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intersect with one another during sensory
learning. They show that learning first
improves the encoding of sensory
information and then increases the
efficiency of the behavioral readout of this
information.
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SUMMARY

Neurons in the primary cortex carry sensory- and behavior-related information, but it remains an open ques-
tion how this information emerges and intersects together during learning. Current evidence points to two
possible learning-related changes: sensory information increases in the primary cortex or sensory informa-
tion remains stable, but its readout efficiency in association cortices increases. We investigated this question
by imaging neuronal activity in mouse primary somatosensory cortex before, during, and after learning of an
object localization task. We quantified sensory- and behavior-related information and estimated how much
sensory information was used to instruct perceptual choices as learning progressed. We find that sensory
information increases from the start of training, while choice information is mostly present in the later stages
of learning. Additionally, the readout of sensory information becomes more efficient with learning as early as
in the primary sensory cortex. Together, our results highlight the importance of primary cortical neurons in

perceptual learning.

INTRODUCTION

Neuronal activity in the vibrissal primary somatosensory cortex
(vS1) of mice successfully trained on a sensory task reflects
not only sensory stimuli but also various types of behavior-
related information, '+ including information about behavioral
choice.®® Insight into learning-related changes in cortical
neuronal activity is key to understanding how the brain enables
flexible behavior. On an individual neuron level, a variety of
learning-related changes have been observed in vS1, including
sharpening of neuronal responses®® and changes in the magni-
tude of neuronal signals.” It has been theorized that such
changes serve to increase the ability of neurons to discriminate
between similar pieces of information, thereby improving behav-
ioral performance on related tasks.'® Yet, some studies report

minimal changes in the response properties of individual vS1
neurons over the course of learning®'' and instead find
learning-related alterations at the population level, for example,
in the relative spike timing,'? in neuronal gain, or in population
activity correlations (for review, see Panzeri et al.'®). The field still
lacks a comprehensive picture of how stimulus- and behavior-
related information emerge and are integrated with one another
over time as learning takes place, and what the relative contribu-
tion of activity in individual cells vs. neuronal populations is in this
process. We hypothesized that task-learning is supported by
gradual changes at the individual neuron and population levels,
which result in both increased information about sensory stimuli,
and a more efficient use of this information to guide behavior. We
anticipated that this, in turn, would contribute to generating
novel, task-specific information, necessary for behavioral
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improvement. We tested this hypothesis by training mice on a
head-fixed tactile object localization task,'“'® using two-photon
imaging to longitudinally record the activity of excitatory neurons
at different depths within layers 2 and 3 (L2/3) of vS1 before, dur-
ing, and after training. For our analyses, we deployed information
theory and decoding tools that are well established in neural
population analyses based on electrophysiological and cal-
cium imaging recordings.'®2° We quantified, on a trial-by-trial
basis and at different stages of learning, stimulus information
(MI(R;S)), behavioral choice information (MI(R;C)), and intersec-
tion information (ll). Il quantifies the amount of sensory informa-
tion carried in the neural response that is read out to inform
behavioral choice and provides insights into how information en-
coding may support sensory-guided behavior. We revealed that
stimulus information was already present at the beginning of
training, while choice information only emerged over the course
of learning. Furthermore, we found that the improvement in
behavioral performance was not simply accompanied by
increased stimulus information but that, across learning stages,
this information was more efficiently read out to instruct
behavior. Finally, while changes in sensory information content
were mainly shaped by changes at the individual neuron level,
an increase in information encoded at the neuronal population
level was more strongly associated with behavioral choice.

RESULTS

Using multi-depth two-photon calcium imaging to
monitor neuronal activity over the course of learning

We trained mice to learn a whisker-based object localization
task'*'> while they were head-fixed but freely running on a cy-
lindrical treadmill, resulting in active whisking. Mice learned to
report a Go or No-go position of a vertical metal pole presented
for 1-1.5 s against the left whiskers by licking for a water
reward during a 4 s window starting after stimulus offset.
Learning was classified into three stages, based on the per-
centage of correct licking responses: <55% (stage 1), >55 to
<75% (stage 2), >75% (stage 3) (Figures 1A and 1B). During
each of the three learning stages, we recorded the responses
of excitatory neurons at four depths in the supragranular
portion of the vibrissal primary somatosensory cortex (vS1),
which expressed the genetically encoded calcium indicator
GCaMP6s,”" using multi-depth two-photon calcium imaging.??
Learning progress was monitored using lick events. Over the
course of learning, the time until the first lick after stimulus
offset decreased substantially during correct Hit, but not incor-
rect false alarm (FA) trials (Hits: from 1.25 + 0.06 to 0.52 + 0.02
s; Kolmogorov-Smirnov [KS] test p < 0.001; FAs: from 1.13 =
0.95 to 1.31 + 0.08 s; KS test p = 0.011; mean = SEM; Fig-
ure 1C). On average, mice took 10.4 + 0.9 days of training to
reach learning stage 3 (Figure 1D). The mean percentage of
correct responses on the day of best performance was
82.7% across mice (SD: 4.06; mean d-prime: 2.31 + 0.47). In
each animal, we recorded vS1 neuronal activity in the same
four fields of view (FOVSs) in layers 2 and 3 (L2/3) across training
sessions (Figures 1E and 1F). The overall number of neurons
imaged over the course of learning stages (Table S1) as well
as image quality (Figure S1) remained stable.
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Individual neurons in vS1 gain both stimulus and choice
information over the course of learning
Neuronal responses to whisker touch were variable within indi-
vidual FOVs, both in terms of stimulus preference (Go vs. No-
go positions) and timing (early vs. late responses) at all learning
stages (Figure 2A). To quantify how much information about
stimulus position was carried in the activity of each imaged
neuron at each time point during the trial, we calculated the
frame-by-frame mutual information (MI) between a neuron’s
calcium fluorescence response and the stimulus position (Go
or No-go) across trials (MI(R;S); Figure 2B). We computed infor-
mation for 10 s, starting 3 s before stimulus onset and ending
2 s after the end of the response window. However, quantita-
tive analyses were run only on the first second following stim-
ulus onset, which ended before the onset of the response win-
dow. We discretized, independently at each time point, the AF/
Fo trace using two equipopulated bins, representing lower and
higher neuronal activity levels (we verified that results held
when discretizing with four equipopulated bins and also when
operating on binarized deconvolved traces, see Figure S2).
We repeated the process for each depth and learning stage.
When averaging across neurons the frame-by-frame MI(R;S)
values obtained for each imaged cell, we found that the overall
MI(R;S) increased from stage 1 to stage 3 at all imaging depths
(KS tests between stages 1 and 3, at —130, —190, —260, and
—320 pm, all reported a p value <0.001; Figure 2C). MI(R;S)
was already present during learning stage 1, as might be ex-
pected for a primary sensory region (p < 0.001 when compared
with the null distribution, for all depths). We found that the per-
centage of neurons carrying significant MI(R;S) was very similar
across cortical layers (—130 um: 26.2%; —190 pum: 26.4%;
—260 pum: 34.6%; —320 pum: 24.5%; Figures 2D and S3A).
MI(R;S) of individual neurons was higher for superficial than
deep layers, but there was 4-fold increase in MI(R;S) at
—320 um between stage 1 and stage 3 of learning (MI(R;S)
stage 3/MI(R;S) stage 1 at —130 pm: 2.46, —190 um: 3.08,
—260 pm: 2.37, —320 pum: 3.88), and a doubling of the number
of neurons carrying significant MI(R;S) (—130 pm: 56.9%;
—190 pm: 59.1%; —260 pum: 63.1%; —320 um: 54.6%). To
test whether higher values of MI(R;S) after stimulus offset
were caused by the slow GCaMP dynamics, we calculated
MI(R;S) on spikes extracted from deconvolved calcium traces.
This confirmed that significant sensory information is only pre-
sent for approximately 1 s after stimulus onset (Figure S2).
We next asked whether individual neurons in vS1 also repre-
sent the behavioral choice to lick or withhold licking, and whether
this representation changes with learning (Figure 2E). We there-
fore assessed MI between neural responses and choice
(MI(R;C)), as above (Figures 2F and S2). Similar to MI(R;S), we
found that MI(R;C) increased across learning stages. However,
whereas MI(R;S) was already present in learning stage 1, the
mean MI(R;C) across imaged neurons was near zero early during
training, but progressively increased through the following
learning stages (MI(R;C) stage 3/stage 1 at —130 pum: 10.85;
—190 pm: 4.17; —260 pm: 8.84; —320 um: 5.26; Figure 2G).
This trend is reflected in the lower fraction of neurons carr-
ying significant MI(R;C), compared with MI(R;S), in stage 1
(=130 pm: 18.5%; —190 pum: 20.1%; —-260 pum: 17.3%;
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Figure 1. Learning of a tactile object localization task with concomitant vS1 calcium imaging

(A) Experimental setup and protocol for imaging and sensory training. Mice were head-fixed but free to run on a treadmill. In each trial, a metallic pole was moved
toward the left whiskers into one of two positions (anterior, Go; posterior, No-go). A spout was placed in front of the mice and used to deliver water when a lick was
detected during a Go trial. Mice underwent water regulation before starting sensory training. Calcium transients in the right vS1 were recorded from the start of
sensory training until the mouse achieved >70% correct responses for three consecutive days. Sensory learning was divided into three stages, based on correct
performance (stage 1: pale blue, <55%; stage 2: blue, >55%< to <75%; stage 3: dark blue, >75%).

(B) Lick timings during each trial of a stage 1 training session (49% correct) and a stage 3 training session (77% correct). Trials are sorted according to trial
outcomes. Trials where the mouse licked only during tactile stimulation (“stimulus™) were excluded from the analysis. The dark gray shaded area indicates the
time during which the pole was in contact with the whiskers. The green and red shaded areas indicate the 4-s-long response window. Correct responses included
licking on Go trials (Hit) and withholding licks on No-go trials (correct rejection, CR). Incorrect responses included licking on No-go trials (false alarm, FA) and
withholding licks on Go trials (Miss).

(C) First lick latencies during Hit trials and FA trials for stage 1 training sessions (performance <55% correct; pale blue data points, n = 286 licks for Hits, 303 licks
for FAs, across 8 mice) and stage 3 training sessions (performance >75% correct; dark blue data points, n = 949 licks for Hits, 150 licks for FAs, across 8 mice).
Latency is calculated from stimulus offset. White circles indicate the median of the distribution, vertical thick gray bars indicate the 25th percentile and vertical
gray lines the 75th percentile.

(D) Fraction of correct responses ((Hits + CR)/total trials) in all 8 mice (m1-m8), across up to 17 days of training.

(E) A representative intrinsic optical signal imaging (IOSI) image showing the location of the barrels (false-colored in light gray) corresponding to the whiskers
stimulated during the procedure (yellow shading at the center of the image) in one mouse. A projection of the two-photon imaging FOV acquired throughout
learning is overlaid on the IOSI image. Scale bar, 200 pm, indicating anterior (A) and medial (M) directions.

(F) Mean AF/Fg across Go trials (green) and No-go trials (red) for one example neuron at each of the four cortical depths imaged (shaded areas represent SEM). In
this example, the same neuron was imaged during stages 1 and 3 of learning. See also Figure S1 and Table S1.

—320 um: 10.5%), increasing to more than half of the imaged
neurons at stage 3 (—130 um: 56.6%; —190 pum: 56.6%;

at a computation taking place during learning, where primary
cortical neurons encoding sensory stimulus information are re-

—260 um: 61.0%; —320 pm: 51.9%; Figures 2H and S3B). As
the correlation between stimulus and choice increases with
learning, we subsampled trials to keep behavioral performance
fixed at 75% at all learning stages. We found that MI(R;C)
increased across learning stages even after this subsampling,
showing that the MI(R;C) increase could not be accounted for
by the stronger association between pole position and choice
achieved through learning (KS tests between stage 1 and stage
3, and between stage 2 and stage 3, all reported a p value <0.01
at all imaged depths. KS test between stage 1 and stage 2 re-
ported p > 0.05 at all depths. Figure S3C).

Moreover, by stage 3, the majority of neurons carrying signif-
icant MI(R;S) also showed significant MI(R;C) (Figure 2I), hinting

cruited to inform behavioral choice as well, and contribute to
task performance.

Over the course of learning, information about the tactile
stimulus and behavioral choice increased as mice improved
their behavioral performance. Two notable cortical layer differ-
ences could be observed: first, stimulus information stopped
increasing during stage 2 in superficial L2 (—130 um) and deep
L3 (—320 um). Second, the increase in stimulus information
was strongest in deep L3 while the increase in choice information
was strongest in superficial L2. Overall, these results show that,
at the start of sensory training, stimulus information is already
present, particularly in superficial layer 2 neurons, while choice
information is absent.

Cell Reports 43, 114244, June 25, 2024 3
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Learning-related increase in choice information is
supported by population coding

Neurons in the same brain region vary in how strongly they
encode sensory stimulus information, and neuronal activity in
vS1 tends to be particularly sparse.?*° Thus, we next sought
to evaluate how the learning-related changes in stimulus and
choice information across neurons in vS1 reflect the contribution
of individual neurons to the neuronal population encoding as a
whole. Calculating Ml on the activity of increasing numbers of in-
dividual neurons is subject to a systematic bias due to the limited
number of experimental trials available.?® Therefore, following
established machine learning practices, we estimated the Ml
for groups of neurons using the MI computed on the confusion
matrices obtained by training linear regression models to
decode stimulus (decMI(R;S)) or choice (decMI(R;C)) from neural
activity. decMI(R;S) and decMI(R;C) computed for groups of
neurons offer a lower bound to the amount of stimulus and
choice information encoded by the neural population.'® De-
coders were trained with a class-balanced penalty to ensure
that they learned to predict rarer classes as accurately as more
frequent ones. Our decMI(R;S) and decMI(R;C) values generally
correlated well with the MI(R;S) and MI(R;C) values calculated for
individual neurons, indicating that the measure was reliable
(Figure S4).

We first sought to use decMl to evaluate the contribution of
each neuron to population-level encoding of task-relevant infor-
mation. We classified each neuron as “discriminative” if it carried
sufficient decMl on its own to enable above-chance decoding of
the trial type (i.e., above the 95th percentile of the null distribu-
tion) and “non-discriminative” otherwise.’® We then evaluated
whether the increase in stimulus and choice information over
the course of learning reflected a population level change or
the emergence of a sparse set of highly informative discrimina-
tive neurons. Over the course of learning, median decMI(R;S)
did not change but the percentage of discriminative neurons
increased (stage 1: 16.0% + 1.2%; stage 2: 19.5% + 1.1%; stage
3:24.4% +2.2%; mean + SEM across depths and FOVs) and the
distribution of decMI(R;S) values changed, reflecting a change in
the 95th percentile (stage 1: 0.31; stage 2: 0.39; stage 3: 0.47; KS
test p = 0.013 for stage 1 vs. stage 2, p = 0.005 for stage 1 vs.
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stage 3, but p > 0.05 for stage 2 vs. stage 3; Figure 3A). Simi-
larly, for decMI(R;C) the percentage of discriminative neurons
increased (stage 1: 7.4% + 1.0%; stage 2: 11.9% =+ 0.8%; stage
3: 19.6% + 2.0%) and the distribution of decMI(R;S) values
changed (95th percentile in stage 1: 0.21; stage 2: 0.25; stage
3: 0.32; KS test p = 0.005 for stage 1 vs. stage 2, p < 0.001 for
stage 1 vs. stage 3, p = 0.019 for stage 2 vs. stage 3; Figure 3B).
Together, these results indicate that the increase in stimulus and
choice information observed in L2/3 of vS1 reflects both an in-
crease in the number of discriminative neurons, as well as an in-
crease in the information about stimulus and choice carried by
the most informative neurons.

Previous work has shown that neurons, which on their own do
not enable above-chance decoding of task-relevant variables,
can still contribute to population encoding and improve the
decoding performance of neurons that carry high information
content when put together.?” This points to a role for non-
discriminative neurons in supporting robust population codes
for task-relevant information. We wanted to determine the rela-
tive importance of these non-discriminative neurons for stimulus
and choice information. We therefore asked how information
about stimulus and choice increased as we added neurons,
from least to most informative, to the pool used for calculating
decMI. For each session, we ran decoders sequentially as we
added neurons with progressively increasing decMl, drawn
from either the full population (Figures 3C and 3D, left) or only
from the non-discriminative neuron population (Figures 3C and
3D, right). We then compared decMI(R;S) in stages 2 and 3 to
stage 1 values, as neurons were added, to identify differences
between stages (Mann-Whitney test, p < 0.05, Bonferroni cor-
rected for all neuron % x stage comparisons). When it came
to decMI(R;S), we found that, as neurons were added to the
pool, decMI(R;S) tended to increase for all stages. Only once
90% or more of the entire population of recorded neurons was
included, was decMI(R;S) substantially higher for stage 3 FOVs
compared with stage 1 FOVs, and no differences were found
for stage 2 vs. 1 FOVs (Figure 3C, left). No differences emerged
between the stages when only non-discriminative neurons were
included (Figure 3C, right). In contrast, during stage 1, dec-
MI(R;C) remained low regardless of the number of neurons

Figure 2. Stimulus and choice information increase over learning

(A) Left: frame-by-frame mean AF/F, across Go trials (top) and No-go trials (bottom) for all neurons (ROI no., presented in same order) in one example FOV,
—190 um below the cortical surface. Imaging was performed during learning stage 1. White lines indicate stimulus onset and offset. Right: AF/F; activity from the
same FOV, but when the mouse was in learning stage 3.

(B) Left: frame-by-frame mutual information between stimulus and response (MI(R;S)) in the same neurons represented in (A) during stage 1. Right: MI(R;S) from
the same FOV, when the mouse was in stage 3. Bottom left and right show the mean + SEM MI(R;S) across all neurons in the FOV (stage 1: n = 102 ROlIs; stage 3:
n =71 ROIs). The dark gray shaded area indicates stimulus duration. The pale gray shaded area indicates the (licking) response window.

(C) Mean + SEM frame-by-frame MI(R;S) across all neurons (n = 8 mice) at each cortical depth and for each learning stage. MI(R;S) was first averaged framewise
across all neurons in the same FOV, and then averaged across all FOVs imaged at the same cortical depth and during the same learning stage (stage 1: pale blue,
n=461ROls for —130 um, n = 547 for —190 um, n = 525 for —260 um, n = 535 for —320 um; stage 2: blue, n = 709 ROIs for —130 um, n = 1,073 for —190 um, n = 754
for —260 um, n = 621 for —320 pm; stage 3: dark blue, n = 395 ROIs for —130 um, n = 652 for —190 um, n = 461 for —260 pm, n = 921 for —320 pm).

(D) Donut charts of the fraction of neurons carrying significant MI(R;S) at each cortical depth and at each learning stage (color coded). Full circles correspond to
100% of imaged neurons. The gray area in the charts indicates the fraction of neurons with non-significant MI(R;S) (p > 0.05). The colored areas correspond to
percent of neurons with significant MI(R;S).

(E) AF/Fq activity for the same neurons as shown in (A). Here, responses were separated into Lick (top) vs. No-lick trials (bottom).

(F) Same as in (B), but for mutual information between neuronal response and mouse choice (i.e., Lick vs. No-lick, MI(R;C)).

(G and H) Same as in (C and D), but for MI(R;C).

() Fraction of neurons carrying both significant MI(R;S) and significant MI(R;C), calculated over the total number of neurons carrying significant MI(R;S). See also
Figures S2 and S3.

Cell Reports 43, 114244, June 25, 2024 5
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Figure 3. Population codes contribute more strongly to choice than to stimulus information over learning
(A) decMI(R;S) (mutual information calculated on stimulus decoding confusion matrices) plotted for individual neurons (ROls from FOVs recorded where the
minimum correct/wrong task criterion was met; stage 1: pale blue, n = 2,512 ROIs from 42 FOVs; stage 2: blue, n = 3,093 ROIs from 59 FOVs; stage 3: dark blue,
n = 1,495 ROIs from 27 FOVs), against mouse task performance (plotted with some jitter in the x dimension for visibility). The learning stages are delineated by
color and vertical black dashed lines. Only discriminative neurons (decMI(R;S) p < 0.05, compared with the null distribution) are plotted in the learning stage color,
with non-discriminative neurons plotted in gray (decMI(R;S) p > 0.05). Colored shading indicates values above the 95th percentile (indicated by bold line). Curves
on the right show the distribution across all neurons for each learning stage.
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added to the decoder (Figure 3D). In stages 2 and 3, however,
decMI(R;C) increased beyond stage 1 levels as soon as 50%
to 55% of all neurons were included. In contrast to decMI(R;S),
even adding only non-discriminative neurons significantly inc-
reased decMI(R;C) in stages 2 and 3 compared with stage 1 (Fig-
ure 3D). Overall, these results suggest that, as mice learn to
perform the task, choice information is increasingly supported
by a distributed population code. In contrast, stimulus informa-
tion shows a consistent reliance on a distributed population
code across learning, which is already present at the start of
training.

Finally, we wanted to quantify how much stimulus or choice in-
formation individual discriminative neurons gain from the activity
of a population of non-discriminative neurons. We calculated the
decMI of each discriminative neuron on its own and then
measured the gain in information when the decoder also
received as input the neuronal activity from the FOV’s non-
discriminative neurons. Including the non-discriminative popula-
tion greatly increases the dimensionality of the input to the de-
coders, which, if the added input data is not informative, can
impair a decoder’s performance. For stimulus decoding, this
was the case for approximately half of all discriminative neurons,
which showed a negative gain when paired with the non-discrim-
inative population, as shown by median gains near 0 (0.05 in
stage 1, 0.05 in stage 2, 0.08 in stage 3; Figures 3E-3G). The
discriminative neurons that showed positive gains were gener-
ally a subset of the ones that had the lowest individual dec-
MI(R;S) (<0.5; Figure 3E). The overall distribution of the gains in
stimulus decoding showed negligible change across learning
(KS test p = 0.006 for stage 2 vs. 3; Figures 3E-3G). In contrast,
non-discriminative neurons had a much stronger effect on
choice decoding by discriminative neurons. The median gain
increased steadily with learning (stage 1: —0.16; stage 2:
—0.06; stage 3: 0.02; Figures 3H-3J). The overall distribution of
the gains in choice decoding showed a strong overall rightward
shift (KS test p < 0.001 for all pairs of stages), with the 95th
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percentile increasing substantially across stages (stage 1: 0.04;
stage 2: 0.11; stage 3: 0.27). Similar to stimulus decoding, the
discriminative neurons that gained the most from being paired
with the non-discriminative population, across all stages, were
generally those with lower individual decMI(R;C) (Figure 3H).

Lastly, we sought to identify what specific single-cell or pair-
wise neural properties could explain changes in stimulus or
choice coding with learning. We found that single-cell sensitivity,
as measured by absolute d-prime values, increased across
learning for stimuli (KS test stage 1 vs. 2: p = 0.004, stage 1 vs.
3: p < 0.001, stage 2 vs. 3: p = 0.008; Figures 3K-3L) and for
choices (stage 1 vs. 2: p < 0.001, stage 1 vs. 3: p < 0.001, but
stage 2 vs. 3: p = 0.407; Figures 3M and 3N). This was also the
case when d-primes were computed on thresholded fluores-
cence and deconvolved spikes (Figure S5). Based on this
finding, the gain in the contribution of non-discriminative neurons
in choice encoding could be due to a population-wide improve-
ment in choice sensitivity, particularly from stage 1 to 2. We also
found that noise correlations improved stimulus decoding in
stages 2 and 3, while decreasing choice decoding only in stage
2 (Figure S6), but only by an amount much smaller than the over-
all changes observed in population coding information across
learning (Figure 3).

Together, these results suggest that task-relevant variables
become better encoded in vS1 by the population as a whole
because of a generalized increase in sensitivity of individual neu-
rons across the population, with neurons that would not be
significantly discriminative on their own contributing more effec-
tively to the overall population code, in particular for choice
encoding.

Stimulus information increasingly guides behavioral
choice throughout learning

The increase in perceptual abilities when learning a sensory-
guided task may be due, as traditionally hypothesized, to an in-
crease in the sensory information encoded in early sensory

(B) Same as (A), but for decMI(R;C). Ml calculated on behavioral choice decoding confusion matrices (ROls from FOVs recorded where the minimum correct/
wrong task criterion and licks criteria were met; stage 1: pale blue, n = 1,707 ROIs from 30 FOVs; stage 2: blue, n = 3,030 ROIs from 59 FOVs; stage 3: dark blue,
n = 1,495 ROIs from 27 FOVs).

(C) Mean + SEM across FOVs of population decMI(R;S) as neurons are added to the pool fed to the decoder, in order of lowest to highest individual decMI(R;S).
The full pool includes either all neurons (left) or only non-discriminative neurons (right) (FOVs recorded where the minimum correct/wrong task criterion and licks
criteria were met; stage 1: pale blue, 30 FOVs; stage 2: blue, 59 FOVs; stage 3: dark blue, 27 FOVs). Asterisks indicate a significant difference between stage 1 and
either stage 2 or stage 3 (Mann-Whitney test p < 0.05 corrected, as elsewhere, for multiple comparisons).

(D) Same as (C), but for decMI(R;C).

(E) Discriminative neuron decMI(R;S) plotted against the gain in decMI(R;S) with respect to individual decMI(R;S), when decoders also received non-discrimi-
native neuron responses as input. Contour lines qualitatively show data density levels. Stages 1, 2, and 3 are plotted left to right (stimulus discriminative ROIs from
FOVs recorded where the minimum correct/wrong task criterion and licks criteria were met; stage 1: pale blue, n = 370 ROls; stage 2: blue, n =581 ROls; stage 3:
dark blue, n = 372 ROls).

(F) Histograms of decMI(R;S) gain (i.e., the y axis values from E), with stages 1, 2, and 3 plotted top to bottom. The solid lines mark 0 gain, whereas median gain is
indicated by dashed lines, and shaded areas show values below the 5th or above the 95th percentile of the distribution.

(G) Data from (F), represented as cumulative sums. The vertical solid line marks zero gain, whereas the horizontal dashed line marks the median of each dis-
tribution. As shown by the legend in (J), data for each learning stage is plotted in the stage’s color (listed in A).

(H-J) Same as (E-G), but for decMI(R;C) (choice discriminative ROls from FOVs recorded where the minimum correct/wrong task criterion and licks criteria were
met; stage 1: pale blue, n = 135 ROls; stage 2: blue, n = 355 ROls; stage 3: dark blue, n = 294 ROls).

(K) Histograms of the absolute stimulus d-primes computed using AF/F, for each neuron, with stages 1, 2, and 3 plotted top (pale blue) to bottom (dark blue) (data
as in B). The median absolute d-prime is indicated by a dashed line, and shaded areas show values below the 5th or above the 95th percentile of the distribution.
(L) Data from (K), represented as cumulative sums. The horizontal dashed line marks the median of each distribution. Data for each learning stage is plotted in the
stage’s color (stage 1: pale blue; stage 2: blue; stage 3: dark blue).

(M and N) Same as (K and L), but for absolute choice d-primes. See also Figures S4, S5, and S6.
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cortices.®?%3% Alternatively, it may be the consequence of an
improved use of this information.®' To gain insights into how sen-
sory information encoded in vS1 is used to generate accurate
behavior across stages of learning, we employed I1,°°*® an infor-
mation-theoretic quantification of how much sensory informa-
tion informs behavioral choices (Figure 4A). By definition, Il is
non-negative, on a scale of bits, and is bounded by both
MI(R;S) and MI(R;C). First, we calculated the frame-by-frame Il
carried by each imaged neuron, across ftrials, at each depth
and learning stage. |l was, as expected, absent before stimulus
onset, at all learning stages, because there was no stimulus in-
formation during this time window. After stimulus onset, Il was
weak during learning stage 1, but increased in stages 2 and 3
(Figure 4B). The percentage of neurons carrying significant Il
was low in all recorded layers in stage 1 but increased to more
than half of the imaged neurons in stage 3, irrespective of cortical
depth (=130 um: 57.8%; —190 um: 57.9%; —260 pm: 59.7%;
—320 pum: 50.9%; Figures 4C and S7A). The emergence of Il
may be the result of two processes: (1) the increase in sensory
information (MI(R;S)) encoded in neural activity over learning
(Figure 2) or (2) an increase in the efficiency by which sensory in-
formation stored in vS1 is read out downstream to inform
behavior. To determine the relative contribution of each process,
we calculated the ratio of Il/MI(R;S) for each neuron carrying sig-
nificant Il at each depth and learning stage. This ratio quantifies
the proportion of sensory information available in neural activity
that is actually read out to inform sensory behavior. We found
that 1I/MI(R;S) increased over learning in all recorded cortical
depths, peaking at ratios >0.75 in stage 3 (Figures 4D and 4E).
As was done for MI(R;C), we subsampled trials to keep behav-
ioral performance at 75% and confirmed that the increase of Il
across learning could not be accounted for by the stronger asso-
ciations between the pole position and choice achieved through
learning (Figure S7). In summary, during learning stage 1, some
stimulus information is present but very little of it is directly
used to inform behavioral choice. The increase in object-locali-
zation performance across learning is accompanied not only
by an increase in the sensory information available in the neural
activity of vS1, but also by an increase in the efficiency by which
this sensory information is used to inform behavioral choices. By
learning stage 3, more than 75% of the MI(R;S) could be used to
guide the animal’s behavioral choice. These results were
confirmed when using a simple decoder analysis®*° (Figure S8).

Task-learning produces a generalized and persistent
increase in information

We have so far described the changes in information present in
cortical circuits that occur when sensory stimuli are associated
with a reward. To conclude, we wanted to know whether these
learning-related changes in information generalize to stimuli
not used in the task and persist without reward.

In seven of the eight mice trained on the object localization
task, we imaged activity in L2/3 vS1 neurons during two addi-
tional sessions (“pre-training” and “post-training”) in which sen-
sory stimuli were presented outside of the context of the Go/No-
go task, i.e., without the spout to lick or the associated water
reward. The pre-training session was performed before water
regulation and task training started