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A B S T R A C T

The automated finite element analysis of complex CAD models using boundary-fitted meshes is rife with
difficulties. Immersed finite element methods are intrinsically more robust but usually less accurate. In this
work, we introduce an efficient, robust, high-order immersed finite element method for complex CAD models.
Our approach relies on three adaptive structured grids: a geometry grid for representing the implicit geometry,
a finite element grid for discretising physical fields and a quadrature grid for evaluating the finite element
integrals. The geometry grid is a sparse VDB (Volumetric Dynamic B+ tree) grid that is highly refined close to
physical domain boundaries. The finite element grid consists of a forest of octree grids distributed over several
processors, and the quadrature grid in each finite element cell is an octree grid constructed in a bottom-up
fashion. The resolution of the quadrature grid ensures that finite element integrals are evaluated with sufficient
accuracy and that any sub-grid geometric features, like small holes or corners, are resolved up to a desired
resolution. The conceptual simplicity and modularity of our approach make it possible to reuse open-source
libraries, i.e. openVDB and p4est for implementing the geometry and finite element grids, respectively, and
BDDCML for iteratively solving the discrete systems of equations in parallel using domain decomposition.
We demonstrate the efficiency and robustness of the proposed approach by solving the Poisson equation on
domains described by complex CAD models and discretised with tens of millions of degrees of freedom. The
solution field is discretised using linear and quadratic Lagrange basis functions.
1. Introduction

1.1. Motivation and overview

Immersed finite elements, also called embedded, unfitted, extended,
cut-cell or shifted-boundary finite element methods, have unique ad-
vantages when applied to complex three-dimensional geometries [1–
12]. By large, they can sidestep the challenges in automating the
boundary-fitted finite element mesh generation from CAD models.
The prevailing parametric CAD models based on BRep data structures
and NURBS surfaces are generally rife with gaps, overlaps and self-
intersections, which need to be repaired before mesh generation [13–
15]. In addition, CAD models contain small geometric details, like
fillets, holes, etc., consideration of which would lead to unnecessar-
ily large meshes so that they are typically manually removed, or
defeatured [13]. Most of these challenges can be circumvented by
present low-order immersed finite elements, but not so when high-order
accuracy is desired.
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In immersed finite elements, the CAD model is discretised by em-
bedding the domain in a structured background mesh, or grid, usually
consisting of rectangular prisms, or cells. The boundary conditions are
enforced approximately and the weak form of the governing equations
is integrated only in the part of the cut-cells inside the domain. A
polygonal approximation of the boundary surface will always lead
to a low-order method irrespective of the polynomial order of the
basis functions. For instance, according to standard error estimates for
second-order elliptic boundary value problems to obtain an approxi-
mation of order 𝑝 + 1 using basis functions of degree 𝑝, the boundary
surface must be approximated with polynomials of degree 𝑝 [16,17].
That is, the cut-element faces adjacent to the boundary must be curved
and be at least of degree 𝑝. However, for complex geometries, generat-
ing geometrically and topologically valid curved elements is not trivial
because of the mentioned problems with parametric CAD models.

Alternatively, as pursued in this paper, the accuracy of the finite
element solution can be increased by approximating the boundary
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Fig. 1. Robust high-order accurate immersed finite element analysis of a CAD model. The BRep CAD model consisting of NURBS surface patches (a) is first exported from a CAD
system as a sufficiently fine facetted STL mesh (b). The respective implicit signed distance function (c) is obtained by sampling the STL mesh. The implicit signed distance function
is stored on a grid restricted to a tight narrow band around the boundary. The finite element analysis is performed on a much coarser non-boundary-fitted grid using high-order
basis functions. The restriction of the finite element solution on the grid (d) represents the sought solution.
surface as a polygonal mesh with a characteristic edge length much
smaller than the cell size of the finite element grid. To this end, we
introduce, in addition to the immersed finite element grid, a geometry grid
for piecewise-linear implicit geometry representation and a quadrature
grid for evaluating the element integrals in the cut-cells. The three
independent grids are all adaptive and have different resolutions.

The conceptual simplicity of the proposed approach makes it easy to
embed it within a parallel domain decomposition context and analyse
large complex CAD models efficiently. Efficient solvers and parallel do-
main decomposition are essential for CAD geometries from engineering
because their discretisation easily leads to systems of equations with
several tens of thousands of elements and the associated computing
times are below a few minutes.

1.2. Related research

In an implicit geometry description, the domain is represented
as a scalar-valued signed distance, or level set, function. The level
set function is zero at the boundary, positive inside and negative
outside of the domain. Well-known advantages of implicit geometry
representations include ease of robust Boolean operations and shape
interrogation, including the computation of ray-surface intersection,
see e.g. [18–22]. Although there are algebraic implicitisation tech-
niques to determine the level set function of a single or a few NURBS
patches [23–25], such methods are presently not scalable to complex
CAD models. Alternatively, the level set function can be obtained by
sampling the CAD model and storing the determined distances on a
structured geometry grid. However, sampling directly the CAD model
requires distance computations or ray-surface intersections, leading to
expensive and unstable nonlinear root-finding problems which would
annihilate any advantages of an implicit geometry representation.

In contrast, the sampling of polygonal surface meshes can be per-
formed exceedingly robustly. Polygonal mesh models are prevalent
in manufacturing and virtually all CAD systems can approximate a
CAD model with an intersection-free polygonal mesh, that is an STL
mesh, with a prescribed accuracy. An accurate representation of the
level set function with a resolution comparable to the element size
of the polygonal STL mesh is only required in the immediate vicinity
of the boundary. Although octree data structures have been used to
this end, they generally tend to have a large memory footprint and
slow access times. An adaptive grid with approximately constant ac-
cess time and a memory footprint that scales quadratically with the
number of elements in the polygonal surface mesh is provided by
the VDB (Volumetric Dynamic B+ tree) data structure and its open
source implementation OpenVDB [26,27]. In VDB the difference in the
2

refinement level between two neighbouring cells is much higher than
two, which is combined with other algorithmic features, making it ideal
for processing and storing level set functions. OpenVDB also provides
algorithms for efficient computation of the level set function by solving
the Eikonal equation using the fast sweeping method [28,29].

The purpose of the finite element discretisation grid is to approxi-
mate the physical solution field and usually has a different resolution
requirement from the geometry grid for representing the level set
function. As per classical a-priori estimates, the ideal finite element cell
size distribution depends on the smoothness properties of the solution
field and the polynomial order of the basis functions used. A uniform
cell size distribution is seldom ideal so that grid adaptivity is crucial.
Furthermore, different from the geometry grid, abrupt changes in the
finite element grid size distribution must be avoided because it is usu-
ally associated with artefacts in the approximate solution field. Hence,
balanced octree grids are suitable as finite element discretisation grids.

On the non-boundary-fitted octree finite element grid the boundary
conditions are enforced by modifying either the variational weak form
or the basis functions. According to historical work by Kantorovich
and Krylov [30] in Ritz-like methods homogeneous Dirichlet boundary
conditions can be enforced by multiplying the global basis functions
with a zero weight function at the boundary. Building on this idea,
several approaches have been introduced for enforcing the boundary
conditions by altering the basis functions [1,3,6,31,32]. The required
weight function is typically obtained from the signed distance function.
Alternatively, the boundary conditions can be enforced by modifying
the variational weak form, mainly using the Nitsche method [33]
and its variations [34–38]. The finite element integrals in the cut-
cells traversed by the boundary are evaluated only inside the domain.
Because finite element basis functions are locally supported, some basis
functions close to cut-cells may have a negligible physically active
support domain, leading to ill-conditioned system matrices. Several
approaches have been proposed for cut-cell stabilisation, including
basis function extension [1,39,40] and ghost-penalty method [41], see
also the recent review [42].

The evaluation of the finite element integrals in the cut-cells re-
quires special care in high-order accurate immersed methods. Its accu-
racy depends on the chosen quadrature scheme, number of quadrature
points, and the domain boundary approximation in the cut-cells. The
number of quadrature points affects the overall efficiency of the im-
mersed finite element method and must be kept low. The cut-cells
are usually identified by evaluating the signed distance function at
the cell vertices. This approach is sufficient when the geometry and
finite element grids have the same resolution but can miss some of
the cut-cells when the signed distance function is given in algebraic
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form or via a finer geometry grid. In both cases supersampling the
signed distance function on the finite element grid can improve the
correct classification of cells as cut-cells [43]. After identification, the
cut-cells are decomposed into easy-to-integrate primitive shapes using
marching tetrahedra partitioning [39,44], octree partitioning [4] or a
combination thereof [45]. For a discussion on the mentioned and other
cut-cell integration approaches see [46]. The collection of the primitive
shapes, that is the integration cells, yields the integration grid.

The quadrature approaches described so far are generally low order.
In case of recursive octree partitioning high order accuracy can, in
principle, be achieved by successively refining the integration cells
traversed by the domain boundary. This leads however to a vast
number of quadrature points and exceptionally inefficient approach.
An alternative approach to improve the boundary approximation is to
introduce additional nodes on the edges and faces and to push those
to the boundary surface [45,47]. Unfortunately, such methods are very
brittle because of the involved floating point operations, the presence
of subgrid features, like small holes, and sharp corners and edges. They
require a defeaturing step, like in boundary-fitted mesh generation, for
engineering CAD models, annihilating one of the main advantages of
immersed methods. It is worth bearing in mind, that the exceptional
robustness of low order immersed methods can be attributed to the
automatic defeaturing, or geometry filtering, by representing a CAD
geometry on a coarse grid and the discarding of subgrid geometry
details [3,6].

Parallel computation and grid adaptivity are essential for three-
dimensional finite element analysis of large CAD models. The required
computing memory and time for the analysis become quickly unwieldy,
particularly when high-order basis functions are used. Adaptive re-
finement and coarsening of the finite element grid using a distributed
octree data structure provides a mean to spread the grid and the com-
putation over several processors and to choose a grid size distribution
that best approximates the physical solution field [48]. Compared to
equivalent parallel boundary-fitted finite element implementations, an
octree-based immersed finite element implementation leads to highly
scalable domain partitioning and allows for easy dynamic load balanc-
ing, especially when adhering to balanced octree structures. There are
efficient distributed octree implementations, most notably p4est [48]
for distributing the finite element grid over many processors. In such
a distributed setting, the corresponding linear system of equations is
typically solved using iterative Krylov subspace methods in combina-
tion with parallel preconditioners. The system matrix for the entire
problem is never assembled. As parallel preconditioners, both algebraic
multigrid [49] and domain decomposition [50,51] have been applied
in immersed methods. In [51] a standard single-level additive precon-
ditioner and in [50] a two-level balancing domain decomposition based
on constraints [52] are considered. The possible ill-conditioning of the
system matrices in immersed methods presents a challenge in applying
preconditioners. However, this problem can be alleviated by using the
mentioned cut-cell stabilisation techniques.

1.3. Proposed approach

The robustness, accuracy and efficiency of immersed methods effec-
tively depend on the description of the domain geometry, the treatment
of the cut-cells, the resolution of the discretisation grid and the so-
lution of the resulting linear systems of equations. In the case of
large CAD models with geometric and topological faults and small
geometric features, an inevitable trade-off is essential in satisfying the
three competing objectives of robustness, accuracy and efficiency. To
achieve this, we introduce three different adaptive grids for repre-
senting the geometry, finite element discretisation and integration of
element integrals. The resolution of each of the grids can be chosen in
dependence of the required accuracy and available computing budget.
3

As an additional benefit, the use of three different grids leads to a
modular software architecture and makes it possible to reuse avail-
able open-source components, specifically openVDB [26], p4est [48]
and BDDCML [53]. The accuracy of the geometry representation is
determined by the polygonal STL mesh with a user-prescribed precision
exported from a CAD system. The respective signed distance function is
computed at the nodes of the adaptive geometry grid with the minimum
resolution length ℎ𝑔 . The signed distance value within the cells is
obtained by linearly interpolating from the nodes. The length ℎ𝑔 is
hosen in dependence of the smallest feature size appearing in the
olygonal surface mesh. Any geometric details smaller than ≈ ℎ𝑔 are

automatically discarded by switching from the polygonal mesh to the
implicit signed distance function. We use the openVDB library for
computing and storing the implicit signed distance function in a narrow
band of width 𝛿 along the boundary surface. The narrow band size is
chosen as a multiple of the minimum geometry resolution length ℎ𝑔 .
Inside the narrow band, the geometry cells have the length ℎ𝑔 and
outside they are much coarser.

The adaptive finite element grid is constructed from a coarse base
grid enveloping the polygonal surface mesh. The coarse base grid is
distributed over the available processors and is refined until a de-
sired cell size distribution is obtained while maintaining a refinement
level difference of one or less between two neighbouring cells. The
smallest resolution length ℎ𝑓 is usually larger than the geometry grid
resolution ℎ𝑔 because the memory and computing requirements are
dominated by the solution of the discretised equations. This is espe-
cially true when the domain is three-dimensional and high-order basis
functions are used. In the included examples, we use Lagrange basis
functions of polynomial orders 𝑝 = 1, 2, and all are three-dimensional.
Furthermore, all cut-cells are refined up to the finest resolution ℎ𝑓 . We
identify the cut-cells via supersampling the signed distance function
with a resolution ℎ𝑔 , within each finite element cell. This is necessary to
detect small geometric features and sharp edges/corners that are easily
missed by evaluating the signed distance function at the nodes of the
finite element grid. We use the open source p4est (forest-of-trees) to
refine and distribute the octree grid over all processors. Furthermore,
we solve the respective distributed linear system of equations using the
adaptive-multilevel BDDC (balancing domain decomposition based on
constraints library) BDDCML.

The quadrature grid is constructed only in the cut-cells and has
a resolution ℎ𝑞 ≥ ℎ𝑔 . It ensures that the finite element integrals are
evaluated correctly in the presence of curved boundary surfaces and
geometric features much smaller than the finite element cell size. We
adopt a bottom-up octree strategy by starting from a coarse quadrature
grid and successively merging cells that are not cut by the domain
boundary. We implement fast cell traversal via the Morton code, or Z-
curve. This bottom-up construction is crucial for robust and accurate
recovery of quadrature cells cut by the boundary. The leaf cells of
the quadrature grid are then tessellated using the marching tetrahedra
algorithm.

1.4. Overview of the paper

This paper is divided into five sections. In Section 2, we begin by
providing a brief review of the implicit description of geometry and its
discrete sampling over the geometry grid. We then introduce the FE
grid and discuss its construction and classification in relation to geo-
metrical and physical features. In Section 3, we present the immersed
finite element scheme which utilises the three grids. We specifically
address the treatment of cut-cells, including the construction of the
bottom-up quadrature grid and tetrahedralisation. In Section 4 we delve
into the numerical strategies that enable the proposed immersed FE
analysis to be computed on parallel processors. Finally, in Section 5,
we demonstrate the optimal convergence of the developed approach
and its strong and weak scalability. We demonstrate the robustness of
our approach through several examples, showing its ability to analyse

various complex geometries.
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Fig. 2. Representative geometry setup.
2. Geometry and finite element grids

2.1. Geometry grid

We assume that the domain 𝛺 ∈ R3 with the boundary surface 𝛤 is
given as a scalar valued implicit signed distance function 𝜙(𝒙) ∶ 𝛺 → R
such that

𝜙(𝒙) =
⎧

⎪

⎨

⎪

⎩

dist(𝒙, 𝛤 ) if 𝒙 ∈ 𝛺
0 if 𝒙 ∈ 𝛤

−dist(𝒙, 𝛤 ) otherwise ,
(1)

where dist(𝒙, 𝛤 ) = min𝒚∈𝛤 |𝒙 − 𝒚| denotes the shortest distance between
the point 𝒙 and the surface 𝛤 . By definition, the signed distance
function 𝜙(𝒙) is positive inside the domain, negative outside and the
zeroth isosurface 𝜙−1(0) corresponds to the boundary 𝛤 .

It is difficult to obtain the closed-form signed distance function 𝜙(𝒙)
for complex CAD geometries especially when they consist of freeform
splines, see for example Fig. 1(a). In that case, it is often expedient
to consider a finely discretised polygonal surface mesh, i.e., STL mesh,
approximating the exact CAD surface, see as an example Fig. 1(b) or
its two-dimensional depiction in Fig. 2(a). Practically, all CAD systems
are able to export STL mesh irrespective of the internal representation
they use.

To compute the approximate signed distance function 𝜙(𝒙), the
respective domain 𝛺 is first embedded, or immersed, in a sufficiently
large cuboid 𝛺□ ⊃ 𝛺. We discretise the embedding domain 𝛺□ with an
adaptive grid consisting of cuboidal cells with minimum edge length ℎ𝑔 .
The signed distance function 𝜙(𝒙) is determined by first computing
the distance of the grid nodes to the surface 𝛤 and then linearly
interpolating within the cells. The tree hierarchy of the geometry grid
is established using the highly efficient VDB data structure as imple-
mented in the open-source openVDB library [26,54]. The resulting
geometry grid is highly refined within a narrow band of thickness 2𝛿
around the boundary, i.e., {𝒙 ∈ R3 ∣ dist(𝒙, 𝛤 ) < 𝛿}, see for example
Fig. 2(b), and has a very small memory footprint. In our computations,
we choose 𝛿 = 3 ℎ𝑔 . The VDB data structure provides constant-time
random access, insertion, and deletion, allowing fast scan conversion
and evaluation of the signed distance function at any point in space.

2.2. Finite element grid

The finite element grid must ensure that the features of the phys-
ical solution field, for instance, singularities and internal layers, are
sufficiently captured. The construction of the FE grid starts with a
very coarse base grid, see Fig. 3(a). The base grid is usually obtained
by uniformly subdividing the bounding box 𝛺□. To obtain the FE
grid, we increase the resolution of the base grid by repeated octree
refinement of selected cells, i.e. by subdividing cells into eight cells. The
4

maximum and minimum cell size are often prescribed as constraints of
the refinement.

In boundary value problems it is usually necessary to refine the grid
towards the domain boundaries because of the practical importance of
the solution close to the boundaries. As an example, we illustrate in
Fig. 3(b) the refinement of the base grid towards the boundary utilising
the FE grid cell predicates that will be introduced in Section 2.3.
When a cell is identified as a cut-cell, it is subdivided into eight
sub-cells. The octree data structure representing the finite element
grid is managed using the open-source library p4est [48]. As will be
discussed in Section 4.1, p4est also manages the partitioning of the
octree into subprocesses and distributes them across several processors.
Different from the VDB data structure for the geometry, we constrain
the refinement level between adjacent cells to have a 2:1 ratio, i.e., the
refinement level between neighbouring cells may differ at most by one.

The resulting finite element grid comprises of the non-overlapping
leaf cells  = {𝜔𝑖} that decompose the bounding box, i.e.,

𝛺□ =
⋃

𝑖
𝜔𝑖 . (2)

Each cell 𝜔𝑖 represents a finite element, and the physical field is
discretised using the basis functions associated with the cells.

2.3. Classification of finite element cells

In this section we describe the classification of FE grid cells per-
tinent to the adaptive refinement of the cells. It is assumed that the
discretised signed distance function 𝜙(𝒙) can be evaluated at any point
𝒙 ∈ 𝛺□. The finite element cells  are split into three disjoint sets

𝑎 = {𝜔𝒊 ∈ | min
𝒙∈𝜔𝒊

𝜙(𝒙) > 0} , (3a)

𝑖 = {𝜔𝒊 ∈ |max
𝒙∈𝜔𝒊

𝜙(𝒙) < 0} , (3b)

𝑐 =  ⧵ (𝑎 ∪ 𝑖) . (3c)

The cells in the sets 𝑎, 𝑖 and 𝑐 are referred to as the active, inactive
and cut cells, see Fig. 3(b).

Although it is tempting to classify the finite element cells by evalu-
ating the signed distance function 𝜙(𝒙) only at their corners, it usually
leads to a crude finite element approximation of the domain 𝛺. As
depicted in Figs. 5(a) and 5(b), such an approach may miss physically
important small geometric details. A more accurate finite element
approximation can be obtained by supersampling the signed distance
function 𝜙(𝒙) within the cells. The chosen sampling distance represents
a low-pass filter for the geometry and implies a resolution length for
geometric details. The sampling distance can be equal or larger than
the edge length ℎ𝑔 of the geometry grid.

Industrial CAD geometries usually contain sharp features in the form
of creases and corners that are often physically essential, see Fig. 5(c).

They can be identified by considering the change of the normal to the
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Fig. 3. A finite element grid obtained by octree refinement towards the domain boundary starting from a base grid. The domain boundary is given by the zeroth level set 𝜙−1(0)
f the signed distance function. The grid elements are categorised as active 𝑎, cut 𝑐 or inactive 𝑖.
Fig. 4. Identification of the ordinary cut finite element cells 𝜔𝑖 ∈ 𝑐𝑜 ⊂ . Blue dots correspond to 𝜙(𝒙) > 0 and red dots to 𝜙(𝒙) < 0. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Identification of the extraordinary cut finite element cells 𝜔𝑖 ∈ 𝑐𝑒 ⊂ . Blue dots correspond to 𝜙(𝒙) > 0 and red dots to 𝜙(𝒙) < 0. Supersampling of selected cells to detect
intersections with small geometric details (left and centre) and cells with sharp geometric features (right). In (a) and (b) ℎ𝑓 = 8ℎ𝑔 . (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)
a

igned distance function [55]. The respective unit normal 𝒏(𝒙) is given
y

(𝒙) = ∇𝜙(𝒙)
‖∇𝜙(𝒙)‖

, (4)

where ∇ denotes the gradient operator.
Consider a set of points in a cell 𝜔𝑖 denoted as 𝑖, where we can

valuate 𝜙 and ∇𝜙. In our implementation the set 𝑖 corresponds to
rid points of a local uniform grid. If the spacing of this grid is the cell
ize itself, 𝑖 contains just the vertices of 𝜔𝑖. We can define an indicator
f sharp features by

min
𝒔𝑘∈𝑖 , 𝒔𝑙∈𝑖

𝒏(𝒔𝑘) ⋅ 𝒏(𝒔𝑙) < cos(𝜃) , (5)

here cos(𝜃) is a user prescribed parameter chosen as cos(𝜃) = 0.3 in
5

he presented computations.
In light of the mentioned observations, we employ the following
lgorithm to classify the finite element cells.

S1. Define 𝑖 as the vertices of the finite element cell 𝜔𝑖, and sample
and store the signed distance values 𝜙(𝒔𝑗 ) and the normal vectors
𝒏(𝒔𝑗 ) for 𝒔𝑗 ∈ 𝑖.

S2. Identify all the cut-cells 𝑐 such that

𝑐 = {𝜔𝒊 ∣ min
𝒔𝑗∈𝑖

𝜙(𝒔𝑗 ) ⋅ max
𝒔𝑘∈𝑖

𝜙(𝒔𝑘) < 0} , (6)

identify the subset of cut-cells 𝑐𝑒 ⊂ 𝑐 that contain a sharp
feature using criterion (5), and define the subset of ordinary cut
cells 𝑐𝑜 ∶= 𝑐∖𝑐𝑒 , as depicted in Fig. 4. Categorise the remaining
cells into active 𝑎 and inactive 𝑖 considering the signed distance

values 𝜙(𝒔𝑗 ).
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S3. Collect the set of cells  =
⋃

𝑖 𝑖, where 𝑖 indicates the face
neighbour of a cut-cell 𝜔𝑖 ∈ 𝑐 .

S4. For cells in  ⧵ 𝑐 , redefine 𝑖 by supersampling, see for exam-
ple Fig. 5, and repeat S1 and S2. Cells identified as cut after
supersampling are added to the set of extraordinary cells 𝑐𝑒 .

he final set of the cut cells is given as 𝑐 = 𝑐𝑜 ∪ 𝑐𝑒 .

. Immersed finite element method

.1. Governing equations

As a representative partial differential equation, we consider on a
omain 𝛺 ∈ R3 with the boundary 𝛤 = 𝛤𝐷 ∪ 𝛤𝑁 the Poisson equation

∇ ⋅ ∇𝑢 = 𝑓 in 𝛺 ,

𝑢 = 𝑢 on 𝛤𝐷 ,

𝒏 ⋅ ∇𝑢 = 𝑔 on 𝛤𝑁 ,

(7)

where 𝑢, 𝑓 ∶ 𝛺 → R are the unknown solution and the prescribed forc-
ing, 𝑢 ∶ 𝛤𝐷 → R is the prescribed Dirichlet data, 𝑔 ∶ 𝛤𝑁 → R is the
prescribed Neumann data, and 𝒏 ∶ 𝛤 → R3 is the unit boundary normal.
The weak formulation of the Poisson equation can be stated according
to Nitsche [33] as follows: find 𝑢 ∈ 𝐻1(𝛺) such that

∫𝛺
∇𝑢 ⋅ ∇𝑣 d𝛺 + 𝛾 ∫𝛤𝐷

(𝑢 − 𝑢)𝑣 d𝛤

= ∫𝛺
𝑓𝑣 d𝛺 + ∫𝛤𝑁

𝑔𝑣 d𝛤

+ ∫𝛤𝐷

(

(𝑢 − 𝑢)𝒏 ⋅ ∇𝑣 + (𝒏 ⋅ ∇𝑢) 𝑣
)

d𝛤

(8)

for all 𝑣 ∈ 𝐻1(𝛺). The space 𝐻1(𝛺) is the standard Sobolev space
such that the test functions 𝑣 do not have to be zero on 𝛤𝐷 and
the Dirichlet boundary conditions are satisfied only weakly by the
solution 𝑢. The stability parameter 𝛾 > 0 can be chosen, for instance,
according to [34,40] as 𝛾0∕ℎ𝑓 , where ℎ𝑓 is the local finite element size.
This choice of 𝛾 requires that the adverse effects of small cut cells is
eliminated by other means, e.g., by basis function extrapolation as will
be introduced in Section 3.5.

We discretise the solution field 𝑢 and the test function 𝑣 with
Lagrange basis functions 𝑁𝑖(𝒙) that are defined on the non-boundary
fitted finite element grid defined on the domain 𝛺□ ⊃ 𝛺. The approxi-
mation of the solution 𝑢 and the test function 𝑣 over the finite element
grid is given by

𝑢ℎ =
∑

𝒊
𝑁𝒊(𝒙)𝑢𝒊 , 𝑣ℎ =

∑

𝒊
𝑁𝒊(𝒙)𝑣𝒊 . (9)

After introducing both into the weak form (8) all integrals are evaluated
by iterating over the cells in the finite element grid. Only the active
cells in 𝑎 and the cut cells in 𝑐 have a non-zero contribution and
are considered in finite element analysis. The integrals over active
cells can be evaluated using standard tensor-product Gauss quadrature.
The evaluation of the integrals over cut cells requires some care.
As mentioned, according to standard a-priori error estimates, optimal
convergence of the finite element solution is only guaranteed when
the boundary geometry is approximated with polynomials of the same
degree as the basis functions 𝑁𝑖(𝒙).

Unfortunately, trying to reconstruct the boundary geometry from
the zeroth isocontour of the discretised signed distance function,
i.e. 𝜙−1(0), with higher than linear polynomials is as challenging as
creating a conforming 3D finite element mesh. Therefore we use in
the proposed approach only a piecewise linear reconstruction of the
boundary on the cut cells in 𝑐 , as will be detailed in Section 3.3.
To increase the integration accuracy, we introduce a fine quadrature
grid obtained by octree refinement of the finite element cut cells,
which will be detailed in Section 3.2. The discretisation of the weak
6

s

Fig. 6. Quadrature grid and bottom-up cut cell refinement of a cut finite element cell
in 𝑐 for quadrature and the tetrahedralisation of the cut quadrature cells. The red
ots correspond to 𝜙(𝒙) < 0.

ormulation (8) yields after integration using the quadrature grid the
iscrete system of equations

𝒖 = 𝒇 , (10)

here 𝑨 is the symmetric positive definite system matrix, 𝒖 is the
olution vector and 𝒇 is the forcing vector.

.2. Quadrature grid and bottom-up cut cell refinement

The quadrature grid in the cut finite element cells in 𝑐 is obtained
y 𝑟𝑄 steps of octree refinement. This implies that 𝑟𝑄 = ℎ𝑓∕ℎ𝑞 , where
𝑞 is the smallest quadrature cell size. In our computations, we usually
hoose 0 ≤ 𝑟𝑄 ≤ 4. The refinement process yields for each cut
ell 8𝑟𝑄 leaf quadrature cells over which the finite element integrals
ave to be evaluated. As exemplified in Fig. 6(a), not all of the leaf
uadrature cells are intersected by the domain boundary represented by
−1(0). Considering that the evaluation of the finite element integrals

s computationally expensive (more so for high-order basis functions),
t is desirable to have as few integration cells as possible. Hence, it is
xpedient to merge all the leaf cells not intersected by 𝜙−1(0) into larger
uboidal cells. This does not harm the finite element convergence rate
ecause the resulting larger cells are integrated with the same tensor
roduct quadrature rule like the active elements in 𝑎.

We use a bottom-up octree construction to merge the leaf cells of
he quadrature octree grid into larger integration cells. To this end,
irst, all the leaf quadrature cells are classified into active, inactive
nd cut by evaluating the signed distance value 𝜙𝑔(𝒙) at their corners.
ubsequently, the bottom-up octree is constructed using the Morton
ode, or Z-curve [56], of the leaf quadrature cells, see Fig. 6(b). As the
-curve is locality preserving, we can efficiently traverse it and apply
simple coarsening to build up the octree from the bottom up. The
o obtained few larger cells can be integrated much more efficiently,
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Fig. 7. Fan disk geometry reconstructed from the signed distance function 𝜙(𝒙) using bottom-up cut cell refinement and subsequent tetrahedralisation of cut quadrature cells.
see Fig. 6(c). For future reference, we denote the subcells of the finite
element cut cell 𝜔𝑖 ∈ 𝑐 with 𝜔𝑄

𝑖,𝑘 such that

𝜔𝑖 =
⋃

𝑘
𝜔𝑄
𝑖,𝑘 . (11)

In the following, the cells 𝜔𝑄
𝑖,𝑘 are referred to as quadrature cells.

Active quadrature cells are integrated using the tensor-product Gauss
quadrature in a straightforward way. On the other hand, the cut
quadrature cells first undergo the tetrahedralisation algorithm followed
by integration introduced in Sections 3.3 and 3.4.

For nontrivial industrial CAD geometries, the bottom-up octree
refinement of the cut cells leads to a significant improvement in the
representation of the domain boundaries. The representation of the
boundary of a fan disk with and without cut cell refinement are
illustrated In Fig. 7. In case of no refinement (𝑟𝑄 = 0), the surface has
topological inconsistencies, and the sharp edges are poorly represented.
In contrast, the boundary is faithfully represented with refinement
(𝑟𝑄 = 3).

3.3. Cut quadrature cell tetrahedralisation

We consider the decomposition of the quadrature cells 𝜔𝑄
𝑖,𝑘 that

are cut by the domain boundary into tetrahedra. This is necessary to
increase the accuracy of the evaluation of the finite element integrals.
Whether 𝜔𝑄

𝑖,𝑘 is cut is determined by evaluating the signed distance 𝜙(𝒙)
at its corners. The part of a cut quadrature cell 𝜔𝑄

𝑖,𝑘 lying within the
domain with 𝜙(𝒙) ≥ 0 is partitioned into several simplices such that

𝜔𝑄
𝑖,𝑘
|

|

|𝜙(𝒙)≥0
≈
⋃

𝑙
𝜏𝑙 , (12)

see Fig. 6(d). The finite element integrals are evaluated over the
simplices {𝜏𝑙}. Each cut quadrature cell 𝜔𝑄

𝑖,𝑘 has its own simplices. We
did not make this dependence explicit in order not to clutter further
the notation.

To obtain the simplices {𝜏𝑙}, first, each cut cuboidal quadrature
cell 𝜔𝑄

𝑖,𝑘 is split into six simplices and later the marching tetrahedra
algorithm is used to decompose the part of the cell inside the do-
main [57]. The specific splitting pattern chosen in the first step is
optimised so that the marching tetrahedra algorithm leads to as few
simplices as possible. Specifically, as illustrated in Fig. 8, the cell is split
into six simplices using one of the three depicted splitting patterns [58].
The domain boundary may cut all or some of the six resulting simplices.
The tetrahedralisation of the parts of the cut simplices inside the
domain is obtained with marching tetrahedra. Depending on the sign
of 𝜙(𝒙) at the corners of the cut simplices, there are three different
possible splitting patterns in marching tetrahedra [39]. In the tetrahe-
dralisation of the cut simplices the intersection of their edges with the
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signed distance function 𝜙(𝒙) = 0 is required. To this end, we use a
simple bisection algorithm. Note that the tetrahedralisation procedure
also provides an approximation of the domain boundary using triangles
within the FE cells, which are subsequently used for surface integrals.

3.4. Integration of cut quadrature cells

We introduce now the evaluation of the finite element integrals
over the cut quadrature cells 𝜔𝑄

𝑖,𝑘 ⊂ 𝜔𝑖 ∈ 𝑐 in (11) using the set of
simplices {𝜏𝑙 ⊂ 𝜔𝑄

𝑖,𝑘} in (12). Fig. 9 shows a typical setup with a cut
quadrature cell and the associated integration simplices. The quadra-
ture rules are given for a reference simplex 𝜏 which is mapped to 𝜏𝑙
using the affine mapping 𝝋𝑙 ∶ 𝜼 ∈ 𝜏 ↦ 𝒙 ∈ 𝜏𝑙. Focusing, for instance,
on the stiffness integral, its quadrature is given by

∫𝜔𝑄
𝑖,𝑘

∇𝑢ℎ ⋅ ∇𝑣ℎ d𝜔 ≈
∑

𝑙
∫𝜏𝑙

∇𝑢ℎ ⋅ ∇𝑣ℎ d𝜏

=
∑

𝑙

∑

𝑔

(

∇𝑢ℎ(𝒙𝑔) ⋅ ∇𝑣ℎ(𝒙𝑔)
)

|

|

|

∇𝜼𝝋𝑙
|

|

|

𝑤𝑔 ,
(13)

where 𝒙𝑔 are the quadrature points mapped to the physical domain,
𝑤𝑔 are the weights, and |∇𝜼𝝋𝑙| is the absolute value of the determinant
of the Jacobi matrix of the affine mapping. The solution 𝑢ℎ and the
test function 𝑣ℎ are according to (9) given in terms of the shape
functions 𝑁𝑖(𝒙) of the finite element cell 𝜔𝑖. Hence, the quadrature
points 𝜼𝑔 must be mapped to the respective points 𝒙𝑔 . This involves
the mapping 𝝋𝑙 and the mapping implied by the bottom-up refinement
of the finite element cell 𝜔𝑖 into 𝜔𝑄

𝑖,𝑘.

3.5. Cut cell stabilisation

The cut finite element cells in 𝑐 may have a small overlap with
the physical domain 𝛺, and some of the associated basis functions
may have a very small contribution to the system matrix 𝑨 in (10)
resulting in an ill-conditioned matrix [42,59]. One approach to improv-
ing the conditioning is an elimination of their respective coefficients
from the system matrix. Simply discarding some of the coefficients
and basis functions would harm the finite element convergence rates.
Therefore, we eliminate the critical coefficients by extrapolating the
solution field from the nearby nodal coefficients of the cells inside the
domain. This approach is inspired by the extended B-splines by Höllig
et al. [1], which has also been applied in other immersed discretisation
techniques [39,40,60].

A basis function 𝑁𝑖(𝒙) is critical when the intersection of its support
with the physical domain 𝛺 lies below a threshold. Formally, this is
expressed as
|

|

|

supp𝑁𝑖(𝒙) ∩
{

𝒙 ∈ R3 ∣ 𝜙(𝒙) ≥ 0
}

|

|

| < 𝜖 , (14)

| supp𝑁𝑖(𝒙)|
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Fig. 8. Splitting patterns for subdividing a cut quadrature cell 𝜔𝑄
𝑖,𝑘 into six simplices prior to the application of the marching tetrahedra algorithm.
Fig. 9. 2D illustration of the integration of a quadrature cut cell 𝜔𝑄
𝑖,𝑘 corresponding to a finite element cut cell 𝜔𝑖 ∈ 𝐶𝑐 . A reference simplex (right) is affinely mapped to the three

simplices 𝜏1, 𝜏2 and 𝜏3 obtained with marching tetrahedra.
where | ⋅ | is the volume of the respective set, and the threshold is
chosen as 𝜖 = 1∕8 in our numerical computations, see Fig. 10. To
determine the numerator and denominator of (14) for each basis func-
tion 𝑁𝑖(𝒙), we perform an assembly-like procedure, in which each FE
cell contributes its active and total volume to the corresponding basis
functions.

The coefficients 𝑢𝑖 of a critical basis function 𝑁𝑖(𝒙) are extrapolated
from the nodal coefficients of a cell 𝜔̃𝑗 which contains only non-
critical basis functions. To identify 𝜔̃𝑗 we first collect all the active
cells in the two neighbourhood of the node 𝒙𝑖 corresponding to 𝑁𝑖(𝒙).
Subsequently, we select from the candidate cells the cell 𝜔̃𝑗 with the
centroid closest to node 𝑖. Denoting the set of nodal indices of 𝜔̃𝑗
with J the critical coefficient 𝑢𝑖 is obtained by simply evaluating the
basis functions 𝑁𝑗 (𝒙) with 𝑗 ∈ J at 𝒙𝑖, that is,

𝑢𝑖 =
∑

𝑗∈J
𝑁𝑗 (𝒙𝑖)𝑢𝑗 . (15)

After extrapolating the coefficients of all the critical basis functions
present in the grid, the original nodal coefficients can be expressed
abstractly as

𝒖 = 𝑬 𝒖̃ . (16)

Introducing this relation in the discrete system of Eqs. (10) we obtain

𝑨̃ 𝒖̃ = 𝒇 , (17)

where 𝑨̃ = 𝑬𝖳𝑨𝑬 and 𝒇 = 𝑬𝖳𝒇 . The matrix 𝑨̃ is well conditioned so
that (17) can be robustly solved.
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Fig. 10. The support of the critical basis function supp𝑁𝑖(𝒙) (in grey) corresponding
to node 𝑖 (in red) has a small overlap with the domain with 𝜙ℎ(𝒙) ≥ 0 (in blue). The
respective coefficient 𝑢𝑖 is expressed as the linear combination of the coefficients of the
basis functions of the nodes of the active cell 𝜔̃𝑗 . (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

4. Domain partitioning and parallel solution

4.1. Finite element grid partitioning

In this section, we describe the decomposition of the FE grid into
a set of subdomains assigned to individual processors of a parallel
computer. As mentioned in Section 2.2, the FE grid is generated by
refining the base grid through selective octree refinements. We can
either perform refinements towards the geometric boundary, i.e., by
identifying the cut cells 𝑐 , or towards the solution features. The latter
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Fig. 11. Domain decomposition of 𝛺□. Darker shades indicate that the cell is either active or cut, i.e. it belongs to 𝑑 . (a) Domain decomposition based solely on equal partition
of the Z-curve. The total number of cells of different colours are roughly equal but the active and cut cells differ for each colour. (b) A more balanced domain decomposition is
achieved by applying larger weights for active and cut cells. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
w

is more demanding since the problem has to be solved repeatedly, or
otherwise requires a-priori estimates of the solution.

We consider a division of the FE grid in 𝛺□ into 𝑁𝑆 nonoverlapping
subdomains, 𝛺□𝑖, 𝑖 = 1,… , 𝑁𝑆 , which are assigned to individual pro-
cessor cores and further processed in parallel. This is achieved by first
generating the Z-curve of the FE grid, and subsequently subdividing the
Z-curve into partitions of approximately equal length. It is important
to note that each FE cell has predicate active, cut, or inactive, where
only the first two kinds contribute significantly to the computation.
Considering these characteristics in the partitioning leads to a more
balanced load distribution in each processor. Specific to the processing
of the cut-cell identification algorithm, we restrict the face-neighbour
search within each subdomain.

In particular, we consider applying different weights on FE grid
cells in the partitioning of the Z-curve. Let us denote the union of
the active cells and cut cells as 𝑑 = 𝑎 ∪ 𝑐 . We apply for the set
𝑑 a larger weight of 100 than those for inactive cells 𝑖 of weight
1. Then, the division into subdomains is inherited from the division
of 𝛺□ as intersections of 𝑑 with subdomains 𝛺□𝑖, i.e. 𝛺𝑖 = 𝑑 ∩
𝛺□𝑖, 𝑖 = 1,… , 𝑁𝑆 . The weighted subdivision yields a decomposition
of the domain with a balanced number of cut and active cells per
processor, as illustrated in Fig. 11.

Depending on the computing memory requirements of the applica-
tion, the geometry grid can be replicated on each partition or parti-
tioned using the level set fracturing functionality of openVDB according
to the bounding box of each partition [54]. The quadrature grid is
generated in the cut cells belonging to each partition according to
Section 3.2 by sampling the level set values.

4.2. Hanging nodes

Octree refinement in constructing the FE grid lead to the presence
of hanging nodes. These are nodes created at the faces and edges
between two or more elements by refining only one of them, see Fig. 12.
For preserving the continuity of the FE solution, we require that the
solution at the hanging node is determined by the values in the nodes
of the larger element.

Consider the constraining element 𝜔𝐿 and the constrained element
𝜔𝑅, as exemplified in Fig. 12. We express the solution at the hanging
node at 𝒙𝑗 as

𝑢ℎ(𝒙𝑗 ) =
𝑛𝑘
∑

𝑘=1
𝐻𝑗,𝑘𝑢𝑘 , (18)

where 𝐻𝑗,𝑘 is the value of the 𝑘−th shape function associated with the
element 𝜔𝐿 at 𝒙𝑗 , i.e., 𝐻𝑗,𝑘 = 𝑁𝑘(𝒙𝑗 ). Given that the only nonzero shape
functions are those associated to the nodes at the common edge, the
solution at the hanging node is constrained by the nodal values of 𝜔𝐿
9

at the edge, i.e., at the degrees of freedom 𝑔1 and 𝑔4. In our example
Fig. 12. Example of a hanging node. Large constraining element 𝜔𝐿 determines the
value in the hanging node (red dot) of the constrained element 𝜔𝑅 (gray). Hanging
node does not have a degree of freedom in the global system, its value is dictated by
values of degrees of freedom 𝑔1 and 𝑔4. Algorithmically the constraint can be realised
by applying the change-of-basis matrix 𝑻 𝑅 to the element matrix of 𝜔𝑅 and assembling
the transformed local matrix to degrees of freedom 𝑔1, 𝑔2, 𝑔3, and 𝑔4.

with the bilinear shape functions, (18) simplifies to 𝑢ℎ = 1
2 𝑢1 + 1

2 𝑢4,
here 𝑢1 and 𝑢4 are the values of the degrees of freedom 𝑔1 and 𝑔4,

respectively. With respect to the implementation, the procedure for
eliminating hanging nodes is equivalent to the one for eliminating the
critical nodes through extrapolation in (15).

As a final remark, we note that it is possible for a hanging node
to be constrained by a node which is subject to extrapolation. In
the extreme case, the node from which we extrapolate can also be a
hanging node and constrained by another regular node. This situation
is in fact handled naturally by nesting the assembly lists related to
the hanging nodes and those related to the extrapolation. At the end
of this nesting, the element contributes its local matrix to regular
degrees of freedom potentially through a relatively long assembly list.
A more formal description of the potential chaining of constraints due
to hanging nodes and the extrapolation has been recently given in [61].

4.3. Iterative substructuring

We employ iterative substructuring method to solve the linear sys-
tem arising from the immersed finite element system (17). We consider
that the global stiffness matrix 𝑨̃ and the right-hand side vector 𝒇
appearing in (17) can be assembled from the local contributions from
each subdomain 𝛺□𝑖, that is, 𝑨̃ =

∑𝑁𝑆
𝑖=1 𝑹

𝖳
𝑖 𝑨𝑖𝑹𝑖 and ∑𝑁𝑆

𝑖=1 𝒇 = 𝑹𝖳
𝑖 𝒇 𝑖.

The Boolean restriction matrix 𝑹𝑖 containing a single 1 in each column
selects the local from the global degrees of freedom.

For each local subdomain, we separate the degrees of freedom
belonging to interior 𝒖𝐼𝑖 and the interface 𝒖𝛴𝑖 , which leads to a 2 × 2
blocking of the local linear system,
[

𝑨𝐼𝐼
𝑖 𝑨𝐼𝛴

𝑖
𝛴𝐼 𝛴𝛴

] [

𝒖𝐼𝑖
𝛴

]

=
[

𝒇 𝐼
𝑖
𝛴

]

. (19)
𝑨𝑖 𝑨𝑖 𝒖𝑖 𝒇 𝑖
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Here the local interface degree of freedom 𝒖𝛴𝑖 can be assembled into
a global set of unknowns at the interface of all subdomains 𝛴 util-
ising an interface restriction matrix 𝑹𝛴

𝑖 ∶ 𝛴 → 𝛴𝑖, where 𝒖𝛴 =
∑𝑁𝑆

𝑖=1 𝑹
𝛴𝖳

𝑖 𝒖𝛴𝑖 . Interface 𝛴 is formed by degrees of freedom shared by
several subdomains.

The iterative substructuring seeks the solution of the global interface
problem

𝑺𝒖𝛴 = 𝒉 , (20)

using, for instance, the preconditioned conjugate gradient (PCG)
method. The global Schur complement matrix 𝑺 comprises of the
subdomain contribution

𝑺 =
𝑁𝑆
∑

𝑖=1
𝑹𝛴𝖳

𝑖 𝑺 𝑖𝑹𝛴
𝑖 , (21)

where the local Schur complement with respect to 𝛴𝑖 is defined as

𝑺 𝑖 = 𝑨𝛴𝛴
𝑖 −𝑨𝛴𝐼

𝑖
(

𝑨𝐼𝐼
𝑖
)−1 𝑨𝐼𝛴

𝑖 . (22)

Similarly, the right-hand side is assembled from the subdomains

𝒉 =
𝑁𝑆
∑

𝑖=1
𝑹𝛴𝖳

𝑖 𝒉𝑖 , (23)

where

𝒉𝑖 = 𝒇𝛴
𝑖 −𝑨𝛴𝐼

𝑖
(

𝑨𝐼𝐼
𝑖
)−1 𝒇 𝐼

𝑖 . (24)

Once we know the local solution at the interface 𝒖𝛴𝑖 , the solution in the
interior of each subdomain 𝒖𝐼𝑖 is recovered from the first row of (19).
Note that neither the global matrix 𝑺 nor the local matrices 𝑺 𝑖 are ex-
plicitly constructed in the iterative substructuring. Only multiplications
of vectors with 𝑺 𝑖 are needed at each PCG iteration.

4.4. BDDC preconditioner

Next, we briefly describe the balancing domain decomposition
based on constraints (BDDC) preconditioner in solving the interface
problem (20). An action of the BDDC preconditioner 𝑴−1

𝐵𝐷𝐷𝐶 produces
a preconditioned residual 𝒛𝛴 from the residual in the 𝑘th iteration
𝒓𝛴 = 𝑺𝒖𝛴(𝑘) − 𝒉 by implicitly solving the system 𝑴𝐵𝐷𝐷𝐶 𝒛𝛴 = 𝒓𝛴 .
Specifically, BDDC considers a set of coarse degrees of freedom which
will be continuous across subdomains such that the preconditioner is
invertible yet inexpensive to invert. In this work we consider degrees of
freedom at selected interface nodes (corners) and arithmetic averages
across subdomain faces and edges as the coarse degrees of freedom.
This gives rise to a global coarse problem with the unknowns 𝒖𝐶 and
local subdomain problems with independent degrees of freedom 𝒖𝑖
which are parallelisable.

BDDC gives an approximate solution which combines the global
coarse and local subdomain components, i.e.,

𝒛𝛴 =
𝑁𝑆
∑

𝑖=1
𝑹𝛴𝖳

𝑖 𝑾 𝑖𝑹𝐵𝑖
(

𝒖𝑖 +𝜱𝑖𝑹𝐶𝑖𝒖𝐶
)

. (25)

In particular, 𝒖𝐶 and 𝒖𝑖 are obtained in each iteration by solving

𝑺𝐶𝒖𝐶 =
𝑁𝑆
∑

𝑖=1
𝑹𝖳

𝐶𝑖𝜱
𝖳
𝑖 𝑹

𝖳
𝐵𝑖𝑾 𝑖𝑹𝛴

𝑖 𝒓
𝛴 , (26)

[

𝑨𝑖 𝑪𝖳
𝑖

𝑪 𝑖 𝟎

] [

𝒖𝑖
𝝁𝑖

]

=
[

𝑹𝖳
𝐵𝑖𝑾 𝑖𝑹𝛴

𝑖 𝒓
𝛴

𝟎

]

, 𝑖 = 1,… , 𝑁𝑆 , (27)

here 𝑺𝐶 is the stiffness matrix of the global coarse problem, matrix 𝑨𝑖
s assembled from elements in the 𝑖th subdomain, and 𝑪 𝑖 is a constraint
atrix enforcing zero values of the local coarse degrees of freedom. The
iagonal matrix 𝑾 𝑖 applies weights to satisfy the partition of unity,
nd it corresponds to a simple arithmetic averaging in this work. The
oolean restriction matrix 𝑹𝐵𝑖 selects the local interface unknowns
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rom those at the whole subdomain, the columns of 𝜱𝑖 contain the local
Fig. 13. Example of fragmenting of subdomains due to the extraction of the active and
cut cells 𝑑 . By analysis of the dual graph of each subdomain, the two components of
the red subdomain are detected, and the two faces between red and blue subdomains
are identified. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

coarse basis functions, and 𝑹𝐶𝑖 is the restriction matrix of the global
vector of coarse unknowns to those present at the 𝑖th subdomain. Our
implementation of the BDDC preconditioner is detailed in [62]. For the
interested readers, we refer to [63–65] for a thorough description of the
BDDC method and its multilevel variants [50,66,67].

In the context of the domain decomposition of our FE grid, we
might encounter the issue of subdomain fragmentation. One typical
cause is the partitioning of the Z-curve which does not guarantee
connected subdomains, see for example the gray subdomain showcased
in Fig. 11(a). Another possible cause of the fragmenting is due to the
subdomain extraction 𝛺𝑖 = 𝑑 ∩ 𝛺□𝑖. A simple case of this effect is
shown in Fig. 13.

As proposed in [62], we remedy this problem by analysing the dual
graph of the FE grid of each subdomain followed by generation of inter-
subdomain faces and corresponding constraints independently for each
component. Within the dual graph, FE grid cells correspond to graph
vertices, and a graph edge is introduced between two vertices whenever
the corresponding cells share at least four degrees of freedom. Conse-
quently, the local saddle point problem (27) will become solvable. In
our implementation, we rely on the open-source BDDCML solver [53]
for the implementation of the multilevel BDDC method, and the solver
is equipped with a component analysis based on the dual graph of each
subdomain grid.

5. Examples

We introduce several examples of increasing complexity to demon-
strate the convergence of the proposed immersed finite element scheme
and its robustness for complex 3D CAD geometries. We focus the
analysis on the Poisson problem, e.g., modelling heat transfer, where
the solution is a scalar field. Throughout this section, we emphasise
the use of three grids characterised by their resolution, namely ℎ𝑔 for
geometry grid, ℎ𝑓 for FE grid and ℎ𝑞 for quadrature grid.

5.1. Interplay between geometry, quadrature and FE grid sizes

As a first example we consider the Poisson–Dirichlet problem on
a unit sphere with a prescribed solution 𝑢 = cos(𝑥3) as illustrated in
Fig. 14.

In this example, we first study the effect of the geometry grid
resolution ℎ𝑔 and quadrature grid resolution ℎ𝑞 on the volume and sur-
face integration. The sphere geometry is described using an analytical
signed distance function 𝜙(𝒙) = 1 − (𝑥21 + 𝑥22 + 𝑥23)

1∕2. To start with, we
sample the signed distance function over the nodes of the geometry grid
with a resolution ℎ = {1∕2, 1∕8, 1∕32, 1∕128}. For each value of ℎ , we
𝑔 𝑔
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Fig. 14. Solution of the Poisson problem in a sphere, 𝑢 = cos(𝑥3).

use quadrature grid with resolution ℎ𝑞 = {0.6, 0.3, 0.15, 0.07, 0.035} to
linearly reconstruct the volume and the surface by means of marching
tetrahedra. Fig. 15 indicates the reconstructed sphere for various ℎ𝑞
for the geometry grid resolution ℎ𝑔 = 1∕128. We compare the volume
and surface area of the reconstructed representation with the analytical
value in Fig. 16. For each ℎ𝑔 it is evident that the errors reach plateau
when ℎ𝑞 < ℎ𝑔 , indicating that the geometric error is bounded by the
geometry grid resolution ℎ𝑔 .

Next, we verify the numerical convergence of the relative error for
the Poisson–Dirichlet problem both in 𝐿2-norm, i.e. ‖𝑢 − 𝑢ℎ‖𝐿2

∕‖𝑢ℎ‖𝐿2
,

and 𝐻1-seminorm, i.e. |𝑢 − 𝑢ℎ|𝐻1∕|𝑢ℎ|𝐻1 . We take a fine STL mesh of
the sphere to obtain the signed distance function 𝜙(𝒙). The resolution
of the geometry grid is twice smaller than the finest resolution of the
quadrature grid, i.e., ℎ𝑔 = ℎ𝑞∕2, where the finest quadrature grid
resolution is ℎ𝑞 = ℎ𝑓∕8. The convergence is established against the
resolution of the uniform FE grid ℎ𝑓 . Note that FE grid is used for
the field discretisation using Lagrange basis functions. For integration
we use a quadrature grid of size ℎ𝑞 = {ℎ𝑓 , ℎ𝑓∕2, ℎ𝑓∕4, ℎ𝑓∕8}. As an
example, ℎ𝑞 = ℎ𝑓∕4 indicates that quadrature grid is obtained by twice
subrefining the cut FE cells. We also include the case ℎ𝑞 ≡ ℎ𝑓 , i.e., ℎ𝑞 is
refined whenever ℎ𝑓 is refined. Fig. 17 shows the convergence in 𝐿2-
norm and 𝐻1-seminorm for both linear (𝑝 = 1) and quadratic (𝑝 = 2)
basis functions. It is evident from Fig. 17 that for the linear case optimal
convergence rate is achieved for all ℎ𝑞 . However, for the quadratic case
the convergence rate is optimal only for finer quadrature resolution
and degrades for coarser quadrature resolution. This result emphasises
the importance of subrefining the cut FE cells into sufficiently fine
quadrature grid to improve the approximation of the curved boundary.

5.2. Adaptive refinement of the FE grid

As the second example we consider an internal layer problem in a
unit cube 𝛺 = [0, 1]3 with the prescribed solution 𝑢 = arctan(60(𝑟 − 𝜋∕3)).
Here 𝑟 = (𝑥21 + 𝑥22 + 𝑥23)

1∕2 is the distance from the origin. Note that
the cube domain 𝛺 is embedded in a larger bounding box 𝛺□ which
generally is not aligned with the unit cube. In this example we test
a sequence of uniform and error-driven adaptive FE grid refinements.
The coarsest FE grid shown in Fig. 18 is obtained using 4 uniform
refinements of the bounding domain 𝛺□ which is adaptively refined
once and twice, see Fig. 18. It is also emphasised that in this example
we perform 3 octree refinements of the extraordinary cut FE cells
detected using the sharp feature indicator (5), i.e., ℎ𝑞 = ℎ𝑓∕8 for
FE cells containing the corners and edges of 𝛺. The computation
was performed using 1024 cores of the Salomon supercomputer at
the IT4Innovations National Supercomputing Centre in Ostrava, Czech
Republic. Its computational nodes are equipped with two 12-core Intel
Xeon E5-2680v3, 2.5 GHz processors, and 128 GB RAM.

The dependence of the solution error measured as the relative
𝐿2-norm and the relative 𝐻1-seminorm with respect to the FE grid res-
olution ℎ for uniform grid refinements is presented in Fig. 19. Here we
11

𝑓

can see that for this domain with straight faces, we are able to achieve
the optimal convergence rates for linear and quadratic basis functions
even without using the improved quadrature, i.e., with ℎ𝑞 = ℎ𝑓 . Fig. 20
shows the relative 𝐿2-norm and the relative 𝐻1-seminorm errors with
respect to the number of degrees of freedom for both uniform and
adaptive refinement. In the adaptive, or error-driven, approach, we
refine the elements with the largest 𝐻1-seminorm error within each
adaptive step such that approximately 15% of elements of the whole
box are refined. A detailed description of a parallel implementation of
this refinement strategy is provided in [62]. It can be observed from
Fig. 20 that the adaptive refinement achieves optimal convergence rate
for both linear and quadratic basis functions with lower relative errors
than the uniform refinement. In other words it requires more than ten
times less degrees of freedom to achieve the same precision as the
uniform grid.

5.3. Strong scalability

We assess the strong parallel scalability of our solver by solving the
Poisson–Dirichlet problem with a prescribed solution 𝑢 = cos(𝑥3). We
consider in this example a handle block geometry as shown in Fig. 21.
In strong scaling the finite element size is fixed and the number of pro-
cessors is continuously increased. The signed distance function of the
handle block is obtained using constructive solid geometry (CSG) [18]
from three cylinders and a box. In this example we use a base grid
obtained by refining the bounding box 𝛺□ uniformly six times, where
grid cells far from the boundary are coarsened by default. We obtain
from the base grid an FE grid through five levels of refinements towards
the boundary with one additional refinement level for quadrature of
extraordinary cells. The resulting FE grid contains 12 million trilinear
elements and 11 million degrees of freedom.

The strong scaling test was performed on the Salomon supercom-
puter at the IT4Innovations National Supercomputing Centre in Os-
trava, Czech Republic. Its computational nodes are equipped with two
12-core Intel Xeon E5-2680v3, 2.5 GHz processors, and 128 GB RAM.
The number of subdomains, i.e., the number of processes in the parallel
computation, ranges from 128 to 1024.

The results of the strong scaling test are presented in Fig. 22(a),
where the runtimes of the important components of the solver are
analysed separately. These include assembly of the matrices and time
for the BDDC solution. The latter is further divided into the time spent
in the BDDC setup and in PCG iterations. In addition, we report the total
time necessary for the whole simulation. Optimal strong scalability
corresponds to halving the computational time every time the number
of subdomains is doubled. In the logarithmic scale, this corresponds
to a straight line, marked as ‘optimal’ in Fig. 22(a). It is evident from
the figure that the scalability of assembly and BDDC setup is optimal.
However, the PCG iterations within BDDC do not scale optimally, which
leads to a suboptimal scaling of the overall simulation. The suboptimal
scaling in the PCG can be attributed to the growing number of iterations
as identified in Fig. 22(b). Consequently, we also plot the time for
one PCG iteration showing the favourable strong scalability of our
implementation.

5.4. Application to complex engineering CAD models

In this section we first assess the robustness of the proposed method
for solving Poisson–Dirichlet problems on various complex geometries
from computer graphics and engineering, see Fig. 23. The engineering
models are given in STEP format and are converted into sufficiently
fine STL meshes using FreeCAD. The computer graphics models are
given as STL meshes. The STL meshes are immersed in the geometry
grid with resolution smaller than the resolution of the quadrature grid,
i.e., ℎ𝑔 ≤ ℎ𝑞 . For all geometries, the base grid is obtained by five uni-
form refinements of 𝛺□. The FE grid is obtained by six refinements of
the base grid towards the boundary. The quadrature grid is obtained by
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Fig. 15. Sphere reconstructed from the quadrature grid using the marching tetrahedra algorithm for a fixed geometry grid resolution ℎ𝑔 = 1∕128 and different quadrature grid
resolutions ℎ𝑞 .
Fig. 16. Dependence of the error in volume and surface computation for a fixed quadrature grid resolution ℎ𝑞 = 0.035 and different geometry grid resolutions ℎ𝑔 . The red lines
indicate the surface and volume errors when analytical signed distance function is used.
Fig. 17. Dependence of the relative finite element errors for linear (𝑝 = 1) and quadratic basis (𝑝 = 2) functions and for different finite element and quadrature grid resolutions
ℎ𝑓 and ℎ𝑞 .
refining the extraordinary cut FE cells once. We consider the prescribed
solution 𝑢 = cos(𝑥3), trilinear Lagrange polynomials on FE cells as the
basis, and three levels in the BDDC method.

The computations are performed on the Karolina supercomputer at
the IT4Innovations National Supercomputing Centre in Ostrava, Czech
12
Republic. The computational nodes are equipped with two 64-core
AMD 7H12 2.6 GHz processors, and 256 GB RAM.

We decompose the FE grid into 256 subdomains assigned to the
same number of computer cores. Table 1 shows the number of degrees
of freedom, number of elements, number of iterations to reach the
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Fig. 18. Adaptively refined grids for the internal layer problem. In each column the FE grid and the respective solution are shown.
Fig. 19. Dependence of the solution error on ℎ𝑓 for linear (𝑝 = 1) and quadratic (𝑝 = 2)
elements for the internal layer problem.

relative residual precision of 10−6, and computational runtimes for
each geometry. In addition, we compare the runtimes of the domain de-
composition solver with the parallel sparse direct solver MUMPS [68].
It is evident from Table 1 that the BDDC solver is reasonably robust
and able to converge for all these geometries requiring from 257 to 913
PCG iterations. While MUMPS is also able to provide the solutions for
all geometries when provided enough memory, it is consistently slower
than the BDDC solver by a factor ranging from 1.2 to 6.3 depending on
the problem.
13
5.5. Weak scalability studies

Finally, we test the weak scalability of the proposed approach first
using the turbo and cover geometries shown in Fig. 23. In the left part
of Fig. 24, we present computational time for an increasing number of
processes, and we compare the three-level BDDC method with using
a distributed sparse Cholesky factorisation by MUMPS. During the
test, the number of processes increases from 16 to 1 024, and we
perform one refinement of elements towards boundary within each
step. The problem size grows approximately four times with each of
these refinements, starting at 660 thousand unknowns and finishing
with 46 million unknowns in the global system for the cover problem,
and from 290 thousand to 20 million unknowns for the turbo problem.
For both problems, the local problem size is kept approximately fixed,
around 45 thousand unknowns per subdomain for the cover problem,
and around 19 thousand for the turbo problem.

We can clearly observe the growing time of the MUMPS solver
corresponding to the increasing complexity of the sparse Cholesky
factorisation of the distributed matrix. On the other hand, the three-
level BDDC method requires significantly less time to reach the desired
precision, although the solution time grows as well. Most of this growth
can be attributed to the increasing number of iterations, which is
plotted separately in the right part of Fig. 24. For the largest presented
problem, the three-level BDDC method is 38 times faster than the
MUMPS solver.

Furthermore, we consider the unit cube geometry introduced in
Section 5.2 to evaluate the weak scalability of our approach for a more
structured problem. We can see from Fig. 24 that the weak scalability
for this problem is almost optimal with the number of iterations not
growing beyond 10.

6. Conclusions

We introduced an immersed finite method that uses three non-
boundary conforming background grids to solve the Poisson problem
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Fig. 20. Dependence of the relative finite element errors on the number of degrees of freedom for uniform and adaptive refinements for the internal layer problem.
Fig. 21. The handle block geometry. The decomposition of the FE grid into 128 subdomains and the FE solution.
Fig. 22. Strong scaling test on the handle block geometry, 6 uniform refinements, 3 unrefinements, 5 refinements towards boundary, 1 octree refinement of extraordinary cells,
finite element order 1, 3-level BDDC. Problem with 12 million elements and 11 million DOFs. Timing of the important parts of the solver (a) and number of PCG iterations (b).
over complex CAD models. The three grids, namely the geometry, finite
element, and quadrature grids, are each constructed to represent the
geometry, discretise the physical field, and for integration, respectively.
In our examples, we use an implicit description of the geometries in
the form of a scalar-valued signed distance function. This is obtained
14
by evaluating the distance from the grid points to the sufficiently fine
triangle surface mesh (STL mesh) approximating the exact CAD surface.
To capture geometrical features up to a user-prescribed resolution, the
geometry grid is refined within a narrow band from the boundary. In
our computations, we choose the geometry grid to have the highest
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Fig. 23. Complex geometries used for the robustness test (from top left to bottom right): armadillo, bracket, bunny, dragon, engine, gripper, quadcopter, robo, spanner, turbo, and
cover.
Table 1
Robustness test for different geometries, 5 uniform refinements, 3 unrefinements, 6 refinements towards boundary, 1 refinement for quadrature.
In the legend, ‘Interf.’ is interface, ‘Elems.’ is number of elements, ‘Iters.’ is number of iterations, ‘Setup’ is BDDC setup, ‘Solve BDDC’ is the overall
BDDC solver time and ‘Solve MUMPS’ is the overall time using the MUMPS distributed sparse direct solver.

Problem DOFs Time [s]

Global Interf. Elems. Iters. Assembly Setup PCG Solve BDDC Solve MUMPS

Armadillo 9.2M 384k 11.9M 360 20.1 2.9 72.1 80.0 238.5
Bracket 11.3M 523k 14.4M 343 28.9 3.3 77.0 87.9 275.8
Bunny 12.8M 463k 16.7M 450 29.5 4.3 110.5 122.4 359.8
Dragon 5.2M 280k 6.8M 375 11.2 1.7 79.3 83.6 125.3
Engine 11.6M 533k 14.9M 436 32.7 4.0 89.3 105.4 290.9
Gripper 10.1M 443k 12.7M 913 25.9 3.2 160.1 173.9 230.9
Quadcopter 4.5M 277k 5.6M 264 12.0 1.5 59.5 64.0 95.9
Robo 11.2M 378k 14.6M 257 27.5 3.9 65.2 77.6 260.2
Spanner 5.2M 338k 6.7M 503 12.4 1.9 97.2 102.1 124.0
Turbo 2.0M 620k 2.5M 270 50.6 6.1 58.5 79.0 498.2
Cover 11.6M 424k 15.0M 209 35.1 10.1 33.6 45.0 459.7
resolution among the three grids. Our examples have shown that the
resolution of the geometry grid plays a crucial role in determining the
boundary approximation error as well as limiting the integration error.

The finite element grid for discretisation is constructed by consid-
ering the features of the physical field. In cases where the solution
features coincide with the boundary, we have presented a technique
to correctly identify FE grid cells that are cut by the domain boundary,
i.e., cut cells, including those containing sharp and other small geo-
metrical features. In the integration step, such cut cells are integrated
by first constructing the quadrature grid using a bottom-up strategy.
The leaf cells of the quadrature grid are subsequently tessellated using
marching tetrahedra. We have demonstrated with an internal layer
example that an optimal convergence rate can be obtained for both
linear and high-order polynomial basis functions using two levels of
refinement for the quadrature grid. When FE basis functions cover
15
only a tiny part of the physical domain, we use a cut-cell stabilisation
technique that extends the basis support over the nearest active cells.

There are several promising extensions of the proposed three-grid
immersed finite element method. One potential future direction of this
research is to use a neural network for representing the implicit signed
distance function, as demonstrated in [69] for point cloud input data.
The use of point clouds as geometric input is gaining interest due to its
direct connection with inspection and monitoring of engineering prod-
ucts, as shown in [70]. The application of the current approach beyond
the Poisson equation to other second-order elliptic equations, like linear
elasticity, is straightforward, as the only significant change involves the
integrands in the weak form. However, the consideration of other kinds
of linear and nonlinear equations, like elastodynamics, requires further
analysis. Additionally, the proposed cut-cell identification algorithm
can be modified to detect long-sliver cracks and other features if they
are considered necessary in some applications. One possible strategy
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Fig. 24. Weak scaling of the BDDC and the direct solver (MUMPS) for the cover, the turbo, and the unit cube problems (left), and the corresponding numbers of iterations required
by the BDDC method to reach relative residual precision of 10−6 (right).
is to use bottom-up adaptive mesh refinement approach for the FE
grid, starting from the finest resolution of the geometry grid. Lastly,
another promising extension is the refinement of the finite element grid
according to an a posteriori error indicator instead of relying on a priori
knowledge of the solution features, as done in the current work.
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