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Field‑derived metrics are critical for effective control of malaria, particularly in sub‑Saharan Africa 
where the disease kills over half a million people yearly. One key metric is entomological inoculation 
rate, a direct measure of transmission intensities, computed as a product of human biting rates and 
prevalence of Plasmodium sporozoites in mosquitoes. Unfortunately, current methods for identifying 
infectious mosquitoes are laborious, time‑consuming, and may require expensive reagents that 
are not always readily available. Here, we demonstrate the first field‑application of mid‑infrared 
spectroscopy and machine learning (MIRS‑ML) to swiftly and accurately detect Plasmodium falciparum 
sporozoites in wild‑caught Anopheles funestus, a major Afro‑tropical malaria vector, without 
requiring any laboratory reagents. We collected 7178 female An. funestus from rural Tanzanian 
households using CDC‑light traps, then desiccated and scanned their heads and thoraces using an 
FT‑IR spectrometer. The sporozoite infections were confirmed using enzyme‑linked immunosorbent 
assay (ELISA) and polymerase chain reaction (PCR), to establish references for training supervised 
algorithms. The XGBoost model was used to detect sporozoite‑infectious specimen, accurately 
predicting ELISA and PCR outcomes with 92% and 93% accuracies respectively. These findings 
suggest that MIRS‑ML can rapidly detect P. falciparum in field‑collected mosquitoes, with potential 
for enhancing surveillance in malaria‑endemic regions. The technique is both fast, scanning 60–100 
mosquitoes per hour, and cost‑efficient, requiring no biochemical reactions and therefore no reagents. 
Given its previously proven capability in monitoring key entomological indicators like mosquito age, 
human blood index, and identities of vector species, we conclude that MIRS‑ML could constitute a 
low‑cost multi‑functional toolkit for monitoring malaria risk and evaluating interventions.

Abbreviations
MIRS  Mid-infrared spectroscopy
NIRS  Near-infrared spectroscopy
PCR  Polymerase chain reaction
ELISA  Enzyme-linked immunosorbent assay
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FT-IR  Fourier-transform Infrared spectrometer
MIRS-ML  Mid-infrared spectroscopy and machine learning

Vector surveillance is an essential component of malaria control and elimination, and generally includes an 
assessment of prevailing transmission intensities, the behaviours of different vector species and the responsiveness 
of these species to different  interventions1. The most direct metric of malaria transmission intensities is the 
entomological inoculation rate (EIR), which is the number of infectious bites per person in a unit time, and 
is defined as the product of the human biting rate (HBR) and proportion of the biting mosquitoes that have 
Plasmodium sporozoite in their salivary  glands2,3. While other entomological parameters such as mosquito 
abundance, age structure, daily survival probabilities, larval densities and blood-feeding preferences are 
important, EIR is also used to estimate the level of exposure and analyse the effectiveness of control programs. 
However, current reports indicate that not all endemic countries possess transmission intensity data or measure 
sporozoite  rates4,5. Arguably, therefore, having a simpler method for testing samples might improve these 
surveillance capabilities in endemic countries.

Plasmodium infections in mosquitoes can be detected using various techniques, the main ones being 
enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), which are both used 
widely, especially in research  settings6–10. Other more traditional approaches include dissection and microscopic 
examination of the salivary  glands8 and Loop-Mediated Isothermal Amplification (LAMP)  assays11. These 
techniques, despite being key features in many laboratories, present several challenges, which often limit their 
adoption for programmatic use beyond research projects. For example false positivity rates have been reported 
in ELISA assays, especially where malaria vector species with zoonotic behaviours are screened, in which cases 
a number of non-target protozoans may be picked up in the assays, potentially leading to an overestimation of 
 EIR12,13. More importantly, despite their benefits attained by both PCR and ELISA, PCR is generally expensive 
due to the cost of reagents. Moreover, the reagents for both PCR and ELISA are often not readily available in the 
localities where they are most needed. They are also time-consuming, requiring significant efforts and specialized 
laboratory facilities for sample preparation and  processing14,15. Lastly, all the methods, including hand dissections 
of the salivary glands require highly trained and experienced personnel. These challenges underscore the 
critical necessity for innovative approaches that not only achieve high accuracy in detecting malaria parasites in 
mosquitoes but are also cost-effective, rapid, and user-friendly. Such a system would be beneficial in low-income, 
malaria-endemic countries, where the WHO’s recommendation to incorporate surveillance as a fundamental 
pillar of malaria  programs1 is hindered by the absence of easily scalable systems for effective surveillance.

Recently, the use of infrared spectroscopy, specifically near-infrared spectroscopy (NIRS, 12,500–4000  cm−1 
frequencies of the electromagnetic spectrum), has shown potential for detecting the presence of Plasmodium spp. 
in Anopheles mosquitoes under controlled laboratory  settings15,16. However, in a field validation of this technique, 
the predictive models could not distinguish between sporozoite-infectious and non-infectious  mosquitoes17. Mid-
infrared spectroscopy (MIRS), which uses frequencies between 4000 and 400  cm−1, can provide clearer peaks 
with more detailed information than  NIRS18,19, and has been hypothesized to carry greater potential for such 
applications. Advancements in machine learning and deep learning algorithms are enhancing the potential of 
spectroscopic data analysis by enabling more detailed examination. This advancement allows for better specimen 
classification and a more detailed understanding of how samples differ in their biochemical  composition20–25.

By integrating MIRS spectroscopic techniques and machine learning approaches, it has been possible to 
measure multiple entomological and parasitological indicators of malaria transmission. Examples include 
identifying epidemiologically relevant species and age groups of Anopheles  mosquitoes22,24,25, evaluating the 
blood-feeding histories of mosquitoes to determine preferences for either humans or other  vertebrates21, 
and detecting Plasmodium falciparum infections in human blood samples collected from malaria endemic 
 villages20,23,26,27. However, the ability of MIRS to detect natural Plasmodium infections in wild-caught malaria 
vectors has not been demonstrated, a capability which is greatly needed to estimate malaria transmission 
intensities in endemic settings.

This current study was therefore designed to demonstrate the first field application of mid-infrared 
spectroscopy combined with machine learning (MIRS-ML) for rapid and accurate detection of P. falciparum in 
field-collected An. funestus. To achieve this, we evaluated the technique using PCR and ELISA as the ‘ground 
truth’ to detect P. falciparum sporozoites in wild-caught Anopheles funestus, the leading malaria vector in 
 Tanzania28–30.

Results
Prevalence of P. falciparum sporozoites in An. funestus as detected by ELISA and PCR
The ELISA screening detected 184 positives out of the 4281 tested samples (4%) while the PCR screening method 
detected 144 positives out of the 2897 tested samples (5%).

Machine learning classifications of mid infrared spectra of infectious and non‑infectious An. 
funestus
To differentiate between infectious and non-infectious An. funestus mosquito spectra (refer to Fig. 1A), four 
of the six machine learning models we tested achieved prediction accuracies above 85% (Fig. 1B). Prediction 
accuracy refers to the proportion of correct predictions (both true positives and true negatives) made by a model 
out of total predictions. XGBoost was selected for further tuning of the model settings with the aim of finding 
the optimal combination of parameters for improved performance. This choice was made due to the capability of 
the XGBoost model to capture relationships between variables in the data, particularly those that do not follow 
straight line or a simple  curve31.
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Figure 1.  Mid-infrared spectra and machine learning analysis for classifying An. funestus mosquitoes based on 
infectious status. (A) Averaged mid-infrared spectra for infectious and non-infectious mosquitoes, which when 
analysed by the different machine learning algorithms, can enable categorization of the mosquitoes based on 
their infectious status. (B) Accuracy of standard machine learning algorithms; K-Nearest Neighbours (KNN), 
Logistic regression (LR), Support Vector Machine (SVM), Extreme Gradient Boosting (XGB), Random Forest 
(RF), and multilayer perception (MLP) in distinguishing between infectious and non-infectious mosquitoes.

Figure 2.  Illustrates the confusion matrices generated by the XGBoost model trained on ELISA and PCR 
infection datasets for predicting sporozoite infection in An. funestus. (A) Shows prediction results on an unseen 
segment of the ELISA dataset. (B) Displays predictions on augmented ELISA unseen dataset, including lab-
reared 14-days old non-infectious mosquitoes. (C) Presents predictions on PCR dataset using the model trained 
on ELISA infection dataset. (D) Demonstrates predictions on the unseen segment of the PCR test dataset. (E) 
Shows predictions on a modified test dataset that integrates the PCR unseen test dataset with lab-reared 14-days 
old non-infectious mosquitoes data in the negative class. (F) Displays predictions on unseen ELISA test dataset 
using the model trained on PCR infection dataset. (G) Demonstrates the predictions from the model trained on 
the combined ELISA and PCR infection dataset for predicting sporozoite infection in An. funestus.
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Our first XGBoost model, trained using the ELISA dataset, was able to predict the results of the ELISA test 
dataset with an overall accuracy of 92%. It classified spectra from the infectious and non-infectious mosquito 
samples with accuracies of 93% and 91% respectively (Fig. 2A). The same model was further tested to determine 
if mosquito age affected the classification, by introducing spectra from the known uninfected lab-reared 14-days 
old An. funestus from the laboratory (Table 2). The results showed that the performance was unaffected and 
was the same for classifying the new ELISA test dataset, suggesting that mosquito age did not confound the 
infection status in this model (Fig. 2B). The XGBoost model trained on ELISA data was also used to predict the 
infection labels of the spectra from mosquitoes screened for Plasmodium infection using PCR (Table 2). Here, 
the overall classification accuracy achieved by the model was 73% (Fig. 2C), though the model misclassified 
43% of Plasmodium-negative samples (Fig. 2C); indicating limited generalizability of the model trained with 
ELISA derived data.

To understand the biochemical signature associated to this XGBoost model, we analysed the relative 
importance of specific spectral features highlighted by the model. We found that the X–H region of the MIR 
spectra (fundamental vibrations generally due to O–H, C-H, and N–H stretches) and fingerprint region 
(1500–500  cm−1 frequencies) contributed most to the predictions (Fig. 3A).

Our second XGBoost model, trained using the PCR dataset achieved an overall classification accuracy 
of 94% on the PCR test dataset, predicting infectious and non-infectious mosquito samples with 87% and 
100% accuracies respectively (Fig. 2D). As above, to test the influence of mosquito age on the prediction, we 
incorporated some old non-infectious mosquitoes (i.e. age ≥ 14 days old) into a negative class to modify the 
PCR test dataset and found that the classification accuracy for this augmented test dataset was identical to the 
model trained without the augmentation (Fig. 2E). Finally, we tested this PCR-trained model for classifying the 
infectious and non-infectious samples in the ELISA-derived dataset, and found an 85% classification accuracy, 
with the model predicting infectious and non-infectious classes at 100% and 70% accuracies respectively (Fig. 2F). 
The results suggest that the model, compared to the ELISA-trained model, was more effective in differentiating 
between Plasmodium-negative and positive mosquitoes. This indicates its potential as a versatile tool for analysing 
samples screened with various molecular techniques, including ELISA (see Fig. 2F). The analysis of important 
spectral features in this model showed that the spectral wavenumbers from ~ 2000 to ~ 700  cm−1 frequencies, 
which contain a complex series of absorptions, played a significant role in the predictions made by the XGBoost 
model (Fig. 3B).

To enhance generalizability, a new XGBoost model was trained using a combined ELISA and PCR dataset. 
This resulted in a prediction accuracy of 95% for the test data, including 98% accuracy for non-infectious 
mosquitoes and 91% for infectious ones (Fig. 2G). Notably, the crucial features contributing to this prediction, 
particularly from the X–H (encompassing O–H, C–H, and N–H stretching) and fingerprint regions, were also 
the key factors influencing the model predictions in the independent PCR and ELISA dataset trainings (Fig. 3C).

Estimation of the EIR from the balanced test sets of PCR and ELISA infection datasets
Estimation of the EIR was performed using balanced test sets from PCR and ELISA infection datasets used 
during model testing. Two parameters were used: sporozoite rate and biting rate. The sporozoite rate for PCR 
and ELISA was calculated as the number of infectious mosquitoes divided by the total number of mosquitoes 
tested (refer to Table 1). For MIRS prediction, the sporozoite rate was calculated as the number of mosquitoes 
predicted as infectious (sum of True Positives (TP) and False Positives (FP)) divided by the total number of 
mosquitoes predicted, as derived from the confusion matrices in Table 1. The low and high biting rates of 0.5 and 
4.13, respectively, were sourced from literature as the biting rates for An. funestus in the Kilombero  valley29,32. It 
was found that, in scenarios with both low and high biting rate, EIR estimates from the MIRS-ML models closely 
matched the ‘ground truth’ values from PCR and ELISA, showing minimal variation (Fig. 4).

Discussion
In the quest for effective malaria control, particularly in regions like sub-Saharan Africa where the burden of 
this disease is heaviest, the development of rapid, cost-efficient tools for monitoring transmission dynamics is 
imperative and urgent. Being able to swiftly identify Plasmodium-infectious Anopheles is particularly critical 
for understanding the transmission patterns in different localities, estimating the impact of interventions and 
planning new interventions. Unfortunately, current methodologies, predominantly ELISA and PCR, for detecting 
Plasmodium in Anopheles mosquitoes are resource-intensive, necessitating specialized skills and materials often 
scarce in local settings. This limitation hampers granular, district-level evaluations of malaria risk and the 
effectiveness of interventions.

Our research presents a novel, economical approach that leverages mid-infrared (MIR) spectroscopy coupled 
with supervised machine learning algorithms to swiftly identify Plasmodium-infectious Anopheles mosquitoes. 
By collecting and analysing the MIR spectral signatures from the heads and thoraces of wild-caught An. funestus 
females in rural Tanzanian villages, and subsequently validating these findings with ELISA or PCR for the 
presence of P. falciparum sporozoite, we established a reliable ’ground truth’ for model training. The findings 
of this study are compelling, demonstrating that MIR spectral analysis can differentiate between infectious 
and non-infectious mosquitoes with accuracies exceeding 90% in certain cases. Notably, models trained on 
PCR data showed greater generalizability compared to those based on ELISA data, with mosquito age posing 
no significant interference. Although tested exclusively on P. falciparum and An. funestus, this advancement 
represents a significant step in malaria surveillance. Once calibrated for other major Afro-tropical malaria vectors 
and malaria transmission systems, it could have the potential to offer a scalable, low-cost solution that could 
transform data-driven decision-making in disease control programs. Moreover, we view this as an important step 
towards creating a deployment-ready system but recognize that further development is necessary. Models trained 
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using more diverse data from different settings will improve observed accuracies and enhance the readiness of 
this approach for broader implementation.

This study contributes to the expanding body of knowledge showcasing the potential of MIRS-ML based 
approaches for malaria vector surveillance. The use of these methodologies in delineating key entomological 
parameters such as age, species identification, and blood-feeding patterns of mosquitoes has been well 
 documented21,22,25. The outcomes of our study suggest that this technology could serve as a versatile platform, 
enabling the interpretation of infrared scans to ascertain not only the species and age of mosquitoes, factors 
critical to their potential as malaria vectors, but also their blood-feeding history on humans or other vertebrates, 
and their infection status with malaria parasites. Such comprehensive profiling is instrumental in accurately 

Figure 3.  Illustrates the feature importance of the XGBoost model. The blue bars highlight the most important 
features for predictions, represented by scores assigned to each feature (wavenumber). The coloured stripes 
indicate the regions associated with different biochemical properties across the spectra. While the individual 
features may not be important on their own, their integration in the XGBoost Model enable the distinction of 
mosquitoes as either infectious or non-infectious.
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characterizing malaria risk, marking a significant advancement in vector surveillance and malaria control 
strategies.

In addition to the high classification accuracies of the MIRS-ML approach, the PCR-trained models also 
achieved generalisability of > 85% in predicting sporozoite infection in wild-caught An. funestus mosquitoes even 
when predicting results of an ELISA dataset. These findings achieve consistent performance with studies utilizing 
NIRS frequencies in the laboratory, which reported a > 90% classification accuracy in detecting P. falciparum 
sporozoite infection in An. gambiae  mosquitoes15, and 77% accuracy in detecting P. berghei sporozoite infection 
in An. stephensi16. While earlier models trained on NIRS failed to identify mosquitoes infected with wild-strain 
parasites from asymptomatic malaria carriers, possibly due to limitations in the training dataset or detection 
capabilities of the  system33, models trained on MIRS, which provide clearer peaks with richer biochemical 
information appear to perform  better18,19. This enhancement enabled our models to effectively identify infections 
in mosquitoes, a capability not fully realized with NIRS models in previous studies.

MIRS captures the biochemical composition of mosquito, which may consistently differ, in this case, with the 
infection status such as presence or absence of the parasite. The presence of parasite-specific proteins, such as 
circumsporozoite (CS) protein and the thrombospondin-related adhesive protein (TRAP), may contribute to the 
main spectral difference between infectious and non-infectious An. funestus34. Furthermore, since mosquitoes 
elicit immune responses to the parasites, this could consequently affect the biochemical characteristics of the 
infectious or non-infectious  mosquitoes35. Additionally, higher levels of energy resource storage, such as glucose 
and lipid accumulation in the non-infectious  mosquitoes36,37, might yield distinct spectra signals between 
infectious and non-infectious An. funestus. This aligns with our observation where the majority of spectral 
features influencing machine learning prediction primarily originated from the O–H, C-H, and N–H bonds, as 
well as the fingerprint region of the spectrum (1500  cm−1 to 520  cm−1), suggesting the presence of carbohydrates, 
protein, and lipids related to the  parasite20. However, it is important to note that we are not focusing on individual 
spectra features; rather, we are using ML models to integrate a set of spectral features from different biochemical 
group regions to enable these classifications. While it may not be essential to identify specific features, we 
believe that additional studies should be conducted to better understand the biochemical signals underlaying 
our algorithmic classifications.

The biological prerequisite that mosquitoes must exceed a certain age threshold (e.g. over 9 days) to become 
vectors for malaria transmission, due to the requisite extrinsic incubation period for the  parasite38, introduces 
potential age-related biases in detection efficacy. In this context, mosquito age could be considered a confounding 
factor influencing prediction accuracy. However, despite the theoretical possibility of age influencing the accuracy 
of predictions, our analysis demonstrated that the machine learning models adeptly identified signals indicative 
of infection across all age brackets, including older mosquitoes beyond 14 days, thus negating age as a significant 
confounding variable in our study.

Table 1.  Displays the balanced, unseen segment of the PCR and ELISA infection datasets alongside their 
respective machine learning predictions. 1 The total number of samples in the test set: N = 29 (Infectious = 14, 
Non-infectious = 15) 2 The total number of samples in the test set: N = 37 (Infectious = 15, Non-infectious = 22) 
TN: True Negative, FN: False Negative, FP: False Positive, TP: True Positive.

Predicted non-infectious Predicted Infectious

PCR model prediction on an unseen segment of the PCR infection  dataset1

 Actual non-infectious TN = 13 (87%) FP = 2 (13%)

 Actual infectious FN = 0 (0%) TP = 14 (100%)

ELISA model prediction on an unseen segment of the ELISA infection  dataset2

 Actual non-infectious TN = 20 (91%) FP = 2 (9%)

 Actual infectious FN = 1 (7%) TP = 14 (93%)

Figure 4.  Estimated entomological inoculation rate from MIRS-ML, PCR, and ELISA predictions under 
hypothetical low and high mosquito biting rates.
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Moreover, the ML model trained with the PCR infection dataset demonstrated an ability to generalise its 
prediction to samples screened by ELISA. In contrast, the model trained with the ELISA infection dataset had 
some limitation in predicting samples screened by PCR. We further observed similarities in the fingerprint region 
where both ELISA and PCR models detected signals, demonstrating agreement in parasite detection between 
the two models (Fig. 3). However, a distinct difference was noted on the signals detected by both ELISA and 
PCR models, particularly in the frequencies ranging from 3500 to 3000  cm−1. Moreover, it is still not clear why 
ML models are picking up different signals from this region. Additionally, the generalisability of the ML model 
trained with PCR infection dataset can be attributed to the sensitivity of PCR in detecting even low sporozoite 
numbers in  mosquitoes39. Leveraging the sensitivity of PCR can enhance the performance of MIRS-ML models. 
However, a study by Hendershot et al., observed infection in mosquitoes at 0.5–1 day post-infection, indicating 
that false positive results can occur because PCR can report positives even when sporogonic development has 
not  started39. This situation arises when an infectious blood meal has not full migrated to the mosquito abdomen, 
and the presence of gametocytes in the mosquito head and thorax is more likely to contribute to positive results.

The primary focus of this investigation was to showcase the field application of the MIRS-ML technique for 
detecting sporozoites in malaria vectors, not to directly compare it with PCR or ELISA methods, which were 
instead used solely to provide reference labels for ML model training. Moreover, this study represents only the 
first demonstration of field applications of the MIRS-ML technique for sporozoite detection in malaria vectors, 
underscoring the need for further validation before its integration into surveillance or national malaria control 
efforts. Our analysis was also confined to An. funestus mosquitoes, chosen for their relatively high sporozoite 
rates in the region, highlighting the necessity to broaden future models to include more vector species. We 
recognize that expanding the MIRS-ML approach to all important mosquito species may necessitate compiling 
a comprehensive dataset of mosquito infection spectra, a task that presents logistical challenges in field settings, 
especially where natural infection prevalences are very low. A promising solution is to employ transfer learning, 
integrating laboratory-generated data with field-collected samples to enhance model  robustness24,25. This method 
involves refining a model initially trained on laboratory data with new field data, facilitating the development 
of an effective tool for field infection prediction. Additionally, in low transmission setting where sporozoite 
infection rates are low, ELISA and PCR can be used for mosquito pool testing, reducing operational costs 
compared to individual mosquito tests. However, the feasibility of using MIRS-ML for mosquito pool testing 
remains unknown, prompting our investigation in the next steps. Additionally, in this study, MIRS-ML was not 
evaluated for identifying the Plasmodium species. Future studies should address this aspect to enhance the utility 
in regions where more than once species of Plasmodium is prevalent.

MIRS-ML proves cost-effective as it eliminates the need for repeated reagent costs in mosquito sample tests, 
with the only incurred expense being the initial £ 25,000/ = for purchasing the FT-IR spectrometer. Capable of 
processing approximately 60 mosquitoes per hour, the portable bench-top design of the FT-IR spectrometer 
measures 22 × 33 × 26 cm, requiring connection to an AC power supply. Currently, we are developing an online 
system to serve as a centralized platform for predicting various entomological and parasitological indicators 
of malaria. This online system aims to facilitate the scaling up of MIRS-ML, enabling end-users from different 
locations to upload unknown mosquito spectra for predictions related to infection status, species, age, or 
resistance status.

In conclusion, here we demonstrate the first application of mid-infrared spectroscopy combined with machine 
learning (MIRS-ML) for the rapid and accurate detection of P. falciparum in field collected mosquitoes. By 
analysing 7178 female An. funestus specimens collected from rural Tanzania, we achieved detection accuracies of 
92% and 93% against ELISA and PCR benchmarks, respectively. Moreover, MIRS-ML can guide programmatic 
decisions on vector control, as the EIR estimates, derived from MIRS-ML models, closely align with those 
obtained from PCR and ELISA methods across low and high biting rate scenarios, demonstrating consistency and 
reliability in malaria infection prediction. This method, capable of processing approximately 60–100 mosquitoes 
per hour with minimal costs, presents a significant advancement in malaria surveillance, particularly in sub-
Saharan Africa where the disease has a profound impact. The utility of MIRS-ML extends beyond sporozoite 
detection, offering insights into critical entomological indicators such as mosquito age, blood-feeding patterns, 
and species identification, thereby positioning MIRS-ML as a versatile tool in malaria risk assessment and 
evaluation of vector control interventions.

Methods
Mosquito collection and processing
Mosquitoes were collected from five villages in two rural districts in South-eastern Tanzania, Kilombero and 
Ulanga: Kisawasawa (7.8941°S, 36.8748°E), Mbingu (8.1952°S, 36.2587°E), Ikwambi (7.9824°S, 36.8216°E), 
Sululu (7.9973°S, 36.8317°E) and Tulizamoyo (8.3544°S, 36.7054°E) (Fig. 5). These villages experience annual 
rainfall of 1200–1800 mm, with mean daily temperatures of 20–32 °C40, and were selected because of the high 
densities of the malaria vector, An. funestus. The vector species was chosen for this study because it is the 
primary contributor to malaria transmission in the area and typically exhibits a higher prevalence of Plasmodium 
sporozoites compared to other local vector species such as Anopheles arabiensis29,30. Mosquitoes were collected 
both indoors using CDC light traps and Prokopack  aspirators41,42, and outdoors, in outdoor kitchens and 
animal sheds using resting  buckets43. The collected Anopheles mosquitoes were sorted by taxa based on their 
morphological  features44. All An. funestus group mosquitoes were immediately killed with chloroform and then 
stored individually in 1.5 mL microcentrifuge tubes containing silica gel as desiccant and preservative. The An. 
funestus samples were transferred to the VectorSphere laboratory at the Ifakara Health Institute and stored dry 
for at least five days for further investigation.
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Mid‑infrared spectroscopy
We used a Bruker ALPHA II Fourier-Transform Infrared (FT-IR) spectrometer with attenuated total reflectance 
(ATR) to measure the infrared spectrum of the dried mosquito samples. Prior to scanning, the head and thorax 
of each mosquito was carefully separated from the abdomen, ensuring that only the head and thorax regions 
were scanned. The mosquito heads and thoraces were placed on the infrared optical window, and pressure was 
applied to ensure maximum direct contact between the sample and the diamond crystal. The spectral signal was 
obtained at frequencies between 4000 and 400  cm−1, with a resolution of 2  cm−1. Each spectrum was an average 
of 32 scans of a single mosquito sample, with band intensity recorded as an absorbance. Following scanning, the 
remaining of the mosquito head and thorax (carcasses) were individually packed in 1.5 mL tubes for subsequent 
molecular analysis. The recorded spectra were pre-processed by compensating for carbon dioxide interference 
bands and water vapor absorption bands as previously  described22. Additionally, spectra with no intensity (i.e. 
flat spectra) and low intensity (i.e. < 0.11 absorbance units) were removed before machine learning  steps22.

Detection of Plasmodium sporozoites using PCR and ELISA
To obtain reference labels of P. falciparum sporozoite infections in the mosquito head and thorax carcasses, we 
used real-time PCR targeting var gene acidic terminal sequences (varATS) of the  parasites9,10 and Enzyme-linked 
immunosorbent assays (ELISA) assays for detecting circumsporozoite protein (CSP)8. Each carcass underwent 
individual analysis, a method previously demonstrated for detecting mosquito blood meal  remaining45. In total, 
7178 An. funestus carcasses were examined across two rounds using the following methods:

Initially, 4281 samples were screened using  ELISA8, each time ensuring that the lysates of all the positive 
samples were boiled for 10 min at 100˚C to eliminate false positives usually associated with heat labile non-
Plasmodium protozoans, and  retested12.

Next, 2897 samples underwent multiplex real-time PCR for sporozoite infection detection. This involved DNA 
extraction of mosquito carcasses using the DNAzol®  reagent46, DNA was eluted in 50 µL of Tris–Acetate-EDTA 
(TAE) buffer. Subsequent to this, Real-Time PCR was conducted targeting the Pan-Plasmodium 18S rRNA and 

Figure 5.  Map of the five villages where mosquitoes were collected.

Table 2.  Training and test datasets used in the different models.

Model Training data Test data

ELISA ELISA dataset (90%)
1. ELISA dataset (10%)
2. ELISA dataset (10%) modified (14-day old lab-reared An. funestus mixed into 
negative class)
3. PCR dataset

PCR PCR dataset (90%)
1. PCR dataset (10%)
2. PCR dataset (10%) modified (14-day old lab-reared An. funestus mixed into 
negative class)
3. ELISA dataset

Combined PCR & ELISA dataset combined (90%) 1. PCR & ELISA dataset combined (10%)
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P. falciparum specific varATS sequences, along with a 28S rRNA mosquito sequence as a reference gene/internal 
control, enhancing specificity and sensitivity for P. falciparum and non-falciparum species.

The PCR reaction used a 10 µl mix including Luna Universal Probe qPCR Master Mix (New England Biolabs, 
USA), a primer mix, water, and template DNA. The thermal cycle parameters involved an initial polymerase 
activation at 95 °C for 1 min, DNA denaturation at 95 °C for 15 s for 45 cycles, and annealing/elongation at 57 °C 
for 45 s for 45  cycles10,47. Samples exhibiting a sigmoid curve that reached the cycle threshold (Ct) value at ≤ 35 
cycles were classified as positive, while those reaching > 35 cycles were classified as negative. The assays were run 
in duplicates, and each run included a non-template control and P. falciparum NF54 DNA as positive control. The 
real-time PCR measurements were analysed using CFX96 Real-Time PCR system (Bio-Rad Laboratories, USA).

Data analysis
The PCR and ELISA data were separately used as references to evaluate performance of the infrared spectroscopy 
and machine leaning models for accurately identifying individual mosquitoes infected with P. falciparum 
sporozoites in their salivary glands. Since only a small proportion of the mosquitoes were found infectious (see 
results section), it was necessary to first obtain similar numbers of randomly selected non-infectious mosquitoes 
as controls, to avoid skewed model performance. The non-infectious samples were therefore under-sampled by 
randomly selecting individual specimen based on their smallest average Euclidian distances to the 3 farthest 
positive  samples48,49. This process was repeated 50 times and bootstrapped to cover as many negative samples 
as possible.

To ensure consistency and uniformity, the spectra data were standardized using the StandardScaler 
 algorithm50. Supervised machine learning techniques, including K-nearest neighbours (KNN), logistic regression 
(LR), support vector machine (SVM), gradient boosting (XGB), random forest (RF), and multilayer perception 
(MLP), were then compared for predicting the ELISA and PCR results. The model with the highest accuracy 
was optimized further by adjusting its hyperparameters using randomized search cross-validation, and its final 
estimator was evaluated using K-fold cross-validation (k = 5). The analysis was performed using Python 3.8 
with the Scikit-learn  library50. The machine learning models were trained using ELISA, PCR, or combined 
ELISA + PCR training datasets and tested on all three corresponding test sets (Table 2). Training was done with 
up to 90% of the known positive and negative samples, each time leaving out at least 10% for model validation 
(Table 2). Additional validation of the models included using samples tested by either of the two methods, and 
incorporating lab-reared, non-infectious mosquitoes confirmed to be at least 14 days old. This was to guarantee 
that the models accurately classified infection status rather than mosquito age, as age can confound results and 
only mosquitoes older than 9 days are capable of transmitting  malaria38.

Ethics approval and consent to participate
Ethical approval for this study was obtained from the Institutional Review Board at Ifakara Health Institute (Ref. 
IHI/IRB/No: 41-2020), and the Medical Research Coordinating Committee (MRCC) at the National Institute of 
Medical Research (NIMR) (Ref: NIMR/HQ/R.8a/Vol. IX/3557). Since this study focused primarily on malaria 
mosquitoes, it did not involve human participants or animals.

Data availability
The mid-infrared spectral datasets generated and analysed, code for analyses during the current study are 
deposited and available at: https:// github. com/ Mwang aEP/ Sporo zoite- detec tion- funes tus.
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