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A B S T R A C T   

Biokinetic modelling of N2O production and emission has been extensively studied in the past fifteen years. In 
contrast, the physical-chemical hydrodynamics of activated sludge reactor design and operation, and their 
impact on N2O emission, is less well understood. This study addresses knowledge gaps related to the systematic 
identification and calibration of computational fluid dynamic (CFD) simulation models. Additionally, factors 
influencing reliable prediction of aeration and N2O emission in surface aerated oxidation ditch-type reactor types 
are evaluated. The calibrated model accurately predicts liquid sensor measurements obtained in the Lynetten 
Water Resource Recovery Facility (WRRF), Denmark. Results highlight the equal importance of design and 
operational boundary conditions, alongside biokinetic parameters, in predicting N2O emission. Insights into the 
limitations of calibrating gas mass-transfer processes in two-phase CFD models of surface aeration systems are 
evaluated.   

1. Introduction 

Global warming and the climate emergency constitute the most 
critical global sustainability challenges. Policy responses to climate 
change impacts comprise mitigation measures, addressing the causes by 
reducing anthropogenic greenhouse gas emissions. The reduction of 
greenhouse gas emissions in the form of N2O, – representing the ma-
jority of the carbon footprint of WRRF systems (Kampschreur et al., 
2009; Ribera-Guardia et al., 2019)– requires the development of effec-
tive reactor design and operational solutions. Whilst, ample literature 
evidence exists on the metabolic pathways, stoichiometry and bio-
kinetics of microbial conversion of nitrogenous chemicals that can lead 
to N2O release from biological treatment processes (Kampschreur et al., 
2009, 2008), it is less well understood how bioreactor design and 
operational conditions – and the interplay between bioconversion and 
transport processes in full-scale reactor systems – can influence overall 
N2O emission – the main focal area of the present study. This is 
extremely important, because the spatially and temporarily changing 
reactor environments can significantly impact the removal of micro-
bially produced N2O in, for instance, surface aerated oxidation ditch 

activated sludge bioreactors. Gaining a better insight into such 
highly-coupled biokinetic-transport phenomena is key to develop the 
next-generation WRRF process design and operation. Regarding bio-
kinetic modelling of N2O, there are single- and two-pathway models 
developed that include nitrifier nitrification (NN) and/or denitrification 
(ND) only (Ni et al., 2013; 2014; Pocquet et al., 2016). In comparison, 
the NDHA process model (Domingo-Félez et al., 2016), includes nitrifier 
nitrification (N), nitrifier denitrification (D), heterotrophic denitrifica-
tion (H) and abiotic N2O conversion processes (A). That is, the NDHA 
model includes not only NN and ND pathways, but also heterotrophic 
denitrification (HD) and abiotic N2O production pathways that is an 
advantage when it comes to full-scale WRRF simulations – a key argu-
ment to implement it in our CFD simulation model. 

In-reactor oxygen availability is a key factor influencing N2O pro-
duction. There are two common types of aeration systems in oxidation 
ditch modelling: compressed-air fine-bubble and mechanical surface 
aeration (Tchobanoglous et al., 2003). Despite their lower oxygen 
transfer efficiency, compared to fine-bubble aeration (Al-Ahmady, 2006; 
Gehring and Lindam, 2013; Guanghao et al., 2020), surface-aerated 
activated sludge reactors (SASR) found widespread implementations, 
e.g., in France and Denmark. This is because they are relatively simple 
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and cheap to install, have low maintenance costs and are easy to control 
via variable rotor speed and submergence depth (Cumby, 1987; Guan-
ghao et al., 2020; Mueller et al., 2002; Stenstrom and Gilbert, 1981). 

CFD simulation models can be used to predict and optimize the 
performance of complex reactor operations such as SASR (Karpinska and 
Bridgeman, 2016). Most CFD studies on aeration systems and aerated 
reactors focus on bubble diffusers or air spargers (Le Moullec et al., 
2010; Niño et al., 2020; Zaburko et al., 2020). There is limited knowl-
edge on surface aerator CFD modelling (Karpinska and Bridgeman, 
2016), both in terms of their fluid dynamics and aeration gas transfer 
behaviour – significant knowledge gaps the present study aims to cover. 
To this end, the first aspect is to introduce an equivalent momentum 
source term into the hydrodynamic equations. The second aspect of 
model development entails the development of a mechanistic multi-
phase model that requires two-phase data on the spatial distribution of 
bubbles introduced by the surface aerating rotors and a detailed char-
acterization of the bubble sizes. The latter – representing a major 
knowledge gap – is beyond the scope of the present study – partly, due to 
its inherent complexity. Instead, this study evaluates the approach of 
using (A) uniform spatial distribution of the generated bubbles limited 
to the region occupied by the rotors and (B) bubble-size population 
balance modelling previously used for aeration diffusers (e.g., Climent 
et al., 2019) 

Mesh generation – critical for following good practice in CFD 
modelling (Roache, 1998; Wilcox., 1998) – can follow unstructured and 
structured approaches. Unstructured mesh is normally built for complex 
geometry of e.g., corners and sharp edges in reactors. Compared to 
structured mesh, the generation of unstructured mesh is quicker; how-
ever, it comes with an increased computational memory requirement for 
storing a higher number of elements, which in turn increases the 
computational time (Sack and Urrutia, 2008). Implementing structured 
mesh can result in higher mesh quality as a result of higher degree of 
control over e.g., inflation layers, number of elements and nodes 
(Wicklein et al., 2016). 

In this study, the shear stress transport (SST) model is implemented 
for the turbulence description. Compared to other turbulence models, 

the SST turbulence model combines the features of k − ε and k − ω 
turbulence models to simulate free stream and wall regions, respec-
tively; it’s also a simpler tool, and as such, it can also reduce computa-
tional time as well as it provides relatively accurate results (Menter, 
1993; Wilcox., 1998, 2009). As for predicting N2O greenhouse gas 
emission from activated sludge processes, most studies in literature 
focus on discriminating biokinetic model parameters (Ni et al., 2013; Ni 
et al., 2014; Pocquet et al., 2016; Domingo-Félez et al., 2017). In turn, 
there is a significant knowledge gap as to how uncertainties from design 
and operational parameters propagate to simulation outputs obtained 
with combined biokinetic-transport models. 

To reduce model complexity, whilst maintaining high predictive 
accuracy, complex hydrodynamic simulation models can be converted 
into simple distributed (1-dimensional) models using data-driven 
models (Guyonvarch et al., 2015; 2020; Schneider et al., 2022). In this 
study, statistical meta-models are identified for gas-liquid mass transfer 
in SASR using steady-state CFD simulation results. 

CFD simulation models to predict the behaviour of aerated reactor 
systems are widely implemented. Whilst for fine-bubble aeration sys-
tems, this approach can result in accurate model predictions – thanks to 
the wealth of related literature evidence on the underlying physical 
phenomena – this is not the case for surface aerated systems. Notably, 
we show here that, due to the lack of robust understanding of bubble 
structure and terminal velocity in surface aeration, the practice of 
substituting related fine-bubble aeration data to calibrate surface aera-
tion models (e.g., Matko et al., 2021) can lead to erroneous solutions. To 
this end, our results indicate the need for improved understanding of the 
spatial variability of gas mass transfer behaviour, downstream to the 
surface aeration rotor, which is found to be key to reliably predict both 
DO and N2O mass transfer. 

Following the principles of statistically interpreted CFD, the regres-
sion meta-models identified for surface aeration here – using 3-D CFD 
simulation results – are proposed to be used to dynamically calibrate gas 
mass-transfer models in WRRF plant-wide simulations. 

The main objectives of this paper focus on answering the hypothesis 
tests of (A) systematic numerical model identification and calibration for 

Nomenclature 

Abbreviation 
3D Three-dimensional 
BSD Bubble size distribution 
CFD Computational fluid dynamic 
DO Dissolved oxygen 
GCI Grid convergence index 
OTR Oxygen transfer rate 
PBM Population balance model 
SASR Surface-aerated activated sludge reactors 
SST Shear stress transport model 
WRRF Wastewater resource recovery facility 

Symbols 
a Alpha factor [-] 
b Beta factor [-] 
bi Normalised sensitivity index [-] 
ηNOR Reduction factor for NO reduction [-] 
μ Dynamic viscosity [N s m− 2] 
μNOB Maximum aerobic nitrite-oxidizing (NOB) growth [h− 1] 
μAOB, HAO Maximum growth rate for hydroxylamine (NH2OH) 

oxidation [h− 1] 
μAOB, AMO Maximum growth rate for ammonia (NH3) oxidation 

[h− 1] 
ρ Density [kg m− 3] 

τij Reynolds stress [-] 
ωrotor Rotor speed [rpm] 
Dφ Molecular diffusivity [m2 s− 1] 
Drotor Blades diameter [m] 
FS Safety factor for GCI calculation [-] 
KLaN2O Overall liquid phase mass transfer coefficient of N2O [h− 1] 
KLaO2,clean Overall liquid phase mass transfer coefficient of O2 in 

clean water [h− 1] 
Lrotor Rotor axis length [m] 
MWi Molar mass of component i [kg mol− 1] 
Mrotor Rotor momentum source [kg m s− 1] 
Nrotor Rotor power number [-] 
Sc Schmidt number [-] 
Si Liquid concentration of component i [mg L− 1] 
SO* Saturation liquid concentration of oxygen [mg L− 1] 
T Temperature [◦C] 
Ui Velocity field components [m s− 1] 
Vrotor Volume of rotor [m3] 
Xtot Total biomass concentration in reactor [mg L− 1] 
bi Sensitivity index [-] 
ei(i− 1) Relative error between test i and i-1 [-] 
g Gravity acceleration [m s− 2] 
hrotor Rotor submergence [m] 
ri(i− 1) Grid refinement ratio between mesh i and i-1 [-] 
vi Fluid velocity at position i [m s− 1]  
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reliable prediction of dissolved oxygen and N2O gas mass-transfer pro-
cesses in surface aerated reactors; (B) evaluating calibration methods for 
single- and two-phase 3-D CFD simulations to discriminate numerical 
simulation model structures; and (C) analysis of parameter sensitivity to 
predict dissolved oxygen and N2O greenhouse gas emission simulation 
outputs as well as to develop good modelling practices. 

2. Calibration of CFD models of surface aerated reactor systems 

For the surface aeration systems, CFD simulation model calibration 
involves a number of parameters, some of which are specific to single- 
and two-phase simulations (Fig. 1). Here we present a comprehensive 
overview on the calibration methods for surface aerations – presently a 
considerable research gap (Amaral et al., 2017). 

2.1. Common (single- & two-phase) parameters and single-phase model 
parameters 

To calibrate the total oxygen transfer rate (TOTR) [kg O2 h− 1], 
pertinent information on rotor type is typically provided by manufac-
turers as a function of rotor speed and submergence. TOTR through 
surface aeration can be calibrated as a function of rotor operational 
speed (ωrotor [rpm]), rotor submergence, hrotor [m] and rotor length [m] 
(Fig. 2), i.e. 

TOTR =
[
(0.793 ×ωrotor − 26.94)× hrotor + 15.14e− 0.041ωrotor

]
× Lrotor (1) 

We note that Eq. (1) is only valid within the range of rotor speed, 
spanning from 55 to 83 rpm and the range of rotor submergence, from 
0.1 to 0.25 m. For model calibration, the rotor submergence of 0.2 m and 
rotor speed of 55 rpm were used. 

The a factor is the ratio of the gas-liquid gas mass-transfer coefficient 
measured in wastewater (KLaWW) to that obtained in clean water tests 
(KLaO2,clean), i.e., kLaww/kLaO2,clean (Rosso and Stenstrom, 2014, 2006; 
Stenstrom and Gilbert, 1981; Tewari and Bewtra, 1982); its value can 
vary as a function of the physical and operational boundaries of the 
aeration system and wastewater characteristics (Bencsik et al., 2022). 
Here, we present a factor calibration method using full-scale hood 
measurements and CFD simulation results (Fig. 8) that is described as 
follows. 

Values of KLaO2,clean are estimated at the five monitoring points using 
CFD simulation results (Fig. 7b). These results – combined with KLaN2O 
data (measured using liquid- and gas-phase sensor data, Eq. 12.) – are 
substituted in the regression equation (Eq. (2)), and are then used to 
approximate a single a value using a one-parameter estimation method 
(SigmaPlot, 12.1). To estimate the spatially varying values of KLaO2,clean, 
transient-to-steady-state simulations – in the absence of active biomass – 
were run to simulate oxygen concentration time-series profiles at 
different spatial monitoring points (Fig. S2). Values of KLaO2,clean were 
estimated using the dissolved oxygen concentration data obtained in 

fifteen different spatial monitoring points downstream to the surface 
aerator (Fig. 4). That is, in addition to the five sensor monitoring points – 
in the real system – located close to liquid surface (Fig 4a), two addi-
tional vertical monitoring points were defined – in the CFD simulation 
domain – for each horizontal location in the CFD domain at 0.5- and 1.0- 
m depths (Fig. 4b). The KLaO2,clean field is computed as a function of the 
distance to the rotor using correlation equations for the KLaO2,clean values 
obtained (Fig. 4). Separate correlation equations are established for the 
surface layer and for the layer underneath, i.e., the sub-surface layer 
(Fig. 7c and d). Laboratory-scale measured data (reported by Domi-
ngo-Félez et al., 2014) – obtained in off-site batch experiments – are used 
here to infer a new correlation equation for KLaN2O and KLaO2,clean as 

KLaN2O =
[
0.14⋅ln

(
KLaO2, clean⋅α

)
+ 1.17

]
KLaO2, clean⋅α (2)  

where KLaO2,clean and KLaN2O [min− 1] are gas-liquid mass transfer coef-
ficient for oxygen in clean water and for N2O in wastewater, respec-
tively. Subsequently, the a factor – considered as an average value for 
the entire reactor – was approximated by fitting Eq. (2) to KLaN2O data. 
To predict the in-reactor KLaN2O field, Eq. (2) is implemented in the CFD 
simulation model for both the reference system (Lynetten WRRF) and 
those included in the factorial screening study. 

For oxygen saturation concentration (So*), a temperature depen-
dence correlation (Eq.3) is implemented (Plósz et al., 2003), i.e., 

So∗ =
(
− 0.00008T3 + 0.008T2 − 0.4102T + 14.65

)
β (3)  

where T is the fluid temperature (◦C). The b factor is the ratio between 

Fig. 1. Calibrated Parameters for single- and two-phase CFD simulation models.  

Fig. 2. Length normalised oxygen transfer rate (OTR, kg m-1h-1) – 3-D plane 
for surface aerator OTR defined as a function of rotor submergence and rotor 
speed, Eq. 1 (Dage, 2017). 
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DO concentration in wastewater and that in clean water (Tewari and 
Bewtra, 1982). In this study, a constant value of was used (Plósz et al., 
2003; Tewari and Bewtra, 1982). 

The surface aeration rotors are modelled by following the so-called 
momentum source approach (Huang et al., 2013; Murthy and Jayanti, 
2002). Therefore, the geometry of blades of the impellers are not 
included explicitly in the computational domain. Instead, the overall 
effect of the rotors on the flow is approximated by a momentum source 
that is limited to act within the cylindrical region that is occupied by the 
rotor when it rotates. Accordingly, the volume of this region is given as 

Vrotor =
π
4

LrotorD2
rotor, (4)  

where Lrotor denotes the rotor axis length [m]. Drotor represents the blades 
diameter (Drotor = 2Rrotor) in [m]. The momentum source of every 
rotor (Mrotor) is introduced as: 

M rotor =
Protor

2π ωrotorRrotorVrotor
, (5)  

where Protor stands for the rotor power calculated as 

Protor = Nrotor ρ ω3
rotorD

5
rotor (6)  

ωrotor represents the rotor angular speed [rpm]. Nrotor is the rotor power 
number that is related to the propeller efficiency. The value of Nrotor is 
assumed to be 0.25 (Hemrajani and Tatterson, 2004). 

2.2. Two-phase model parameters 

Two-phase CFD simulation models of aerated reactors can be used to 
account for bubble characteristics, thus improving the prediction aera-
tion tank performance (Climent et al., 2019; Guo et al., 2020; Karpinska 
and Bridgeman, 2016). To predict gas mass-transfer in two-phase 
models, the three key sub-models to calibrate include the specific 
interfacial area for gas-liquid mass transfer ai [m− 1]; the liquid-phase 
mass transfer coefficient kL [m h− 1]; and surface aerator boundary 
condition separately (Karpinska et al., 2016; Guo et al., 2020). 

In the two-phase simulation model, the second phase is described 
according to the Eulerian-Eulerian Two-Fluid model (Climent et al., 
2019) using the following correlations for the interfacial forces:  

• Ishii-Zuber for the drag coefficient.  
• Tomiyama for the lift coefficient.  
• Favre averaged coefficient (0.2) for the turbulent dispersion.  
• Sato model for bubble induced turbulence. 

The population balance of air bubbles is modelled using the MUSIG 
method, describing bubble coalescence with Prince & Blanch model 
(Prince and Blanch, 1990) and bubble break-up with Luo and Svendsen 
(1996). The settings of bubble group sizes ensures that the coalescence 
does not lead to a saturation of the bigger size groups. The following 
bubble-size groups were implemented in our CFD simulation model: 0.5 
mm, 1 mm, 2 mm, 3 mm, 5 mm, 8 mm, 12 mm and 20 mm. The mass 
transfer terms for N2O stripping and O2 aeration are implemented using 
interfacial terms as 

SO2, liquid = kL,O2aiα
(
CO2,gas

/
HO2 − CO2,liq

)
(7)  

SN2O, liquid = − kL,N2Oai
(
CN2O,gas

/
HN2O − CN2O,liq

)
(8) 

Regarding the mass transfer coefficients, KL, its value can be esti-
mated in two-phase CFD models with correlation equations using the 
dimensionless Schmidt number (Sc), friction velocity, molecular diffu-
sivity of the liquid phase (Deacon, 1977; Gostelow et al., 2001; Hibiki 
and Ishii, 2011; Mackay and Yeun, 1983; Prata et al., 2018; US EPA, 
2001, 1994), i.e., 

kL,i = 2
̅̅̅̅̅̅̅̅̅̅̅̅
DL,iVr

πdb

√

(9)  

where DL,i is the diffusion coefficient for species i [m2 s− 1], Vr the 
relative speed between the phases [m s− 1] and db the mean bubble size 
[m]. In this way, Vr is calculated using the code from the velocity vectors 

of the gas (V→gas) and liquid phases (V→liquid) as Vr =

⃒
⃒
⃒
⃒V
→

gas − V→liquid

⃒
⃒
⃒
⃒. The 

interfacial area concentration, ai, [m− 1] was calculated from the gas 
hold up, εG [-], and the mean bubble size, i.e. 

ai =
6εG

db
. (10) 

The corresponding source terms were added to the gas phase to 
ensure mass conservation of the N2O and O2. 

It is difficult-to-impossible to measure the oxygen mass transferred 
from air into liquid around the aerator using surface aeration. Therefore, 
we propose to model aeration efficiency through bubble generation in-
tensity by the rotors, modelled using the mass source term (limited to 
the regions that contain the rotors) as 

Sbubble = TOTR/SOTE (11) 

In this equation, OTR stands for the Total Oxygen Transfer Rate as 
given by correlation in Eq. (1), and SOTE denotes a theoretical Standard 
Oxygen Transfer Efficiency in wastewater. SOTE is used here as a cali-
bration parameter for the surface rotors by approximating the measured 
oxygen levels. 

3. Materials and methods 

3.1. Sampling and data collection 

For model calibration, measured data were collected in the Lynetten 
full-scale WRRF, Denmark. Online sensors (Unisense, Demark) were 
installed in the oxidation ditch (spatial points shown in Fig. 4, Fig. S2), 
including four N2O liquid-phase sensors and two dissolved oxygen (DO) 
sensors. 

Moreover, a N2O gas-phase sensor was installed in a gas hood (Fig. 3) 
collecting gas samples in the headspace of the reactor to quantify the 
N2O gas stripping mass transfer coefficient, KLaN2O, as 

KLaN2O =

qair×pN2O
RT × MWN2O

VR × (SN2O − SN2O
∗)
, (12)  

where the qair is the volumetric flow rate of air [L h-1], pN2O is the partial 
pressure of N2O [atm], MWN2O is the molar mass of N2O [44 g mol-1], VR 
is the volume of the reactor (control volume) [L], SN2O and SN2O

∗ are the 
liquid concentration and saturation concentration of N2O, respectively 
[g L-1], R is the gas constant [atm L mol-1 K-1] and T is the temperature 
[K]. Fig. 3 shows the details of the gas collection hood. Under the hood, 
there are gas sensors, which measure the partial pressure of N2O, and 
liquid sensors, which measure the N2O concentration in the liquid phase. 
More information on measured data including flow rate (Fig. S6), 
influent and effluent concentrations are shown in SI (Fig. S7–8). Addi-
tionally, sensors used to monitor chemicals during the sampling 
campaign, include Total Suspended Solids, TSS (Solitax SC, Hach); NH4- 
N (Amtax SC, Hach); NO3-N (Nitratax SC, Hach); PO4-P (Phosphax SC, 
Hach). Offline laboratory measurements were done – e.g., to calibrate 
sensors - according to (APHA, 1999). 

3.2. Biokinetic model 

The NDHA process model (Domingo-Félez and Smets, 2016; 2020) is 
implemented in the CFD simulation model to predict the biokinetics of 
nitrogen removal, including N2O production and consumption. The 
NDHA model, a state-of-art biokinetic model, accounts for N2O 
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production via nitrifier nitrification (N), nitrifier denitrification (D), 
heterotrophic denitrification (H) and abiotic reactions (A). One of the 
major advantages of NDHA is the systematic calibration protocol and the 
practical identifiability of the model structure (Domingo-Félez et al., 
2017), as compared to other process models (Ni et al., 2013; Ni et al., 
2014; Pocquet et al., 2016). All the parameters are shown in the SI 
(Table S1). 

3.3. Mesh generation (GCI) 

The mesh generation was carried out in two different ways. On the 
one hand, the mesh was generated using Ansys CFX’s in-built generation 
tool, hereby referred to as the unrefined mesh (Fig. S4). Second, a sys-
tematic mesh refinement to mesh quality comparison were carried out 
(Fig. 4) using the Grid Convergence Index (GCI) test (Baker et al., 2020). 
The equations to calculate GCI values are shown in the SI. 

3.4. Numerical methods 

The CFD simulations rely on the Reynolds-Averaged Navier–Stokes 

(RANS) equation for incompressible-Newtonian flows. For isothermal 
flows, the flow dynamics obeys the following conservation equations for 
mass and momentum: 

∂ρ
∂t

+ ρ ∂Uj

∂xj
= 0 (13)  

ρ ∂Ui

∂t
+ ρ ∂

∂xj

(
UiUj

)
= −

∂p
∂xi

−
2
3

μ ∂Uj

∂xj
+ μ ∂

∂xj

(
∂Ui

∂xj
+

∂Uj

∂xi

)

−
∂τij

∂xj
+ ρgi

+ Mi.

(14) 

These equations relate fluid properties such as dynamic viscosity (μ 
[Pa s]) and density (ρ [kg m− 3]) with the mean pressure (p [Pa]) and 
velocity field components (Ui [m s− 1]), including the turbulence effects 
through the Reynolds stresses (τij). External forces such as gravity vector 
components (gi) and the volumetric momentum source components (Mi) 
are also included. 

For the SST turbulence model, the Reynolds stresses are given in 
terms of turbulent viscosity (μt) and the mean velocity gradients as 

Fig. 3. (a) Schematic drawing and (b) picture from Lynetten plant of N2O hood. The gas-collection hood was moved between five different sampling points 
downstream to the surface aeration rotor (Fig. S1). 

Fig. 4. The design layout and mesh of the oxidation ditch in Lynetten WRRF - (a) top view and (b) side section view.  
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τij = μt
∂

∂xj

(
∂Ui

∂xj
+

∂Uj

∂xi

)

. (15) 

For more details on the SST model implementation and the use of 
wall functions, the reader is referred to the ANSYS CFX 19.1 help 
function. The implementation of the biokinetic model implementation 
was done by the addition of a conversion term to the overall mass- 
balance eachation to compute the dynamics of the volumetric concen-
tration of each variable, φk, as 

ρ ∂φk

∂t
+ ρ ∂

∂xj

(
Uj φk

)
=

∂
∂xj

[(

ρDφk +
μt

Sct

)
∂φk

∂xj

]

+ Sφk (16)  

being Dφk the molecular diffusivity for the kth variable and Sct the tur-
bulent Schmidt number, that is set to 0.9 (Tominaga and Stathopoulos, 
2007). The biokinetic reaction rate terms are included in the volumetric 
source terms, Sφk . 

3.5. CFD simulations 

In this study, a 3-D CFD simulation model is first developed using the 
design and operational boundary conditions as well as experimental 
input data obtained in the Lynetten WRRF full-scale plant, employing an 
oxidation ditch-type reactor (Copenhagen, Denmark). All simulations 
were carried out using the software CFX-ANSYSⓇ, Release R2 (Ansys, 
USA). Parameters values used to calibrate the model are shown in 
Table S1. The initial conditions are set according to Table S2. 

The liquid temperature is fixed at 16.75 ◦C, which corresponds to 
that measured in the liquid phase during the onsite sampling campaign 
(Fig. S8). The pressure of the reactor head-space is set to 101.3 kPa. The 
boundary condition for the ditch wall was the no-slip condition and for 
the surface of the reactor, free-slip boundary condition was chosen. With 
the high-performance computing (HPC) system with the total memory of 
15.8 TBs, the computational time for one simulation is around 4 to 5 h. 

3.6. 2-level factorial screening study 

A 2-level fractional factorial design was carried out using the 
maximum and minimum values (Table S3) for each parameter. The 
selected parameters include 3 different aspects: operating parameters, 
design parameters and biokinetic parameters, thereby resulting in 16 
different meshes (Table S4). 

To assess the relative sensitivity of selected CFD simulation outputs 
to design and operational boundary conditions, local sensitivity indices 
were calculated using linear polynomial regression equation (Guyon-
varch et al., 2015; 2020). The regression plane (Y) is defined as 

Y = b0 +
∑

bifi (17)  

where fi denotes the design and operational factors, bi is the respective 
sensitivity indices, and b0 represents the intercept value. To create 
sensitivity ranking for selected outputs, the normalized sensitivity 
indices (βi) are calculated as: 

βi = bi/b0 (18)  

where the normalized sensitivity indices (βi) are plotted for the selected 
simulation outputs. Besides KLa for oxygen, the simulation outputs 
include the N2O emission factor calculated as (ICF, 2019): 

N2O emission factor =
N2O emitted (kg)
Total N in (kg)

× 100% (19) 

Furthermore, the standardised regression polynomials (Eq. (17)) are 
converted into regression meta-models, representing so-called statisti-
cally interpreted meta-models (iCFD, Guyonvarch et al., 2015). These 
meta-models are then used to calibrate the CFD model in terms of KLaO2, 

Clean and to predict N2O emission in WRRF plant wide models. 

4. Results and discussion 

4.1. Two-phase CFD simulation results and model discrimination 

Here, we demonstrate the use of the calibration method to predict 
gas mass-transfer using surface aeration. Scenario simulations with a 
range of theoretical SOTE value are carried out using an optimised mesh 
(GCI=0.37; Table S5; Fig. S3; i = 2 in Table S6). Results obtained show 
that, using the two-phase CFD simulation model, accurate prediction is 
only achievable for dissolved oxygen concentration but not for both DO 
and N2O (Fig. 5a). 

The optimal SOTE value (1.5 %) – evaluated at a level that resulted in 
close agreement between the measured and simulated DO concentra-
tions – (Fig. 5a and b) show that the surface aerator submergence can be 
related to that for fine-bubble aeration. This suggests that aerator sub-
mergence can serve as an effective measure to estimate values of SOTE 
using both surface and fine-bubble aeration – see correlation equation 
(Fig. 5b). Simulation results – obtained using SOTE=1.5 % (Fig. 6a) – 
indicate considerable spatial variability in surface DO concentrations 
with very low values close to the outer reactor wall. 

Reactor volumes with low-DO can effectively create zones with 
enhanced biokinetic N2O production and emission (Fig. 6b) – im-
pacts that can be reduced by (A) installing baffles between the sur-
face aerators; and (B) optimising the physical geometry of baffles (e. 
g., Huang et al., 2015; Teshome, 2020). 

Whilst, these results are significant, to address the hypothesis tests of 
this paper, the two-phase CFD simulation model is found to be unfit for 
purpose. That is, despite the relatively high number of model parame-
ters, successful model calibration is only feasible for DO and not for both 
DO and N2O using the two-phase model. This partly can be explained by 
that the calibration of kL,i and ai rely on parameters, i.e., db, Vr, εG, of 
which the estimation currently represent major knowledge gaps in 
literature. For example, the bubble characteristics – i.e., shape, size 
distribution and terminal velocity using surface aeration – are not well 
understood. To overcome this, previous studies, employing 2-phase 
models (e.g., Matko et al., 2021) use calibration methods that rely on 
fine-bubble aeration model parameter. This calibration practice can 
yield sufficient predictive accuracy in terms of oxygen mass-balances 
and dissolved concentration using SOTE values, in addition to db. In 
contrast, the prediction of N2O gas mass transfer are not directly 
impacted by SOTE – but by the kL,O2 and aO2 values (Eq. (2)), which 
renders model parameter tuning exercises limited to only db. As 
demonstrated here, this is insufficient to achieve accurate prediction of 
both DO and N2O gas mass-transfers. This knowledge gap renders 
2-phase models presently unsuitable to predict N2O greenhouse gas 
emission from surface aerated reactors. As a result, parameter sensitivity 
and regression meta-model identification are carried out using 
single-phase simulation models in this contribution. 

4.2. Clean water test simulations 

Single-phase CFD simulation results predict currents with high oxy-
gen concentration to only penetrate to a maximum depth of ~1 metre 
beneath the liquid surface, after which the current resurfaces (Fig. 7a). 
Two regions in the reactor volume – i.e. surface and sub-surface layers – 
are distinguished in the computational domain, in which gas-liquid mass 
transfer processes are modelled differently. First, values of KLaO2,clean 
were calculated using computed oxygen profiles obtained in the moni-
toring spatial Points 1–5 (Fig. 4a), located in the surface layer, and by 

plotting ln
(

SO
∗

SO
∗− SO

)
against time (Fig. 7b). 

KLaO2,clean values obtained in the reactor surface and in the water 
layer underneath (Fig. 7a) were plotted as a function of their distance 
from the rotor (Fig. 7c and d, respectively). Correlation equations for 
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values of KLaO2,clean and the spatial distance to the rotor – for the two 
different reactor volume layers – were identified using logarithmic and 
constant (Fig. 7 and Table S7 for 16 screening tests) functions for the 
surface and sub-surface layers, respectively, and were then used for the 
Lynetten WRRF reactor simulations (Fig. 9). 

KLaO2,clean values obtained in the reactor surface were used to esti-
mate the α factor in the Lynetten WRRF reactor basin (Fig. 8). This was 
done by first approximating the KLaN2O values – calculated based on 
liquid N2O sensor data obtained in the five monitoring points – by 
substituting KLaO2,clean values in Eq. (2). The best-fit for KLaN2O (Fig. 8) 
was obtained at α = 0.38 ± 0.18. D. Rosso and Stenstrom (2014) had 
suggested that, with surface aeration, α value can reach 0.8–1 due to the 
higher Reynolds number (~8 × 104). Compared to literature, our α 
value is relatively low. This is because the oxidation ditch in Lynetten 
WRRF is a large and not well-mixed reactor, thus the Reynolds number is 
not the same in the whole tank. The averaged Reynolds number in the 
simulation model is around 1 × 104, which can explain the lower 
average α value. Moreover, the highest discrepancy between the fitted 
and measured KLaN2O values (Fig. 8) are those measured the nearest to 
the surface rotor characterised with advective interfacial flow transport 
regime. Noteworthy is that such flow conditions can increase locally the 
α factor that can cause spatially varying α factor values in real systems 
(Rosso and Stenstrom, 2006; D. 2014). As a practical approach, to 
simulate the measured DO and N2O liquid concentration in the Lynetten 
WRRF (Fig. 9), the α factor is set to 0.38 [-]. 

4.3. Simulation of measured oxygen and N2O data in Lynetten WRRF 

4.3.1. Single-phase model 

The average simulated DO and N2O concentrations at the liquid 
surface are obtained at around 1.6 mg/L and 0.25 mg/L, respectively 
(Fig. 9c and d). These values closely agree with the measured data 
obtained under aerated operational phases with oxygen concentra-
tion, SO>0 (Fig. 9a). We note that, using the un-refined mesh, the 
average DO and N2O concentration data – 4.8 and 0.265 mg L− 1, 
respectively – show significant error introduced, in particular, in the 
predicted DO concentration (Fig. S5), thus indicating the benefits of 
adhering to good modelling practice in setting up CFD models. 
As for the sensor data, in contrast to the CFD simulations – carried 
out under continuous surface aeration – the monitoring of the system 
involved multiple aeration periods. The average CFD simulation re-
sults (see red line in Fig. 9a) obtained for DO concentration show 
close agreement with the measured data. Similarly, the simulated 
average liquid N2O concentration in the liquid surface can effectively 
predict the measured data (Fig. 9b). 
The N2O emission factor normalized to the total influent nitrogen in 
Lynetten is obtained around 0.69 %. According to Kampschreur et al. 
(2009) report on the N2O emission factor from full scale activated 
sludge reactor, ranging from 0 to 14.6 % with an avereage of 0.6 % 
rate. 

4.4. Factorial screening study 

Screening of design and operational boundary conditions and their 
relative sensitivity to predict gas mass-transfer is done by setting up 16 

Fig. 5. (a) SOTE calibration with two-phase model and (b) linear regression equation between SOTE and aerator submergence. The bubble aeration data are from 
(Xylem, 2022). 

Fig. 6. Two-phase CFD simulation results obtained for dissolved oxygen (a) and N2O concentration (b) fields (SOTE=1.5 %, Fig. 8).  
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simulations based on the principles of the design of experiments method. 
The reactor design and operational parameter ranges, the predicted 
KLaO2,clean values in 15 monitoring points, as well as the regression 
equations predicting the KLaO2,clean field spatially in the surface and sub- 
surface layers are shown in the SI (Table S7). The KLaN2O field is 
calculated in the computational domain by substituting KLaO2,clean 
values in Eq. (2). 

Outputs obtained in the factorial screening are used to infer stan-
dardized multi-component polynomial regression equations for KLaO2, 

clean in both surface and sub-surface layers as a function of design and 
reactor operating conditions as 

KLaO2, clean, surface = 1.348 × ωrotor + 0.417 × T + 4.518 (20)  

KLaO2, clean, sub− surface = 0.925 × ωrotor + 0.876 × T − 0.333 ×
L
D
+ 5.134

(21)  

where ωrotor represents rotor speed, T denotes liquid temperature and L/ 
D represents reactor length-to-depth ratio. 

The relative slope values (bi) in the linear polynomials (Eqs. (20) & 
(21)), allow the assessment of the relative sensitivity of parameters to 
predict the KLaO2,clean field. For both surface and sub-surface layers, 
rotor speed was obtained as the most dominant parameter, i.e. bw ex-
hibits the highest absolute value; its value is positive that can be 
explained by the fact that as the higher the rotor speed is, the higher the 
fluid velocity and thus increased efficiency of gas-liquid mass transfer 
achieved is. The relative slope value for liquid temperature was the 
second highest. Its value is positive, as expected based on thermody-
namics (Arrhenius coefficient, θ = 1.024) thus indicating that, with 
increasing temperature, values of KLaO2,clean increases. The L/D ratio – 
the third most important parameter according to its respective slope 
value – and any increase thereof can decrease KLaO2,clean in the sub- 
surface layer – which is not the case for the surface layer. The longer 
the reactor, the less effective the gas-liquid mass transfer in the sub- 
surface water volume, on average, will be, as a result of currents with 

Fig. 7. Clean water gas mass-transfer results to evaluate the spatial variation of clean water KLa (KLaO2,clean). Simulated DO concentration for one rotors in a clean 
water test (a). Estimation of KLa values obtained for one of the rotors in the clean water test of the Lynetten WRRF reactor using normalized dissolved oxygen 
concentration values plotted against computational time elapsed (b). Spatial variation of oxygen gas mass-transfer coefficients in the surface aerated oxidation ditch 
reactor and regression analysis for KLaO2,clean as a function of distance to the rotor surface layer (c) and sub-surface layer (d). The thickness of the surface and 
subsurface layers are 0.3 m and 0.7 m, respectively. Note: in Fig. 4a, the propeller installed in the tank is additionally featured. 
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high oxygen concentration only penetrating a maximum depth of ~1 
metre beneath the liquid surface, after which they resurface. 

For clarity, spatial calibration of KLaO2,clean involves non-linear and 
constant functions implemented in a near-to-liquid surface and sub- 
surface layers in the computational domain, respectively (Fig. 5c and 
d). Conversely, a polynomial function is obtained from the subsequent 
factorial screening, employing the outputs of the calibrated simulation 
model, predicting, notably, N2O liquid–gas mass transfer. 

To be able to compare sensitivity results obtained on N2O emission 
with data from literature (Domingo-Felez et al., 2019), absolute values 
of standardised bi values are shown in Fig. 10. Additionally, in the 
polynomial regression function (Eq. (22)), slope values indicate whether 

a factor has negative or positive effect on N2O emission. 
The standardized multi-component polynomial regression equation 

obtained in the screening study for the predicted N2O emission is as 

N2O emission = − 0.212 × LNH,Inf − 0.091 × T − 0.067 × Xtot + 0.061

× μAOB, HAO + 0.047 × ωrotor + 0.045 × μNOB − 0.041

× COD
/

N + 0.482
(22)  

where N2O eimission rate percentage calculated as a function of influent 
free and saline ammonia–nitrogen concentration, COD/N ratio is the 
ratio between chemical oxygen demand and nitrogen, LNH,Inf is ammonia 
loading, Xtot is total biomass concentration in the reactor, ωrotor Fig. 8. Estimation of the α factor in the Lynetten WRRF reactor basin – by 

approximating the measured KLaN2O values (full-scale hood measurements – 
black dots connected with solid line) using the estimated spatially varying 
KLaO2,clean values in Eq. 2. α = 0.38 ± 0.18. Note: solid black line indicates 
the trendline fitted on the measured data to improve the understanding of 
the figure. 

Fig. 9. The measured oxygen (a) and N2O concentration (b) in the Lynetten WRRF, Denmark, CFD simulation results obtained for dissolved oxygen (c) and N2O 
concentration (d) field. 

Fig. 10. Sensitivity indices standardised to the intercept value (in Eq. 22) ob-
tained the factorial screening experiment for N2O emission factor. Note: 
intercept value in Eq. 22 equals 0.482. 
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represents rotor speed, T denotes temperature, μNOB is aerobic NOB 
specific growth rate and μAOB, HAO is maximum specific growth rate for 
NH2OH oxidation. The design and operating parameters in Eq. (22) are 
between +1/− 1, and therefore the bi indices are unitless. 

Sensitivity analysis results (Fig. 10) – obtained as the slope values 
standardised by the intercept value shown in Eq. (22) – show that N2O 
emission is most impacted by the ammonia loading (LNH,Inf). The nega-
tive impact of LNH,Inf (Eq. (22)) can be explained by the fact that the 
lower ammonia loading will allow less N2O to form biologically and thus 
less N2O to be stripped from the liquid phase. Liquid temperature was 
obtained as the second important parameter; its negative sensitivity 
index that can be explained by the fact that lower liquid temperature can 
increase the production rate of nitrite, and the higher nitrite concen-
tration can lead to increased N2O emission (Kampschreur et al., 2009). 
Regarding Eqs. (20)–(21), positive sensitivity for KLaO2,clean implies that 
liquid temperature can increase N2O gas–liquid mass transfer (Eq. (2)), 
and thus on N2O emission. The negative impact of biokinetic processes 
on N2O emission, however, seems to more than just compensate for the 
positive impact of liquid temperature, thus resulting in an overall 
negative sensitivity index value. The negative sensitivity of Xtot suggests 
that the higher the biomass concentration in the reactor, the higher the 
overall biokinetic conversion rates are that can potentially reduce N2O 
production and thus emission factors. The next parameter in the sig-
nificance ranking (Fig. 8) is μAOB, HAO; the positive impact of this 
parameter on N2O emission is because the higher the specific AOB 
growth rate is the more enhanced the oxidation of NH2OH is, thereby 
increasing the N2O production and emission. The higher rotor speed can 
lead to higher oxygen mass transfer coefficient and then increase the 
stripping of N2O (Kampschreur et al., 2009), which is why the rotor 
speed has positive impact to the N2O emission. 

The bm-NOB sensitivity index is a positive value, which can be 
explained by that the higher its value, the higher the denitrification rate 
of HNO2 to N2O will be. Additionally, Kampschreur et al. (2009) suggest 
that lower COD/N ratio can increase N2O emission during denitrifica-
tion, that agrees with our parameter sensitivity results, i.e. bCOD/N for 
COD/N. 

(Domingo-Félez et al., 2017) present global sensitivity analysis re-
sults on biokinetic parameters, including absolute values of bi. To pre-
dict N2O concentration in a sequencing batch reactor (SBR) using 
synthetic wastewater, their results indicate μAOB, HAO as one of the most 
influential parameter amongst biokinetic and stoichiometric parameters 
in the NDHA model – 5th in the ranking. Taken together, design- and 
operational boundary conditions are found equally or even more 
important than biokinetic parameters to enhance N2O emission from 
surface aerated activated sludge reactors. 

4.5. Calibration of KLaO2,clean and N2O emission factors using polynomial 
regression equations 

Besides local sensitivity by means of factor screening, polynomial 
regression equations can also be converted into regression meta-models. 
Inferring such algebraic predictors of KLaO2,clean and N2O emission factor 
is useful for practitioners to calibrate gas–liquid mass transfer models 
and to approximate greenhouse gas emission, respectively, in e.g., 
WRRF plant-wide simulation models. 

To predict gas-mass transfer in surface-aerated activated sludge re-
actors using data-driven meta-models, outputs obtained in the factorial 
screening study were used to infer the non-standardized multi-compo-
nent polynomial regression equations for KLaO2,clean in both surface and 
sub-surface layers as a function of design and reactor operating condi-
tions as 

KLaO2, clean, surface = 0.039 × ωrotor + 0.083 × T + 2.055 (23)  

KLaO2, clean, sub− surface = 0.026 × ωrotor + 0.175 × T − 0.033 × L
/

D + 2.686
(24)  

where ωrotor represents rotor speed [rpm], T denotes temperature [◦C] 
and L/D represents reactor length-to-depth ratio [-]. 

Predictions obtained with Eqs. (23) and 24 were benchmarked 
against the KLaO2,clean values obtained in the 15 monitoring points in the 
clean-water CFD simulations (Fig. 11); results indicate close agreement 
in both surface and sub-surface water layers. 

The meta-model for N2O emission is obtained as 

N2O emission = − 0.0002 × LNH,Inf − 0.0182 × T − 4.497 × 10− 5 × Xtot

+ 0.3142 × μAOB, HAO + 0.0014 × ωrotor + 0.1748 × μNOB

− 0.0086 × COD
/

N + 0.8849
(25)  

where N2O eimission factor percentage calculated as a function of 
influent free and saline ammonia-nitrogen concentration, COD/N ratio 
is the ratio between chemical oxygen demand and nitrogen [-], LNH,Inf is 
ammonia loading [kgN d− 1], Xtot is total biomass concentration in the 
reactor [mg L− 1], ωrotor represents rotor speed [rpm], T denotes tem-
perature [◦C], μNOB is aerobic NOB specific growth rate [d− 1] and 
μAOB, HAO is maximum specific growth rate for NH2OH oxidation [d− 1]. 

N2O emission values predicted using Eq. (25) show close agreement 
with values predicted by the CFD simulation model using the 16 
different design and operational boundary conditions, thus validating 
the N2O emission predictors (Fig. 12). We note that, in the absence of a 
WRRF simulation model, Eq. (25) can offer practitioners a tool to predict 
greenhouse gas emission from full-scale WRRF as a function of LNH,Inf. 

5. Outlook and perspective 

To calibrate 2-phase CFD simulation models for mechanical surface 
aeration, effective prediction of bubble size distribution (BSD) is critical 
to estimate ai - similar to that for fine bubble aeration (Amaral et al., 
2018). Presently, there is a lack of understanding of bubble character-
istics in SASR that renders the estimation of ai challenging – a hin-
derance to predictive accuracy as demonstrated in this contribution. 
That is, bubble coalescence has a significant impact on gas mass-transfer 
processes – with minimal influence of the initial bubble sizes on the 
overall mass transferred as compared to the SOTE. To account for bubble 
coalescence and break up Population Balance Models (PBM) can be 
implemented (Ding et al., 2006; Climent et al., 2019). However, PBMs 
include a set of additional parameters – e.g., volume fraction of different 
bubble sizes, mass birth/death rate for bubble coalescence and break up 
that are not straightforward to calibrate (Alhendal et al., 2019; Climent 
et al., 2019). Furthermore, different rotor geometries, submergence and 
rotation speed can affect bubble characteristics – also less-well under-
stood in literature (Huang et al., 2009; Qiu et al., 2018) –thus, requiring 
BSD to be re-computed every time when adjusting the rotor operation. In 
SASR, the bubble density remains small and its interaction with the flow 
is limited to regions close to the surface (Fan et al., 2010) and near to the 
surface aeration rotors. Consequently, there is little influence by bubbles 
generated on the liquid flow in the reactor – as opposed to fine-bubble 
aeration. With respect to the bubble distribution, one can expect sig-
nificant coalescence and break-up given the huge amount of air 
entrapped by the paddles. The resulting bubble sizes therefore are 
hypothesised to be dependent on the balance between coalescence and 
break-up in the vicinity of the rotors. 

In 2-phase simulation models, there is an oxygen transfer rate 
defined for the surface aerator boundary condition (KLaBC⋅V) with V 
denoting the reactor volume. In literature, the estimation of KLaBC is 
based on assumptions that rely on e.g., single KLa values for a type of 
rotor that ignores the impact of rotor speed and/or rotor immersion 
(Guo et al., 2020; Thakre et al., 2008). These practices can introduce 
considerable uncertainties in simulations – an area the present contri-
bution aims to amend by providing more systematic calibration 
practices. 
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Additionally, for surface aeration systems, the source term for the gas 
phase is proposed as a major knowledge gap in literature to be investi-
gated. We recommend these efforts to be directed towards a complete 
description of the spatial distribution of the air bubbles generated in the 
domain and the bubble sizes at every location. From laboratory exper-
iments with reduced scale rotors (data not shown), it is apparent that the 
air bubbles are generated by two different phenomena. On the one hand, 
there is a direct contribution caused by air entrapped by the rotating 
paddles. On the other hand, there is an indirect contribution caused by 
the drops that are splashed out when the paddles emerge from the water. 
These drops entrap air then they fall again onto the water surface, 
generating bubbles beyond the region where the rotors are located. 
These two phenomena lead to two different spatial distributions of 
bubbles, as well as to two different bubble size distributions. Both dis-
tributions depend on the size of the paddles, the rotor submergence and 
its rotational speed. To sum up, the multiphase characterization of rotors 
is an extremely complex task that should be specifically studied in future 
works. 

6. Conclusion 

The following concluding remarks are drawn:  

• A calibration protocol for single- and two-phase CFD simulation 
models – accounting for biokinetic and physical-chemical hydrody-
namics – of surface aerated oxidation ditch-type reactors is 
presented.  

• The two-phase surface aerator model, whilst it can capture the most 
relevant multiphase phenomena, can’t presently be used to reliably 
predict aeration and N2O emission in tandem. To achieve that, 
further research is necessary to extend the state-of-the-art, notably, 
by improving our understanding of bubble size distribution.  

• A new method of estimating the average alpha factor using hood 
measurement data in the WRRF Lynetten full-scale reactor system is 
presented.  

• The calibrated single-phase CFD model is validated against full-scale 
measurement data from Lynetten WRRF, Denmark.  

• Results obtained in a factor screening (local sensitivity) study show 
that the prediction of KLaO2,clean is influenced by rotor speed, tem-
perature and L/D ratio. Additionally, N2O emission is shown to be 
influenced by parameters Qin, temperature, Xtot, μAOB, HAO, ωrotor, 
μNOB and COD/N ratio.  

• Predictors for KLaO2,clean and N2O emissions by means of linear 
polynomial regression functions have been inferred as a function of 
important design and operating parameters. The function can be 
useful to calibrate simpler zero- and one-dimensional distributed 
reactors models. 
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Barth F. Smets: Supervision. Javier Climent: Methodology, Software. 
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2020. Modeling of the aeration system of a sequencing batch reactor. J. Ecol. Eng. 
21, 249–256. https://doi.org/10.12911/22998993/126240. 

Y. Qiu et al.                                                                                                                                                                                                                                      

https://doi.org/10.2175/193864706783762940
https://doi.org/10.2175/193864706783762940
https://doi.org/10.1016/j.watres.2006.01.044
https://doi.org/10.2166/wst.2022.115
https://doi.org/10.2166/wst.2022.115
https://doi.org/10.1016/0043-1354(81)90156-1
http://refhub.elsevier.com/S0043-1354(24)00300-2/sbref0056
http://refhub.elsevier.com/S0043-1354(24)00300-2/sbref0056
http://refhub.elsevier.com/S0043-1354(24)00300-2/sbref0056
https://www.jstor.org/stable/25041683
https://www.jstor.org/stable/25041683
https://doi.org/10.5281/zenodo.1082237
https://doi.org/10.5281/zenodo.1082237
https://doi.org/10.1016/j.atmosenv.2007.06.054
https://doi.org/10.1016/j.atmosenv.2007.06.054
https://www3.epa.gov/ttnchie1/software/water/water9/water9%20manual.pdf
https://www3.epa.gov/ttnchie1/software/water/air_emission_models_waste_wastewater.pdf
https://www3.epa.gov/ttnchie1/software/water/air_emission_models_waste_wastewater.pdf
https://doi.org/10.2166/wst.2015.565
http://refhub.elsevier.com/S0043-1354(24)00300-2/sbref0064
https://doi.org/10.12911/22998993/126240

	Numerical modelling of surface aeration and N2O emission in biological water resource recovery
	1 Introduction
	2 Calibration of CFD models of surface aerated reactor systems
	2.1 Common (single- & two-phase) parameters and single-phase model parameters
	2.2 Two-phase model parameters

	3 Materials and methods
	3.1 Sampling and data collection
	3.2 Biokinetic model
	3.3 Mesh generation (GCI)
	3.4 Numerical methods
	3.5 CFD simulations
	3.6 2-level factorial screening study

	4 Results and discussion
	4.1 Two-phase CFD simulation results and model discrimination
	4.2 Clean water test simulations
	4.3 Simulation of measured oxygen and N2O data in Lynetten WRRF
	4.3.1 Single-phase model

	4.4 Factorial screening study
	4.5 Calibration of KLaO2,clean and N2O emission factors using polynomial regression equations

	5 Outlook and perspective
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Supplementary materials
	References


