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SUMMARY

Neurons in the primary cortex carry sensory- and behavior-related information, but it remains an open ques-
tion how this information emerges and intersects together during learning. Current evidence points to two
possible learning-related changes: sensory information increases in the primary cortex or sensory informa-
tion remains stable, but its readout efficiency in association cortices increases. We investigated this question
by imaging neuronal activity in mouse primary somatosensory cortex before, during, and after learning of an
object localization task. We quantified sensory- and behavior-related information and estimated how much
sensory information was used to instruct perceptual choices as learning progressed. We find that sensory
information increases from the start of training, while choice information is mostly present in the later stages
of learning. Additionally, the readout of sensory information becomes more efficient with learning as early as
in the primary sensory cortex. Together, our results highlight the importance of primary cortical neurons in
perceptual learning.

INTRODUCTION

Neuronal activity in the vibrissal primary somatosensory cortex

(vS1) of mice successfully trained on a sensory task reflects

not only sensory stimuli but also various types of behavior-

related information,1,2 including information about behavioral

choice.3–8 Insight into learning-related changes in cortical

neuronal activity is key to understanding how the brain enables

flexible behavior. On an individual neuron level, a variety of

learning-related changes have been observed in vS1, including

sharpening of neuronal responses3,9 and changes in the magni-

tude of neuronal signals.7 It has been theorized that such

changes serve to increase the ability of neurons to discriminate

between similar pieces of information, thereby improving behav-

ioral performance on related tasks.10 Yet, some studies report

minimal changes in the response properties of individual vS1

neurons over the course of learning5,11 and instead find

learning-related alterations at the population level, for example,

in the relative spike timing,12 in neuronal gain,3 or in population

activity correlations (for review, see Panzeri et al.13). The field still

lacks a comprehensive picture of how stimulus- and behavior-

related information emerge and are integrated with one another

over time as learning takes place, and what the relative contribu-

tion of activity in individual cells vs. neuronal populations is in this

process. We hypothesized that task-learning is supported by

gradual changes at the individual neuron and population levels,

which result in both increased information about sensory stimuli,

and amore efficient use of this information to guide behavior. We

anticipated that this, in turn, would contribute to generating

novel, task-specific information, necessary for behavioral
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improvement. We tested this hypothesis by training mice on a

head-fixed tactile object localization task,14,15 using two-photon

imaging to longitudinally record the activity of excitatory neurons

at different depths within layers 2 and 3 (L2/3) of vS1 before, dur-

ing, and after training. For our analyses, we deployed information

theory and decoding tools that are well established in neural

population analyses based on electrophysiological and cal-

cium imaging recordings.16–20 We quantified, on a trial-by-trial

basis and at different stages of learning, stimulus information

(MI(R;S)), behavioral choice information (MI(R;C)), and intersec-

tion information (II). II quantifies the amount of sensory informa-

tion carried in the neural response that is read out to inform

behavioral choice and provides insights into how information en-

coding may support sensory-guided behavior. We revealed that

stimulus information was already present at the beginning of

training, while choice information only emerged over the course

of learning. Furthermore, we found that the improvement in

behavioral performance was not simply accompanied by

increased stimulus information but that, across learning stages,

this information was more efficiently read out to instruct

behavior. Finally, while changes in sensory information content

were mainly shaped by changes at the individual neuron level,

an increase in information encoded at the neuronal population

level was more strongly associated with behavioral choice.

RESULTS

Using multi-depth two-photon calcium imaging to
monitor neuronal activity over the course of learning
We trained mice to learn a whisker-based object localization

task14,15 while they were head-fixed but freely running on a cy-

lindrical treadmill, resulting in active whisking. Mice learned to

report a Go or No-go position of a vertical metal pole presented

for 1–1.5 s against the left whiskers by licking for a water

reward during a 4 s window starting after stimulus offset.

Learning was classified into three stages, based on the per-

centage of correct licking responses: %55% (stage 1), >55 to

%75% (stage 2), >75% (stage 3) (Figures 1A and 1B). During

each of the three learning stages, we recorded the responses

of excitatory neurons at four depths in the supragranular

portion of the vibrissal primary somatosensory cortex (vS1),

which expressed the genetically encoded calcium indicator

GCaMP6s,21 using multi-depth two-photon calcium imaging.22

Learning progress was monitored using lick events. Over the

course of learning, the time until the first lick after stimulus

offset decreased substantially during correct Hit, but not incor-

rect false alarm (FA) trials (Hits: from 1.25 ± 0.06 to 0.52 ± 0.02

s; Kolmogorov-Smirnov [KS] test p < 0.001; FAs: from 1.13 ±

0.95 to 1.31 ± 0.08 s; KS test p = 0.011; mean ± SEM; Fig-

ure 1C). On average, mice took 10.4 ± 0.9 days of training to

reach learning stage 3 (Figure 1D). The mean percentage of

correct responses on the day of best performance was

82.7% across mice (SD: 4.06; mean d-prime: 2.31 ± 0.47). In

each animal, we recorded vS1 neuronal activity in the same

four fields of view (FOVs) in layers 2 and 3 (L2/3) across training

sessions (Figures 1E and 1F). The overall number of neurons

imaged over the course of learning stages (Table S1) as well

as image quality (Figure S1) remained stable.

Individual neurons in vS1 gain both stimulus and choice
information over the course of learning
Neuronal responses to whisker touch were variable within indi-

vidual FOVs, both in terms of stimulus preference (Go vs. No-

go positions) and timing (early vs. late responses) at all learning

stages (Figure 2A). To quantify how much information about

stimulus position was carried in the activity of each imaged

neuron at each time point during the trial, we calculated the

frame-by-frame mutual information (MI) between a neuron’s

calcium fluorescence response and the stimulus position (Go

or No-go) across trials (MI(R;S); Figure 2B). We computed infor-

mation for 10 s, starting 3 s before stimulus onset and ending

2 s after the end of the response window. However, quantita-

tive analyses were run only on the first second following stim-

ulus onset, which ended before the onset of the response win-

dow. We discretized, independently at each time point, the DF/

F0 trace using two equipopulated bins, representing lower and

higher neuronal activity levels (we verified that results held

when discretizing with four equipopulated bins and also when

operating on binarized deconvolved traces, see Figure S2).

We repeated the process for each depth and learning stage.

When averaging across neurons the frame-by-frame MI(R;S)

values obtained for each imaged cell, we found that the overall

MI(R;S) increased from stage 1 to stage 3 at all imaging depths

(KS tests between stages 1 and 3, at �130, �190, �260, and

�320 mm, all reported a p value <0.001; Figure 2C). MI(R;S)

was already present during learning stage 1, as might be ex-

pected for a primary sensory region (p < 0.001 when compared

with the null distribution, for all depths). We found that the per-

centage of neurons carrying significant MI(R;S) was very similar

across cortical layers (�130 mm: 26.2%; �190 mm: 26.4%;

�260 mm: 34.6%; �320 mm: 24.5%; Figures 2D and S3A).

MI(R;S) of individual neurons was higher for superficial than

deep layers, but there was 4-fold increase in MI(R;S) at

�320 mm between stage 1 and stage 3 of learning (MI(R;S)

stage 3/MI(R;S) stage 1 at �130 mm: 2.46, �190 mm: 3.08,

�260 mm: 2.37, �320 mm: 3.88), and a doubling of the number

of neurons carrying significant MI(R;S) (�130 mm: 56.9%;

�190 mm: 59.1%; �260 mm: 63.1%; �320 mm: 54.6%). To

test whether higher values of MI(R;S) after stimulus offset

were caused by the slow GCaMP dynamics, we calculated

MI(R;S) on spikes extracted from deconvolved calcium traces.

This confirmed that significant sensory information is only pre-

sent for approximately 1 s after stimulus onset (Figure S2).

We next asked whether individual neurons in vS1 also repre-

sent the behavioral choice to lick or withhold licking, andwhether

this representation changes with learning (Figure 2E). We there-

fore assessed MI between neural responses and choice

(MI(R;C)), as above (Figures 2F and S2). Similar to MI(R;S), we

found that MI(R;C) increased across learning stages. However,

whereas MI(R;S) was already present in learning stage 1, the

meanMI(R;C) across imaged neurons was near zero early during

training, but progressively increased through the following

learning stages (MI(R;C) stage 3/stage 1 at �130 mm: 10.85;

�190 mm: 4.17; �260 mm: 8.84; �320 mm: 5.26; Figure 2G).

This trend is reflected in the lower fraction of neurons carr-

ying significant MI(R;C), compared with MI(R;S), in stage 1

(�130 mm: 18.5%; �190 mm: 20.1%; �260 mm: 17.3%;
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�320 mm: 10.5%), increasing to more than half of the imaged

neurons at stage 3 (�130 mm: 56.6%; �190 mm: 56.6%;

�260 mm: 61.0%; �320 mm: 51.9%; Figures 2H and S3B). As

the correlation between stimulus and choice increases with

learning, we subsampled trials to keep behavioral performance

fixed at 75% at all learning stages. We found that MI(R;C)

increased across learning stages even after this subsampling,

showing that the MI(R;C) increase could not be accounted for

by the stronger association between pole position and choice

achieved through learning (KS tests between stage 1 and stage

3, and between stage 2 and stage 3, all reported a p value <0.01

at all imaged depths. KS test between stage 1 and stage 2 re-

ported p > 0.05 at all depths. Figure S3C).

Moreover, by stage 3, the majority of neurons carrying signif-

icant MI(R;S) also showed significant MI(R;C) (Figure 2I), hinting

at a computation taking place during learning, where primary

cortical neurons encoding sensory stimulus information are re-

cruited to inform behavioral choice as well, and contribute to

task performance.

Over the course of learning, information about the tactile

stimulus and behavioral choice increased as mice improved

their behavioral performance. Two notable cortical layer differ-

ences could be observed: first, stimulus information stopped

increasing during stage 2 in superficial L2 (�130 mm) and deep

L3 (�320 mm). Second, the increase in stimulus information

was strongest in deep L3while the increase in choice information

was strongest in superficial L2. Overall, these results show that,

at the start of sensory training, stimulus information is already

present, particularly in superficial layer 2 neurons, while choice

information is absent.

A

FC

B

D E

Figure 1. Learning of a tactile object localization task with concomitant vS1 calcium imaging

(A) Experimental setup and protocol for imaging and sensory training. Mice were head-fixed but free to run on a treadmill. In each trial, a metallic pole was moved

toward the left whiskers into one of two positions (anterior, Go; posterior, No-go). A spout was placed in front of themice and used to deliver water when a lick was

detected during a Go trial. Mice underwent water regulation before starting sensory training. Calcium transients in the right vS1 were recorded from the start of

sensory training until the mouse achieved >70% correct responses for three consecutive days. Sensory learning was divided into three stages, based on correct

performance (stage 1: pale blue, %55%; stage 2: blue, >55%< to %75%; stage 3: dark blue, >75%).

(B) Lick timings during each trial of a stage 1 training session (49% correct) and a stage 3 training session (77% correct). Trials are sorted according to trial

outcomes. Trials where the mouse licked only during tactile stimulation (‘‘stimulus’’) were excluded from the analysis. The dark gray shaded area indicates the

time during which the pole was in contact with the whiskers. The green and red shaded areas indicate the 4-s-long responsewindow. Correct responses included

licking on Go trials (Hit) and withholding licks on No-go trials (correct rejection, CR). Incorrect responses included licking on No-go trials (false alarm, FA) and

withholding licks on Go trials (Miss).

(C) First lick latencies during Hit trials and FA trials for stage 1 training sessions (performance <55% correct; pale blue data points, n = 286 licks for Hits, 303 licks

for FAs, across 8 mice) and stage 3 training sessions (performance >75% correct; dark blue data points, n = 949 licks for Hits, 150 licks for FAs, across 8 mice).

Latency is calculated from stimulus offset. White circles indicate the median of the distribution, vertical thick gray bars indicate the 25th percentile and vertical

gray lines the 75th percentile.

(D) Fraction of correct responses ((Hits + CR)/total trials) in all 8 mice (m1-m8), across up to 17 days of training.

(E) A representative intrinsic optical signal imaging (IOSI) image showing the location of the barrels (false-colored in light gray) corresponding to the whiskers

stimulated during the procedure (yellow shading at the center of the image) in one mouse. A projection of the two-photon imaging FOV acquired throughout

learning is overlaid on the IOSI image. Scale bar, 200 mm, indicating anterior (A) and medial (M) directions.

(F) Mean DF/F0 across Go trials (green) and No-go trials (red) for one example neuron at each of the four cortical depths imaged (shaded areas represent SEM). In

this example, the same neuron was imaged during stages 1 and 3 of learning. See also Figure S1 and Table S1.
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Learning-related increase in choice information is
supported by population coding
Neurons in the same brain region vary in how strongly they

encode sensory stimulus information, and neuronal activity in

vS1 tends to be particularly sparse.23–25 Thus, we next sought

to evaluate how the learning-related changes in stimulus and

choice information across neurons in vS1 reflect the contribution

of individual neurons to the neuronal population encoding as a

whole. Calculating MI on the activity of increasing numbers of in-

dividual neurons is subject to a systematic bias due to the limited

number of experimental trials available.26 Therefore, following

established machine learning practices, we estimated the MI

for groups of neurons using the MI computed on the confusion

matrices obtained by training linear regression models to

decode stimulus (decMI(R;S)) or choice (decMI(R;C)) from neural

activity. decMI(R;S) and decMI(R;C) computed for groups of

neurons offer a lower bound to the amount of stimulus and

choice information encoded by the neural population.16 De-

coders were trained with a class-balanced penalty to ensure

that they learned to predict rarer classes as accurately as more

frequent ones. Our decMI(R;S) and decMI(R;C) values generally

correlated well with theMI(R;S) andMI(R;C) values calculated for

individual neurons, indicating that the measure was reliable

(Figure S4).

We first sought to use decMI to evaluate the contribution of

each neuron to population-level encoding of task-relevant infor-

mation.We classified each neuron as ‘‘discriminative’’ if it carried

sufficient decMI on its own to enable above-chance decoding of

the trial type (i.e., above the 95th percentile of the null distribu-

tion) and ‘‘non-discriminative’’ otherwise.15 We then evaluated

whether the increase in stimulus and choice information over

the course of learning reflected a population level change or

the emergence of a sparse set of highly informative discrimina-

tive neurons. Over the course of learning, median decMI(R;S)

did not change but the percentage of discriminative neurons

increased (stage 1: 16.0% ± 1.2%; stage 2: 19.5% ± 1.1%; stage

3: 24.4% ± 2.2%; mean ± SEM across depths and FOVs) and the

distribution of decMI(R;S) values changed, reflecting a change in

the 95th percentile (stage 1: 0.31; stage 2: 0.39; stage 3: 0.47; KS

test p = 0.013 for stage 1 vs. stage 2, p = 0.005 for stage 1 vs.

stage 3, but p > 0.05 for stage 2 vs. stage 3; Figure 3A). Simi-

larly, for decMI(R;C) the percentage of discriminative neurons

increased (stage 1: 7.4% ± 1.0%; stage 2: 11.9% ± 0.8%; stage

3: 19.6% ± 2.0%) and the distribution of decMI(R;S) values

changed (95th percentile in stage 1: 0.21; stage 2: 0.25; stage

3: 0.32; KS test p = 0.005 for stage 1 vs. stage 2, p < 0.001 for

stage 1 vs. stage 3, p = 0.019 for stage 2 vs. stage 3; Figure 3B).

Together, these results indicate that the increase in stimulus and

choice information observed in L2/3 of vS1 reflects both an in-

crease in the number of discriminative neurons, as well as an in-

crease in the information about stimulus and choice carried by

the most informative neurons.

Previous work has shown that neurons, which on their own do

not enable above-chance decoding of task-relevant variables,

can still contribute to population encoding and improve the

decoding performance of neurons that carry high information

content when put together.27 This points to a role for non-

discriminative neurons in supporting robust population codes

for task-relevant information. We wanted to determine the rela-

tive importance of these non-discriminative neurons for stimulus

and choice information. We therefore asked how information

about stimulus and choice increased as we added neurons,

from least to most informative, to the pool used for calculating

decMI. For each session, we ran decoders sequentially as we

added neurons with progressively increasing decMI, drawn

from either the full population (Figures 3C and 3D, left) or only

from the non-discriminative neuron population (Figures 3C and

3D, right). We then compared decMI(R;S) in stages 2 and 3 to

stage 1 values, as neurons were added, to identify differences

between stages (Mann-Whitney test, p < 0.05, Bonferroni cor-

rected for all neuron % 3 stage comparisons). When it came

to decMI(R;S), we found that, as neurons were added to the

pool, decMI(R;S) tended to increase for all stages. Only once

90% or more of the entire population of recorded neurons was

included, was decMI(R;S) substantially higher for stage 3 FOVs

compared with stage 1 FOVs, and no differences were found

for stage 2 vs. 1 FOVs (Figure 3C, left). No differences emerged

between the stages when only non-discriminative neurons were

included (Figure 3C, right). In contrast, during stage 1, dec-

MI(R;C) remained low regardless of the number of neurons

Figure 2. Stimulus and choice information increase over learning

(A) Left: frame-by-frame mean DF/F0 across Go trials (top) and No-go trials (bottom) for all neurons (ROI no., presented in same order) in one example FOV,

�190 mm below the cortical surface. Imaging was performed during learning stage 1. White lines indicate stimulus onset and offset. Right: DF/F0 activity from the

same FOV, but when the mouse was in learning stage 3.

(B) Left: frame-by-frame mutual information between stimulus and response (MI(R;S)) in the same neurons represented in (A) during stage 1. Right: MI(R;S) from

the same FOV, when the mouse was in stage 3. Bottom left and right show the mean ± SEMMI(R;S) across all neurons in the FOV (stage 1: n = 102 ROIs; stage 3:

n = 71 ROIs). The dark gray shaded area indicates stimulus duration. The pale gray shaded area indicates the (licking) response window.

(C) Mean ± SEM frame-by-frame MI(R;S) across all neurons (n = 8 mice) at each cortical depth and for each learning stage. MI(R;S) was first averaged framewise

across all neurons in the same FOV, and then averaged across all FOVs imaged at the same cortical depth and during the same learning stage (stage 1: pale blue,

n= 461ROIs for�130 mm, n= 547 for�190 mm, n = 525 for�260 mm, n= 535 for�320 mm; stage 2: blue, n= 709 ROIs for�130 mm, n = 1,073 for�190 mm, n = 754

for �260 mm, n = 621 for �320 mm; stage 3: dark blue, n = 395 ROIs for �130 mm, n = 652 for �190 mm, n = 461 for �260 mm, n = 921 for �320 mm).

(D) Donut charts of the fraction of neurons carrying significant MI(R;S) at each cortical depth and at each learning stage (color coded). Full circles correspond to

100% of imaged neurons. The gray area in the charts indicates the fraction of neurons with non-significant MI(R;S) (pR 0.05). The colored areas correspond to

percent of neurons with significant MI(R;S).

(E) DF/F0 activity for the same neurons as shown in (A). Here, responses were separated into Lick (top) vs. No-lick trials (bottom).

(F) Same as in (B), but for mutual information between neuronal response and mouse choice (i.e., Lick vs. No-lick, MI(R;C)).

(G and H) Same as in (C and D), but for MI(R;C).

(I) Fraction of neurons carrying both significant MI(R;S) and significant MI(R;C), calculated over the total number of neurons carrying significant MI(R;S). See also

Figures S2 and S3.
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Figure 3. Population codes contribute more strongly to choice than to stimulus information over learning

(A) decMI(R;S) (mutual information calculated on stimulus decoding confusion matrices) plotted for individual neurons (ROIs from FOVs recorded where the

minimum correct/wrong task criterion was met; stage 1: pale blue, n = 2,512 ROIs from 42 FOVs; stage 2: blue, n = 3,093 ROIs from 59 FOVs; stage 3: dark blue,

n = 1,495 ROIs from 27 FOVs), against mouse task performance (plotted with some jitter in the x dimension for visibility). The learning stages are delineated by

color and vertical black dashed lines. Only discriminative neurons (decMI(R;S) p < 0.05, compared with the null distribution) are plotted in the learning stage color,

with non-discriminative neurons plotted in gray (decMI(R;S) pR 0.05). Colored shading indicates values above the 95th percentile (indicated by bold line). Curves

on the right show the distribution across all neurons for each learning stage.

(legend continued on next page)
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added to the decoder (Figure 3D). In stages 2 and 3, however,

decMI(R;C) increased beyond stage 1 levels as soon as 50%

to 55% of all neurons were included. In contrast to decMI(R;S),

even adding only non-discriminative neurons significantly inc-

reased decMI(R;C) in stages 2 and 3 compared with stage 1 (Fig-

ure 3D). Overall, these results suggest that, as mice learn to

perform the task, choice information is increasingly supported

by a distributed population code. In contrast, stimulus informa-

tion shows a consistent reliance on a distributed population

code across learning, which is already present at the start of

training.

Finally, we wanted to quantify howmuch stimulus or choice in-

formation individual discriminative neurons gain from the activity

of a population of non-discriminative neurons. We calculated the

decMI of each discriminative neuron on its own and then

measured the gain in information when the decoder also

received as input the neuronal activity from the FOV’s non-

discriminative neurons. Including the non-discriminative popula-

tion greatly increases the dimensionality of the input to the de-

coders, which, if the added input data is not informative, can

impair a decoder’s performance. For stimulus decoding, this

was the case for approximately half of all discriminative neurons,

which showed a negative gain when paired with the non-discrim-

inative population, as shown by median gains near 0 (0.05 in

stage 1, 0.05 in stage 2, 0.08 in stage 3; Figures 3E–3G). The

discriminative neurons that showed positive gains were gener-

ally a subset of the ones that had the lowest individual dec-

MI(R;S) (<0.5; Figure 3E). The overall distribution of the gains in

stimulus decoding showed negligible change across learning

(KS test p = 0.006 for stage 2 vs. 3; Figures 3E–3G). In contrast,

non-discriminative neurons had a much stronger effect on

choice decoding by discriminative neurons. The median gain

increased steadily with learning (stage 1: �0.16; stage 2:

�0.06; stage 3: 0.02; Figures 3H–3J). The overall distribution of

the gains in choice decoding showed a strong overall rightward

shift (KS test p < 0.001 for all pairs of stages), with the 95th

percentile increasing substantially across stages (stage 1: 0.04;

stage 2: 0.11; stage 3: 0.27). Similar to stimulus decoding, the

discriminative neurons that gained the most from being paired

with the non-discriminative population, across all stages, were

generally those with lower individual decMI(R;C) (Figure 3H).

Lastly, we sought to identify what specific single-cell or pair-

wise neural properties could explain changes in stimulus or

choice coding with learning. We found that single-cell sensitivity,

as measured by absolute d-prime values, increased across

learning for stimuli (KS test stage 1 vs. 2: p = 0.004, stage 1 vs.

3: p < 0.001, stage 2 vs. 3: p = 0.008; Figures 3K–3L) and for

choices (stage 1 vs. 2: p < 0.001, stage 1 vs. 3: p < 0.001, but

stage 2 vs. 3: p = 0.407; Figures 3M and 3N). This was also the

case when d-primes were computed on thresholded fluores-

cence and deconvolved spikes (Figure S5). Based on this

finding, the gain in the contribution of non-discriminative neurons

in choice encoding could be due to a population-wide improve-

ment in choice sensitivity, particularly from stage 1 to 2. We also

found that noise correlations improved stimulus decoding in

stages 2 and 3, while decreasing choice decoding only in stage

2 (Figure S6), but only by an amount much smaller than the over-

all changes observed in population coding information across

learning (Figure 3).

Together, these results suggest that task-relevant variables

become better encoded in vS1 by the population as a whole

because of a generalized increase in sensitivity of individual neu-

rons across the population, with neurons that would not be

significantly discriminative on their own contributing more effec-

tively to the overall population code, in particular for choice

encoding.

Stimulus information increasingly guides behavioral
choice throughout learning
The increase in perceptual abilities when learning a sensory-

guided task may be due, as traditionally hypothesized, to an in-

crease in the sensory information encoded in early sensory

(B) Same as (A), but for decMI(R;C). MI calculated on behavioral choice decoding confusion matrices (ROIs from FOVs recorded where the minimum correct/

wrong task criterion and licks criteria were met; stage 1: pale blue, n = 1,707 ROIs from 30 FOVs; stage 2: blue, n = 3,030 ROIs from 59 FOVs; stage 3: dark blue,

n = 1,495 ROIs from 27 FOVs).

(C) Mean ± SEM across FOVs of population decMI(R;S) as neurons are added to the pool fed to the decoder, in order of lowest to highest individual decMI(R;S).

The full pool includes either all neurons (left) or only non-discriminative neurons (right) (FOVs recorded where the minimum correct/wrong task criterion and licks

criteria weremet; stage 1: pale blue, 30 FOVs; stage 2: blue, 59 FOVs; stage 3: dark blue, 27 FOVs). Asterisks indicate a significant difference between stage 1 and

either stage 2 or stage 3 (Mann-Whitney test p < 0.05 corrected, as elsewhere, for multiple comparisons).

(D) Same as (C), but for decMI(R;C).

(E) Discriminative neuron decMI(R;S) plotted against the gain in decMI(R;S) with respect to individual decMI(R;S), when decoders also received non-discrimi-

native neuron responses as input. Contour lines qualitatively show data density levels. Stages 1, 2, and 3 are plotted left to right (stimulus discriminative ROIs from

FOVs recorded where the minimum correct/wrong task criterion and licks criteria were met; stage 1: pale blue, n = 370 ROIs; stage 2: blue, n = 581 ROIs; stage 3:

dark blue, n = 372 ROIs).

(F) Histograms of decMI(R;S) gain (i.e., the y axis values from E), with stages 1, 2, and 3 plotted top to bottom. The solid lines mark 0 gain, whereas median gain is

indicated by dashed lines, and shaded areas show values below the 5th or above the 95th percentile of the distribution.

(G) Data from (F), represented as cumulative sums. The vertical solid line marks zero gain, whereas the horizontal dashed line marks the median of each dis-

tribution. As shown by the legend in (J), data for each learning stage is plotted in the stage’s color (listed in A).

(H–J) Same as (E–G), but for decMI(R;C) (choice discriminative ROIs from FOVs recorded where the minimum correct/wrong task criterion and licks criteria were

met; stage 1: pale blue, n = 135 ROIs; stage 2: blue, n = 355 ROIs; stage 3: dark blue, n = 294 ROIs).

(K) Histograms of the absolute stimulus d-primes computed usingDF/F0 for each neuron, with stages 1, 2, and 3 plotted top (pale blue) to bottom (dark blue) (data

as in B). The median absolute d-prime is indicated by a dashed line, and shaded areas show values below the 5th or above the 95th percentile of the distribution.

(L) Data from (K), represented as cumulative sums. The horizontal dashed line marks the median of each distribution. Data for each learning stage is plotted in the

stage’s color (stage 1: pale blue; stage 2: blue; stage 3: dark blue).

(M and N) Same as (K and L), but for absolute choice d-primes. See also Figures S4, S5, and S6.
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cortices.5,28–30 Alternatively, it may be the consequence of an

improved use of this information.31 To gain insights into how sen-

sory information encoded in vS1 is used to generate accurate

behavior across stages of learning, we employed II,32,33 an infor-

mation-theoretic quantification of how much sensory informa-

tion informs behavioral choices (Figure 4A). By definition, II is

non-negative, on a scale of bits, and is bounded by both

MI(R;S) and MI(R;C). First, we calculated the frame-by-frame II

carried by each imaged neuron, across trials, at each depth

and learning stage. II was, as expected, absent before stimulus

onset, at all learning stages, because there was no stimulus in-

formation during this time window. After stimulus onset, II was

weak during learning stage 1, but increased in stages 2 and 3

(Figure 4B). The percentage of neurons carrying significant II

was low in all recorded layers in stage 1 but increased to more

than half of the imaged neurons in stage 3, irrespective of cortical

depth (�130 mm: 57.8%; �190 mm: 57.9%; �260 mm: 59.7%;

�320 mm: 50.9%; Figures 4C and S7A). The emergence of II

may be the result of two processes: (1) the increase in sensory

information (MI(R;S)) encoded in neural activity over learning

(Figure 2) or (2) an increase in the efficiency by which sensory in-

formation stored in vS1 is read out downstream to inform

behavior. To determine the relative contribution of each process,

we calculated the ratio of II/MI(R;S) for each neuron carrying sig-

nificant II at each depth and learning stage. This ratio quantifies

the proportion of sensory information available in neural activity

that is actually read out to inform sensory behavior. We found

that II/MI(R;S) increased over learning in all recorded cortical

depths, peaking at ratios >0.75 in stage 3 (Figures 4D and 4E).

As was done for MI(R;C), we subsampled trials to keep behav-

ioral performance at 75% and confirmed that the increase of II

across learning could not be accounted for by the stronger asso-

ciations between the pole position and choice achieved through

learning (Figure S7). In summary, during learning stage 1, some

stimulus information is present but very little of it is directly

used to inform behavioral choice. The increase in object-locali-

zation performance across learning is accompanied not only

by an increase in the sensory information available in the neural

activity of vS1, but also by an increase in the efficiency by which

this sensory information is used to inform behavioral choices. By

learning stage 3, more than 75% of the MI(R;S) could be used to

guide the animal’s behavioral choice. These results were

confirmedwhen using a simple decoder analysis34,35 (Figure S8).

Task-learning produces a generalized and persistent
increase in information
We have so far described the changes in information present in

cortical circuits that occur when sensory stimuli are associated

with a reward. To conclude, we wanted to know whether these

learning-related changes in information generalize to stimuli

not used in the task and persist without reward.

In seven of the eight mice trained on the object localization

task, we imaged activity in L2/3 vS1 neurons during two addi-

tional sessions (‘‘pre-training’’ and ‘‘post-training’’) in which sen-

sory stimuli were presented outside of the context of the Go/No-

go task, i.e., without the spout to lick or the associated water

reward. The pre-training session was performed before water

regulation and task training started, while the post-training ses-

sion took place 2 days after the end of the task training. The stim-

ulus was now presented in six different positions, of which posi-

tions 3 and 6 corresponded to the Go and No-go cue positions

used during task training (Figure 5A). To find out howmuch infor-

mation about stimuli 3 and 6 was present in neurons of vS1

before and after training, we calculated the frame-by-frame

MI(R;S) carried by each imaged neuron, across trials, at each

depth and learning stage. Average MI(R;S) across neurons was

low at all cortical depths when the mice experienced the whisker

stimulation for the first time (i.e., during the pre-training session).

Stimulus information more than doubled after training and the

fraction of neurons carrying significant MI(R;S) increased in all

cortical layers (Figures 5B and 5C). The fraction of neurons car-

rying significant MI(R;S) during the pre-training session was

consistently lower than the fraction of neurons carrying signifi-

cant MI(R;S) during stage 1 of training (Figure 2D), suggesting

that more neurons are recruited to encode stimulus information

as soon as the stimulus-reward association is introduced.

We then asked whether sensory information improved specif-

ically for the stimulus positions used in the object localization

task, or whether the MI(R;S) increase reflected a general in-

crease in object location information in vS1. We computed

MI(R;S) on pairs of pole positions (1 and 4, 2 and 5) separated

by the same distance as the Go/No-go positions 3 and 6. Before

training, the percentage of significant MI(R;S) neurons was com-

parable across pairs of stimuli (mean across layers for 3 and 6:

17.3%; 1 and 4: 14.8%; 2 and 5: 16.9%). This percentage

increased for all pairs of stimuli in the post-training session and

was accompanied by a significant increase in MI(R;S) values

(p < 0.001 for each pair of stimuli) (Figures S9A–S9D). In sum-

mary, when considering neurons carrying significant information,

MI(R;S) is significantly lower pre-training than in learning stage 1

(p < 0.001, Mann-Whitney test), and increases across learning

stages 1–3 (Figure 2), before declining post-training to levels

below stage 3 (p < 0.001, Mann-Whitney test at all depths), but

above those seen pre-training (Mann-Whitney test, p < 0.05 at

�260 mm, p < 0.01 at �320 mm, ns at �130 and �190 mm) (Fig-

ure 5D). To obtain a direct measure of this MI(R;S) change for in-

dividual cells, we considered 849 neurons tracked between the

pre-training and post-training imaging sessions for the three

pairs of stimuli. In these neurons, MI(R;S) increased for all pairs

of object locations (Kruskal-Wallis test, p = 0.987; Figure 5E).

This post-training effect can also be seen by a stronger contribu-

tion of non-discriminative neurons to improving decMI(R;S) for

individual discriminative neurons (KS test p < 0.001; Figure 5F

and see also Figures S9E–S9H). These results demonstrate

that learning-related changes in information generalize to stimuli

not used in the task and persist evenwhen the animal is no longer

engaged in the task.

DISCUSSION

This study provides a quantitative description of stimulus and

choice information and their interplay over the course of task

learning in L2/3 neurons of vS1 in mice. We find that the amount

of choice information encoded by the neuronal population is

more strongly tied to behavioral performance than the amount

of stimulus information. Furthermore, we show that choice
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D E

C

Figure 4. Contribution of stimulus information to

behavioral choice

(A) Schematic representation of the information theoretic

framework showing the two stages of information pro-

cessing. Stimulus encoding represents the mapping of the

tactile stimuli onto the responses of neurons in L2/3 of vS1.

Information readout is represented by the mapping of

neuronal activity onto the mouse choice to lick or withhold

licking in the presence of the tactile stimuli. Neurons, rep-

resented as circles, carry only MI(R;S) (pink) only MI(R;C)

(blue), neither (white), or both. The latter neurons are rep-

resented as half blue, half pink, if they carry both MI(R;S)

and MI(R;C), but not intersection information (II). However,

they are represented as purple if they carry II, with thick

arrows coming in from the stimulus and going out to the

choice, as these neurons carry stimulus information that

directly informs mouse choice.

(B) Mean ± SEM frame-by-frame II across all neurons (data

as in Figure 2C) at four cortical depths below pial surface (as

indicated) and for each learning stage (blue curves). Dark

gray shading indicates stimulus duration. Pale gray shading

indicates the duration of the response window. II was first

averaged framewise across all neurons in the same FOV,

and then averaged across all FOVs imaged at the same

cortical depth and during the same learning stage. Learning

stages are color coded.

(C) Donut charts of the fraction of neurons carrying signifi-

cant II at each cortical depth and at each learning stage

(color coded). Full circles correspond to 100% of imaged

neurons. The gray area in the charts indicates the fraction of

neurons with non-significant II (pR 0.05). The colored areas

correspond to percent of neurons with significant II.

(D) Frame-by-framemean II/MIRS ± SEM for all the neurons

that showed significant II, at each cortical depth (data as in

Figure 2C) and during each learning stage.

(E) Mean II/MIRS across frames for all neurons with signif-

icant II for each learning stage and cortical depth (data as in

Figure 2C). Horizontal lines indicate the median, error bars

the lower and upper quartiles. Two-sided Kolmogorov-

Smirnov test with Bonferroni corrections for multiple

comparisons, **p < 0.01, ***p < 0.001. See also Figures S7

and S8.
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Figure 5. Sensory information persists in vS1 after learning

(A) Schematic representation of the experimental protocol (n = 7mice).DF/F0 wasmeasured for putative neurons in vS1while mice were presentedwith ametallic

pole in six different positions along their anterior-posterior axis, both before (pre-training session, light orange) and after training on the pole localization task

(post-training, brown).

(B) Mean ± SEM frame-by-frameMI(R;S) across all neurons imaged during the pre-training and post-training sessions, for each frame and for each cortical depth

(pre-training: light orange, n = 659 ROIs for �130 mm, n = 879 for �190 mm, n = 554 for �260 mm, n = 747 for �320 mm; post-training: brown, n = 527 ROIs for

�130 mm, n = 765 for�190 mm, n = 557 for�260 mm, n = 567 for�320 mm). MI(R;S) was calculated on responses to stimulus positions 3 and 6 only (i.e., the pole

positions used for sensory training). It was first averaged framewise across all neurons in the same FOV, and then across all FOVs imaged at the same cortical

depth and during the same session. The gray shaded areas indicate stimulus duration.

(C) Fraction of neurons carrying significant MI(R;S) at each cortical depth (p < 0.05). Full circles reflect 100% of imaged neurons. The light-gray area in each circle

indicates the fraction of neurons with non-significant MI(R;S). The light orange and brown portions indicate the fraction of neurons with significant MI(R;S) during

the pre-training and post-training sessions, respectively.

(D) Distribution of the maximum MI(R;S) value (across frames) for each putative neuron with significant MI(R;S). Data are shown for each depth, and for each

passive and active imaging session: pre-training (light orange), stage 1 training (light blue), stage 2 training (blue), stage 3 training (dark blue), and post-training

(brown). Black bars indicate the mean value for each distribution. Mann-Whitney test, **p < 0.01, ***p < 0.001.

(E) Ratio between maximum MI(R;S) value during post-training and the maximum MI(R;S) value during pre-training, calculated on each putative neuron that was

tracked across the two imaging sessions (n = 849 neurons in seven mice). MI(R;S) and ratios were calculated separately for stimuli 3 and 6 (also used during

training, left), for stimuli 1 and 4 (center), and for stimuli 2 and 5 (right). Data were pooled across cortical depths. Black bars indicate themean for each distribution.

(F) Cumulative sums of gain in decMI(R;S) observed for each discriminative neuron when decoders also received non-discriminative neuron responses as input.

The vertical solid line marks zero gain, the horizontal dashed line marks the median of each distribution (pre-training: light orange, n = 189 stimulus discriminative

ROIs; post-training: brown, n = 235 stimulus discriminative ROIs). See also Figure S9.
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information is increasingly supported by a population code

across learning, more so than stimulus information. Finally, we

present data in support of our hypothesis that the emergence

of choice information in vS1 reflects a more efficient use of stim-

ulus information, correlating with changes in behavioral perfor-

mance over the course of learning. All patterns relating informa-

tion values to learning and imaging depth presented in this study

were fully confirmed (see Figure S2) when computing information

from deconvolved calcium traces (which have the advantage of

having dynamics closer to those of spiking activity compared

with raw traces) rather than fromDF/F0 (which has the advantage

of being a less data-processed measure than deconvolved

activity). The patterns were also confirmed when estimating

stimulus or choice tuning with signal detection theory (d-prime)

rather than with information theory. The latter analysis has the

advantage of removing possible biases due to unequal choice

distributions.

Learning-related changes to stimulus and choice
information in L2/3
The physiological manifestation of the perceptual changes

observed in learning remains a focus of intense study. Previous

reports have shown that neurons in the rodent vS1 and other pri-

mary areas not only carry sensory information but can also

encode multiple task variables, from navigational signals17 to

behavioral choice18,19,36–39 and expectation.40 Such representa-

tions may become stronger as animals learn behavioral tasks.

We confirmed that both stimulus and choice information build

up progressively during learning, with choice information being

more dependent on task engagement than stimulus information.

Traditionally, sensory learning has been considered to be the

result of an improvement in the representation of sensory inputs

in primary cortex. On the other hand, recent studies have found

that perceptual improvements over the course of learning may

correspond to an increasingly efficient readout of sensory infor-

mation in higher cortical regions while sensory representations

remain stable in primary areas.31 In our study, comparisons be-

tween the levels of MI and II over the course of learning revealed

not only that stimulus information increases but also that stim-

ulus information is more efficiently used by neurons in primary

sensory cortex during the late phase of training. In other words,

stimulus and choice information do not simply increase indepen-

dently of one another during task learning. Instead, the increase

in readout efficacy of the stimulus information leads to the in-

crease in choice information and, likely, in behavioral perfor-

mance. The enhancements of information representation and

readout with learning appeared to be primarily due to a better

separation of single-cell responses to sensory stimuli or choices,

rather than to information-enhancing changes in the structure of

noise correlations. Our findings give support to both learning-

related increases in sensory information coding in primary sen-

sory cortex and to a better readout of this information, possibly

by downstream areas further up the processing hierarchy.

In our study, we use linear decoders and information theory to

directly quantify information contained in neuronal activity. Our

decoder analysis shows levels of stimulus and choice decoding

in vS1 that are comparable with recent reports.5,41,42 Most

studies quantified neuronal representations of information using

a number of other measures, including the magnitude and fre-

quency of neuronal activity or classification model accuracy.

This difference in approach may account for some diverging ob-

servations: (1) we find that the amount of stimulus information

and the number of neurons carrying it increase steadily with

task training. This aligns with some previous studies,3,7,9 but

contrasts with other reports showing that stimulus-related

neuronal representations remain unchanged with learning.5,11

(2) We find that a large number of neurons carry significant levels

of both stimulus and choice information. This significantly ex-

pands on previous work which segregated neurons based on

stimulus and choice representation.8,18,37 Furthermore, the level

of stimulus information used to inform choice in expert mice is

similar to that recently reported in primary auditory cortex.38

Role of single neuron vs. population codes
The relative contribution of changes in single neurons vs. the

population to successful task learning is still unknown. Learning

has been shown to change single neuron response patterns in

vS13,9 and elsewhere,37,43,44 but also to influence population en-

coding.45 By combining information theory with linear classifiers,

we show that choice, but not stimulus, information benefits

increasingly from a population code across learning. Together

with the differences in the evolution of stimulus and choice infor-

mation in vS1 with learning, these findings indicate that different

cellular and molecular mechanisms may support stimulus and

choice encoding in primary sensory cortices. Such mechanisms

may include instructive top-down signals, for example, from sec-

ondary somatosensory cortex4 or orbitofrontal cortex,45 which

have been shown previously to be required for choice coding.

Our finding that, during initial task learning, choice information in-

creases most in superficial L2, whereas stimulus information in-

creases most in L3 (as also seen in Voelcker et al.46), hints that

these top-down signals may preferentially synapse with superfi-

cial L2/3 neurons.

Persistence of learning-related changes outside of task
conditions
Lastly, we show that, following learning, when mice are re-

exposed to the same stimuli outside of the context of the task,

the changes in stimulus encoding observed during learning

appear to persist in vS1 in a weaker, but more generalized

way. Stimulus information about the task-relevant pole posi-

tions, and also nearby pole locations, increases relative to before

learning began. Furthermore, it is more dependent on a popula-

tion code than it was before training. This is consistent with

Margolis et al.,47 who found that experience-induced plasticity

in vS1 increased responsiveness particularly in neurons that

initially showed weak stimulus responses. Together, these find-

ings suggest that, outside of task conditions, vS1 may rely on a

strengthened population code, instead of strong individual

neuron responses, to continue to efficiently encode behaviorally

relevant stimuli. Since this change in encoding is also context

dependent, it suggests that instructive top-down signals may

shape how information is encoded in the vS1 population.

Tools from information theory provided uswith deeper insights

into how different types of information are encoded and inte-

grated during learning. This approach should be of great
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importance in identifying promising targets for manipulation to

test the causal relationship between neuronal information and

behavioral performance on a related task.33 While a growing

body of work demonstrates that the manipulation of a few

dozens of cortical neurons is sufficient to modulate behavior in

sensory-guided tasks,8,48–50 it remains unclear why targeting

so few neurons has such an effect. Our work suggests that a

common feature of such neurons could be that they carry sen-

sory information used to inform choice, offering concrete future

avenues for cracking the neural code.

Limitations of the study
Because our results are obtained with observations of neural re-

sponses, they cannot per se prove the causal contribution of the

improvements in sensory coding and readout in sensory cortex

neurons to improved behavioral performance. However, they

provide testable hypotheses for future experiments using in vivo

manipulation of neural activity51 to investigate whether these

neurons carry stimulus and choice information that is necessary

and/or sufficient for behavior. Furthermore, because of the slow

timescale of GCaMP dynamics our work is neither intended nor

suited to making precise statements about the timing of informa-

tion within a behavioral trial.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include

the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

d METHOD DETAILS

B Experimental design

B Surgery

B Sensory stimulation

B Behavioral training

B Two-photon imaging

B Intrinsic Optical Signal Imaging

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Two photon imaging analysis

B Mutual information analyses

B Intersection information analyses

B Decoder analyses

B Statistical analysis

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

celrep.2024.114244.

ACKNOWLEDGMENTS

We thank Dr. Ana Bottura de Barros and Dr. Severin Limal for help with the

behavioral setup, Dr. James Rowland for help on the preprocessing of two-

photon imaging data, and Dr. Liad Baruchin and Dr. Severin Limal for help

with Intrinsic Optical Signal Imaging. This work was supported by the Well-

come Trust (109908/Z/15/Z to M.M.K.), the Human Frontiers Science Pro-

gramme (RGY0073/2015 to B.A.R. and M.M.K.), the Compute Ontario and

the Digital Research Alliance of Canada (www.computeontario.ca and www.

alliancecan.ca to C.J.G. and B.A.R.), an NSERC Canada Graduate Scholar-

ship – Doctoral Program and an Ontario Graduate Scholarship (to C.J.G.),

the EU H2020 (grant agreement no. 945539, Human Brain Project SGA3 to

S.P.), a CIFARCatalyst grant and a CIFAR AI Chair grant (to B.A.R.), an NSERC

Discovery grant (RGPIN-2014-04947 to B.A.R.), an Ontario Early Researcher

Award (ER17-13-242 to B.A.R.), a Marie Sklodowska-Curie Fellowship

(EnlightenedLoom – 101024523 to M.P.), and a Marie Sklodowska-Curie

Fellowship (MoWS – 894032 to R.M.).

AUTHOR CONTRIBUTIONS

Project administration, M.M.K.; funding acquisition and resources, M.M.K.,

B.A.R., and S.P.; conceptualization, M.M.K. and M.P.; experimental investiga-

tion and analyses, M.P.; linear decoder analysis, C.J.G.; information theoret-

ical analysis, R.M. and M.C.; visualization, M.P., C.J.G., and M.M.K.; data cu-

ration, M.P. and C.J.G.; software, M.P., C.J.G., R.M., M.C., and S.P.;

supervision, M.M.K., B.A.R., and S.P.; writing – original draft, M.P., C.J.G.,

and M.M.K.; writing – review & editing, M.P., C.J.G., R.M., M.C., B.A.R.,

S.P., and M.M.K.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: March 7, 2023

Revised: January 16, 2024

Accepted: May 2, 2024

REFERENCES

1. Fanselow, E.E., and Nicolelis, M.A. (1999). Behavioral modulation of tactile

responses in the rat somatosensory system. J. Neurosci. 19, 7603–7616.

https://doi.org/10.1523/jneurosci.19-17-07603.1999.

2. Pantoja, J., Ribeiro, S., Wiest, M., Soares, E., Gervasoni, D., Lemos,

N.A.M., and Nicolelis, M.A.L. (2007). Neuronal activity in the primary so-

matosensory thalamocortical loop is modulated by reward contingency

during tactile discrimination. J. Neurosci. 27, 10608–10620. https://doi.

org/10.1523/jneurosci.5279-06.2007.

3. Chen, J.L., Margolis, D.J., Stankov, A., Sumanovski, L.T., Schneider, B.L.,

and Helmchen, F. (2015). Pathway-specific reorganization of projection

neurons in somatosensory cortex during learning. Nat. Neurosci. 18,

1101–1108. https://doi.org/10.1038/nn.4046.

4. Yang, H., Kwon, S.E., Severson, K.S., and O’Connor, D.H. (2016). Origins

of choice-related activity in mouse somatosensory cortex. Nat. Neurosci.

19, 127–134. https://doi.org/10.1038/nn.4183.

5. Bale, M.R., Bitzidou, M., Giusto, E., Kinghorn, P., and Maravall, M. (2021).

Sequence learning induces selectivity to multiple task parameters in

mouse somatosensory cortex. Curr. Biol. 31, 473–485.e5. https://doi.

org/10.1016/j.cub.2020.10.059.

6. Harrell, E.R., Renard, A., and Bathellier, B. (2021). Fast cortical dynamics

encode tactile grating orientation during active touch. Sci. Adv. 7,

eabf7096. https://doi.org/10.1126/sciadv.abf7096.

7. Rabinovich, R.J., Kato, D.D., and Bruno, R.M. (2022). Learning enhances

encoding of time and temporal surprise in mouse primary sensory cortex.

Nat. Commun. 13, 5504. https://doi.org/10.1038/s41467-022-33141-y.

8. Buetfering, C., Zhang, Z., Pitsiani, M., Smallridge, J., Boven, E., McElligott,
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Metacam Boehringer Ingelheim International GmbH,

Ingelheim am Rhein, Germany

Meloxicam

Vetergesic Ceva Animal Health Ltd, Amersham, UK Buprenorphine

Marcaine AstraZeneca, Cambridge, UK Bupivacaine

Lacri-Lube Allergan, UK PL 00426/0041

IsoFlo Zoetis, Leatherhead, UK Isoflurane

Optical adhesive TechOptics Ltd., UK Norland NOA 71

Dental cement Prestige Dental Products Ltd., UK Super-Bond C&B

Chlorprothixene hydrochloride Sigma-Aldrich Co Ltd, UK C1671-1G

Experimental models: Organisms/strains

Mouse: B6; DBA-Tg

(tetO-GCaMP6s)2Niell/J

The Jackson Laboratory RRID:

IMSR_JAX:024742

Mouse: B6; CBA-Tg

(Camk2a-tTA)1Mmay/J

The Jackson Laboratory RRID:

IMSR_JAX:003010

Software and algorithms

MATLAB MathWorks MATLAB2021b

Python Python Software Foundation Python 3.9

Suite2p Pachitariu et al.52 https://github.com/MouseLand/suite2p

registers2p Pachitariu et al.52 https://github.com/cortex-lab/Suite2P/

tree/master/registers2p

OASIS Friedrich et al.53 https://github.com/j-friedrich/OASIS/

releases/tag/PLoS_Comput_Biol

Neuroscience Information Toolbox (NIT) Maffulli et al.54 https://gitlab.com/rmaffulli/nit

Custom analysis code This paper Zenodo:

https://doi.org/10.5281/zenodo.10920220

Other

Model 900 small animal stereotaxic

instrument andmouse adaptor and ear bars

Kopf instruments, Tujunga, CA Model 900

Small diameter cover glass 3 mm round Harvard Apparatus, UK 64–0720

Small diameter cover glass 4 mm round Harvard Apparatus, UK 64–0724

RS PRO Hybrid, Permanent Magnet

Stepper Motor

RS Components, UK RS Stock No.:

535–0467

Motorized linear stage Thorlabs, UK DDSM100/M

DC Servo Driver Thorlabs, UK KBD101

Allied Vision Mako U-051B high speed

camera

Stemmer Imaging, UK AV MAKO U-051B

Kowa 16 mm lens Stemmer Imaging, UK KOWA LM16JC

pyControl breakout board OEPS Electrónica e Produç~ao, Alges,

Portugal

breakout board

pyControl stepper driver OEPS Electrónica e Produç~ao, Alges,

Portugal

stepper driver

pyControl lickometer OEPS Electrónica e Produç~ao, Alges,

Portugal

lickometer

pyControl rotary encoder adapter OEPS Electrónica e Produç~ao, Alges,

Portugal

rotary encoder

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed and will be fulfilled by the lead contact, Michael M. Kohl (michael.

kohl@glasgow.ac.uk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All data reported in this paper will be shared by the lead contact upon request.

d All original code used for data preprocessing and population decoding analyses, as well as the core routines computing the

information-theoretic quantities, has been deposited at Zenodo and is publicly available as of the date of publication. Custom

scripts calling the information theoretic analyses routines can be obtained from the lead contact upon request. The DOI of the

Zenodo repository is listed in the key resource table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All animal experimental procedures were approved and conducted in accordance with the United Kingdom Animals (Scientific Pro-

cedures) Act 1986 under project license P8E8BBDAD and personal licenses from the Home Office. Mice were housed in groups in a

climate-controlled vivarium (lights on 7:00 to 19:00). The holding room temperature was 23 ± 1�C and humidity was set to 40 ± 10%.

The experiments were conducted during the light portion of the photoperiod. Mice had ad libitum access to food, but access to water

was restricted from one week before the start of behavioral training until the end of the training period. All weights were kept at 85–

90% of the free-drinking weight for the duration of the behavioral experiments. All mice belonged to a GCaMP6s reporter line ob-

tained bymating the TRE-GCaMP6s line (The Jackson Laboratory strain # 024742) with the CaMKII-tTA line (The Jackson Laboratory

strain # 003010). The study used eight male mice, aged 9 to 12 weeks at start of the experiment (surgery, see below).

METHOD DETAILS

Experimental design
This study did not involve randomization or blinding. We did not estimate sample size before carrying out the study.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Broadcom HEDS-5500#A02 Rotary

encoder

RS Components, UK RS Stock No.:

796-7843P

B Braun Hypodermic Needle 18 G Fisher Scientific, UK Product Code:

10722784

Ethafoam Simply Foam Products Ltd., Bilston, UK 250 mm 3 250 mm x 150mm

RS PRO Self-adhesive neoprene black

rubber sheet

RS Components, UK RS Stock No.:

733–6757

Ti:Sapphire laser Spectra Physics, USA MaiTai BB

Acousto-Optic Deflector Photon Lines Ltd., UK DTSX-400-980

Equilateral prism Thorlabs, UK SF11

Aspheric lenses Thorlabs, UK C330TMD-B

Moveable Objective microscope Sutter Instruments, USA MOM

163 Nikon CFI LWD Plan Fluorite Objective Thorlabs, UK N16XLWD-PF

GaAsP photomultipliers Hamamatsu Photonics, Japan

Piezoelectric Bimorph Bending Actuator

with Wires

Thorlabs, UK PB4NB2W

QImaging Retiga R1 Cairn Research, UK Retiga R1

50 mm lens Canon, UK Canon EF 50 mm-f/1.4 USM Lens

135 mm lens Samyang Optics Samyang 135 mm F2.0 Manual Focus Lens

for Canon

16 Cell Reports 43, 114244, June 25, 2024

Article
ll

OPEN ACCESS

mailto:michael.kohl@glasgow.ac.uk
mailto:michael.kohl@glasgow.ac.uk


Surgery
Mice underwent surgery for headbar and chronic optical window implantation. Before surgery, mice received injections of meloxicam

(5mg/kg,Metacam,Boehringer Ingelheim InternationalGmbH, IngelheimamRhein,Germany) andvetergesic (0.1mg/kg,CevaAnimal

Health Ltd, Amersham, UK). They also received a marcaine (AstraZeneca, Cambridge, UK) injection under the scalp. Eye cream was

applied to the eyes (lacri-Lube, Allergan, UK). Anesthesia was induced via inhalation of 4% isoflurane (Zoetis, Leatherhead, UK) at 1

L/min. When mice were fully anesthetized, they were placed in a stereotaxic frame (Kopf instruments, Tujunga, CA). Depth of anes-

thesia was monitored by checking pedal withdrawal reflex and respiration rate. Body temperature was kept at 37 ± 1�C. Isoflurane
rate was kept at 0.8–1.2%at 0.7 L/min during surgery. A circular incision wasmade into the scalp, the skull was cleaned, and the peri-

osteum removed. A 3mmdiameter craniotomywas centered over the right vS1 following stereotaxic coordinates (3.1mm lateral from

the midline and 1.3 mm posterior from the bregma suture). The dura mater was left intact. The craniotomy was then sealed with two

glasscoverslips (3mmand4mmdiameter, HarvardApparatus,UK) glued toone another using optical adhesive (Norland,NewJersey,

USA). A stainless steel headbar was cemented onto the skull using dental cement (Super-BondC&B, SundMedical, Japan). After sur-

gery,micewere allowed to recover for one to twoweeksbefore starting handling andwater regulation. Handling andgentle restraint by

the experimenter were performed over three days.Micewere then habituated to be headfixed under the imaging setup, and to receive

water from a spout placed in front of them. This habituation phase lasted three further days, after which behavioral training started.

Sensory stimulation
As used in previous studies,14,55 tactile stimuli consisted of a small metallic pole (a blunt 18G needle, outer diameter 1.27 mm), held

vertically and contacting themajority of the left whiskers of themouse for 1 to 1.5 s at approximately 0.3 cm from the whisker pad.We

used high-speed, infrared videography (AV Mako U-051B camera and Kowa 16 mm lens) to confirm that mice were able to whisk

against the pole in all presented locations with the majority of their whiskers. The pole was connected to a perpendicular plastic

arm mounted onto the shaft of a stepper motor (RS PRO Hybrid 535-0467; RS Components, UK). The stepper motor was mounted

onto amotorized linear stage (DDSM100/M; Thorlabs, controlled by a K-Cube Brushless DCServo Driver [KBD101; Thorlabs]), which

moved the metallic pole into the calibrated touching distance toward the whiskers or away from them. The length traveled by the

linear stage was identical during Go and No-go trials. During the pre-training and post-training sessions, the pole contacted the whis-

kers in six positions along the antero-posterior axis of the animal, separated 2.4 mm from one another. The most anterior position is

denoted as position 1 throughout the text, while themost posterior is position 6. During the behavioral training phase, positions 3 and

6 were the only two used as tactile stimuli. The stepper motor only rotated between the positions once it had traveled away from the

whisker pad via the linear stage. Rotating from position 1 into position 6 took approximately 90ms longer than rotating into position 3.

The sound frequency emitted consisted primarily of energy below 1 kHz, which is outside the mouse frequency hearing range.56

Sound intensity of the stepper motor and linear stage was <30 dB SPL. Ambient noise inside the microscope box was below 40

dBSPL. Intensity thresholds for primary auditory cortical neurons in themouse range between 4 and 39 db SPL.57 Ourmeasurements

allowed us to exclude the presence of potential auditory cues during the task.

Behavioral training
Hardware and software for behavioral experiments were controlled through the open-source toolbox pyControl (OEPS Electrónica e

Produç~ao, Alges, Portugal).58 We trained mice on a whisker-based object localization Go/No-go task.59 Mice were free to run on a

treadmill fashioned from a 24 cm diameter ethafoam cylinder covered with 3 mm-thick neoprene (Figure 1A). A rotary encoder at the

hub of the wheel was used to record running activity. All mice ran before the start of the vast majority of trials or started to run as soon

as the stimulus made first contact with whiskers. Running activity always resulted in concomitant active whisking, as shown in many

previous studies (for review, see60). Therefore, virtually all trials considered in this study are recorded under active whisking condi-

tions. As described in the previous section, the metallic pole came into contact with the whiskers for 1 to 1.5 s in one of two possible

positions along the anterior-posterior axis of the mouse. The first lick latency was calculated from stimulus offset. During Go trials,

mice were rewarded with an 8 mL drop of sweetened water (10% sucrose solution) when they licked from a spout during a response/

lickingwindow starting 100ms after the retraction of the pole and lasting 4 s (Hit trials).Water was not delivered if mice lickedwhile the

pole was still in contact with the whiskers (these trials were not included in the analysis). Licks during No-go trials were considered as

False Alarms (FAs) and were punished with an extended inter-trial interval (time-out). No punishment nor time-out were presented

when mice did not lick during Go trials (Misses). Daily training took place in three consecutive blocks of about 16 min duration

each. Across the three blocks, mice performed on average 187 ± 48 trials per training day. Learning was classified into three stages,

based on the percentage of correct responses in each block: 0–55% (stage 1), 55–75% (stage 2), 75–100% (stage 3). Training ended

when a mouse’s performance averaged higher than 70% across the three blocks, for three consecutive days. Only mice that per-

formed above 70% for three consecutive days were retained for analysis (n = 8, of which 7 mice were used in post-training sessions).

During pre-training and post-training sessions, mice were not water-regulated but had ad libitum access to water in their home cage.

This was to avoid potential confounds related to the animals being thirsty during these sessions.

Two-photon imaging
Quasi-simultaneous double-plane two photon calcium imaging was performed using the set up described in detail in.22 Two photon

excitation light was emitted by a femtosecond Ti:Sapphire laser (MaiTai BB, Spectra Physics, USA) tuned to 900 nm. Double-plane
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imaging was achieved using a system including a DTSX-400-980 Acousto-Optic Deflector (AOD; Photon Lines Ltd., UK), an SF11

equilateral prism (Thorlabs, UK), and two aspheric lenses (C330TMD-B, Thorlabs, UK). The laser beam was directed to the AOD,

whose acoustic frequency switched between 83.5 MHz and 91.5MHz, generating two optical paths: one leading to the nominal focal

plane, and the second encompassing the aspheric lenses for refocusing onto a second focal plane, placed 130 mm below the first

one. This permitted efficient acquisition of multiple planes while keeping the behavioral experiment short. During each of the three

behavioral blocks (ca. 16 min, see above), we re-focused the imaging path once to acquire imaging data from fields of view (FOVs) at

four depths below the cortical surface (�130, �190, �260 and �320 mm), equivalent to approximately cortical layers 2 and 3. The

same FOVswere imaged in eachmouse across training sessions. The two beamswere then recombined through a polarizing beams-

plitter. Calcium transients were acquired using a Sutter Moveable Objective microscope (MOM, Sutter, USA) controlled by

ScanImage 5.2.1 software (http://scanimage.org) with minor modifications for the AOD beam steering control. The beam was

scanned through an 8 kHz resonant scanner in the x-plane and a galvanometric scanning mirror in the y-plane. The resonant scanner

was used in bidirectional mode, at a resolution of 512 3 512 pixels, allowing us to acquire frames at a rate of �15 Hz per imaging

plane. A 16X/0.80W LWD immersion objective (Nikon, UK) was used. Laser power, as measured under the microscope objective,

was between 80 mW and 95 mW. Emitted photons were guided through a 525/50 filter onto GaAsP photomultipliers (Hamamatsu

Photonics, Japan). Neuronal fields were 400 3 400 mm in size.

Intrinsic Optical Signal Imaging
Intrinsic Optical Signal Imaging (IOSI) was carried out at the end of the experimental procedure to confirm that 2p imaging was per-

formed in vS1. General anesthesia was induced with 4% isoflurane (Zoetis, Leatherhead, UK) at 1 L/min, and was then kept at 0.6–

0.8% at 0.7 L/min during imaging. An intra muscular injection of chlorprothixene hydrochloride (1 mg/kg) was administered to inhibit

whisker movements. Mice were head-fixed and placed on a heatedmat. Temperature was kept at 37 ± 1�C. Onewhisker from the left

row B, C or D was identified and threaded through a glass capillary, which was attached to a ceramic piezoelectric stimulator (e.g.,

PB4NB2W Piezoelectric Bimorph Bending Actuator with Wires, Thorlabs). If the surrounding whiskers touched the external side of

the capillary, they were carefully trimmed using a pair of iris scissors under a dissecting microscope. A Retiga R1 camera with a

50 mm and a 135 mm lens (Nikon) attached in tandem configuration was used for imaging.61 Imaging was performed through the

chronic cranial window previously implanted over the right parietal lobe. The whisker stimulation protocol consisted of 1 s stimulation

at 10 Hz with 20 s ITI, repeated 40 times, for a total of 400 deflections. This protocol was repeated 3–4 times per mouse on different

whiskers in order to map the barrel fields in vS1. For post-hoc confirmation of the imaging location in vS1, a map of the vS1 barrels

obtained through IOSI was overlaid upon images of the areas investigated with 2p imaging (see, Figure 1).

QUANTIFICATION AND STATISTICAL ANALYSIS

All analyses were performed using custom-written codes in MATLAB and Python. Mutual Information and intersection information

calculations were carried out using the Neuroscience Information Toolbox.54,62 Decoder analyses were performed in Python 3.9

with custom scripts developed using the following packages: NumPy,63 SciPy 1.6.2,64 Pandas,65 Matplotlib,66 and Scikit-learn

0.24.1.67 The remaining analysis was using custom scripts written in MATLAB2021b.

Two photon imaging analysis
Raw 2p images were imported into the Suite2p software (https://github.com/MouseLand/suite2p 52), which performed correction

for mechanical drift along the x and y axes, image segmentation, and neuronal and neuropil trace extraction. We manually in-

spected all regions of interest detected by the Suite2p built-in classifier, to confirm that they corresponded to neurons rather

than structures such as fragments of neuronal projections or perpendicular blood vessels. For each confirmed neuron, the signal

at each time frame (F(t)) was calculated as the average fluorescence of all pixels inside the ROI. The time series of the neuronal

calcium trace and the neuropil calcium trace were exported to MATLAB for further analysis. Baseline Fluorescence (F0) was

considered to be the median of the 10th to the 70th percentile of the fluorescence distribution across all frames acquired. Each

neuron’s fluorescent trace was then corrected for the baseline using the formula: (F(t) – F0)/F0, commonly denoted as DF/F0. Sub-

traction of the neuropil signal was applied to each neuron’s trace as described previously,68 using a contamination ratio of r = 0.7.

Semi-automatic ROI registration across the pre-training and post-training imaging sessions was performed using the ‘‘regis-

ters2p’’ package (https://github.com/cortex-lab/Suite2P/tree/master/registers2p). Although the majority of our analysis did not

require systematically tracking neurons over the course of daily imaging sessions, examples of tracked neurons are given, e.g.,

in Figure 1G or Figure 5E. The signal-to-noise ratio (SNR) was calculated during pre-training and post-training imaging sessions

on the raw fluorescent trace for each ROI. The signal was the maximum fluorescence value of the whole trace. The noise was the

standard deviation (SD) of the distribution of fluorescence values recorded during the first 3 seconds of acquisition, when sensory

stimulation was not yet present.22

Fluorescence traces data were deconvolved using first order constrained auto-regressive OASIS.53 For each ROI, inferred spiking

activity was obtained by binarizing the resulting deconvolved trace based on a threshold set at 0.01, as used by Runyan and

colleagues.20
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Mutual information analyses
The information encoded by single cell responses about stimulus (MI(R;S)) and choice (MI(R;C)) has been quantified using Shannon’s

Mutual Information.16,69 Mutual information quantifies the single-trial discriminability of stimuli or choices from neural responses.

Mutual information between stimulus and response (MI(R;S)) is defined as:

MIðS;RÞ =
X

s˛S;r ˛R

pðs; rÞlog2

pðs; rÞ
pðsÞpðrÞ (Equation 1)

Where p(s,r) denotes the joint probability of observing, in a given trial, stimulus s and neural response r, p(s) and p(r) are the respective

marginal probabilities, and the sum extends to all possible values of s and r. The probabilities in Equation 1 were computed by first

discretizing calcium fluorescence signals and then counting the number of occurrences of each possible pair of stimulus-response

values across all trials. For analyses of information in calcium fluorescence we discretized DF/F0 into R = 2 (for main text figures)

and R = 4 (for Figure S2) equipopulated bins. For analyses on deconvolved traces (for Figure S2) following previous studies,20,38

we binarized responses into 0 (no spikes) and 1 (one ormore spikes) with a small threshold of 0.01 to remove noise in spike estimation.

A similar definition holds for the mutual information between neuronal response and choice (MI(R;C)). Values of MI were corrected for

limited sampling bias using the Panzeri-Treves bias correction method.70 Note that stimulus and choice information values are upper

boundedby the stimulus or choice entropy, respectively.MI values equal to entropy indicate perfect stimulus (for stimulus information)

or choices (for choice information) discriminability from neural response. Both entropies in our data were close to 1 bit in all sessions

(theywouldbeexactly 1bit if choicesor stimuliwereperfectly balanced). Assessmentof significance formutual information valueswas

performed through a permutation test of the first second of neural activity after stimulus onset (i.e., before the opening of the timewin-

dow for licking). A null distribution of MI values was built through randomly permuting the neuronal response across trials.71 Permu-

tation of trials was performed consistently across all time points. Permutation abolished the association between stimulus (or choice)

and neuronal response while preserving the autocorrelation in the fluorescence signal. Evaluation of the significance of theMI carried

byeach neuronwasperformedas follows. For each timepoint, 50permuted values ofMIwere calculated. Permutationwasperformed

without correcting for limited sampling bias, owing to the stronger statistical power of non bias-correctedmeasures.72 Significance of

MI for each neuronwas assessed by comparing (using the Kruskal-Wallis test) the non bias-correctedMI values, with the correspond-

ingdistributionof thepermutedMI values. ValuesofMI reported for significant neuronsare corrected for limitedsamplingbias.Within a

trial, MI(R;C) peaked about 1 s after the pole moved away from thewhiskers (Figure 2G). This peak comes later than themean first lick

latency inHit trials observed during stage 2 and 3 of learning but is in linewith the first lick latency during FA trials (Figure 1D). However,

since mice do not lick during Correct Rejection (CR) and Miss trials, a behavioral paradigm different from the Go/No-go used here

would be required to properly evaluate any temporal coincidence between choice and peak MI(R;C). To check whether the increase

in choice information across learning stages could be explainedby the increased level of association between stimuli and choiceswith

learning, we subsampled trials to equalize the behavioral performance at 75%across all learning stages, and recomputed information

over these surrogate data (FigureS3C). For eachROI, a single, independent, randomsubsampling of trialswasperformed. Information

quantities were calculated on the subsampled trials in the same way as for the full data.

Intersection information analyses
To quantify the amount of sensory information encoded by neural activity that is used to inform behavioral choices, we used Inter-

section Information (II).32 This measure is computed, using the Partial Information Decomposition (PID),73 from the trivariate proba-

bilities p(s,r,c) of observing stimulus s, choice c, and neural response r in the same trial. II quantifies the part of information in neural

responses that is common to both stimulus and choice information. II is computed as the minimum between two terms with similar

but slightly different interpretations. The first term is SI(C;{S;R}), the information about choice C shared between stimulus S and neural

response R. This quantity is obtained by computing themaximum shared dependency between S andR conditioned on C, defined as

the mutual information between stimuli and neural responses minus the mutual information between stimuli and responses condi-

tioned on choice, with the maximum computed over the space of all distributions q(s,r,c) that preserve the marginals p(s,c) and

p(r,c). The second term is SI(S;{C;R}), the information about S shared between stimulus C and R. This term is obtained in a similar

way by computing themaximum shared dependency betweenC andR, conditioned on S.Minimizing between the two terms ensures

that II satisfies key properties that would be expected from a measure with this interpretation, including that independent S and R

imply a zero intersection information, and that II is upper bounded by bothMI(R;S) andMI(R;C). The latter property allows us tomean-

ingfully compute the fraction II/MI(R;S) of stimulus information that is used to inform choice. We computed II discretizing probabilities

p(s,r,c), correcting for limited sampling and evaluating statistical significance as explained for MI(R;S) and MI(R;C). To control for the

effect of different degrees of association between stimuli and choices across learning stages on the measured II/MI(S;R) ratio, we

subsampled data to equalize behavioral performance across learning stages to 75% and recomputed II/MI(R;S) on surrogate

data (Figure S7), similarly to what we did for MI(R;C).

Decoder analyses
Linear logistic regressions were trained using 5-fold cross-validation with an L2 penalty. Decoders were trained separately on each

session FOV, i.e., each FOV recorded during each imaging session. All decoders received, as input, frame-concatenated neuronal
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activity from the first second following stimulus onset, and all trial types except ones where mice licked too soon were included (Hit,

FA, CR,Miss). This ensured that the inputs to the decoders did not coincidewith any licking, creating confounds. Decoders trained on

individual neurons received as input the DF/F0 response of a single neuron (Figures 3A, 3B, S4, and S9E), whereas decoders trained

on multiple neurons received as input the concatenated DF/F0 responses of all included neurons (Figures 3C–3J, 5F, S5, S8,

S9F–S9H).

Decoders were trained to predict for each trial either stimulus position (Go/No-go) (Figures 3A, 3C, 3E–3G, 5F, S4A, S6A, S6C, S6E,

S8, and S9E–S9H) or choice (Lick/No-lick) (Figures 3B, 3D, 3H–3J, S4B, S6B, S6D, and S6F). To evaluate decoder performance, we

computed a mutual information score on the confusion matrices obtained from the validation fold predictions (decMI).16 This

approach allows us to estimate information content not only for individual neurons, but also for groups of neurons. We confirmed

the validity of our decMI measure by comparing decMI values obtained for individual neurons to the previously computed MI mea-

sures (Figure S4). All decoders were trained using a class-balanced penalty. This ensured that decoders learned to predict rarer clas-

ses as accurately as frequent classes, thus ensuring that the decoders were not biased by the class imbalances which were neces-

sarily very strong for choice decoding at the late learning stage. We report results grouped across depths, at each stage of learning.

When decoder performance for individual neurons was plotted against behavioral performance, jitter was added to the behavioral

performance for visualization purposes to enable values for individual neurons to be distinguished. This was done by resampling the

behavioral performance value for each neuron using a normal distribution centered on the true value with a standard deviation (SD) of

1.2% (Figures 3A and 3B). Since plots showing individual neuron decoder performances were very dense, distributions over decoder

performances (for discriminative and non-discriminative neurons together) were computed for each stage using a Gaussian kernel

density estimation and these were plotted in the right margins. These estimated distributions taper off as the density of data points

gets very low, and therefore do not necessarily extend as far up as the plotted points (Figures 3A, 3B; S9E). For all decoders, to ensure

that sufficient numbers of each trial type were available for training the decoders on choice decoding, only sessions with at least six

Lick and six No-lick trials were included (number of session FOVs removed: eight for stage 1, on for stage 2, zero for stage 3)

(Figures 3B, 3D, 3H–3J, S4B, S6B, S6D, S6F, and S8). Furthermore, to ensure that choice decoding and stimulus decoding results

could be appropriately dissociated, only sessions that included at least six correct and six wrong trials were included for all decoders

trained on task training sessions (number of session FOVs removed: zero for stage 1, four for stage 2, 23 for stage 3) (Figures 3A–3J,

S4, S6, and S8).

Null distributions were estimated by running, for each neuron, ten 5-fold cross-validations, each computed on data where the trial

types had been randomly shuffled. By aggregating decMI values resulting from shuffled data across neurons from the same session

FOV, a null distribution over decoder performance was constructed for each session FOV. Neurons with decMIs above the 95th

percentile of the null distribution were identified as carrying significant information and labeled as ‘‘discriminative’’ neurons for the

session FOV. Neurons that did not meet the threshold for their session FOV were labeled as ‘‘non-discriminative’’ (Figures 3A,

3B; S9E).

To compare decMI andMI values for each neuron, we recomputed bothmaximumMI andMI significance over the same trial length

used for the decoders, i.e., the first second following stimulus onset. The MI(R;S) values thus obtained were then compared to dec-

MI(R;S) for each neuron (Figure S4A), whereas MI(R;C) values were compared to decMI(R;C) values (Figure S4B). For each stage of

learning, a linear regressionmodel was fit to the data, and the goodness-of-fit wasmeasured using the R2 coefficient of determination

(Figure S4).

To evaluate how decoder performance changed as neurons were added to the pool of data provided to the decoders, neurons

were first ordered from the lowest to highest individual decMI(R;S) (Figures 3C; S9F) or decMI(R;C) (Figure 3D). Decoders were

trained to classify stimulus or choice, respectively, as neurons were added in that order, for each FOV from either the full pool of neu-

rons (Figures 3C and 3D, left; Figure S9F, left) or the pool of non-discriminative neurons (Figures 3C and 3D, right; Figure S9F, right).

This allowed us to obtain a data series for each FOV showing decoder performance as neurons were added. However, since each

FOV comprised a different total number of neurons, to take the average across all the data series, we first converted the x axis for

each data series from a number of neurons to a percentage of all neurons in that FOV. We then downsampled each data series to the

smallest number of points common to all FOVs curves (18 percentage steps from 0 to 100% for the full population, and 11 percentage

steps from 0 to 100% for the non-discriminative pool). The mean ± SEMwas calculated across all downsampled FOV data series. As

the data compared in this case were not normally distributed, statistical comparisons between stage 1 and 2, as well as stage 2 and 3

were computed for each data point using the non-parametric Mann-Whitney U test. As elsewhere, p-values were Bonferroni cor-

rected for multiple comparisons, calculated here as the total number of comparisons for each data panel.

To determine the gain contributed by non-discriminative neurons to classification performance for discriminative neurons, in addi-

tion to training decoders on data from individual discriminative neurons, additional decoders were trained on data from each individ-

ual discriminative neuron paired with all the non-discriminative ones from the same session FOV. These decoders received as input

the concatenated responses of all included neurons for each trial. The gain contributed by the non-discriminative populationwas then

measured by, for each discriminative neuron, subtracting the decMI of the decoder trained only on the individual discriminative

neuron data from the decMI of the decoder trained on data from the same discriminative neuron and the pool of non-discriminative

neurons (Figures 3E, 3H; S9G). Positive gain reflected an improvement when including non-discriminative data, whereas negative

gain reflected a drop in performance. Histograms over these gains were computed by binning the data into 40 bins (Figures 3F,

3I; S9H). Cumulative distributions over the same data were binned into 80 bins (Figures 3G, 3J; 5F).
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To determine whether decoders trained on stimulus classification performance carried choice information, decoders were first

trained on the entire pool of neurons for each session FOV to classify stimulus position (Go vs. No-go).We then sorted trials according

to whether the decoder classified stimulus position correctly (‘‘S+’’, e.g., for a trial where the stimulus was classified as Go and it was

Go) or incorrectly (‘‘S-‘‘, e.g., for a trial where the stimulus was classified as Go but it was No-go). Finally, we calculated the gain in

correct choice % across session FOVs for each stage of learning when stimulus decoding was successful (% correct choice in S+

trials - % correct choice in S- trials). One-sample t-tests were then computed between both behavioral performances in order to

determine whether the performance levels observed differed significantly at any learning stage for S+ vs. S- trials (Figure S8).

Absolute d-primes were computed on the same data used for the decoders (Figures 3K–3N) as follows. Neuronal responses were

integrated over the first second of each trial (the same duration used for the decoders) and split into the two trial types under consid-

eration (Go vs. No-go for stimulus, and Lick vs. No-lick for choice). Absolute d-primes were then calculated as follows:

jd0j =

�����
ðm2 � m1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5$ðs2

1+s
2
2Þ

p
����� (Equation 2)

Absolute d-prime values were also computed on median-thresholded DF/F0 signals. Here, before integrating over the neuronal

responses, the median DF/F0 across trials was computed for each neuron. All frames DF/F0 values were set to 0, except those

that were above the median. Absolute d-primes were then computed as above (Figures S5A–S5D). For the absolute d-primes

computed on deconvolved spikes, spikes were extracted as described in the section on two-photon imaging analysis, and absolute

d-primes were computed as above (Figures S5E–S5H).

Tomeasure the gain in decoding performance contributed by noise correlations, decMI was first computed as above for each FOV

using the full neuronal population (frame-concatenated and neuron-concatenated). Next, to estimate decoding performance in the

absence of noise correlations (trial-to-trial variability), trial responses were shuffled within each trial type for each neuron separately.

Thus, for example, following the shuffling step, although the input responses to each now shuffled ‘‘Go trial’’ only comprised neuronal

responses to true Go trials (not to any No-go trials), these responses came from different trials in the FOV. As a result, a decoder

trained on this shuffled data could not capitalize on any consistent trial-to-trial relationships in the real data between the responses

of different neurons, i.e., noise correlations. Decoders were trained for each FOV on 1000 different noise-correlation-abolishing shuf-

fles. The median of this distribution was retained and for each FOV, a noise correlation gain was computed by subtracting the shuffle

distribution median from the true decoding performance (Figures S6A and S6B). Decoders were also trained in the same manner on

the pool of discriminative neurons only (Figures S6C and S6D) or of non-discriminative neurons only (Figures S6E and S6F). In all

cases, one-sample t-tests were used to establish for each stage of learning whether the noise correlation gains were significantly

different from 0.

Although decoder mutual information is primarily reported in this paper, we also computed balanced accuracies for the decoders

(data not shown) and found that the decoding accuracies computed for discriminative neurons at all stages were comparable to

those reported in previous work on decoding tactile stimuli and choice from neural activity.3,11,42

Statistical analysis
Unless otherwise specified above, differences between the distributions over population data for pairs of learning stages were eval-

uated using two-sided Kolmogorov-Smirnov tests with Bonferroni corrections for multiple comparisons. Corrected p-values <0.05

are considered significant. Mean ± standard error of the mean (SEM) is reported unless otherwise indicated. One, two and three as-

terisks indicate p < 0.05, p < 0.01, and p < 0.001 respectively.
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