Comparative Analysis of App-Based Travel Diary and Self-Reported Behaviour: A Case Study from Glasgow, UK Varun Raturi

Urban Big Data Centre, University of Glasgow, Glasgow, UK

1. Introduction

Traditional methods for travel data collection bear certain limitations. Appbased data collection emerges as a promising alternative.

Our study investigates the **potential and challenges of app-based data collection** methods in contrast to traditional surveys for transportation policy-making.

2. Data and Methods

Data from an automatic trip detection app, **MyWays**, from TravelAI was utilised.

0

383 individuals from Glasgow using the **MyWays app** for over a week in 2022 was analysed, who also completed a one-day travel diary within the same app.

4. Results section 2

- The heatmap comparison indicates **locations information outside Glasgow** is missing from the stated trips data.
- This is due to individuals **not knowing the postcodes** outside Glasgow city.

Figure 4: Mobility Heatmaps from stated and detected trips data

• Mean of stated trips length is

3. Results section 1

- Differences (Detected trips Stated trips) vary from **-16 to 9**.
- This indicates **stated trips and possible dates** of travel stated by individual might be unreliable.
- Detected trips indicate several individuals making **no trips** in a day.

Variables Stated trips Detected Trips Difference

Figure 2: Differences between Detected trips and Stated trips

- **smaller** than the mean of detected trip length.
- This is due to the **missing postcodes** data in the stated trips especially for longer trips.
- KS test indicates a **significant difference** between the two distributions.

Figure 5: Trip length distribution of stated and detected trips

Table 1: Matching trips based on time threshold

Threshold (in hours)	Mode detection Accuracy	No. of matched trips
0.5	78.98	352
1	77.79	635
1.5	76.93	841
2	76.48	969

Table 2: Matching trips spatially and based on time threshold

Threshold (in hours)	Mode detection Accuracy	No. of matched trips
0.5	81.88	287
1.0	83.13	332
1.5	82.96	358
2.0	82.33	368

- When matching the trips based on a **time threshold**, 969 trips out of a total 1485 stated trips were matched.
- When matching the trips **spatially**, 368 trips out of a total 497 stated trips (where postcodes were given) for a two-hour threshold were matched.
- Mode detection accuracy of the app increases when we accurately match the trips.

- differences were • These more among iOS pronounced users Android compared to users, attributable iOS's stricter to privacy controls for apps.
- For iOS users to grant full access to their location data, **additional steps** in the settings were required.
- This discrepancy was even more evident among **older age groups**, compared to younger ones.

Figure 3: Differences between Detected trips and Stated trips w.r.t age and operating system

5. Conclusions

The app-based data **provided more detailed insights**, recording separate legs of each trip, unlike the traditional self-reported data.

A potential limitation of app-based methods is the access to location data, emphasizing the importance of careful installation with all necessary permissions granted by the users.

6. References

Hesjevoll et. al (2021); App-based automatic collection of travel behaviour: A field study comparison with self-reported behaviour, Transportation Research Interdisciplinary Perspectives.

varun.raturi@glasgow.ac.uk

@Varun_Raturi @UrbanBigData

JOINTLY FUNDED BY

University of Glasgow