gives medical professionals and physicians insight

into the underlying characteristics and circumstances that
influence AI models’ predictions. The most crucial part
of AI or deep learning is understanding how AI’s “black
box” works. Medical professionals are more likely to un-
derstand the “black box” if the results can be interpreted and
questioned [202]. Explainability breaks down the “black-
box” aspect of complicated deep learning (DL) models, al-
lowing physicians to pinpoint the precise genetic or imag-
ing characteristics that have the most significant impact on
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Fig. 7. LSTM architecture for CVD risk stratification. LSTM is a long short-term memory network, and ReLU is a rectified linear
unit. CVD, cardiovascular disease; LSTM, long short-term memory network.

the model’s risk predictions. With a more detailed under-
standing of the illness processes and risk variables made
possible by this information, doctors are better equipped
to decide how best to treat patients and implement inter-
vention measures. Explainability also encourages coopera-
tion betweenAI systems and human professionals, enabling
a mutually beneficial partnership in which AI enhances
clinical decision-making rather than replacing it. Since
the AI model may shed light on complex disorders using
tools like local interpretable model-agnostic explanations
(LIME) and shapley additive explanations (SHAP), it has
gained credibility among medical professionals [154,203].
Like other lesions, carotid lesions can be displayed us-
ing GradCAM, GradCAM+, or GradCAM++ [204]. This
opens the door for a wider acceptance of AI models in the
medical field. As a result, AI devices can be improved and
made economic if they can be explained [205].

6.2 The Role of Pruning-Based Deep Learning Systems
Edge devices are becoming increasingly important as

cloud-based systems and the internet improve [206]. Edge
devices are extremely important when using trained AI
models for future predictions or disease risk stratifications
in mobile frameworks [207]. There is a requirement to de-
ploy compressed models since huge data models cannot be
deployed on edge devices [208]. Image-based deep learn-
ing models such as fully convolutional networks (FCN) or
segmentation networks (SegNet) [36] can be pruned using
evolutionary algorithms such as particle swarm optimiza-
tion (PSO), genetic algorithms (GA), wolf optimization
(WO), and differential evolution (DE) [209]. The future
of radiomics-based CVD risk stratification fused genetic-
based paradigms can be compressed and deployed on edge
devices for rural areas, especially in third-world nations
[210].

6.3 Role of Bias in Artificial Intelligence

Evaluating bias in AI models has gained much greater
significance in recent years [211,212]. Earlier computer-
aided diagnosis techniques showed a lack of bias in eval-
uations [200]. To reduce bias, a large sample size, ap-
propriate clinical testing, incorporating comorbidities, us-
ing big data configurations, using unseen data analysis, and
the scientific validation of training model design are all
strategies that can be utilized [34,168]. Important phases in
patient risk stratification include determining the AI RoB
[34,35,213] and suitably modifying diagnostics and treat-
ment.

7. CVD Risk Calculators: Conventional vs.
AI-Based and its Practical Implications

Researchers developed five generations of cardiovas-
cular risk stratificationmethods over time. The first genera-
tion usedmanual calculations, assessing risk based on blood
tests, family history, and carotid ultrasound [214]. The
second generation employed calculators like framingham
risk score (FRS) and atherosclerotic cardiovascular disease
(ASCVD) but had variability [26]. The third generation in-
troduced image-based strategies using AtheroEdge™ sys-
tems for automation [29]. The fourth generation used ma-
chine learning, collecting data from MRI, US, and CT with
automated segmentation and classifiers like SVM and ran-
dom forest (RF). In the fifth generation, deep learning was
employed for detailed multiclass risk assessment, repre-
senting a comprehensive evolution from manual calcula-
tions to advanced DL-based approaches with the potential
for monitoring treatment responses [214].

Practical Implications of the Proposed AI Model

The AtheroEdge™ 3.0 classification system, powered
by ML and DL, has practical implications. It offers pre-
cise risk stratification for diabetes using biomarkers like
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OBBM, LBBM, and RBBM, classifying them into low,
moderate, and high-risk categories with over 26 models
[215]. It is adaptable for various applications by incorporat-
ing image-derived risk factors through AI-based radiomics
analysis of carotid ultrasound images, using CNN, UNet,
UNet+, SVM, RF, and logistic regression (LR) algorithms
for high accuracy [204]. It is reliable for CVD risk assess-
ment, handles large cohorts, and extends to oncology for
cancer risk stratification [166].

AtheroEdge™ 3.0’s capability to assess the impact of
additional features on classification performance is notable,
making it a superior choice [216]. It evaluates models using
metrics like accuracy, area under the curve (AUC), p-value,
sensitivity, specificity, F1-score, mathew correlation coef-
ficient, precision, and recall, aiding in model selection for
specific applications [217].

8. Critical Discussions
The DL system needs to overcome key concerns like

bias, explainability, ergonomic design, and affordability to
ensure the safety and effectiveness of the medical product,
such as CVD risk stratification.

8.1 Principal Findings

This is the first study of its kind (a) that combines ra-
diomics and genomic biomarkers to detect the severity of
CVD and stroke risk precisely and (b) that introduces a pro-
posed aiP3 riskmodel based on a preventive, predictive, and
personalized approach that uses DL to classify CVD and
stroke risk more accurately. Using these two hypotheses,
we demonstrated that CVD and stroke risk severity could
be determined using RBBM and GBBM biomarkers in the
DL framework. Such models can be considered personal-
ized medicine frameworks [218]. One of the major inno-
vations is to ensure that cBUS imaging and CVD genomic
biomarkers are jointly used in the DL framework for CVD
risk stratification provided for accurate, robust, real-time
CVD risk assessment using combined RBBM and GBBM
[219].

Platelet count, mean platelet volume (MPV), platelet
RNA, and protein are all parameters that are used to evalu-
ate platelet function and activity [220]. Platelets are small,
anucleate cells that play a critical role in hemostasis and
thrombosis, and abnormalities in their function have been
implicated in various CVDs [221]. High platelet counts, in-
creased MPV, and elevated levels of platelet RNA and pro-
tein have been associatedwith an increased risk of CVD and
adverse cardiovascular events [148,150]. Complete blood
count (CBC) blood indices, including red blood cell (RBC)
count, haemoglobin (Hb) concentration, hematocrit (Hct),
mean corpuscular volume (MCV) and mean corpuscular
haemoglobin concentration (MCHC), are routinely used to
assess blood cell counts andmorphology [222]. Abnormali-
ties in these indices have been linked to various CVDs, such
as anaemia, ischemic heart disease, and stroke [223]. The

neutrophil to lymphocyte (N/L) ratio measures the balance
between innate and adaptive immunity and has been pro-
posed as a biomarker of inflammation and oxidative stress
[224]. Elevated N/L ratios have been associated with an
increased risk of CVD and adverse cardiovascular events
and are thought to reflect chronic low-grade inflammation
and impaired immune function [225]. In summary, platelet
count, MPV, platelet RNA, protein, CBC blood indices, and
N/L ratios are all parameters used to evaluate various as-
pects of cardiovascular health and disease [226]. Abnor-
malities in these parameters have been linked to increased
risk of CVD and adverse cardiovascular events [227].

8.2 Benchmarking against Previous UltraGenomics-Based
Systems

The benchmarking studies outlined in Table 4 (Ref.
[9–11,24,29,33,62,83,228–237]), consist of 17 attributes
that are identified by the letter ‘K’ followed by a num-
ber. The first attribute, K0, refers to the serial num-
ber assigned to each study. The second attribute, K1,
represents the name of the studies, while K2 represents
the year of publication. The third attribute, K3, indi-
cates the references used in the studies. The remain-
ing 14 attributes, K4 through K17, are related to us-
ing different types of AI studies in CVD risk predic-
tion. K4 through K9 represent six different types of AI-
based biomarkers for CVD, including office-based blood
biomarkers (OBBM), laboratory-based blood biomarkers
(LBBM), radiology-based biomarkers (RBBM), genetic-
based biomarkers (GBBM), proteomics-based biomarkers
(PBBM), and environmental-based biomarkers (EBBM).
Krittanawong et al. [228] elaborate on the rapid growth of
digital technology adoption within healthcare, anticipating
substantial improvements in care quality and global health-
care accessibility. However, they emphasize the necessity
for more comprehensive data, efficacy studies, and objec-
tive outcomes to solidify the role of digital health in pa-
tient care. Another study by Jamthikar et al. [62] utilized
ML techniques to stratify CVD risk in patients. This re-
search underscores two of three pathways directly affect-
ing atherosclerosis and highlights the superior performance
of carotid ultrasound image-based calculators over standard
methods. CVD risk stratification in patients using AI-based
approaches is increasingly prevalent. Conversely, Saba et
al. [229] offer a concise overview of the development
of carotid atherosclerosis via B-mode ultrasound imaging.
Their work underscores the inadequacies of conventional
risk scores and explores the potential of machine learning-
based tissue analysis to address these gaps. Gruson et al.
[230] provide a comprehensive review of AI applications
in genomics and imaging, noting the limited clinical imple-
mentation of several techniques. They anticipate that re-
cent advancements in DL will revolutionize this domain,
enhancing patient care in conjunction with human interpre-
tation and clinical reasoning.
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Table 4. Benchmarking table for CVD risk using multivariate biomarkers.
K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17

1 Krittanawong et al. [228] 2018 31 ✓ ✓ × ✓ ✓ × ✓ ✓ ✓ NR × × × ×
2 Arena et al. [232] 2018 202 ✓ ✓ × ✓ × × ✓ × ✓ NR × × × ×
3 Krittanawong et al. [234] 2017 88 ✓ ✓ × ✓ × × ✓ × ✓ DL × × × ×
4 Jamthika et al. [62] 2019 110 ✓ ✓ ✓ × × × ✓ ✓ × HDL × × × ×
5 Khanna et al. [24] 2019 54 ✓ ✓ ✓ × × × ✓ ✓ × ML × × ✓ ×
6 Saba et al. [229] 2021 125 ✓ ✓ ✓ × × × ✓ ✓ × DL × × × ×
7 Dainis et al. [33] 2018 83 ✓ ✓ × ✓ × × ✓ × ✓ DL × × × ×
8 Jamthikar et al. [9] 2020 40 ✓ ✓ ✓ × × × ✓ ✓ × ML × × × ×
9 Gruson et al. [230] 2020 42 ✓ ✓ × ✓ ✓ × ✓ × ✓ HDL × × × ×
10 Jamthikar et al. [11] 2020 118 ✓ ✓ ✓ × × × ✓ ✓ × ML × × × ×
11 Alimadadi et al. [231] 2020 56 ✓ ✓ × ✓ × × ✓ × ✓ ML × × × ×
12 Saba et al. [233] 2021 69 ✓ ✓ ✓ × × × ✓ ✓ × ML × × ✓ ×
13 Jamthikar et al. [10] 2021 85 ✓ ✓ ✓ × × × ✓ ✓ × ML × × ✓ ×
14 Westerlund et al. [235] 2021 167 ✓ ✓ × ✓ × × ✓ × ✓ DL × × × ×
15 Schiano et al. [236] 2021 29 ✓ ✓ × ✓ ✓ × ✓ × ✓ ML × × × ×
16 Jain et al. [29] 2021 67 ✓ ✓ ✓ × × × × ✓ × ML × × × ×
17 Staub et al. [237] 2010 25 ✓ ✓ ✓ × × × × ✓ × NR × × × ×
18 Jain et al. [83] 2022 85 ✓ ✓ ✓ × × × ✓ ✓ × DL × × ✓ ✓
K0, serial number; K1, studies; K2, year; K3, references; K4, OBBM; K5, LBBM; K6, RBBM; K7, GBBM; K8, PBBM; K9, EBBM; K10, preventive;
K11, prediction; K12, personalized; K13, AI type; K14, FDA discussion; K15, clinical setting; K16, risk of bias; K17, AI explainability; CVD, car-
diovascular disease; DL, deep learning; ML, machine learning; HDL, hybrid deep learning; NR, not reported; OBBM, office-based biomarkers; LBBM,
laboratory-based biomarkers; RBBMM, radiomics-based biomarkers; GBBM, genomics-based biomarkers; PBBM, proteomics-based biomarkers; EBBM,
environment-based biomarkers; AI, artificial intelligence; FDA, food drug administration.
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In 2020, Song et al. [238] conducted a study involv-
ing 55 participants, concentrating on high-density lipopro-
tein (HDL) techniques for CVD risk stratification in pa-
tients. This investigation establishes a noteworthy correla-
tion between carotid atherosclerotic image-based biomark-
ers, such as carotid intima-media thickness (cIMT) and
plaque, and specific RA-associated inflammatory mark-
ers. They suggest integrating conventional image process-
ing techniques, such as fast marching methods, for effi-
cient segmentation of vascular plaque [136]. Alimadadi et
al. [231] observe that integrating digital technologies into
rheumatology healthcare is an emerging trend, offering a
wide array of devices to facilitate personalized and continu-
ous patient care. Gruson et al. [230] employML techniques
for CVD risk stratification using a genomics approach, em-
phasizing their potential for preventive applications. How-
ever, none of the mentioned authors address the applica-
bility of their methodologies for preventive and predictive
purposes. Regrettably, the studies lack information on food
drug administration (FDA) discussions, clinical contexts,
risk of bias, and AI explainability [9,11,33,83,171,228–
233,238].

In contrast, our proposed study leverages 260 refer-
ences and employs DL techniques for using Ultragenomics
for CVD risk stratification. Our approach encompasses pre-
ventive, predictive, and personalized objectives, along with
an explicit discussion of AI explainability during the FDA
deliberations. However, details regarding the clinical set-
ting and potential bias risk are absent.

8.3 Recommendations for Using the UltraAIGenomics
Model for CVD/Stroke Risk

Following are guidelines for a proposed UltraAIGe-
nomics model that can be used for CVD/Stroke risk strati-
fication. The study proposes two hypotheses: (a) radiomics
and genomic biomarkers have a strong correlation and can
be used to detect the severity of CVD and stroke precisely,
and (b) introduces a proposed (aiP3) risk model that uses
DL to classify CVD and stroke risk more accurately. We
propose the following recommendations: (i) requires a clin-
ical evaluation and scientific validation for reliable detec-
tion and CVD risk stratification, and (ii) requires hyper-
parameter optimization in CVD/Stroke risk stratification.
(iii) balancing the risk classes (control, low-risk, and high-
risk) is the most effective way to minimize DL bias; (iv)
with proper pruning and compression, DL systems can be
adapted to edge devices; (v) a DL system that relies on sur-
rogate carotid imaging can be cost-effective without com-
promising precision in CVD risk stratification.

8.4 Strengths, Weakness, and Extensions of the Study
This pilot review’s ability to risk stratify CVD and

stroke patients by integrating RBBM and GBBMwas a ma-
jor strength. The first theory was supported by the biomark-
ers derived from radiological, biochemical, andmorpholog-
ical complexity that established a connection to CVD.ADL

approach was presented to evaluate CVD and stroke risk by
integrating RBBM and GBBM. While the system is quite
straightforward, input data has always been a challenge
since sample size leading to big data is required [239]. It re-
quires optimization to eliminate the possibility of bias and
generalization to account for comorbidities [240]. Further,
carotid artery imaging must encounter all three segments,
such as common, bulb, and internal [186], for best plaque
measurements [68]. Better comprehensive feature space
can be tried for superior DL-based classification [241,242].
As part of extensions, conventional image processing can
be fused with AI models for superior performance [243].
Ensemble-based solutions embedding with explainability
for best feature selection followed by recurrent neural net-
works are possible extensions for superior CVD/Stroke risk
solutions [244,245].

8.5 Future Work

Nevertheless, it is imperative to recognize the con-
straints of our study. Notwithstanding the progress
achieved, issues like AI ethics and design complexity re-
main major roadblocks that require attention. Furthermore,
even though our research offers a strong framework for us-
ing genetic and radiomic biomarkers in CVD risk assess-
ment, additional validation and improvement of the aiP3
model are required to guarantee its dependability and ef-
ficacy in various clinical contexts.

Future studies should concentrate on resolving these
issues and expanding on our discoveries. Investigating the
incorporation of cutting-edge technologies like Blockchain
and IoMT into conventional healthcare procedures is one
aspect of this, as is researching cutting-edge AI-driven
strategies for improving explainability and lowering bias
in CVD risk assessment models. Furthermore, research on
the long-term clinical results and financial viability of using
genetic and radiomic biomarkers in regular cardiovascular
disease evaluation is necessary. We can keep advancing the
area of cardiovascular medicine and eventually enhance pa-
tient care globally by embracing these new research direc-
tions.

9. Conclusions
The presented research has important theoretical and

practical ramifications that have the potential to drastically
alter how CVD is evaluated. First, we explored biomarkers
like IL, CD31+, EPCs, and high-sensitivity c-reactive pro-
tein (hs-CRP), which strongly connect with CVD progno-
sis. High levels of CRP in people with low blood pressure
and a recent heart attack history can predict future coronary
events. Besides this, the radiomic features such as plaque
burden, plaque area, and carotid intima thickness provide
a quantified view of CVD risk. Second, we introduced the
aiP3 risk model, a breakthrough in CVD and stroke risk as-
sessment. This model uses DL to untangle the complex re-
lationship between multiple biomarkers and outcomes. It
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emphasizes atherosclerosis’s genetic and radiomic mark-
ers in the carotid, coronary, and aortic arteries. DL helps
us manage the complexity of these biomarker interactions.
During our narrative review, we addressed important issues
like AI bias, explainability, and pruning.

We proposed a cloud-based system design to balance
precision and interpretability in CVD risk assessment, em-
phasizing the need for ethical and unbiased AI in clini-
cal practice. Additionally, we touched on platelet func-
tion, complete blood count (CBC), and diagnostic methods,
adding depth to CVD assessment. In conclusion, our narra-
tive review lays a strong foundation for using genomic and
radiomic biomarkers in precise CVD risk assessment. The
aiP3 model, powered by DL, brings us closer to personal-
ized and preventive cardiovascular health management. As
we navigate the complexities of AI ethics and design, we
pave the way for a future where technology enhances pa-
tient outcomes seamlessly.
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Appendix
// Pseudo code for AI-based CVD Diagnosis using

Radiomics-based Biomarkers

// Function to perform AI-based CVD diagnosis using
radiomics-based biomarkers

Procedure PerformAIBasedCVDDiagnosis:
Input: BiomarkersList, ImagingMethodsList
Output: DiagnosisResult

// Initialize variables
CVDImagingData = LoadCVDImaging-

Data(BiomarkersList, ImagingMethodsList)

// Display information about the loaded imaging data
DisplayImagingDataInfo(CVDImagingData)

// Extract features using stochastics-based methods
(SBM)

SBMFeatures = ExtractFeaturesUs-
ingSBM(CVDImagingData)

// Display the features extracted using SBM
DisplaySBMFeatures(SBMFeatures)

// Train and evaluate a stochastics-based model for
CVD risk stratification

SBMModel = TrainAndEvaluateSBM-
Model(SBMFeatures)

// Display performance metrics of the SBM model
DisplaySBMModelPerformance(SBMModel)

// Extract features using deep learning (DL) based ra-
diomics

DLFeatures = ExtractFeaturesUsingDLRa-
diomics(CVDImagingData)

// Display the features extracted using DL-based ra-
diomics

DisplayDLFeatures(DLFeatures)

// Train and evaluate DL-based model for CVD risk
stratification

DLModel = TrainAndEvaluat-
eDLModel(DLFeatures)

// Display performance metrics of the DL model
DisplayDLModelPerformance(DLModel)

// Combine the results from SBM and DL models
CombinedResults = CombineSBMAndDLRe-

sults(SBMModel, DLModel)

// Display the final diagnosis results
DisplayDiagnosisResults(CombinedResults)

// Output the final diagnosis result

DiagnosisResult = GenerateDiagnosisRe-
port(CombinedResults)

// Return the diagnosis result
Return DiagnosisResult
End Procedure

Methodology
The methodology outlined in the pseudo-code, de-

scribes an AI-based approach for CVD diagnosis using
radiomics-based biomarkers. It involves three main steps:
preprocessing, augmentation, and deep convolutional neu-
ral network (CNN) architecture. In the preprocessing
phase, CVD imaging data is loaded, and features are ex-
tracted using two distinct techniques: DL-based radiomics
and stochastics-basedmethods (SBM). If the data is in high-
dimensional RNA sequences, it is first converted into 2D
images [246]. The augmentation phase aims to increase
the size of the dataset. Finally, a deep CNN architecture,
which comprises the convolutional layers for feature ex-
traction and fully connected layers for classification, is im-
plemented. The final diagnosis is produced by combin-
ing the performance metrics of traditional stochastics-based
methods and deep learning techniques, which are displayed.
Combining the best features of SBM and DL methodolo-
gies improves the precision and consistency of CVD diag-
nosis. A method for visualizing the regions of an image
that a deep learning model concentrates on when generat-
ing predictions is called gradient-weighted class activation
mapping, or Grad-CAM. It facilitates the comprehension
of the image’s most significant components for the model’s
decision-making process.
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