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ABSTRACT This paper presents a simple, lightweight, automatic calibration method for low-cost
triaxial accelerometers, utilizing the Earth’s gravitational constant in various orientations. It can be easily
implemented using only fixed-point arithmetic and can run on low-power microcontrollers for real-time
measurements, making it practical for scenarios with limited data storage and computational power, such
as actigraphy or IoT applications. The method offers ease of use by automatically detecting motionless
intervals, eliminating the need for complex positioning techniques. The procedure detects resting states and
calculates the corresponding three-dimensional mean acceleration values during the measurement. After
appropriately selecting these mean values, a set of calibration points is formed and passed to a gradient-based
optimization algorithm for iterative estimation of the calibration coefficients. Different metrics were used
for verification and comparison with other methods, which were calculated through simulations and tests
based on real measurements. The results show that, despite its lightweight nature, the method performs
equally to more complex solutions. This article provides a thorough explanation of a novel method for
collecting calibration points, the optimization algorithm, and the methods used for performance evaluation
in a reproducible manner.

INDEX TERMS Actigraphy, activity measurement, auto-calibration, calibration, field calibration, MEMS,
motion sensors, multi-position calibration, odometry, triaxial accelerometer.

I. INTRODUCTION
The accelerometer has become one of the most widely
utilized sensors in the last two decades. There are numerous
applications for accelerometers that vary in their sensitivity
to the lack of calibration.

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen .

Accelerometers play a crucial role in indoor position
tracking within navigation systems, particularly when the
GPS signal is unavailable. To achieve indoor tracking after
losing the GPS signal, accelerometers are employed to
estimate velocity by integrating their output. Subsequently,
the position is approximated by integrating the velocity.
During these integration processes, errors arising from
accelerometer inaccuracies tend to increase quadratically
over time, as explained by Titterton andWeston [1]. Ensuring
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accurate measurements allows for mitigating the adverse
effects of error accumulation and maintaining the integrity
of the derived velocity and position estimates.

Accelerometers are extensively employed in various
medical applications. They are utilised to monitor human
movement for controlling heart rate in pacemakers [2],
replicating the motions of a surgeon’s hand during robotic-
assisted surgery [3], and providing feedback on the quality of
chest compressions during CPR [4].

Numerousmedical, biological, biophysical, psychological,
and sports science research is based on activity measurement,
for which wearable activity meters, known as actigraphs, are
commonly used devices [5], [6], [7], [8], [9]. Actigraphs
are used for measuring human or animal motion, typically
incorporating a triaxial accelerometer. The actigraph device
operates through a microcontroller that is primarily respon-
sible for facilitating communication between the sensor,
flash memory, and PC software, enabling the transmission
of recorded activity data. To ensure minimal disruption to
an individual’s movements, especially during prolonged use
over several weeks, actigraphs are designed to be compact in
size, similar to a wristwatch. However, this miniaturization
limits the battery size and the computation power.

Our research group studies human movement patterns
by analysing activity calculated from raw acceleration data
which is measured by actigraphs. During our studies, we have
acquired numerous datasets containing several weeks of
human movement. Many methods have been developed
to calculate time-dependent human activity from the raw
accelerometer data [10]. Some of these activity metrics
are sensitive to the lack of calibration, for example, the
Proportional IntegrationMethod requires precise acceleration
values since it is based on integration and faces the
same problem as the previously mentioned indoor position
tracking. Another example of activity calculation that can
be affected by offset errors is the Zero Crossing Method,
where the number of times the magnitude of acceleration
crosses a predetermined threshold level is counted within a
specified time interval (epoch). Errors of a poorly calibrated
device introduce varying, orientation-dependent biases in the
calculated magnitude of acceleration.

Today, due to advances in microelectromechanical sys-
tems (MEMS) technology, miniature, reliable, and accurate
accelerometers can be produced relatively cheaply. Like in
any manufacturing process, devices that are produced have
manufacturing imperfections that lead tomeasurement errors.
The extent of these errors may be reduced in a factory through
calibration [11], [12]. The provided accuracy is sufficient in
most applications; however, it can be improved by further
calibration.

According to the datasheet of the LIS3DH sensor used in
our activity measurements, the sensor typically has an offset
accuracy of ±40mg after factory calibration, as shown in
Figure 1. In the left figure, the four distinct time intervals
measure the local gravity at rest, and therefore the measured

magnitude of acceleration should be the same in each
motionless segment. The right figure displays the calibrated
version, which shows significant improvement.

The factors affecting measurement errors depend on
temperature and battery condition, and may even change
between two power-ups of the sensor, therefore, depending
on time [13], [14], [15], [16]. Consequently, during long
measurements, repetitive re-calibrations may improve the
quality of the acquired acceleration data.

Triaxial accelerometer calibration methods may be divided
into two groups, depending on whether the calibration is
carried out under laboratory conditions by applying precise
forces of known accelerations of known directions [14], [17],
[18], [19], [20] or using only gravity [21], [22], [23], [24],
[25], [26], [27]. The former can be referred to as traditional
calibration, while the latter is called multi-position, auto-
calibration or field calibration. The advantage of traditional
methods is that a known force of any direction and magnitude
can be applied to the accelerometer, allowing each axis to
be calibrated over its entire range. The drawback of these
methods is that the process is time-consuming and requires
expensive equipment compared to the cost of the MEMS
sensor itself. Gravity-based calibration methods, however,
do not require dedicated laboratory instrumentation; only
a few measurements of stationary intervals with different
angles are necessary.

To keep the actigraph (or any battery-operated IoT device)
small, the battery must also be small, which means that the
device must be as energy efficient as possible if it is to be used
for several days or weeks-long continuous measurements.
To record long activity measurements without external power
sources, a calibration algorithm for real-time measurements
must be simple and CPU efficient to minimize battery usage.
For these reasons, we developed a simple procedure with
modest computation requirements, but it provides the same
level of accuracy as other published methods.

II. METHODS
A. ERROR MODEL
As with every calibration method, ours also involves
approximating the errors of the instrument using a mathe-
matical model. Numerous published models exist to describe
accelerometer errors, and our implementation relies on a
9-parameter model, which includes the deterministic scale,
non-orthogonality, and offset errors. The model is widely
used [22], [23], [28], [29], [30], [31] and is well described
in [26]. The relationship between the actual and measured
quantities can be expressed as follows:

A = S · T (V + O) (1)

= K · (V + O) , (2)

where A =
[
ax ay az

]T is the actual triaxial acceleration,
V =

[
vx vy vz

]T is the measured acceleration subjected to
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FIGURE 1. The magnitude of acceleration measured by a wrist-worn actigraph during sleep. The plot on the left shows the uncalibrated case, where the
device measures 1 g with varying errors across different sleep positions. The plot on the right shows the calibrated version of the same signal.

errors, S is the sensitivity matrix:

S =

Sx 0 0
0 Sy 0
0 0 Sz

 . (3)

T contains the factors for reducing crosstalk between
axes, arising due to the non-orthogonality of the three
accelerometers:

T =

 1 0 0
Txy 1 0
Txz Tyz 1

 (4)

and O is a vector which contains the offset values:

O =
[
Ox Oy Oz

]T
. (5)

Ideally, measuring only the gravitational acceleration in g
should always yield three-dimensional points that lie on the
surface of a unit sphere centered at the origin. However, the
9-parameter model assumes that measuring the gravitational
acceleration with an uncalibrated sensor results in points that
are on the surface of an ellipsoid instead of a sphere. After
obtaining the calibration parameters, this ellipsoid can be
transformed into a shape that is closer to a sphere which
corresponds to the ideal accelerometer (Figure 2).
The implemented calibration method estimates the ele-

ments of K and O:

p =



kxx
kyy
kzz
kxy
kxz
kyz
ox
oy
oz


. (6)

FIGURE 2. Measuring the gravitational acceleration with an uncalibrated
sensor results in points on the surface of an ellipsoid instead of a unit
sphere. By applying the calibration parameters, the ellipsoid can be
shaped closer to a unit sphere that corresponds to an ideal
accelerometer. The deviation from the unit sphere in this figure is highly
exaggerated to visualize the effect of each calibration parameter.

Given these nine parameters, the acceleration values can
be corrected as follows.

ax = kxx (vx + ox) (7)

ay = kxy (vx + ox) + kyy
(
vy + oy

)
(8)

az = kxz (vx + ox)

+ kyz
(
vy + oy

)
+ kzz (vz + oz) (9)

B. CALIBRATION PROCEDURE
The calibration procedure consists of two steps. The first
involves collecting calibration points, while the second step
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estimates the nine parameters of the error model using these
points. Calibration at periodic, regular intervals is necessary,
as sources of errors may change over time, as is the case
with any instrument. The simplified process is depicted in
Figure 3.

FIGURE 3. The process of calibration involves two main steps: the
collection of the calibration points and the estimation of the nine
parameters of the error model.

1) ACQUIRING CALIBRATION POINTS
To determine the nine unknowns, it is necessary to
gather a minimum of nine distinct and varied averaged
three-dimensional acceleration vectors. These calibration
points are measured during periods of rest.

The collection process also consists of two steps: First,
assessing whether the acceleration during the current time
period remains constant or undergoes changes. If constancy is
observed, the average value of the obtained three-dimensional
acceleration is checked to determine if it differs from the
previously collected calibration points. If the deviation is
sufficient, themean value of the current measurement interval
can be added to the set of calibration points.

In actigraphic measurements, stationary intervals are
selected from human motion data during the collection of
calibration points. Therefore, the duration of these motionless
segments should be expressed in time independently of the
sampling rate. Based on our experiments, we recommend
the length of the stationary intervals to be at least 2-3
seconds, because too short intervals may lead to false steady
state detections, and too long intervals may increase the
time needed to collect enough calibration points. With these
considerations in mind, we chose the length of stationary
intervals to be 5 s, which also reduced the standard deviation
of the noise to the tenth of resolution in our measurements.

For a microcontroller implementation, using the size of the
flash memory page to determine the number of measurement
points can be a good choice for segment length.

The detection of rest conditions is simply based on the
difference between the maximum and minimum acceleration
of one axis in one segment. In the case of worn actigraphs,
it is enough to consider only one of the three axes since there
is a low probability that a motion measured on one axis will
not be present on the other two axes. The max-min value
can be monitored during measurement, and at the end of
the segment, it can be used to check if it is below a given
threshold and if the current interval is stationary or not. Based
on our experiments, 0.12 g is a good choice for the max-min
threshold level. The detection of the stationary segments is
shown in Figure 4.

FIGURE 4. Detection of stationary intervals.

During measurement, the sum of the acceleration for each
axis can be accumulated to provide the mean value at the
end of the current segment (after dividing by the number of
points). The mean value can then be tested to determine if
it differs sufficiently from the already acquired calibration
points.

This filtering is necessary because a significant portion
of the mean values from rest intervals cluster around a few
orientations which correspond to typical body postures (lying
down, sitting, etc). This problem is visualized in Figure 5.
In our implementation, the selection of the rest intervals is

achieved by splitting eachX,Y, and Z axis into three intervals:
[−1.25 g,−0.75 g], [−0.25 g, 0.25 g], [0.75 g, 1.25 g]. This
partition groups the set of calibration points C into nine Cij
subsets, where i ∈ x, y, z and j ∈ n, 0, p (n: negative, 0: close
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FIGURE 5. 2% of detected steady points acquired from the accelerometer
data of a two-week-long wrist-worn actigraphic measurement. The
distribution of the points is not even, as there are resting positions of the
wrist that are more likely than others.

to zero, p: positive):

C =

Cxn Cyn CznCx0 Cy0 Cz0
Cxp Cyp Czp

 . (10)

For each Cij subset, the minimum and maximum number
of points contained can be specified. We set both the
minimum and maximum to 2, resulting in 18 calibration
points. We examined how calibration accuracy depends on
the number of calibration points in both simulations and
on real raw acceleration data. Increasing the number from
the minimum of 9 to 18 significantly improved accuracy.
Increasing the number of points beyond 18 did not improve
the accuracy. It is also noteworthy that increasing the number
of calibration points also impacts the running time of the
algorithm; however, we found that 18 points is an optimal
compromise between accuracy and running time.

The algorithm to determine if the current point is needed
is shown in Figure 6.

If the minimum number of calibration points is collected
for each of the nine subsets, the iterative estimation of the
error parameters can be initiated. An example of a suitable
set of calibration points is shown in Figure 5.

To test the calibration on real, raw actigraphic data,
we conducted 42 different activity measurements using
12 actigraphs. All 12 devices share the same specifications:
4.1 cm in length and a width of 1.6 cm, encapsulated in a
plastic shell and worn on the wrist. The central component is
a C8051F410 8-bit microcontroller that acquires acceleration
data from an LIS3HD accelerometer and stores the raw data
in a 1Gb flash memory. A detailed description of the device
can be found in [10].
We determined that two to three days of wrist-worn

accelerometer data provided a satisfactory number of
varied points for successful calibrations. The calibrated

FIGURE 6. Testing whether the mean of the current segment can be saved
as a calibration point.

FIGURE 7. The selected three-dimensional calibration points from a
wrist-worn actigraph. The selection method addresses the problem of the
uneven distribution of resting points seen in Figure 5.

recordings are accessible on the internet via the following
DOI: 10.6084/m9.figshare.16437684. The calibration pro-
cess employed a method similar in principle to the one
described here but utilized the global-search algorithm of
LabVIEW. This dataset has been referenced in several of our
works, including [10], [32], and [33].

The study was carried out as a part of research entitled
‘‘Examination neurobiological, cognitive and neurophe-
nomenological aspects of the susceptibilities to mood swings
or unusual experiences of healthy volunteer students,,, and
was approved by the Human Investigation Review Board,
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University of Szeged, Albert Szent-Györgyi Clinical Centre,
Hungary (No 267/2018-SZTE) following its recommenda-
tions. All subjects gave written informed consent and the
study was followed under the Declaration of Helsinki. All
subjects were informed of their right to withdraw at any time
without explanation and they were financially compensated.

C. OPTIMIZATION METHOD
The magnitude of acceleration measured by an ideal,
motionless triaxial accelerometer is the local gravitational
acceleration:

1 g =

√
a2x + a2y + a2z . (11)

Measuring this value with an uncalibrated accelerometer
will result in magnitudes that are different from 1 g and also
depend on the orientation of the sensor. The more accurately
the calibration coefficients are estimated, the smaller the
deviation from 1 g will be after the correction, making
this difference suitable as an objective function during the
search for calibration coefficients. Adjusting a calibration
point with the currently estimated calibration coefficients
and subtracting 1 g can reveal the accuracy of the current
estimation for one specific orientation. Calculating this value
for each calibration point and summing the results gives
a good metric for the goodness of the current calibration
coefficients for all orientations, assuming that these points
are as diverse as possible. Formally, the objective function
is described as follows:

f (pn) =

N∑
i=1

(√
â2x + â2y + â2z − 1 g

)2
, (12)

where âx , ây, and âz represent the measured acceleration
values corrected by the n-th estimation of the calibration
coefficients, pn, using formulas 7, 8, and 9, respectively.
In low-power implementations, the computationally costly
square root operation can be omitted since it does not affect
the location of the cost function’s minimum.

The presented method iteratively changes the calibration
parameters to approach the local minimum of the objective
function. The parameter vector that results from the last
iteration is the one that best approximates the local minimum
of the objective function and represents the final result of the
calibration algorithm.

The initial values of the parameters are p0 =[
1 1 1 0 0 0 0 0 0

]T , which correspond to an ideal
accelerometer. The algorithm changes one of the nine
parameters by h and passes this slightly changed new
parameter vector to the objective function. Performing this
operation on all nine parameters, a vector whose i-th element
is f (pin), the value of the objective function for the parameter
pin incremented by h is obtained. By subtracting the result
of the previous iteration, pn, and dividing by the step size h,
an approximation of the gradient of the objective function,

∇f (pn) ≈ gn =
[
gn1, . . . , gn9

]
, is obtained:

gni =
f (pin) − f (pn)

h
. (13)

In order to move towards the minimum, the calibration
parameters need to be shifted in the direction of the negative
gradient. This is achieved by subtracting the estimated
gradient vector, weighted by the learning rate α, from the
parameters. The new, n-th approximation of the calibration
parameters is the result of this operation:

pn+1 = pn − αgn, (14)

where i = 1, . . . , 9, the j-th element of pin is

pin,j =

{
pn,j, if j ̸= i
pn,j + h, if j = i,

(15)

j = 1, . . . , 9 and h is the finite spacing for estimating the
gradient.

The best choice of h depends on the number representation
and the shape of f . If it is too small, it can lead to unacceptable
truncation errors; if it is too big, it causes unacceptable
formula errors. According to our simulation results, 10−5 is
a good choice for double and single precision floating-point
and 32-bit fixed-point implementations and 0.01 for the
16-bit fixed-point version.

The convergence of the misalignment parameters was
found to be slower compared to the scale and offset
parameters. The speed can be improved by replacing the
scalar learning rate α with a vectorized learning rate.

α =



αs
αs
αs
αm
αm
αm
αo
αo
αo


, (16)

where αs, αm, αo are different learning rates for scale,
misalignment, and offset. A good set of learning rates was
found to be αs = 0.3, αm = 0.8, αo = 0.2 when the square
root was omitted. Regarding Figure 9, the calibration result
converges after 20 to 30 iterations.

The algorithm involves performing M · (N · 100 + 3)
addition/subtraction operations and an equal number of
multiplications. Here,M represents the number of iterations,
and N is the total number of calibration points. As mentioned
earlier, the implementation of this algorithm can completely
avoid the use of floating-point calculations including the
square root operation. This can drastically improve the overall
running time even if the microcontroller has a hardware
floating-point unit. We implemented simple test cases to
test the cost of addition and multiplication on different
architectures and different arithmetics. The results are shown
in Table 1. We also measured the cost of the square root
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FIGURE 8. Three-dimensional stationary points before and after calibration. The magnitude values are reduced by 1 g to highlight the
difference between the unit sphere and the measured values. The further a point is from the origin, the larger the difference compared to
the expected ideal values. The cyan points correspond to uncalibrated stationary points, while the red ones represent the stationary points
after applying the estimated coefficients to the uncalibrated cyan points.

operation, which required 2000 and 1711 clock cycles
on the ARM Cortex-M3 and Cortex-M4 implementations,
respectively.

If M = 50 and N = 18, as recommended, the integer
operations take around 0.7 seconds on an ATmega328 8-bit
microcontroller at 16MHz and less than 40ms on an ARM-
CortexM3 core clocked at 80MHz. The floating-point imple-
mentation also executes under 30ms on an ARM Cortex-M4
core at 80MHz. While executing these operations, the
current consumption of ATmega328 and ARM Cortex-M4
is typically 9.2mA and 8.45mA, respectively. Since the
calibration is performed rarely (e.g., once every few days),
running the optimization results in negligible additional
power consumption of the continuous acceleration data
acquisition. These characteristics demonstrate the feasibility
of our method for ultra-low-power, coin cell or low-capacity
battery-operated devices like actigraphs.

TABLE 1. Comparison of the cost of floating-point and integer arithmetic
on different architectures, measured in clock cycles. The table presents
data for three microcontroller units: the ATmega328, an 8-bit
microcontroller; the ARM Cortex-M3, a 32-bit MCU core without a
floating-point unit (FPU); and the ARM Cortex-M4, a microcontroller core
equipped with a hardware FPU.

III. PERFORMANCE EVALUATION
The quality, reliability, and efficiency of the algorithm
were verified through simulation and metrics based on
measurements obtained from human-worn actigraphs.

In the simulation, the deterministic errors of the artificial
calibration points are predefined and easily compared with
the estimated values obtained as a result of the calibration.
This comparison is not possible with real measurements
because there is no direct knowledge of the errors inherent
to the sensor inside the package, and they may change
over time. The only known fact for real measurements is

that the magnitude of acceleration measured at rest must
be 1 g in all orientations, and the deviation from this can
serve as a measure of the quality of the calibration. For
both simulation and real-measurement-based performance
testing, the maximum iterations were set to 50, and all other
parameters or variables of the algorithmwere set as described
in the previous sections.

We compared our method with two other published
approaches; one of these is a non-iterative technique
presented by Gietzelt et al. [34] that calculates scale and
offset errors. An excellent MATLAB implementation of
this technique is provided by Ailton Luiz Dias Siqueira
Junior [35]. The other method is also written inMATLAB and
utilizes the fminunc nonlinear built-in solver [31]. The error
model in this method is essentially the same as the model
presented in this paper, and the collection and selection of
calibration points are also similar; however, its reproduction
is challenging.

In addition to these, we implemented a calibration method
based on LabVIEW’s built-in global optimization procedure,
which uses a differential evolution algorithm. We used our
method to collect and select the calibration points for each
of the compared calibration algorithms. Both MATLAB and
LabVIEW are internationally recognized well-established,
and widely used software packages. There is no doubt about
the efficiency of their built-in optimization procedures.

A. SIMULATION
In the simulation-based verification, our aim was to replicate
the calibration method described in [28]. We generated ideal
points with unity magnitudes randomly to create artificial
calibration points. These points were then modified by scale,
misalignment, and offset errors, which were predetermined
and formed a specific, pre-generated p parameter vector.
Additionally, noise with standard deviations of 1mg and 5mg
was added to the modified points. The described calibration
point selection algorithm and the optimization were then
performed on the generated points.

The artificial parameters were generated in the fol-
lowing ranges from uniform distribution with random
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FIGURE 9. Convergence of the nine calibration parameters (x-axis in blue, y in red and z in yellow).

TABLE 2. Simulation results: the mean of the absolute differences between the generated and the estimated parameters. The simulation was run for
500 different scenarios with 1mg and 5mg added noise.

generator: scale: (0.9, 1.1), misalignment: (−0.05, 0.05),
offset: (−0.1 g, 0.1 g):

Si = 2 ·

(
δ −

1
2

)
· 0.1 + 1,

Tj = 2 ·

(
δ −

1
2

)
· 0.05,

Oi = 2 ·

(
δ −

1
2

)
· 0.1 g, (17)

where δ is a random floating-point number between 0 and 1,
i ∈ {x, y, z} and j ∈ {xy, xz, yz}. The elements of the simulated
p are obtained as follows:

p1 = kxx = Sx
p2 = kyy = Sy
p3 = kzz = Sz
p4 = kxy = Sy · Txy
p5 = kxz = Sz · Txz
p6 = kyz = Sz · Tyz
p7 = ox
p8 = oy
p9 = oz (18)

The artificial calibration points are generated using
the following equations (the inverse of applying

the calibration parameters):

cix =
ax
kxx

− ox

ciy =
ay − (cix − ox) kxy

kyy
− oy

ciz =
az − (cix + ox) kxz −

(
ciy + oy

)
kyz

kzz
− oz, (19)

uij = cij + ϵij, (i = 1, . . . ,N ) , (j = x, y, z) , (20)

where (aix , aiy, aiz) is the i-th randomly generated calibration
point with a unit magnitude, (cix , ciy, ciz) is the i-th simulated
steady point without added noise, ϵ is a randomfloating-point
number from normal distribution with standard deviation of
±1mg and ±5mg and (uix , uiy, uiz) is simulated steady point
with added noise.

The simulation was run for 500 different cases, and the
mean absolute error of the estimated values, as well as their
standard deviations, were calculated (see Table 2). Ideally,
the result of the calibration should be equal to the pre-
generated values. The difference reveals how precisely can
the algorithm estimate p.

B. TESTS AND METRICS BASED ON REAL ACTIGRAPH
DATA
The accuracy of the calibration was also evaluated using
5-10 days of real acceleration data. Two distinct sets of
calibration points were collected for each dataset: the first
set was used for calibration, while the second set served as
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TABLE 3. The average of the absolute differences between the measured magnitudes and 1 g in motionless intervals before and after the calibration. The
set of motionless intervals is distinct from the set used for the calibration.

control points for metric calculation. Before (r) and after (r̂)
calibration, the mean magnitude of the control points was
determined. Ideally, subtracting the local gravity should yield
zero. By taking the absolute values and comparing |r − 1|
with |r̂ − 1|, we can assess the accuracy before and after
calibration. The relative improvement in accuracy enables
easy comparison among different calibration methods:

R =

∣∣∣∣ r − 1
r̂ − 1

∣∣∣∣ · 100%. (21)

The experiments were performed on ten different datasets,
each measured using a different actigraph device. All
four methods significantly improved the accuracy of the
accelerometers. Based on the findings presented in the
Table 3, it can be concluded that the proposed method
achieves the same level of accuracy to the built-in global
optimization algorithms of LabVIEW and MATLAB.

IV. SUMMARY
This article introduces a straightforward and efficient
algorithm for calibrating triaxial accelerometers. The
algorithm is designed to be implemented on microcontrollers
with limited computational capabilities, making it suitable for
use in small, battery-powered devices like actigraphs. It offers
the flexibility to calibrate accelerometers in real-time while
they are being worn or to calibrate pre-collected data. The
algorithm has been thoroughly tested using both simulated
and real human-worn accelerometer data. The results
demonstrate that the calibration performance of the proposed
method is practically the same as that of established global
optimization algorithms found in MATLAB and LabVIEW;
however, the computation cost is much lower. Our results
suggest that more complex global-search algorithms do not
significantly enhance the calibration and its performance
compared to a simple local search presented in this paper.
The method is not only suitable for calibrating actigraphs but
can also be used in any mobile IoT smart device.
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