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DCPoint: Global–Local Dual Contrast for
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Abstract—In recent years, 3-D vision has gained
increasing prominence in practical applications such as
autonomous driving and robotics. However, the scarcity
of large labeled point cloud datasets continues to be a
bottleneck for deep networks. Self-supervised representation
learning (SRL) has emerged as an effective approach to
alleviate this issue by pretraining general feature encoders
without requiring human annotations. Existing contrastive
SRL methods for 3-D point clouds have predominantly
concentrated on object representations from a global or
point perspective. They overlook essential local geometry
information, thereby constraining the generalizability of
pretrained models. To address these challenges, we propose
a local contrast module as an intermediate level between the scene and point levels. It is then integrated with a global
contrast module to form a dual contrast method known as DCPoint. The local contrast module operates on pointwise
representations of objects and designs contrastive pairs based on the spatial information of point clouds. It effectively
addresses the challenges posed by the sparsity and irregularity of point clouds and imperfect partition issues. The
pointwise local contrast module aims to enhance the internal connections between the components within the point
cloud, while the global contrast module introduces semantic information about individual instances. Experimental
results demonstrate the effectiveness of DCPoint across various downstream tasks on synthetic and real-world
datasets. It consistently outperforms previously reported SRL methods and the randomly initialized counterparts.
In addition, the proposed local contrast module can enhance the performances of other SRL methods. Our source codes
of this research are available at https://github.com/UnderTheMangoTree/DCPoint.git.

24 Index Terms— 3-D point clouds, contrastive learning, deep learning, self-supervised representation learning (SRL).

I. INTRODUCTION25

THREE-DIMENSIONAL vision tasks are fundamental26

perception tasks for machines to understand the physical27

world like a human. Therefore, 3-D scene understanding28

methods have been widely applied in various practical29
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applications, including robotics [1], autonomous driving [2], 30

and human–robot interaction [3]. Point clouds, as an essential 31

format of 3-D data, preserve the original geometric informa- 32

tion of objects in 3-D space. With the advent of powerful 33

deep learning methods, promising results have been reported 34

in using point clouds for various 3-D tasks [4], [5], [6], 35

[7]. However, training complex deep learning models requires 36

large-scale human-annotated training data. It is laborious and 37

time-consuming due to the inherent ambiguity of 3-D views 38

and the subjectivity of human perception [8]. 39

In this article, we investigate self-supervised represen- 40

tation learning (SRL) to mitigate the 3-D point cloud 41

annotation challenges. SRL pretrains models with unlabeled 42

data to extract general representations of objects. These 43

learned representations can be transferred to various down- 44

stream tasks by fine-tuning the pretrained models with fewer 45

labeled data. Many works in the 2-D domain have demon- 46

strated the feasibility of SRL [9], [10], [11]. In recent 47

years, SRL of 3-D point clouds has attracted increasing 48

attention [12], [13], [14], [15]. 49

https://orcid.org/0000-0003-3243-5693
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Fig. 1. Contrastive SRL methods of 3-D point clouds. (a) PointContrast
[19], (b) STRL [20], (c) CrossPoint [16], and (d) our proposed DCPoint,
which is different from other methods. It simultaneously considers the
internal structural information and the latent classical consistency by the
global–local dual contrast.

Contrastive SRL, hereinafter referred to as contrastive SRL,50

has demonstrated remarkable performances in 2-D and 3-D51

domains [16], [17]. It focuses on the similarity between52

different objects in the representation space [18]. A critical dis-53

tinction among contrastive SRL methods lies in the attention54

scope and information granularity of the representation space.55

The existing contrastive SRL methods for 3-D point clouds56

predominantly concentrate on contrasting global scene repre-57

sentations or point representations of objects. A few examples58

are reported in the literature such as PointContrast [19],59

STRL [20], and CrossPoint [16], as shown in Fig. 1(a)–(c).60

However, an exclusive emphasis on global-level representation61

overlooks detailed information about objects. It focuses solely62

on point-level representation, which may disregard instance-63

level characteristics. These mono-perspective contrastive SRL64

methods will be further discussed in Section II. To address65

these issues, we propose an intermediate level of contrast,66

termed local contrast. Next we incorporate it with global67

contrast to form a global–local dual contrast method, as shown68

in Fig. 1(d). The proposed dual contrast method, denoted as69

DCPoint, fills the absence of multiperspective contrastive SRL70

methods for 3-D point clouds.71

The local contrast module aims to capture the correlations72

between the components of objects. It is impractical to directly73

apply 2-D local contrast techniques to construct 3-D local74

contrastive sample pairs due to the sparsity, irregular spa-75

tial distribution, and permutation invariance inherent in 3-D76

point clouds. To address this challenge, previous 3-D SRL77

methods introduce the proposal extractor and self-similarity78

model [12], [21], at the cost of increasing the computational79

load. In this article, we propose a pointwise local contrast80

module, which defines local contrastive sample pairs through81

spherical partition in the Euclidean space of point clouds.82

To enhance interpartition consistency and intrapartition dis-83

crimination of objects, this module shrinks the representation84

distances between a center and its neighbors within the85

same partition. While it increases the representation distances86

between the centers of different local regions. Compared with87

previous local SRL methods, our pointwise local contrast mod-88

ule adapts to the unique properties of point clouds. It mitigates89

the imperfect local partition problem arising from the absence90

of the ground truth [22]. For instance, a randomly divided 91

local point cloud of a plane may include points from both the 92

fuselage and the wings. 93

Our global contrast module proves beneficial in learning 94

data invariance. Considering its stability, we use an asymmet- 95

ric architecture to shrink the global representation distances 96

between two augmented views of a point cloud. Significantly, 97

our global contrast module is streamlined by learning exclu- 98

sively from semantic-related pairs, drawing inspiration from 99

BYOL [23]. 100

By incorporating the intermediate level of contrastive learn- 101

ing with the global scene level, our DCPoint overcomes the 102

limitations of mono-perspective SRL methods. It boosts the 103

discriminative power of the learned representations. 104

We evaluate DCPoint across three downstream tasks to 105

illustrate its effectiveness: 3-D object classification, part seg- 106

mentation, and semantic segmentation. Two datasets are used 107

in the classification evaluation: the synthetic dataset Model- 108

Net40 [24] and the real-world dataset ScanObjectNN [25]. 109

It is observed that DCPoint consistently outperforms the 110

state-of-the-art SRL methods in linear classification accu- 111

racy. Specifically, DCPoint achieves an accuracy of 91.5% 112

on ModelNet40 and 82.3% on ScanObjectNN. Moreover, 113

DCPoint surpasses its randomly initialized counterparts and 114

other SRL methods, in the evaluations with fine-tuning and 115

few-shot learning (FSL). Furthermore, compared with its 116

closest competitor, STRL [20], and randomly initialized coun- 117

terparts, DCPoint demonstrates notable advancements in the 118

part segmentation dataset ShapeNetPart [26] and the semantic 119

segmentation dataset S3DIS [27]. Particularly in the con- 120

text of semi-supervised learning, DCPoint exhibits promising 121

improvements. To gain further insights into the effective- 122

ness of DCPoint, we conduct abundant ablation studies to 123

examine the componentwise contributions of our global and 124

local contrast modules. The results confirm the significance 125

of both the components in enhancing the overall perfor- 126

mance of DCPoint. In addition, our experiments reveal that 127

the proposed local contrast module can effectively improve 128

the performances of other SRL methods [20], [28], which 129

implies its potential as a valuable enhancement to the existing 130

approaches. 131

The main contributions of this research are summarized as 132

follows: 133

1) We introduce a local contrast module for 3-D point 134

clouds to capture crucial structural information of 135

objects. It improves the consistency and discrimination 136

of various local regions on the representation space. 137

This module constructs contrastive sample pairs based 138

on the spatial heuristic of 3-D point clouds. It effectively 139

addresses the local partition problem arising from the 140

absence of ground truth and accommodates the unique 141

properties inherent in point clouds. 142

2) We introduce DCPoint, a dual contrast method that 143

integrates our local contrast module with a global con- 144

trast module. DCPoint captures information at multiple 145

levels of granularity and perspectives. It enables a more 146

comprehensive and nuanced understanding of 3-D point 147

clouds. 148
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3) We evaluate DCPoint across various downstream tasks149

on four widely used synthetic and real-world datasets,150

where our DCPoint outperforms its randomly initialized151

counterparts and other SRL methods. The proposed local152

contrast module can further enhance the generalization153

capabilities of other SRL methods.154

II. RELATED WORK155

With the advancement of deep learning techniques, the156

scale and quality of training data gradually become a bot-157

tleneck [18]. Labeling a large dataset is time-consuming158

and labor-intensive. Therefore, unsupervised learning becomes159

popular in the research area of artificial intelligence, which160

aims to train neural networks without human annotations [29].161

As the intermediate product of unsupervised learning, SRL162

has gained considerable attention and demonstrated remark-163

able efficacy in 2-D vision tasks [17], [23]. Researchers164

have recently explored the SRL methods of 3-D point165

clouds, which mainly comprise context-based and generative166

methods [8].167

A. Context-Based SRL of 3-D Point Clouds168

Context-based SRL of 3-D point clouds intends to learn the169

different contexts of point clouds, encompassing contrastive170

and structural SRL.171

Contrastive SRL of 3-D point clouds is one of the main-172

stream SRL types. It aims to capture the potential semantics173

from constructed positive and negative pairs [30]. Drawing174

inspiration from the success of contrastive SRL in 2-D vision175

tasks, numerous researchers have explored the effectiveness176

of such techniques in 3-D vision tasks [31], [32], [33]. For177

example, PointContrast [19] extends MoCo [17] to the point-178

level contrast, where a positive pair comprises two points of179

two views generated from a point cloud. STRL [20] adopts180

the framework of BYOL [23] to learn the representations181

of 3-D point clouds. CrossPoint [16] and Simipu [34] intro-182

duce cross-modal contrastive SRL methods by incorporating183

3-D–2-D consistency in addition to 3-D self-consistency.184

Different from the above mono-perspective methods, our185

DCPoint simultaneously uses global and local contrast186

to capture the semantic and geometric representations of187

objects.188

Structural SRL of 3-D point clouds aims to capture geo-189

metric information of point clouds by predicting their spatial190

information. It provides accurate geometric representation and191

natural geometric labels. For example, self-orientation [28]192

pretrains a model to predict the rotation angle of objects.193

It uses orientation information as a supervision signal without194

relying on human annotations. However, the disparity between195

the classification-related information and the one-sided geo-196

metric information limits the generality of structural SRL197

methods. Therefore, the recent work [35] uses structural SRL198

as the auxiliary pretext task. Differently, our local contrast199

module captures the latent structural information by distin-200

guishing between local positive and negative sample pairs.201

It can be as a plug-and-play module, which further enhances202

the generality of structural SRL methods.203

B. Generative SRL of 3-D Point Clouds 204

Generative SRL of 3-D point clouds aims to generate 205

original and complete point clouds from their destroyed coun- 206

terparts. Through the reconstruction process, the point cloud 207

encoder can capture the association between local and global 208

areas. For instance, Jigsaw [36] uses randomly disrupted 3-D 209

point clouds as the input and aims to generate the original 210

version. OcCo [37] first masks a portion of point clouds from 211

specific camera views and then reconstructs the complete point 212

clouds from the masked version. Point-MAE [14] reconstructs 213

the masked content of a point cloud by masked autoencoding 214

with transformer [38]. ACT [39] is reported to capture the 215

latent knowledge of 3-D point clouds from natural language 216

and 2-D vision with cross-modal reconstruction task. 217

III. METHOD 218

In this section, we elaborate on the proposed global–local 219

dual contrast SRL method: DCPoint. We start with the pre- 220

liminaries in Section III-A, including the problem formulation 221

and notations of contrastive SRL. Then, we briefly describe 222

our SRL method DCPoint in Section III-B. Next, the crucial 223

components, i.e., local contrast (see Section III-C), global con- 224

trast (see Section III-D), and the global–local joint objective 225

(see Section III-E), are described in detail. 226

A. Preliminaries 227

Due to the tedious and time-consuming nature of labeling 228

point clouds, the number of large-scale annotated datasets 229

remain limited in the field of 3-D computer vision tasks [8]. 230

In this article, we aim to alleviate the dependence of deep 231

networks on human annotations in the 3-D point cloud domain 232

through SRL. SRL guides models to extract object-specific 233

features through pretext tasks that do not require human 234

annotations, e.g., reconstruction and contrastive tasks. It serves 235

as a beneficial initialization for the feature encoder because it 236

imparts the model with an understanding of object features 237

and their relationships. It can significantly enhance the model 238

performance on downstream tasks. SRL equips the model with 239

a more robust and generalized representation of objects in the 240

pretraining process. As such, the models will not easily overfit 241

with few labeled training data compared with the random 242

initialization [29]. 243

As an essential branch of SRL, contrastive SRL has demon- 244

strated superior performances in the 2-D and 3-D domains. 245

Two critical issues of contrastive SRL are positive pairs and 246

negative pairs. Contrastive SRL aims to reduce the embedding 247

distances between positive pairs and enlarge the embedding 248

distances between negative pairs. InfoNCE loss [17] is a 249

widely used training objective function, which is defined as 250

follows: 251

L info = − log
exp

(
fq(x)T

· fk(x+)/τ
)∑

k exp
(

fq(x)T
· fk(xk)/τ

) (1) 252

where the inputs x , x+, and xk can be images, point clouds, 253

or patches. The input x+ is a positive pair of x , and xk is a 254

negative sample of x . Their instantiations are dependent on 255

specific pretext tasks. The fq and fk are encoder networks, 256
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which can be identical, partially shared, or different. exp(·)257

maps the extracted representation onto scalar-valued scores,258

where higher scores indicate higher likelihood. τ denotes the259

temperature, which controls the strength of penalties on the260

hard negative samples.261

B. Overview of DCPoint262

Effective representations of 3-D point clouds must encapsu-263

late both local geometric details and global semantic context.264

Previous SRL methods of 3-D point clouds predominantly265

focus on scene- or point-level understanding of 3-D point266

clouds [19], [20]. In contrast, our SRL approach DCPoint267

introduces a multiperspective contrastive by simultaneously268

considering the underlying connections among different com-269

ponents and objects. As shown in Fig. 2, DCPoint comprises270

three fundamental modules: Data augmentation, point cloud271

network, and joint optimization. Specifically, data augmenta-272

tion generates semantic-related pairs, referred to View 1 and273

View 2 in Fig. 2. These pairs contain distinct perspectives274

on the original point cloud (indicated by different colors)275

and serve as the foundation for the subsequent global–local276

contrast task. Point cloud network consists of an online module277

and a target module capturing multilevel representations of278

the input semantic-related pairs simultaneously. This includes279

point-level representations (H t1 and H t2 ) for the local contrast,280

as well as global-level representations (G t1 and G t2 ) and281

global-level contrastive representations (Z t1 and Z t2 ) for the282

global contrast. Joint optimization is focused on extracting hid-283

den structural and semantic information from the hierarchical284

representations of point clouds based on our global–local dual285

contrast modules.286

1) Data Augmentation: Let P denote an input point cloud.287

P ∈ RN×3 is a set of vectors, i.e., P = {p1, p2, . . . , pN }.288

Here, pi consists of the 3-D Cartesian coordinates of a point,289

and N denotes the number of points in the point cloud P .290

We apply two different data augmentation operators T1 and291

T2 on P to produce two augmented views P t1 and P t2
292

P t1 = T1(P) ∈ RN1×3, P t2 = T2(P) ∈ RN1×3 (2)293

where N1 is the number of points of P t1 and P t2 . The294

data augmentation strategies include random translation, scal-295

ing, cropping, and cutout (see Section IV-A2 for detailed296

definition).297

2) Point Cloud Network: We use the point cloud network to298

extract multilevel features from two semantically related point299

clouds P t1 and P t2 . The point cloud network comprises an300

online module and a target module. These modules contain a301

feature encoder, a feature mapping, and a projector. Besides,302

the online module has a predictor.303

With the two semantically related point clouds P t1 and304

P t2 , the feature encoders of online module and target module305

(i.e., f o
En and f t

En) aim to extract their point-level feature306

representations H t1 and H t2 . They are illustrated as follows:307

H t1 = f o
En(P t1) (3)308

H t2 = f t
En(P t2) (4)309

f t
En = M A( f o

En) (5)310

where MA(·) denotes an exponential moving average strategy. 311

If we parameterize f o
En by ξ and f t

En by θ , (5) is represented 312

as θ ← υθ + (1 − υ)ξ in each optimization step, where υ 313

denotes a constant and υ = 0.99. 314

After extracting point-level representations of point clouds, 315

we use representation mapping to capture their global-level 316

representations G t1 and G t2 317

G t1 = [max(H t1), avg(H t1)] 318

G t2 = [max(H t2), avg(H t2)] (6) 319

where max denotes max pooling, and avg denotes average 320

pooling. The results of max pooling and average pooling 321

for point-level representations are concatenated to form the 322

global-level representation of point clouds. 323

We use learnable nonlinear projectors f o
Pro and f t

Pro to 324

map the global-level representations G t1 and G t2 into the 325

contrast space. It can enhance the performance of point cloud 326

encoders, as discussed in [40]. Furthermore, we adopt the 327

predictor of the online module f t
Pre to avoid the collapsed 328

problem. Overall, the online module and target module derive 329

global-level contrastive representations Z t1 and Z t2 , as shown 330

as follows: 331

Z t1 = f o
Pre

(
f o
Pro(G

t1)
)

(7) 332

Z t2 = f t
Pro(G

t2)) (8) 333

f t
Pro = M A( f o

Pro). (9) 334

In Section IV-A1, we will present the detailed architecture 335

of the point cloud network. 336

3) Joint Optimization: Given two augmentation views P t1 337

and P t2 , their point-level representations (H t1 and H t2 ) are 338

optimized with our local contrast module. It enforces structure- 339

wise discrimination. In addition, their global-level contrastive 340

representations, Z t1 and Z t2 , are optimized with our global 341

contrast module that enforces instancewise consistency. This 342

joint optimization strategy strengthens feature encoders with 343

the desired properties for a wide range of downstream tasks. 344

In the subsequent subsections, we will describe in detail the 345

formulation of our local contrast module (see Section III-C) 346

and our global contrast module (see Section III-D). We will 347

introduce the overall training objective of our proposed 348

DCPoint in Section III-E. 349

C. Local Contrast 350

The existing contrastive SRL methods of point clouds 351

mainly focus on instance- or pointwise representations of 352

objects. Contrasting instance-level representations may over- 353

look the internal structural information of point clouds. While 354

contrasting point-level representations might fail to capture 355

the contextual cues necessary for object recognition. Hence, 356

we propose an additional intermediate level of contrast, i.e., the 357

local level. Intuitively, this level focuses on the relationships 358

between the components of objects, which is essential for 359

object understanding. Moreover, the local structure informa- 360

tion can boost the performances of point cloud networks that 361

focus on global information of objects [41]. 362

Similar to other levels of contrastive SRL, the fundamen- 363

tal challenge faced by the local contrast revolves around 364



SHI et al.: DCPoint: GLOBAL–LOCAL DUAL CONTRAST FOR SRL OF 3-D POINT CLOUDS 5

Fig. 2. Illustration of the proposed method DCPoint.

Fig. 3. Illustration of positive–negative pair partitioning based on spatial distribution in our local contrast module.

determining positive–negative sample pairs. Previous SRL365

methods for 2-D vision task [22], [42] divide each image366

into nonoverlapping grids. They treat the points of each grid367

as separate instances. It is hereinafter referred to as uniform368

local contrast. However, it is not straightforward to apply369

the uniform local contrast to 3-D point clouds due to their370

sparsity and irregularity. Self-Contrast [12] proposes to pre-371

train a self-similarity learning model to measure the similarity372

between different local areas of point clouds. The local regions373

with high similarity form the positive pairs; otherwise, they374

form the negative pairs. However, this self-similarity learning375

model significantly increases the computational complexity.376

Neighboring points might share the same semantic label and377

the degree of semantic consistency is related to the distances378

among points [43], [44]. As such, we propose to define379

contrastive sample pairs based on the spatial relationships380

between points. Specifically, as shown in Fig. 3, given a point381

cloud, we first select some points with farthest point sampling382

(FPS) algorithm [44] based on their 3-D Cartesian coordinates383

(i.e., the red points). These selected points can depict the384

structure of the point cloud to the fullest extent possible.385

Each selected red point is set as a center and forms a local386

region with its k-nearest neighbors (i.e., the green points).387

Each selected red point and its k-nearest neighbors in green388

form the positive sample pairs (i.e., connected by the solid 389

lines) and a local region. Different centers in red form the 390

negative sample pairs (i.e., connected by the dotted lines). This 391

effective and efficient local region partition strategy is tailored 392

to the unique properties of 3-D point clouds. 393

Our local contrast module aims to shrink the representation 394

distances between positive sample pairs, promoting feature 395

consistency within local regions. Simultaneously, it enlarges 396

the distances between negative sample pairs, enhancing the 397

discriminative power between distinct components of objects. 398

In summary, we divide each point cloud into the number of 399

C areas. Each area contains the number of K + 1 points, i.e., 400

a center and its K neighbors. The learning objective of our 401

local contrast is defined as follows: 402

L K = −
1
K

K∑
j=1

log

(
exp

(
hi

T
· h j/τ

)∑
o exp

(
hi

T
· ho/τ

)) (10) 403

where hi denotes the representation of a center; h j denotes the 404

representations of its neighbors within the same local area; and 405

ho denotes the representations of other centers. τ denotes the 406

temperature, which is set to 0.07 according to [16], [40]. 407

Compared with applying uniform local contrast to point 408

clouds, our pointwise local contrast module effectively avoids 409
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Fig. 4. Schematic of different local contrast methods. (a) Uniform local contrast [22]. Different colored cubes denote different local areas. (b) Our
point-level local contrast. Different red points form negative pairs. The red points and their surrounding blue points form positive pairs. Different
green ellipses denote different local areas.

the imperfect and invalid contrast problem. The uniform local410

contrast module divides point clouds into nonoverlapping411

cubes with a fixed size, treating each cube as a separate412

instance. The point cloud for a grand piano is depicted in 4.413

Observed in Fig. 4(a), the number of points in different cubes414

varies significantly because of the variations in point cloud415

sparsity across different regions. The red cube only contains416

one point of the piano lid support rod, which lacks the corre-417

sponding positive pairs. The blue cube contains many points,418

where positive pairs may include points from the piano legs419

and keys. It may lead to the imperfect local partition problem.420

Fig. 4(b) illustrates the partition result of our point-level local421

contrast module. For the red points of the piano lid support422

rod, our module determines their surrounding points as the423

positive pairs, as shown in the larger green ellipse. In the424

junction of the piano legs and keys, our module determines425

the most similar points as the positive pairs, as shown in the426

smaller green ellipse. As such, the sparsity does not impact427

the stability of our pointwise local contrast module.428

D. Global Contrast429

Global contrastive SRL methods learn the semantic rela-430

tionships among unlabeled objects by constraining their431

global-level contrastive representations. It has been reported432

the favorable performance in both 2-D and 3-D domains [16],433

[17]. In global contrastive SRL methods, the positive pairs434

contain different augmented views of objects. The negative435

pairs contain different object instances from a mini-batch.436

However, this selection strategy might generate imperfect437

negative pairs. For example, a negative pair may comprise438

different instances of the same category. It can result in439

erroneous feature distribution after enlarging embedding dis-440

tances between samples in the negative pair. To ensure the441

reliable contrast, our global contrast module omits negative442

pairs. However, learning only from positive pairs may result443

in collapsed problems, i.e., models derive the same output444

vector for all inputs. To mitigate the risk of convergence445

issues, our DCPoint implements global contrast by facilitat-446

ing interactions of two asymmetric modules: the online and447

target modules. Z t1 and Z t2 denote the outputs of the online448

module and target module, respectively. The primary learning 449

objective of our global contrast mechanism is to minimize the 450

discrepancy between Z t1 and Z t2 , which is quantified with the 451

Euclidean metric. The learning objective of our global contrast 452

is defined as follows: 453

LG =
∥∥Z t1 − Z t2

∥∥2
2. (11) 454

E. Global–Local Joint Objective 455

Our proposed DCPoint incorporates the local contrast loss 456

function in addition to the global contrast loss function for 457

joint optimization. It is to simultaneously support the contrast 458

properties of global semantic and local structural information 459

of 3-D point clouds. The global–local joint objective is defined 460

as follows: 461

L = LG + αL K (12) 462

where α is a balancing coefficient, ensuring a balanced order 463

of magnitudes among different constraint functions. Our dual 464

contrast method does not incur additional overhead for feature 465

computation compared with that with only using global con- 466

trast. Algorithm 1 provides the pseudocode of the proposed 467

DCPoint. 468

IV. IMPLEMENTATION AND EXPERIMENTS 469

A. Implementation Details 470

1) Architecture: As shown in Fig. 2, our DCPoint consists 471

of the feature encoders ( f o
En and f t

En), the projectors ( f o
Pro and 472

f t
Pro), and the predictor ( f o

Pre). The feature encoders capture 473

pointwise features of point clouds to be used by our local 474

contrast module. The feature encoder of DGCNN [43] has 475

been widely applied in various 3-D vision tasks. We select it as 476

the default feature encoders of DCPoint. In addition, we adopt 477

the feature encoder of CurveNet [45] as the feature encoders of 478

DCPoint to evaluate the feasibility of DCPoint using different 479

feature encoders. 480

The projectors of DCPoint contain two fully connected (FC) 481

layers. The first FC layer projects the global features of objects 482

into 4096 dimensions. It is followed by batch normalization 483
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Algorithm 1 Pseudocode of DCPoint
# initialize
f t

En.params = f o
En.params

f t
Pro.params = f o

Pro.params
# load a point cloud P
for P in loader:

# generate two different augmented
views

P t1 = T1(P), P t2 = T2(P) # (2)
# capture the point-level
representation

H t1 = f o
En(P t1) # (3)

H t2 = f t
En(P t2) # (4)

# capture the global-level
representation

G t1 = fg(H t1), G t2 = fg(H t2) # (6)
# capture the global-level
contrastive representation

Z t1 = f o
Pre( f o

Pro(G
t1)) # (7)

Z t2 = f t
Pro(G

t2)) # (8)
# partition positive-negative pairs
for local contrast

H̃ t1 = pn(H t1), H̃ t2 = pn(H t2) # Fig. 3
# Local contrast loss
lossl = L K (H̃ t1 , H̃ t2) # (10)
# Global contrast loss
lossg = LG(Z t1 , Z t2)# (11)
# Global-Local joint loss
loss = lossg + αlossl # (12)
# parameters update: online module
loss.backward()
update( f o

En, f o
Pro, f o

Pre)
# momentum update: target module
f t

En = M A( f o
En), f t

Pro = M A( f o
Pro) # (5),

(9)

and rectified linear units (ReLUs). The second FC layer484

projects the output of the first FC layer into 256 dimensions.485

The predictor is exclusively used for the online module of486

DCPoint. It is to predict the output of the target module,487

preventing collapse in an unsupervised scenario [23]. The488

predictor is similar to the projector, but the dimensions of489

their input data are different.490

In the global contrast module of DCPoint, we generate491

two augmented views of a point cloud through the same492

augmentation methods used in STRL [20]. In the local contrast493

module of DCPoint, we divide each point cloud into 512 local494

areas, where each local area contains a center point and four495

nearest points. These hyperparameters will be discussed in the496

ablation studies represented in Section IV-D3.497

2) Point Cloud Augmentation Operations: We first sample498

point clouds with different strategies for different downstream499

tasks. The sampling details are represented in Section IV-A4.500

To obtain the semantic-corrected pair of each point cloud,501

we augment each sampled point cloud twice with a set of geo-502

metric transformation operations, such as random translation503

(shifted within [0, 0.05]), scaling ([0.8, 1.2]), cropping ([0.75, 504

1.33]), and cutout ([0.1, 0.4]). 505

3) Optimization: We design the two-stage optimization strat- 506

egy for pretraining models with our DCPoint. In the first stage, 507

we train models with our global contrast module using (11). 508

In the second stage, we continue to train these models with 509

our local contrast module using (12). The coefficient α is set 510

to 0.01 empirically. 511

Our proposed architecture is implemented on the PyTorch 512

platform. The optimizer is the Adam combined with layerwise 513

adaptive rate scaling (LARS) and the cosine decay learning 514

rate schedule. In the first stage, we train the models for 515

100 epochs on two NVIDIA GeForce RTX 3090 with a batch 516

size of 32. The initial learning rate is set to 1e−3. In the second 517

stage, we set the initial learning rate to 1e−6 with a batch size 518

of 5 on a single NVIDIA GeForce RTX 2080Ti for five epochs. 519

4) Datasets for Pretraining: To be consistent with previous 520

works [16], [20], we pretrain models with our proposed 521

DCPoint on the datasets as follows: 522

1) ShapeNet1: We pretrain DCPoint on the ShapeNet 523

dataset [53] for the downstream classification and part 524

segmentation tasks. ShapeNet consists of 57 448 point 525

clouds of 55 categories. In applications, we randomly 526

sample 2048 points from each point cloud. 527

2) ScanNet2: We pretrain DCPoint on the ScanNet 528

dataset [54] for the downstream semantic segmentation 529

tasks. As an RGB-D video dataset, ScanNet consists of 530

1513 scenes from 707 real-world indoor environments. 531

We subsample the raw videos at a periodic interval (by 532

default, once every 100 frames). Therefore, we get a 533

subset of ScanNet, which consists of 24 902 frames. 534

To obtain the point cloud from a given RGB-D frame, 535

we transfer the locations of pixels (u, v) in an RGB-D 536

frame to 3-D points (X, Y, Z) with the camera intrinsics 537

M using the following equation: 538

Z

 u
v

1

 = M

 X
Y
Z

. (13) 539

In the experiments, we randomly sample 4096 points 540

from each projected point cloud. 541

B. Downstream Tasks 542

We evaluate the transferability of DCPoint on three widely 543

used downstream tasks in 3-D SRL: 1) 3-D object classifi- 544

cation with linear evaluation, fine-tuning, and FSL; 2) 3-D 545

part segmentation with semi-supervised learning; and 3) 3-D 546

semantic segmentation with semi-supervised learning. 547

1) 3-D Object Classification: 548

a) ModelNet403: As a widely used synthetic point cloud 549

dataset, ModelNet40 [24] contains 12 311 samples of 3-D 550

computer-aided design (CAD) over 40 common object cat- 551

egories. Among them, 9843 samples are for training, and the 552

remaining 2468 samples are for testing. 553

1https://shapenet.org/
2http://www.scan-net.org/
3https://shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip
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TABLE I
THREE-DIMENSIONAL OBJECT CLASSIFICATION WITH LINEAR EVALUATION ON MODELNET40

Fig. 5. Three-dimensional object linear classification with unimodal contrastive SRL method on ModelNet40.

b) ScanObjectNN4: As a popular real-world point cloud554

dataset, ScanObjectNN [25] contains 2902 scanned samples555

over 15 categories. About 80% of these samples are used for556

training, and the rest are used for testing. To ensure a fair557

comparison, we use the same dataset as CrossPoint [16].558

c) Object classification with linear evaluation: To demon-559

strate the generalizability of our proposed DCPoint on the 3-D560

object classification, we evaluate the classification accuracy of561

our model with linear classification heads. The corresponding562

evaluation metric is shown as follows:563

Accuracy =
Ca

CN
× 100% (14)564

4https://hkust-vgd.github.io/scanobjectnn/

where CN denotes the total number of testing samples, and 565

Ca denotes the number of samples correctly classified by a 566

model. 567

In the implementation, we integrate a linear support vec- 568

tor machine (SVM) classifier with the pretrained feature 569

encoder to form a classification model. We fine-tune the SVM 570

parameters throughout the training process while keeping 571

the pretrained feature encoder parameters frozen. During the 572

testing phase, we assess the performance of classification 573

models, wherein the feature encoders are pretrained using our 574

DCPoint method or previous SRL methods. Table I, Figs. 5, 575

and 6 present the results of these models on the ModelNet40 576

and ScanObjectNN datasets. 577

As shown in Table I, DCPoint achieves a linear classifi- 578

cation accuracy of 91.5% on ModelNet40. In comparison to 579

multimodal SRL methods [16], [39], which use the knowledge 580
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Fig. 6. Three-dimensional object classification with linear evaluation on
ScanObjectNN.

of 2-D images and 1-D natural language to guide SRL581

of 3-D point clouds, our DCPoint demonstrates competitive582

performance by constraining the representation distribution of583

point clouds from multiperspective.584

In Fig. 5, we further present the comparative results of uni-585

modal contrastive SRL methods. DCPoint outperforms global586

contrast SRL methods by significant margins. Specifically,587

it surpasses Zhu et al. [31] by 2.5%, Tothepoint [33] by 2.3%,588

and STRL [20] by 0.6%. In addition, DCPoint demonstrates589

superior performance compared with the voxel-point global590

contrastive method DepthContrast [52] by 6.1% and the local591

contrastive SRL method Self-Contrast [12] by 1.9%. Further-592

more, DCPoint exceeds the performance of Chen et al. [32]593

by 1.1%, a method that combines resolution recovery and594

global contrast tasks to learn intrinsic feature representations.595

These experimental findings underscore the enhanced semantic596

awareness exhibited by point cloud encoders, which capture597

multilevel information of objects during the pretraining phase.598

Fig. 6 shows the classification results of our proposed599

DCPoint and other SRL works on ScanObjectNN. Compared600

with ModelNet40, ScanObjectNN contains more complex601

background noises. Therefore, all the previous works and602

our DCPoint achieve lower accuracies on ScanObjectNN than603

those on ModelNet40. In such cases, the accuracy of DCPoint604

surpasses previous SRL methods, e.g., DCPoint outperforms605

the multimodal contrastive SRL method CrossPoint by 0.6%.606

These experimental results verify DCPoint’s generalization607

and effectiveness for out-of-distribution data.608

d) Object classification with FSL: FSL trains models with609

limited data. It is commonly used to test the generalization of610

SRL methods [8]. In the training stage, models are optimized611

with N × K samples over N categories (hereinafter called612

N -way K -shot). In the FSL experiments of our DCPoint,613

we randomly select the training samples and use the same614

testing samples in different trials. The final results of the mod-615

els are the mean and standard deviation of their classification616

accuracies over ten replications. The classification models in617

our FSL experiments consist of an SVM classifier and feature618

encoders, which are pretrained by different SRL methods.619

Table II shows the experimental results on the ModelNet40620

and ScanObjectNN datasets with FSL.621

It is seen in Table II that the proposed DCPoint outperforms 622

other SRL models on the ModelNet40 and ScanObjetNN 623

datasets. It is worth noting that DCPoint is less affected by 624

the scale of training data than other methods. The mean 625

accuracy of CrossPoint in the ten-way ten-shot experiments 626

is 8.9% lower than of the five-way ten-shot experiments 627

on ModelNet40. While the mean accuracy of DCPoint only 628

decreases 1.8% in the same experiments. This is because our 629

global–local dual contrast method captures more essential fea- 630

tures of 3-D objects by simultaneously learning the distinctions 631

between the inter- and intraobjects. However, the previous 632

contrastive SRL methods ignore the relationships between 633

interobjects, and the previous generative SRL methods ignore 634

the relationships between intraobjects. In addition, DCPoint 635

consistently outperforms its randomly initialized counterpart, 636

DGCNN, by significant margins in various FSL experiments. 637

For example, the mean accuracy gain is up to 55% on 638

ModelNet40 and 15.5% on ScanObjectNN in the five-way 639

20-shot experiments. 640

e) Object classification with fine-tuning: We also evaluate 641

our SRL method DCPoint by supervised fine-tuning. In the 642

training step, the pretrained model provides the initial weights 643

for the feature encoder of the point cloud classifier. The 644

parameters of the point cloud classifier are optimized with 645

all the training samples of classification datasets. Table III 646

shows the fine-tuned results of our DCPoint and previous SRL 647

methods on ModelNet40 and ScanObjectNN. All the SRL 648

models share the same architecture, i.e., DGCNN. Compared 649

with the randomly initialized DGCNN, DCPoint achieves a 650

performance increase of 0.7% on ModelNet40 and 3.5% on 651

ScanObjectNN. These improvements are more significant than 652

the previous SRL methods. 653

2) 3-D Object Part Segmentation: 654

a) ShapeNetPart5: As a popular part segmentation dataset 655

for 3-D point clouds, ShapeNetPart [26] contains 16 881 sam- 656

ples (14 007 for training and 2874 for testing) over 16 object 657

categories and 50 part categories. 658

b) Semi-supervised learning: In the experiments of part seg- 659

mentation with semi-supervised learning, we first pretrain the 660

feature encoders of DGCNN with our DCPoint and STRL [20] 661

on the ShapeNet dataset. Then, we fine-tune DGCNN with a 662

small percentage of training data (e.g., 1%–10%) of ShapeNet- 663

Part for 200 epochs with a batch size of 32. The optimizer 664

is a standard SGD with a momentum of 0.9. The initial 665

learning rate is set to 1e−3. To evaluate the segmentation 666

performance of DGCNN, we use the mean intersection over 667

union (mIoU) as the evaluation metric, as denoted in (15). All 668

the experiments are based on the PyTorch platform with one 669

NVIDIA GeForce RTX 2080Ti 670

mIoU =
1
|C|

C∑
c=1

∣∣{y = c} ∩ {ỹ = c}
∣∣∣∣{y = c} ∪ {ỹ = c}
∣∣ (15) 671

where C denotes a finite set of classes, c denotes one of the 672

categories, y denotes the pointwise ground-truth labels, and ỹ 673

denotes the predicted pointwise results. 674

5https://shapenet.org/
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TABLE II
THREE-DIMENSIONAL OBJECT CLASSIFICATION WITH FSL ON MODELNET40 AND SCANOBJECTNN. THE

RESULTS ARE THE MEAN AND STANDARD ERROR OVER TEN REPLICATIONS

TABLE III
THREE-DIMENSIONAL OBJECT CLASSIFICATION WITH FINE-TUNING

ON MODELNET40 AND SCANOBJECTNN

As shown in Table IV, when fine-tuning with 1% of the675

training data from the ShapeNetPart dataset, DCPoint out-676

performs its baseline model counterpart by 0.3% of mIoU,677

which is random initialized without any pretraining stages.678

But STRL performs 1.0% worse than the randomly initial-679

ized counterpart. As the fine-tuning data increase to 10%,680

our DCPoint outperforms STRL by 0.2% and the randomly681

initialized counterpart by 0.5%. These experimental results682

indicate the significance of our local contrast module in the683

part segmentation task. It highlights the necessity for point684

cloud encoders to extract local point-level features.685

3) 3-D Object Semantic Segmentation:686

a) S3DIS6: As a large-scale point cloud dataset of indoor687

spaces, S3DIS [27] contains 3-D scanned data from six688

large-scale indoor areas, denoted as Area 1–Area 6, with689

695 878 620 points over 13 categories. Following the previous690

work [20], we sample point clouds of each room by selecting691

6http://buildingparser.stanford.edu/dataset.html

TABLE IV
THREE-DIMENSIONAL PART SEGMENTATION WITH SEMI-SUPERVISED

LEARNING ON SHAPENETPART. PERCENTAGE DENOTES THE

PERCENTAGE OF TRAINING DATA IN THE TRAINING SET

the key points within an area 1 × 1 m and randomly resample 692

4096 points from each sampled point cloud. 693

b) Semi-supervised learning: In this experiment of semantic 694

segmentation with semi-supervised learning, we first pre- 695

train the feature encoders of DGCNN with our DCPoint 696

and STRL [20] on the ScanNet dataset. Then, we fine-tune 697

DGCNN with Area 1–Area 5 of S3DIS and test it on Area 698

6. In the fine-tuning stage, we use a standard SGD optimizer 699

with momentum 0.9. The batch size is 32, and the total fine- 700

tuning is 100 epochs. The initial learning rate is set to 1e−3. 701

All the experiments are based on the PyTorch platform with 702

one NVIDIA GeForce RTX 2080Ti. 703

As shown in Table V, DCPoint consistently outperforms 704

its randomly initialized baseline counterpart. In particular, 705

when fine-tuning with Area 3, which only has 1640 sam- 706

ples, DCPoint outperforms the randomly initialized baseline 707

model by 1.8% and achieves better results than STRL. When 708

fine-tuning with Area 5, which has 6852 samples, DCPoint 709

outperforms the randomly initialized baseline counterpart by 710
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Fig. 7. Segmentation results on Area 6 of S3DIS. (a) Ground truth. (b) DCPoint (Our). (c) STRL [20].

TABLE V
THREE-DIMENSIONAL SEMANTIC SEGMENTATION WITH

SEMI-SUPERVISED LEARNING ON S3DIS

2.1% and performs similar to STRL. Fig. 7 shows the seg-711

mentation results on Area 6 of DCPoint and STRL fine-tuning712

with Area 1. It is clear that the most significant discrepancies713

between DCPoint and STRL locate in the junctions between714

three local areas. DCPoint obtains more accurate segmentation715

results than STRL. The cause of the performance superiority716

is that our local contrast module guides the feature encoder to717

learn the local details. Furthermore, DCPoint exhibits greater718

accuracy than STRL when labeled data are minimal. This719

indicates that DCPoint captures more general fine-grained720

architecture attributes of 3-D objects, which is essential in721

cross-domain semantic segmentation.722

C. Further Analysis of DCPoint723

1) Generality of Local Contrast: The previous experiments724

show that DCPoint performs much better on different 3-D725

downstream tasks. In this section, we perform 3-D object726

linear classification and FSL experiments to investigate the727

generality of our local contrast module. Specifically, we eval-728

uate the performances of combining our local contrast729

module with other SRL methods, including STRL [20] and730

self-orientation [28], i.e., STRL + local contrast and self-731

orientation + local contrast. Among them, STRL pretrains732

the models by comparing the global features of objects; self- 733

orientation pretrains the models by predicting the orientation 734

of objects. For a fair comparison, we leverage the publicly 735

available source codes of STRL and self-orientation. In the 736

pretraining process, we first train DGCNN using these previ- 737

ous SRL methods. Next, we retrain it using our local contrast 738

module. We use ShapeNet as the pretraining dataset and verify 739

the model performances on ModelNet and ScanObjectNN. 740

As shown in Table VI, after incorporating with our 741

local contrast module, the linear classification accuracy of 742

self-orientation is improved by 0.7% on ModelNet40 and 743

1.0% on ScanObjectNN. The self-orientation + local contrast 744

always outperforms self-orientation in various FSL experi- 745

ments. For instance, in the five-way ten-shot experiments, the 746

mean accuracy gain is increased by 1.4% on ModelNet40 747

and 1.8% on ScanObjectNN. The accuracy of STRL + local 748

contrast is higher than that of STRL by 0.6% in the linear 749

classification experiments and 2.2% in the five-way ten shot 750

experiments on ModelNet40. Although STRL + local contrast 751

only slightly improves the accuracy compared with STRL in 752

the FSL experiments on ScanObjectNN, it outperforms STRL 753

by 4.4% in the linear classification. The reason is that our 754

local contrast module enhances the local feature extraction 755

capability of STRL. It can achieve larger improvements when 756

fine-tuning with more training data on a complex real-world 757

dataset. 758

D. Ablation Studies of DCPoint 759

1) Architecture of Feature Encoder: In this section, we per- 760

form 3-D object classification with FSL experiments to 761

investigate the generality of DCPoint on different feature 762

encoders. We select the feature encoders of two models, 763

including DGCNN [43] and CurveNet [45]. These models 764

are graph-based feature extraction networks. The graph of 765

DGCNN is created based on nearby points in a small region, 766

whereas a continuous sequence of nonlocal points forms the 767

graph of CurveNet. We pretrain these feature encoders using 768

our DCPoint and STRL [20] on ShapeNet. We compare their 769

performance in the FSL experiments on ModelNet40. 770

Table VII shows that our DCPoint outperforms STRL in 771

the FSL experiments regardless of the feature encoder. These 772

results confirm that DCPoint can be applied to various feature 773

encoders to capture more general object features. It is notable 774

that the feature encoder of DGCNN using SRL methods could 775
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TABLE VI
THREE-DIMENSIONAL LINEAR CLASSIFICATION AND FSL RESULTS ON MODELNET40 AND SCANOBJECTNN. THE RESULTS ARE

THE MEAN AND STANDARD ERROR OVER TEN REPLICATIONS IN FSL EXPERIMENTS

TABLE VII
ABLATION OF THE FEATURE ENCODER OF SRL METHODS

TABLE VIII
ABLATION OF DIFFERENT CONTRAST METHODS. OUR DEFAULT SETTINGS ARE SHOWN IN GRAY

TABLE IX
ABLATION OF HYPERPARAMETERS. OUR DEFAULT SETTINGS ARE SHOWN IN GRAY (a) NUMBER OF LOCAL AREAS C OF A

POINT CLOUD. (THE NUMBER OF NEIGHBOR POINTS K OF A CENTER POINT IS SET TO 4.) (b) NUMBER OF NEIGHBORS

K OF A CENTER POINT. (THE NUMBER OF LOCAL AREAS C OF A POINT CLOUD IS SET TO 512)

perform better than the feature encoder of CurveNet in some776

FSL experiments. The related FSL literature [55] has reported777

that complex networks might degrade FSL performances.778

2) Global–Local Dual Contrast Versus Global Contrast Ver-779

sus Local Contrast: In this section, we design detailed studies780

to illustrate the effectiveness of our proposed global–local781

dual contrast method. Specifically, we compare it to the782

cases of only using global or local contrast. To pretrain the 783

feature encoder of DGCNN, we use different contrast methods 784

on ShapeNet with different optimization strategies, such as 785

one-stage and two-stage optimization strategies. As its name 786

implies, the one-stage optimization strategy only contains one 787

training process. The two-stage optimization strategy contains 788

two training processes. The second training process starts from 789
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the parameters learned by the first training process. After790

pretraining, we compare their 3-D object linear classification791

accuracies on ModelNet40. Table VIII shows the experimental792

results.793

a) Global–local dual contrast with different optimization strate-794

gies: Different optimization strategies can bring different795

performances even under the same model. As shown in796

Table VIII, Model A denotes DGCNN pretrained with the797

global–local dual contrast under the one-stage optimization,798

which obtains a classification accuracy of 89.5% and is lower799

than Model B by 2%. The two-stage optimization of Model B800

means that the model is first trained with the global contrast801

and then trained with the global–local dual contrast. After such802

an incremental optimization strategy, the model can realize803

more complex learning objectives.804

b) Global–local dual contrast versus global contrast: As805

shown in Table VIII, Model B outperforms the global contrast806

(Model C) by 0.6%. Model B is equivalent to adding the807

local contrast to Model C in the second optimization stage.808

To further verify the pertinence between the performance809

improvement and our local contrast module, we retrain Model810

C with global contrast by the same optimization strategy as the811

second training stage of Model B, i.e., Model D. However, the812

performance of Model D is lower than Model C. The reason813

is that directly retraining Model C leads to overfit. While814

retraining with our local contrast helps improve the model’s815

generalization.816

c) Global–local dual contrast versus local contrast: As shown817

in Table VIII, Model E is pretrained only with the local818

contrast and gets the lowest classification accuracy of 85.0%.819

Model F has a two-stage optimization strategy. In the first820

stage, it is pretrained with global contrast. In the second821

stage, it is pretrained with local contrast. Model F obtains a822

classification accuracy of 85.5%. The reason is that the local823

contrast ignores the invariance between different instances,824

which is vital to classification tasks.825

3) Point Sampling: Our proposed local contrast module of826

point clouds aims to keep the consistency of the center point827

and its neighbors within a local area. It aims to enlarge the828

differences between the center points of different local areas.829

Therefore, the number of neighbors K of a center point and830

the number of local areas C are essential to our local contrast831

module. We ablate such hyperparameters in the 3-D object832

linear classification experiments on ModelNet40.833

As shown in Table IX(a), if the value of K is set as 4,834

changes in the value of C will not significantly impact the835

results. However, if the value of C is kept to 512, the model’s836

performance starts to saturate with K = 4, as shown in837

Table IX(b). The reason is that the more the neighbors of a838

center point, the weaker the correlations between the center839

point and its neighbors. It leads to incorrect guidance for840

representation learning of point clouds.841

V. CONCLUSION842

This article introduces DCPoint, a global–local dual con-843

trastive SRL method for 3-D point clouds. Its global contrast844

module aims to capture the instance-level characteristics845

of objects by minimizing the distance between the two846

augmented inputs in the global representation space. The local 847

contrast module of DCPoint aims to capture the detailed 848

characteristics of objects by enhancing interpartition con- 849

sistency and intrapartition discrimination on the pointwise 850

representation space. Tailored to the unique properties of 3-D 851

point clouds, the partitioning of positive and negative pairs 852

for the local contrast is dependent on their spatial distribu- 853

tion. Therefore, DCPoint enables the simultaneous learning 854

of internal structural and semantic characteristics of objects. 855

In the downstream tasks, such as 3-D object classification and 856

segmentation in synthetic and real-world datasets, DCPoint 857

outperforms its randomly initialized baseline counterparts and 858

previous SRL methods. This article highlights the importance 859

of multiperspective contrastive learning for 3-D point clouds, 860

which holds great potential for advancing related studies. 861

Moreover, the proposed local contrast module can further 862

improve the performances of other SRL methods. 863

In future work, we plan to investigate a one-stage optimiza- 864

tion strategy for DCPoint to improve its training efficiency. 865

In addition, we aim to explore the extension of our multiper- 866

spective contrastive strategy to multimodality SRL. 867
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