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Abstract19

Self-supervised learning (SSL) automates the extraction and interpretation of histopathology features20

on unannotated hematoxylin-and-eosin-stained whole-slide images (WSIs). We trained an SSL Barlow21

Twins-encoder on 435 TCGA colon adenocarcinoma WSIs to extract features from small image patches.22

Leiden community detection then grouped tiles into histomorphological phenotype clusters (HPCs).23

HPC reproducibility and predictive ability for overall survival was confirmed in an independent clinical24

trial cohort (N=1213 WSIs). This unbiased atlas resulted in 47 HPCs displaying unique and sharing25

clinically significant histomorphological traits, highlighting tissue type, quantity, and architecture, es-26

pecially in the context of tumor stroma. Through in-depth analysis of these HPCs, including immune27

landscape and gene set enrichment analysis, and association to clinical outcomes, we shed light on the28

factors influencing survival and responses to treatments like standard adjuvant chemotherapy and ex-29

perimental therapies. Further exploration of HPCs may unveil new insights and aid decision-making30

and personalized treatments for colon cancer patients.31

Keywords32

Colon cancer; Histopathology; Self-supervised learning; Overall Survival; Tumor microenvironment;33

Bevacizumab.34
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Introduction35

Traditionally, the diagnosis of colon cancer is confirmed by microscopic assessment of resection speci-36

mens on hematoxylin and eosin-stained (H&E) slides by pathologists. For each patient, a personalized37

treatment strategy is tailored through a multidisciplinary meeting, following guidelines consisting of risk38

assessments based on clinicopathological characteristics, including the tumor-node-metastasis (TNM)39

classification and additional biomarkers[1, 2, 3, 4]. However, due to an aging population and expo-40

nential biomarker research, diagnosing and predicting the prognosis of colon cancer patients can be41

time consuming, or complicated and resource-demanding, especially when incorporating screening for42

mutational variants [2, 3, 5, 6].43

In modern digital pathology, scanning H&E slides into high-resolution whole slide images (WSIs) has44

enabled the applications of deep learning (DL)[7]. Deep convolutional neural networks, in particular,45

have benefited the diagnostic process, initially by minimizing inter-rater disagreement and workload[7].46

In colorectal cancer, supervised DL models also showed the ability to predict molecular pathways (i.e.47

mutation density, microsatellite instability [MSI], chromosomal instability) and key mutations like BRAF48

and KRAS [8, 9]. DL even has intriguing potential in predicting complicated prognostic outcomes such49

as patient survival[10, 11]. Moreover, integrating multi-omic data with the associated H&E slides, i.e.50

multimodal data integration, led to improvements in prognostic prediction on overall survival (OS) for51

most cancer types[12].52

Previous DL studies primarily focused on training models to extract features from WSIs under53

supervision of potentially extensive and time consuming human-derived annotations on slide or pixel-54

level, i.e. supervised learning[13, 8, 10, 12]. Self-supervised learning (SSL) on the other hand, has55

gained significantly increasing attention for its capacity to automatically capture image features from56

unlabeled data[9]. Applications of SSL models have demonstrated superior performance in various57

cancer classification and survival prediction tasks compared to traditional supervised learning models[14,58

15, 16, 17]. Barlow Twins, an SSL model designed to learn non-redundant image features, has several59

advantages over other SSL learning models (e.g. contrastive learning models), including not requiring60

extensive batch sizes nor asymmetry between the network "twins"[18].61

Despite the efficacy in decision-making, DL models are often labeled as "black boxes," posing signif-62

icant challenges in terms of interpretability. Supervised attention-based multiple instance learning is a63
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common interpretive method, enabling DL models to concentrate on informative segments within WSI64

according to predefined training labels[19]. Another approach involves employing unsupervised cluster-65

ing algorithms to organize extracted features into clinically relevant and interpretable clusters which66

can be subsequently linked to diverse patient-related outcomes[20, 21, 17]. These clustering methods67

offer significant advantages, including the prediction of various clinical outcomes, intuitive visualization68

for pathologists, and interpretation and correlation with a range of molecular data.69

Our objective is twofold: first, to automatically and reliably extract clinically-relevant histologic70

patterns from WSIs, which can be interpreted by expert pathologists, and second, to investigate the71

connections between these patterns and patient outcomes as well as molecular phenotypes across differ-72

ent treatment groups within a large clinical trial for colon cancer. To achieve this, we applied an SSL73

pipeline [17] involving the Barlow Twins encoder for feature extraction followed by a community de-74

tection algorithm to construct an unbiased atlas of histomorphologic phenotype clusters (HPCs). This75

algorithm was exclusively trained on public data from the colon adenocarcinoma cohort within The76

Cancer Genome Atlas (TCGA) multi-institutional database[22]. Remarkably, the identified HPCs gen-77

eralized well in unseen WSIs obtained from the clinical Bevacizumab-Avastin® adjuVANT (AVANT)78

trial [23]. Subsequently, HPCs were linked to patient OS. An HPC-based classifier trained using TCGA79

data for OS, demonstrated prognostic significance in the external validation of AVANT study, even80

when considering key clinical and demographic factors typically employed in clinical settings. Notably,81

by conducting comprehensive analyses of the distinct histomorphologic features of each HPC and their82

associations with immune and genetic profiles, we provide insight into morphological and molecular83

determinants of patient survival upon different treatments (e.g. standard-of-care adjuvant chemother-84

apy and experimental targeted therapies). Exploring these features further could yield novel insights85

into other histopathology diagnostics, supporting shared decision-making and advancing personalized86

treatment options for colon cancer patients in the future.87
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Figure 1: Overview of the Model Architecture: Training Barlow Twins and deriving Histomor-
phological Phenotype Clusters. (a) Training Barlow Twins with TCGA. WSIs from TCGA were processed
to extract image tiles and normalize stain colors. The Barlow Twins network was employed to learn 128-
dimensional z vectors from these image tiles. (b) Deriving HPCs. The tiles from TCGA were projected into z
vector representations obtained from the trained Barlow Twins network. HPCs were defined by applying Leiden
community detection to the nearest neighbor graph of z tile vector representations. Each WSI was represented
by a compositional vector of the derived HPCs, indicating the percentage of each HPC with respect to the total
tissue area. The Barlow Twins model and HPCs were then projected and integrated into the external AVANT
trial. (c) Whole Slide Image Representation. The compositional HPC data represented the WSIs in the study.
AVANT, Bevacizumab-Avastin® adjuVANT trial. HPC, histomorphological phenotype cluster. TCGA, The
Cancer Genome Atlas. WSI, whole slide image. 5
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Figure 2: Identification of HPCs in TCGA and subsequent classification into super-clusters (a)
UMAP showing 47 HPCs identified from the TCGA dataset, each scatter representing an image tile. (b) PAGA
plot of HPCs. Each node represented an HPC with edges representing connections between HPCs based on their
vector representation similarity. The pie chart of each node represented the tissue composition for each HPC.(c)
Grouping of HPCs into super-clusters according to histopathology tissue similarities. Representative tiles for
each HPC were labeled with ID and a brief description. HPC, histomorphological phenotype cluster. PAGA,
partition-based abstraction graph. TCGA, The Cancer Genome Atlas. UMAP, uniform manifold approximation
and projection plot
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Figure 3: Verification of HPCs in the TCGA training set and the external AVANT trial (a-i)
Example tiles from TCGA (upper row) and external clinical AVANT trial (lower row) showcase the eight super-
clusters with a zoomed-in representative tile. Notably, the muscle tissue super-cluster is further divided into
longitudinal and axial subgroups (j,k) Stacked bar plots illustrate instances of misclassification for each HPC in
TCGA training set and AVANT external test set. Green bars represent the percentage of correctly identified
odd clusters, yellow bars indicate misclassifications within the tested HPC’s super-cluster, and orange bars show
misclassifications outside the super-cluster. HPC, histomorphological phenotype cluster. TCGA, The Cancer
Genome Atlas. AVANT, Bevacizumab-Avastin® adjuVANT trial.
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Results88

Self-supervised learning of WSI features using the multi-institutional TCGA89

dataset90

We trained the self-supervised algorithm using data exclusively from the TCGA colon adenocarcinoma91

(TCGA-COAD) set, eliminating the need for annotations by pathologists (Figure 1). A total of 43592

WSIs (428 patients) obtained from the TCGA-COAD dataset (see Methods: Study population for93

details) was first divided into smaller image patches (224-by-224 pixels), also known as image tiles, at a94

magnification level of 10x (Figure 1a) (see Online Methods: Data pre-processing for details). To identify95

features on these patches, we trained a SSL Barlow Twins feature extractor using a random subset of96

tiles (Figure 1a) (see Methods: Extracting image features using Barlow Twins for details). The Barlow97

Twins was trained with the objective function to evaluate the cross-correlation matrix between the98

embeddings (feature vector z) of two identical backbone networks, which were fed distorted variants of99

a batch of image tiles. The objective function was optimized by minimizing the deviation of the cross-100

correlation matrix from the identity matrix. This led to increased similarity among the embedding of z101

vectors of the distorted sample versions, while reducing redundancy among the individual components102

of these vectors. As a result, each tile was described as a vector of 128 extracted features that can103

subsequently be used to group tiles into clusters by similarity.104

Construction of an unbiased atlas of histologic patterns through community105

detection106

We applied Leiden community detection algorithm to derive HPCs, the clusters with similar histologic107

patterns (Figure 1b) (see Methods: Identification of Histomorphological Phenotype Clusters (HPCs)108

for details). The process began by first projecting the trained Barlow Twins onto the entire TCGA-109

COAD dataset, extracting 128-dimensional feature representations for each image tile. Subsequently,110

we utilized Leiden community detection on a nearest neighbor graph constructed from these tile vector111

representations (Figure 1b). Tiles with similar vector representations were clustered into a group and112

assigned a specific HPC ID number. The optimization of the Leiden configuration was achieved through113

an unsupervised process (see Methods: Identification of Histomorphological Phenotype Clusters (HPCs)114
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for details, Supplementary Figure 1a), resulting in the identification of a total of 47 HPCs, visually rep-115

resented in a dimensionality reduction plot (Uniform Manifold Approximation and Projection; UMAP116

plot) (Figure 2a).117

As external dataset, we analyzed a total of 1213 colon cancer patients with pathology diagnostic H&E118

WSIs (one WSI per patient), a subset of the clinical AVANT trial[23, 24] (see Online Methods: Study119

population for details). We harnessed the optimized SSL Barlow Twins model to generate embeddings120

of the unseen AVANT WSI tiles. The assignment of identified HPCs to the unseen AVANT was achieved121

using the K-nearest neighbors approach. The HPC label of each tile in the AVANT data was determined122

based on majority votes from its K-nearest neighbors in the TCGA training set (Figure 1b). As a123

result, we obtained comprehensive visual representations of the WSIs where the WSI tiles are colored124

by their corresponding HPC (Figure 1b). Additionally, we were able to capture the characteristics and125

heterogeneity of WSIs using the compositional data derived from the HPCs, i.e. the percentage of the126

area on a WSI covered by each HPC, thus facilitating downstream analyses and modeling (Figure 1c).127

Histopathological assessment and characterization of HPCs128

Each HPC underwent histopathological analysis on a randomly selected set of 32 tiles per cluster within129

TCGA, independently evaluated by two pathologists (ASLPC and JHJMvK) and a researcher (MP)(see130

Online Methods: Interpretation of HPCs for details). Tissue types, as observed on the tiles, were de-131

scribed with specific attention to tumor epithelium, tumor stroma and immune cells. Other unique132

histopathological features or patterns, such as tumor differentiation and stromal organization, were133

noted as well. All present tissue types were scored in percentages (Supplementary Table 1) and de-134

picted using pie charts (Figure 2b). We plotted the interconnections of 47 HPCs using partition-based135

graph abstraction (PAGA)[25], with the pie charts reflecting their tissue compositions (Figure 2b).136

Interestingly, distinct larger groups of clusters, or "super-clusters", could be observed based on the137

similarity of tissue composition, interconnectedness, and topology of HPCs in the PAGA plot (Figure138

2b).139

In total, we identified eight super-clusters: (1) healthy and dysplastic colon tissue, (2) necrosis,140

(3) mucinous areas, (4) immune cells, (5) muscle tissue (longitudinal/axial), (6) fatty tissue, (7) tu-141

mor stroma, and, (8) tumor epithelium, in no particular order, formed by groups of HPCs shown in142

Figure 2c. Common histopathological characteristics were noted among HPCs within each designated143
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super-cluster, while HPCs encompassing varied tissue types across multiple super-clusters were often144

situated at their intersections. For instance, HPC 12, containing not only tumor epithelium but also145

mucinous tumor, was located between HPCs belonged to the two super-clusters of mucinous tumor146

and tumor epithelium in the PAGA plot. Moreover, HPC 23 marked by dysplastic colon tissue formed147

a bridge between the healthy colon tissue HPC 39 and the tumor epithelium-containing super-cluster148

HPCs, suggesting a chronological pathogenesis. In summary, the derived HPCs displayed distinctive149

histopathologic characteristics. Moreover, HPCs located in close proximity on the UMAP and PAGA150

plot, based on the extracted features, demonstrated common traits,hinting at potential pattern rela-151

tionships, mixed phenotypes, or pathogenic trajectories.152

Assessment of HPC consistency within and across TCGA and AVANT co-153

horts154

Although SSL methods have been applied recently in histopathology, there is usually no systematic155

analysis of consistency of the histologic patterns discovered by these methods within and across datasets156

[15, 20]. Here, we address this potential pitfall by incorporating several qualitative and quantitative157

assessments.158

First, qualitative assessment was conducted to evaluate the within-cluster and between-cluster het-159

erogeneity of 47 HPCs derived in TCGA-COAD. Based on 32 randomly selected tiles from each HPC160

in the TCGA-COAD, three experts (ASLPC, JHJMvK, and MP) independently assessed each HPC161

by comparing tissue type quantity and architectures (histopathological assessment procedure stated162

above). Overall, all raters reached the general consensus that there was a noteworthy level of within-163

cluster morphological similarity and a significant diversity among the 47 HPCs (Figure 3 [a-i]), although164

phenotypic similarities varied across HPCs, implying that some HPCs may appear more similar than165

others. To delve deeper into the within-cluster and between-cluster heterogeneity, we carried out quanti-166

tative objective blinded tests within TCGA and AVANT tiles separately. This was to ascertain whether167

the morphological patterns identified by each HPC could also be recognized by human experts. In this168

test, the assessor (MP) was shown three groups of five tiles each. Two groups were from the same169

HPC, and the third was from a randomly selected other HPC, also called the "odd HPC". The assessor170

was required to identify the "odd HPC" (Supplementary Figure 2a, see Online Methods: Pathologist171
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asessment of HPCs, for details). Each of the 47 HPCs underwent 50 tests to determine the success172

rate. Within TCGA, we found that 17 out of the 47 HPCs achieved 100% identification rate, while173

the remaining 30 HPCs had a correct identification percentage ranging from 84% to 98%. Similarly,174

within in AVANT, 17 out of 47 HPCs achieved the perfect accuracy, while the rest had accuracy ranging175

from 88% to 98% (Figure 3j). In general, HPCs in close proximity to each other in the PAGA plot or176

belonging to the same super-cluster were more prone to erroneous assignment.177

To evaluate the effectiveness of transferring morphological patterns from the TCGA to the external178

AVANT test set, three experts (ASLPC, JHJMvK, and MP) independently reviewed a randomly chosen179

set of 32 tiles from the TCGA-COAD subset and another 32 tiles randomly selected from the AVANT180

trial. This qualitative comparison concluded a remarkable resemblance between the TCGA and AVANT181

tiles within their respective HPCs (Figure 3 [a-i]). In comparing the objective test results from TCGA182

and AVANT, we found an 80% overlap in the misclassified HPCs between the two datasets and 65%183

overlap in correctly classified HPCs. These results indicate that the robust morphological features184

extracted from the training set can be effectively transferred to an independent unseen test set.185

HPC-based classifier was associated to OS in patients treated with standard-186

of-care and AVANT-experimental treatment187

We explored the prognostic significance of HPCs on OS. The OS prediction model was developed188

within TCGA-COAD (see Online Methods: Identification of Histomorphological Phenotype Clusters189

(HPCs), for details). For external validation, we utilized the control group from the AVANT trial190

who had only received standard adjuvant chemotherapy (i.e. FOLFOX-4). The AVANT trial aimed191

to investigate whether combining bevacizumab, a humanized anti-vascular endothelial growth factor192

(VEGF) monoclonal antibody, with standard chemotherapy would improve survival among colon can-193

cer patients[26, 23]. The trial had three treatment arms: FOLFOX-4, bevacizumab+FOLFOX-4, beva-194

cizumab+XELOX. The study was prematurely terminated due to the adverse effect in patient survival195

associated with bevacizumab[23]. Given the unique bevacizumab experimental treatment and its adverse196

effects, we hypothesized that the survival model trained on TCGA-COAD patients may not generalize197

well in the AVANT bevacizumab-treated group. We referred to our source population, represented by198

the TCGA-COAD, as the "standard-of-care group", in contrast to the unique bevacizumab treatment199
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a

Standard-of-care group: external test set
of AVANT control group

b

AVANT experimental group

c

Top 20 OS-associated HPCs
trained in standard-of-care TCGA

d

Top 20 OS-associated HPCs
trained in AVANT experimental groups

Figure 4: HPC-based classifier was associated with OS in patients treated with standard-of-care
and AVANT-experimental treatment. (a) Ordinary Cox regression for OS, incorporating the HPC-based
risk classifier, along with sex, age categories, tumor-stroma ratio, and AJCC TNM staging, was conducted within
the external test set of the AVANT control group. The HPC model-based classifier stands as an independent
prognostic factor (HR 2.50, 95% CI 1.18-5.31) for OS. (b) Ordinary Cox regression for OS, incorporating the
HPC-based risk classifier, along with sex, age categories, tumor-stroma ratio, and AJCC TNM staging, was
conducted within the AVANT experimental group. The HPC model-based classifier stands as an independent
prognostic factor (HR 1.82, 95% CI 1.11-2.99) for OS. (c and d) The SHAP summary plots depict the rela-
tionship between the center-log-transformed compositional value of an HPC and its impact on death hazard
prediction. The color bar indicates the relative compositional value of an HPC, with red indicating higher
and blue indicating lower composition. Higher compositions of the top 10 HPCs were associated with worse
OS, while higher compositions of the bottom 10 HPCs were linked to improved OS. AJCC TNM, American
Joint Committee on Cancer tumor-node-metastasis classification. AVANT, Bevacizumab-Avastin® adjuVANT
trial. HPC, histomorphological phenotype cluster. OS, overall survival. SHAP, SHapley Additive exPlanations.
TCGA, The Cancer Genome Atlas.
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in the AVANT trial. We then opted to validate the OS prediction model, trained on TCGA-COAD200

data, primarily on AVANT patients who exclusively received standard FOLFOX-4 chemotherapy. This201

subset is henceforth referred to as the "AVANT control group", serving as an independent test set for202

validation.203

We modeled HPCs on OS using Cox regression with L2 regularization trained within the TCGA-204

COAD incorporated all 47 HPCs as predictors. The model was optimized through five-fold cross-205

validation (CV) on the TCGA training set (see Online Methods: Identification of Histomorphological206

Phenotype Clusters (HPCs), for details). The optimized regularized Cox model was then tested in the207

independent test set of the AVANT control group. We observed the test set c-index of 0.65 (bootstrap208

95% confidence interval [CI] 0.55-0.74) (Supplementary Figure 3b). The HPC-based classifier (i.e. high209

risk versus low risk) was determined by the median predicted hazard obtained in the TCGA-COAD.210

The HPC-based model also outperformed a clinical baseline model trained on age, sex, tumor-stroma211

ratio (TSR), and AJCC stage (Supplementary Figure 3c). To investigate whether HPC-based classifier212

provides additional prognostic value to the existing important clinical predictors, a regular multivariable213

Cox regression was fitted within the external AVANT control test set. The model included HPC-based214

classifier as well as important clinical and demographic variables (Figure 4a). Notably, the HPC-based215

risk classifier demonstrated significance as an independent prognostic factor (hazard ratio [HR] 2.50,216

95% CI 1.18-5.31), along with male sex (HR 2.42, 95% CI 1.07-5.47) and the TSR (HR 2.49, 95% CI217

1.23-5.04). The 20 most important HPCs associated to OS were summarized using the interpretable218

SHapley Additive exPlanations (SHAP) (Figure 4c).219

Harnassing the well-defined experimental protocols in AVANT, we were granted the unique oppor-220

tunity to examine the influence of HPCs on colon cancer OS in the bevacizumab treatment groups221

(i.e. bevacizumab+FOLFOX-4 or bevacizumab+XELOX). Given the proven comparable therapeutical222

efficacy of FOLFOX-4 and XELOX [26, 27, 28], we consolidated the bevacizumab+FOLFOX-4 and223

bevacizumab+XELOX cohorts into a unified "AVANT-experimental group". Similar to the analysis224

stated above, we trained Cox regressions with L2 regularization encompassing all 47 HPCs within the225

AVANT-experimental patients using 5-fold CV (see Online Methods: Identification of Histomorpho-226

logical Phenotype Clusters (HPCs) for details). The HPC-based classifier remained of independent227

prognostic value (HR 1.82, 95% CI 1.11-2.99) after adjusting for age, sex, tumor staging, and TSR228

(Figure 4b). The top 20 most influential HPCs on OS prediction were shown in the SHAP summary229
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plot (Figure 4d).230

Pathological assessment of OS-associated HPCs in the standard-of-care and231

AVANT-experimental group groups232

We highlighted the top 20 most influential HPCs on OS prediction reflecting the SHAP summary plot233

(Figure 4c, 4d) in the PAGA plots for the standard-of-care and AVANT-experimental groups (Figure234

5). The survival-favorable HPCs were highlighted in a shade of red and the survival-unfavorable HPCs235

were highlighted in blue. Preliminary findings showed that HPCs containing proportionally more healthy236

colon tissue or immune cells appeared associated with an improved OS, and HPCs comprising mucinous237

tumor, tumor stroma, and poor-to-undifferentiated tumor epithelium were associated with worse OS in238

both groups.239

The healthy colon tissue-containing HPC 39 was among the top survival-favorable HPCs indicated by240

larger SHAP values in both groups (Figure 4c, 4d). In the standard-of-care group, HPC 23 characterized241

by dysplastic and low grade tumor epithelium and HPC 6 marked by stroma-infiltrated healthy colon242

tissue indicating inflammation, were associated with a worse OS. HPC 31, predominately composed of243

immune cells, was associated with an improved OS in both treatment groups. A similar association was244

also noted for immune-mixed HPC 13, which is part of the immune super-cluster, in the standard-of-245

care group (Figure 5a) as well as HPC 18 (aligned stroma-immune cells) and HPC 17 (aligned stroma246

with immune component) in the AVANT-experimental group (Figure 5b). In the AVANT-experimental247

group, the mucinous super-cluster (HPCs 12, 14 and 38) was associated with a poor survival (Figure248

5b), while conversely, HPC 38 (mucinous tumor stroma) led to a better survival in the standard-of-care249

group (Figure 5a)250

Upon closer examination, we noted that the algorithm captured a distinction in stroma organization251

within the stromal tissue presented in the tumor stroma and tumor epithelium super-clusters. HPCs252

in these two super-clusters all contained some component of stromal tissue. However, HPCs with253

disorganized or heterogeneous tumor stroma with neovascularization (HPC 40 in both groups; 0, 11 and254

21 in standard-of-care, and 41 in the AVANT-experimental group) were associated with a poor survival,255

whereas aligned and organized tumor stromal "strands" were often observed among the top survival-256

favorable HPCs (HPC 2 in the standard-of-care and HPC 27 in the AVANT-experimental group).257
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24 Vessel-like 
stroma/muscle

11 Vascularized and 
infiltrated stroma 

17 Infiltrated 
aligned stroma-
high

21 Vascularized 
stroma

0 Disorganized 
tumor stroma

28 Muscle (longitudinal fibers)

45 Poor-
undifferentiated 
tumor

19 Edematous 
stromal -tumor 
epithelial

38 Mucinous 
tumor stroma

23 Dysplastic colon 
tissue

46 Infiltrated 
undifferentiated 
tumor

2 Aligned stroma –
well differentiated 
tumor

7 Avital tumor with 
necrosis

25 Moderately 
differentiated tumor -
necrotic

3 Moderately 
differentiated 
tumor

6 Infiltrated 
healthy colon 
tissue

Top 20 OS-related HPCs in the standard-of-care group

b
27 Moderately differentiated 
tumor - aligned stroma

39 Healthy colon 

26 Infiltrated poor-
undifferentiated tumor

12 Mucinous tumor 14 Mucinous tumor
38 Mucinous 
tumor stroma

25 Moderately 
differentiated 
tumor - necrotic

20 Disorganized and 
vascularized stroma-
low

40 Disorganized stroma, growing 
infiltratively

5 Necrotic24 Vessel-like 
stroma/muscle

31 Mixed, 
infiltrated stroma

17 Infiltrated 
aligned stroma-high

18 Infiltrated 
stroma

33 Muscle 
(longitudinal fibers)

34 Muscle (axial 
section)

28 Muscle 
(longitudinal fibers) 41 Disorganized and loose stroma

4 Moderately 
differentiated tumor 
- aligned stroma

9 Moderately 
differentiated tumor 
- aligned stroma

Top 20 OS-related HPCs in the AVANT-experimental group

Figure 5: PAGA plots highlighted with important HPCs related to OS in the standard-of-care
and experimental treated group (a) Standard treated group: HPCs colored in the red are linked to worse
survival and HPCs colored in blue are linked to better survival. (b) AVANT-experimental treated group: HPCs
colored in the red are linked to worse survival and HPCs colored in blue are linked to better survival. AVANT,
Bevacizumab-Avastin® adjuVANT trial. HPC, histomorphological phenotype cluster. PAGA, partition-based
graph abstraction.
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Moreover, the tumor differentiation grade was another parameter correlating with HPCs and their258

impact on OS. Poor-to-undifferentiated tumor epithelium, e.g. HPC 45, in the standard-of-care group,259

was linked to a worse survival, while well-to-moderately differentiated tumor led to an improved sur-260

vival (e.g. HPCs 3 in the standard-of-care group and HPC 4 in the AVANT-experimental group). A261

unique pattern was furthermore observed in survival-favorable HPCs 46 (standard-of-care group) and 26262

(AVANT-experimental group), which was characterized by a predominance of poor-to-undifferentiated263

tumor epithelium but accompanied by a notable influx of immune cells.264

Additional findings were related to the survival-favorable HPC 7 (avital tumor epithelium) in the265

standard-of-care group (Figure 5a) and the positive association between necrosis-dominated HPC 5266

and better survival in the AVANT-experimental group (Figure 5b). The associations between HPCs267

containing muscle tissue (e.g. HPC 24, 33 and 34) and survival were generally inconsistent, possibly due268

to the similarity of muscle fibers and tumor stroma, caused for instance by the organization of muscle269

fibers and vascularization.270

Outcome-associated HPCs are linked to diverse immune features in the tumor271

microenvironment272

Spearman correlation coefficients were calculated between the top 20 survival-related HPCs on one hand,273

and the TCGA immune landscape on the other hand (see Methods for details). The correlation heatmap274

was plotted with bi-directional hierarchical clustering (Figure 6a). Interestingly, in the standard-of-care275

group (Figure 6a), HPCs 0, 11, 17 and 21, all part of the phenotypic tumor stroma super-cluster,276

were identified by the genotypic immune analysis as having a positive correlation with the stroma-277

high category. Moreover, their SHAP values indicated an positive association with worse survival.278

Conversely, HPCs 13 and 31 in the immune cell super-cluster were correlated with higher leukocyte279

fraction. Survival prediction model suggested the immune cell super-cluster was in general associated280

with a better survival. Further anticipated findings included the validation of HPCs 2 and 24, marked281

by stroma-high tiles, through immune feature correlation within the stroma high category.282

In the AVANT-experimental group (Figure 6b), survival-favorable HPCs 5, 17, 31, 18 correlated283

with an increased leukocyte fraction. Notably, HPCs 17 and 31 aligned with an elevated immune cell284

composition (Figure 5b). Additionally, HPCs 17 and 18 were also associated with a higher expression of285
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stroma, which was consistent with the observed stroma-high morphology (Figure 5b). On the contrary,286

survival-unfavorable HPCs 14, 40 and 20 exhibited higher genomic instability. For instance, HPCs 40287

and 20 were positively correlated with homologous recombination defects, intratumor heterogeneity,288

and HPC 14 was positively linked to nonsilent mutation rate, single nucleotide variants and indel289

neoantigens. Although HPC 14 also showed a positive correlation with the leukocyte fraction, a more290

pronounced association with genomic instability through multiple pathways seemed to play a greater291

role in its negative impact on OS.292

The resulting correlations with immune landscape data aligned with the observed morphologies of293

HPCs, particularly in stromal and immune features. Furthermore, the data suggest a potential role in294

genomic instabilities within the AVANT-experimental group. Taken together, these results demonstrate295

that HPCs can capture the remarkable heterogeneity of the tumor microenvironment.296

Outcome-associated HPCs are linked to oncogenic pathways and bevacizumab’s297

mechanism of action298

Next, we performed gene set enrichment analysis (GSEA) to discern associations between top OS-299

related HPCs from both the standard-of-care and AVANT-experimental groups and key cancer hall-300

mark pathways (Figure 6c and d). In the AVANT-experimental cohort, survival-related HPCs showed301

striking alignment with the enrichment observed in oncogenic hallmark pathways (Figure 6d), which302

such alignment was overall much less pronounced in standard-of-care group (Figure 6c). Still, in the303

standard-of-care group, pathways encoding epithelial-to-mesenchymal transition, leading to an increased304

tumor-stromal percentage, were enriched in survival-unfavorable HPCs 11, 17, 40 and 19. HPCs related305

to inflammatory response pathways showed primarily positive associations with OS, e.g. with HPCs 13306

and 31 related to better survival.307

In the AVANT-experimental group (Figure 6d), we observed a strong correlation between hierarchi-308

cal clustering based on oncogenic enrichment scores and survival-related HPCs. Several HPCs exhibited309

enrichment in pathways that potentially be specific to bevacizumab through its target of VEGFa ex-310

pression and KRAS signaling-up pathway. HPC 5, characterized by necrosis, was linked to elevated311

VEGFa expression (rho=0.163, P=0.005), indicating patients with higher pre-treatment necrosis levels312

may benefited from the bevacizumab treatment. HPC 27, 18, and 31 were associated with enriched313
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a

Standard-of-care group: immune landscape

b

AVANT-experimental group: immune landscape

c

Standard-of-care group: GSEA analysis

d

AVANT-experimental group: GSEA analysis

Figure 6: Survival-associated HPCs in relation to immune and genetic profile. (a) Standard-of-
care group: Spearman’s correlations between top 20 OS-related HPCs and immune landscape features. HPCs
(columns of the matrix) were colored according to the beta-coefficients estimated from the optimized regularised
Cox regression, with red indicating HPCs related to worse survival and green indicating HPCs related to
better survival. The color bar at the upper left corner indicates the value of correlation coefficients with red
denoting positive and blue denoting negative correlations. (b) AVANT-experimental treated group: Spearman’s
correlations between top 20 OS-related HPCs and immune landscape features. (c) Standard-of-care group GSEA
between the top OS-related HPCs and major cancer hallmark pathways. HPCs (columns of the matrix) were
colored according to the beta-coefficients estimated from the optimized regularised Cox regression, with red
indicating HPCs related to worse survival and green indicating HPCs related to better survival. The color bar
at the upper left corner indicates the value of the correlation coefficients with red denoting enrichment and blue
denoting underrepresentation in a gene pathway. (d) AVANT-experimental treated group GSEA for the top
20 OS-related HPCs. AVANT, Bevacizumab-Avastin® adjuVANT trial. GSEA, gene set enrichment analysis.
HPC, histomorphological phenotype cluster. OS, overall survival.
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Figure 7: Clinical application of AI-derived HPCs in prediction of patient outcomes. The clinical
algorithm consists of three key stages: data preparation, cancer patient characterization, and AI-supported
multidisciplinary treatment meetings. Data preparation involves collecting histopathology WSIs, segmenting
them into small image tiles. Patient characterization encompasses SSL model training, yielding HPCs via
clustering. HPCs are easily interpretable by pathologists, linkable to omic data. Most importantly, HPCs are
valuable for predicting diagnosis, patient outcomes, and treatment responses. In treatment-related outcomes,
AI-predicted high/low risk groups aid multidisciplinary meetings, enabling personalized treatment plans by
oncologists, pathologists, and physicians. AI, artificial intelligence. HPC, histomorphological phenotype cluster.
SSL, self-supervised learning, WSI, whole slide image.

hypoxia (HPCs 31, 27) and angiogenesis (HPCs 18, 31), and unfolded protein (HPCs 31, 1, 5) path-314

ways which involve the VEGFa gene. In addition, other survival-favorable HPCs may not be specific to315

bevacizumab but related to the standard cytotoxic chemotherapy of XELOX and FOLFOX-4. Survival-316

unfavorable HPCs (12, 38, 14, 24, 20) were linked to the KRAS signaling-up pathway, which may have317

a negative impact on the prognosis of patients treated with FOLFOX. Certain survival-favorable HPCs318

exhibited enrichment in pathways related to cell cycle regulation, signaling, DNA repair, and growth,319

including G2/M checkpoint (34, 31, 5), E2F targets (5, 31, 34, 26, 18), Myc targets (5, 31, 34, 26, 18),320

and mTORC1 signaling (5, 31, 34, 26, 18), DNA repair (18, 31). In contrast, survival-unfavorable HPCs321

demonstrated depletion in these pathways.322
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Discussion323

In this study, we derived and independently validated a total of 47 distinct HPCs that were extracted324

from colon cancer H&E WSIs using a self-supervised algorithm. These HPCs possess distinctive histo-325

morphologic features carefully identified and assessed by the pathologists and were also linked several326

immune features and oncogenic pathways. The HPCs showed state-of-the-art performance on OS pre-327

diction. Furthermore, the HPC-based risk classifier was an independent prognostic factor after adjusting328

for important clinical and demographic variables, suggesting additional insight beyond the current clini-329

cal prognostication. The unique AVANT trial enabled us to endeavor in identifying possible mechanisms330

of response to bevacizumab and standard chemotherapy using the HPCs.331

Moreover, we hereby emphasize the importance of the tumor microenvironment, or tumor stroma,332

and its effect on survival. Tumor stroma is composed of extracellular matrix, vasculature, immune333

cells and cancer-associated fibroblasts, forming a complex and close interaction with tumor epithelial334

cells[29, 30]. Subject to increasing research the past decades, this dynamic entity has been found to335

modulate tumor behavior through its cross-talk, and ultimately influence patient-related outcomes.336

Specifically, regarding the amount of stroma and stromal architecture, i.e. alignment or categorization337

of the desmoplastic reaction, and immune infiltrate in the stroma, our results corroborate previous338

literature [31, 24, 32, 33, 34, 35].339

We identified common histopathological patterns associated with survival as observed in both the340

standard and bevacizumab-treated group. In line with our results, immune cells (e.g. HPCs 13, 31)[36]341

and aligned stroma-low tumors (e.g. HPCs 2, 27)[32, 31] were associated with better survival, while342

poor-to-undifferentiated tumor epithelium (e.g. HPC 45) or mucinous tumor epithelium (e.g. HPCs 12,343

14) [2, 3], and disorganized stroma-high tumors (e.g. HPCs 40, 0)[32, 31] were linked to worse survival.344

This pathological phenotype correlated with the corresponding genetic immune profile (e.g. increased345

leukocyte fractions correlated with HPCs 13 and 31; and a stroma-high category was see in HPCs 0,346

21, 17, 11) and enrichment in oncogenic pathways (e.g. epithelial-to-mesenchymal transition pathway,347

contributing to tumor stroma amounts[29], correlated with HPCs 17 and 11). We also observed an348

association, though imperfect, between mucinous tumor, poor-to-undifferentiated tumor epithelium, and349

survival. One explanation may arise from the absence of contextual information in small images. The350

differentiation between well-differentiated and undifferentiated, or adenocarcinoma and more mucinous351
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tumor types, is established based on whether each tissue type constitutes more than 50% of the total352

tumor, underscoring the importance of considering the overall context[3].353

Another interesting discovery emerges from the survival-favoring HPCs 26 (AVANT-experimental354

group) and 46 (standard-of-care group). These HPCs contain primarily poor-to-undifferentiated tumor355

epithelium but with a high influx of immune cells. Such a histopathological pattern is frequently observed356

in MSI tumors[37]. The MSI tumors have been linked to a favorable prognosis [38, 2], characterized with357

lower differentiation grade, increased T-cell infiltration, and reduced susceptibility to invasiveness and358

KRAS mutation [38], however, are commonly identified through separate MSI analysis and/or additional359

immunohistochemical staining for mismatch repair enzymes in pathology diagnostics[3, 2, 38].360

Furthermore, we also noted HPC 39 containing predominately healthy colon tissue associated with361

better survival. The interpretation arises from the nature of the multivariable analysis where the 47362

HPCs were modeled simultaneously. One can interpret this result as, while holding the other 46 HPCs363

constant, patients with more abundance of healthy colon tissue showed an improved survival. The364

higher proportion of healthy colon tissue may indicate relatively smaller or less aggressive tumors.365

Indeed, within routine TNM assessments, lower pathological T-stage is known to lead to an improved366

survival[3].367

In the GSEA analysis, we noted a remarkable concurrence in AVANT-experimental group between368

clustering based on cancer hallmark pathways and outcome-related HPCs, while such alignment was369

much less pronounced in the standard-of-care group. One possible explanation is the heterogeneity of370

patients in the TCGA-COAD dataset. In contrast to the well-defined treatment protocol in AVANT,371

TCGA-COAD patients encompass diverse disease and demographic profiles. Consequently, this diversity372

led to a wide spectrum of treatments, including surgical, neoadjuvant, and adjuvant therapies. The373

survival-related HPCs discovered in the TCGA-COAD could therefore be, if related at all, to multiple374

distinctive biological pathways. A general alignment observed in the AVANT-experimental group was375

therefore not anticipated in the standard-of-care group.376

In the AVANT-experimental group however, several survival-favoring HPCs either directly correlated377

with VEGFa expression or were associated to enrichment in oncogenic pathways involving VEGFa gene,378

indicating a favorable responses to the contentious bevacizumab treatment. In particular, HPC 5,379

primarily characterized by necrosis, emerged as a significant contributor to enhanced survival, displaying380

a positive correlation with VEGFa expression, which is the target of bevacizumab. Necrosis promotes381
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the expression of VEGFa, as dying tumor cells release signals that stimulate the growth of new blood382

vessels [26]. In addition, survival-favoring HPCs 18, 27, and 31 were associated with enriched hypoxia383

and angiogenesis pathways which also involve the VEGFa gene. We hypothesize that patients exhibiting384

a higher abundance of HPC 5, 18, 27, and 31 may correspondingly express elevated levels of VEGFa,385

the target of bevacizumab, which in turn result in a more favorable response to this treatment.386

Oxaliplatin plus 5-fluorouracil-based regimens of XELOX and FOLFOX-4 are standard chemother-387

apy for colorectal cancer[39]. Nonetheless, the treatment response is still modest with an estimate388

rate of approximately 50% [1, 39], and the prediction of which patients will respond to this adjuvant389

chemotherapy remains challenging. We observed enrichment in oncogenic pathways that may be within390

the context of XELOX and FOLFOX-4 treatments in the AVANT trial. Survival-unfavorable HPCs391

(12, 38, 14, 24, 20) were linked to the KRAS signaling-up pathway. In line with previous literature,392

several KRAS mutations activate downstream signaling pathways and the KRAS G12D mutation was393

predictive of an inferior response to FOLFOX [40]. Interestingly, HPCs 12, 14, and 38 contained muti-394

nous tumors tissue, which has also been linked to KRAS mutational burden [37, 41]. Survival-favoring395

HPCs (5, 31, 34, 26, 18, 27) were associated with enrichment in pathways of cell cycle, signalling,396

DNA repair, and growth (i.e. G2/M checkpoint, E2F targets, Myc targets, and mTORC1 signaling),397

while survival-unfavorable HPCs (12, 41, 38, 14, 24, 40, 20) linked to a depletion of those pathways.398

Interestingly, patients with altered DNA repair capacity showed greater benefits from treatment with399

oxaliplatin[39]. Moreover, carriers of MNAT1 gene, which is one of the leading genes in the G2/M check-400

point pathway[42], were linked to better treatment outcome of FOLFOX[39]. A plausible mechanism401

is that patients exhibiting activated oncogenic activities within these pathways might harbor a greater402

abundance of targets suitable for oxaliplatin-based cytotoxic chemotherapy.403

Another finding was our HPC-based prediction on OS outperforming the clinical baseline model.404

This HPC-based risk classifier remained an independent prognostic factor (HR 2.50, 95% CI 1.18-405

5.31) after adjusting for crucial clinical and demographic variables including TSR and tumor stage.406

This finding aligns with recent findings reported by Jiang et al. [11]. Interestingly, although both407

HPCs and TSR were derived from H&E slides, they appeared to encapsulate distinct non-overlapping408

information. A potential explanation could be that the HPC-based classifier captures intricate details,409

while TSR assessment requires a broader contextual understanding, not fully attainable with small image410

patches [31]. Comparing our OS prediction directly with previous studies poses further challenges due411
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to differences in cancer types (e.g., colorectal [10, 43, 11] instead of colon cancer only), varied outcomes412

(e.g., 5-year disease-free survival [DFS] [10]), diverse statistical measures (e.g., hazard ratio [43]), and413

absence of independent test sets[12] in prior studies. Nevertheless, a recently study reported a test414

set c-index of 0.65 for OS prediction in colorectal cancer[11] aligning with our reported c-index in the415

context of colon cancer.416

Building upon the aforementioned findings, this study showcases the prospective clinical utility of417

AI-generated HPCs (Figure 7). Cancer WSIs were preprocessed into image patches and subsequently418

used to train SSL encoders and to form HPCs. These HPCs serve as condensed representations of the419

original WSIs, ready to be inspected by pathologists and enabling flexible linkage to molecular data.420

These HPCs hold promise in classifying tumor characteristics, potentially predicting patient prognosis421

and discerning distinct sensitivity groups to various therapies. In turn, this prediction can aid decision-422

making in future multidisciplinary meetings. Moreover, this algorithm operates in a self-supervised423

manner, affording enhanced transferability among datasets, flexible linkage to multimodal omics data,424

and broader applicability across various outcome domains.425

Despite the interesting findings, the study also has several limitations. The identification of HPCs426

was based on small image tiles as is imperial to model training, while information regarding the larger427

context is likely lost, as also stated above. For example, it is often challenging to distinguish aligned and428

organized tumor stromal ’strands’ from muscle tissue through traditional microscopic assessment [44].429

Therefore, pathologists typically make this distinction based on contextual cues, color variances, or use430

additional immunohistochemical stainings, all of which is not available within the small image patches.431

Another limitation pertains to using TCGA as the training set. Although the TCGA is a large open432

sourced database, it depends on the availability of registered clinicopathological data. This introduces433

potential bias and variability in data quality across participating institutions. Moreover, due to data434

availability, we were only able to focus on predicting OS rather than DFS which may better reflect tumor435

behavior and biology[22, 45]. Lastly, due to the AVANT treatment regimen design, separate analysis436

regarding bevacizumab or oxaliplatin-based chemotherapy was not attainable. Nonetheless, we made437

efforts to differentiate between their distinct mechanisms by conducting histopathological inspections438

and correlating the findings with immune landscape and oncogenic pathways.439

In conclusion, our study employed a self-supervised approach to identify and validate histopatho-440

logical features in colon cancer that are recognizable by human eyes and relevant to prognosis. These441
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features were interpreted through a pathology-focused perspective. Our results highlighted the clinical442

significance of tumor tissue type, stromal amount and architecture, and the involvement of immune443

cells. Integration of histopathological features with genetic and gene expression data unveiled potential444

insights into oncogenic pathways and their relation to patient survival. Utilizing data from the clinical445

AVANT trial, we proposed mechanisms influencing patient sensitivity to diverse treatments. Future re-446

search should focus on refining prediction accuracy and validating the proposed mechanisms regarding447

the therapeutic strategies in colon cancer.448

Methods449

Study population450

The TCGA-COAD dataset was used for training and extracting features and histologic patterns using451

SSL. This dataset consisted of 451 WSIs from 444 unique patients[22] with matched genetic and tran-452

scriptomic information. We excluded duplications and WSIs with erroneous resolution that were not453

suitable for the analyses (i.e. only several kilobytes in size). The final TCGA training set included 435454

WSIs from 428 patients with a diagnosed pathological TNM-stage I-IV colon carcinoma (333 alive, 94455

dead, and 1 missing vital status). We referred to the source population which TCGA-COAD represent-456

ing as the "standard-of-care" group, contrasting it with the clinical trial data described below.457

As external dataset we leveraged a study comprising 1213 colon cancer patients with available di-458

agnostic H&E WSIs (one WSI per patient) as part of the clinical Bevacizumab-Avastin® adjuVANT459

(AVANT) trial[23, 24]. Bevacizumab, a humanized anti-vascular endothelial growth factor (VEGF) mon-460

oclonal antibody, had initially been shown to improve the OS in patients with metastatic colon cancer461

when jointly used with the standard chemotherapy[26]. In the phase III AVANT trial, with an intent-to-462

treat population of 3451 patients, an open-label design was used[23]. Patients were randomly assigned463

in a 1:1:1 ratio to three different treatment regimens: FOLFOX-4 (intravenous 5-fluorouracil/folinic464

acid plus oxaliplatin), bevacizumab-FOLFOX-4, and bevacizumab-XELOX (oral capecitabine plus in-465

travenous oxaliplatin)[23]. The study aimed to investigate whether adding bevacizumab to the standard466

oxaliplatin-based adjuvant chemotherapy could improve DFS among patients with stage II-high risk and467

III colon cancer[23]. However, the trial was prematurely terminated due to the serious adverse effect468
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on the patient’s OS in the bevacizumab-treated group[23]. The AVANT trial was chosen also due to469

the previously studied potential correlation of VEGF, the stromal compartment (e.g. the TSR), and470

patient prognosis[24, 32, 31]. For a detailed overview of the trial and patient characteristics, see Zunder471

et al[24].472

Given the unique treatment regimen of bevacizumab and its adverse effect in non-metastatic colon473

cancer, as also proven by a predecessing clinical trial, the NSABP protocol C-08 trial [46], we decided474

to primarily validate OS prediction, trained in the TCGA-COAD, within the control group who only475

received FOLFOX-4 (without bevacizumab) and refer to it as the "AVANT control group". Subse-476

quently, as several phase III trials had demonstrated that FOLFOX and XELOX are comparable in the477

context of metastatic colorectal cancer[26, 27, 28], we thus combined the bevacizumab+FOLFOX-4 and478

bevacizumab+XELOX groups into a unified "AVANT-experimental group" and conducted a separate479

analysis to predict OS within the bevacizumab-treated patients.480

The present study was performed by using anonymized archival material, not necessitating new481

informed consent. Archival material was derived from the AVANT-trial (BO17920), performed in accor-482

dance with the declaration of Helsinki[23, 24]. Protocol approval was obtained from the local medical483

ethics review committees or institutional review boards at participating sites.484

Data pre-processing485

Tissue segmentation and image tiling486

We used the preprocessing methods described in our previous study[47]. Tissue areas in WSIs were487

segmented against background at 10x magnification level (pixel size approximate 1.0 um). WSIs were488

divided into non-overlapping image tiles of size 224x224 pixels. The selection of a 10x magnification was489

based on two key considerations. Firstly, it aligns with the standard magnification utilized by pathol-490

ogists during microscopic assessments in clinical practice. Secondly, we conducted visual inspections of491

tiles at 20x, 10x, and 5x magnifications, and found that tiles at 10x magnification provided an optimal492

balance of capturing sufficient detail while also offering a reasonably sized overview of the morpholog-493

ical structure. In addition, to overcome the variability of color stains from different scan facilities in494

the TCGA and AVANT cohorts, we further applied the color normalization[48]. In total, we obtained495

1,117,796 tiles in the TCGA training set (i.e. TCGA-COAD), and 4,827,055 tiles in the AVANT external496
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test set (AVANT-COAD, consisting of the standard and experimental treatment groups).497

Extracting image features using Barlow Twins498

We trained the SSL Barlow Twins feature extractor based on 250,000 image tiles randomly selected499

from the TCGA-COAD dataset. The Barlow Twins extracted unique latent vectors (128 dimension)500

from the preprocessed image tiles in TCGA. The model is based on ResNet-like architecture consisted501

of several ResNet layers and one self-attention layer[17]. In essence, the Barlow Twins calculates the502

cross-correlation matrix between the embedding outputs of two identical twin networks, both fed with503

distorted versions of the same image tile[18]. It is optimized to make the correlation matrix close to the504

identity matrix[18]. We used the batch size of 64 trained on a single NVIDIA® Tesla V100 GPU for505

60 epochs. The Barlow Twins feature extractor was frozen after the training and used to project image506

tiles into latent representation in the entire TCGA training set.507

To facilitate the downstream analysis, we also applied five-fold CV partition in the TCGA-COAD508

training set on patient level balanced the on American Joint Committee on Cancer (AJCC) TNM stage,509

survival outcomes (i.e. death or censor), and binned survival time categories.510

Leiden community detection algorithm511

The Leiden clustering algorithm is a graph-based clustering algorithm that aims to identify distinct512

communities or clusters within graph data [49]. In brief, it optimizes the modularity function (Equa-513

tion 1), in such way to maximize the difference between the actual number of edges and the expected514

number of edges in a community[49]. This modularity function also includes a resolution parameter γ,515

with higher values leading to more clusters and lower values leading to fewer clusters. Leiden clustering516

is initiated by assigning each node in the graph to its own individual cluster, treating them as separate517

communities, then iteratively optimizes the modularity function by moving a node from its current clus-518

ter to a neighboring cluster or by merging clusters until the algorithm converged and revealing distinct519

communities or clusters. We employed the Leiden clustering in a particular workflow. We began by520

constructing a neighborhood graph using the K=250 nearest neighbors from a pool of 200,000 randomly521

selected latent image vectors from a training set. Subsequently, we applied the Leiden algorithm to522

identify clusters within this neighborhood graph. These cluster labels were then propagated to each523
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individual image tile across the entire dataset, once more utilizing the K-nearest neighbors approach.524

H =
1

2m

∑
c

(
ec − γ

K2
c

2m

)
(1)

Modularity measures the difference between the actual number of edges in a com-

munity and the expected number of such edges. ec denotes the actual number of

edges in community c and the expected number of edges is expressed as K2
c

2m
, where

Kc is the sum of the edges of the nodes in community c and m is the total number

of edges in the network. γ is the resolution parameter, with higher values leading

to more clusters and lower values leads to fewer clusters.

525

Identification of Histomorphological Phenotype Clusters (HPCs)526

We identified HPCs as clusters obtained from the Leiden community detection algorithm operated on527

128-dimensional image features extracted through the Barlow Twins encoder. The Leiden method was528

also used for quality control to eliminate artifacts and underfocused image tiles. Quality control was529

carried out after training the Barlow Twins and extracting image features. In the overall process, we530

initially generated a substantial number of Leiden clusters. Next, we visually examined sample image531

tiles from each cluster and removed clusters exhibiting artifacts such as air bubbles, foreign objects, etc.,532

or those containing under-focused images. In particular, within the training set of a randomly selected533

CV fold (fold 0), we randomly selected 200,000 latent image vectors to generate Leiden clusters. We534

obtained 125 clusters at a high resolution of γ = 6. The Leiden labels were propagated into the entire535

TCGA set using again the KNN methods. Next, we inspected randomly selected sample tiles (N=32)536

from each cluster and identified 12 clusters containing predominately artifacts or underfocused images.537

Image tiles labelled by these 12 clusters were subsequently removed from the further analyses. The HPCs538

were newly derived in this cleaned dataset by re-running the Leiden clustering. Optimization of the539

HPCs was conducted using primarily unsupervised methods and secondarily confirmed using supervised540

methods. Importantly, both the two approaches converged on the same optimal Leiden resolution, as541

elaborated below.542
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Optimization of HPCs using unsupervised methods543

Leiden resolutions (i.e. γ = 0.4, 0.7, 1.0, 1.5, 2.5, and 3.0) were optimized using three unsupervised544

statistical tests: the Disruption score, Silhouette score, and Daves-Boundin index. Due to the potentially545

high variance in data from the different institutions in the TCGA, all three scores were weighted by546

the mean percentage of the institution presence in each cluster. We consistently identified the optimal547

Leiden resolution as 1.5 through the three aforementioned statistical tests (Supplementary Figure 1a).548

Optimization of HPCs and the prediction of overall survival (OS) using Cox regressions549

with L2 regularization550

To identify optimal HPC configurations and their associations with patient OS, we trained L2 regularized551

Cox regressions for OS prediction using 5-fold CV. The Cox regressions were trained separately among552

standard-of-care colon cancer patients (i.e. TCGA-COAD) and among the AVANT-experimental group.553

OS prediction in the standard-of-care group Prediction of OS from HPCs among the standard-of-care554

group was trained within TCGA-COAD using 5-fold CV and tested in the independent AVANT control555

group. Specifically, for each CV fold within TCGA-COAD, we began by generating a range of Leiden556

clustering configurations at various resolutions, including gamma values of 0.4, 0.7, 1.0, 1.5, 2.5, and 3.0,557

using the method described earlier. Next, at each Leiden resolution, we calculated the compositional558

representation of HPCs for each WSI (see Main Figure 1c), followed by a center-log-ratio transformation559

(Equation 2). This transformation was designed to mitigate inter-dependencies among HPCs, ensuring560

that the independence assumptions required for subsequent Cox regression analysis were met. The L2561

regularized Cox regressions were then trained at the patient level, with one WSI per patient considered.562

At each Leiden resolution, we performed a multivariable L2 regularized Cox regression, incorporating563

all center-log-ratio-transformed HPCs specific to that resolution. We fine-tuned L2 regularizer (alpha)564

through an iterative process involving 50 steps, spanning the alpha range from 10−4 to 104. This565

sequence of steps was repeated across all five cross-validation folds. The optimal Leiden resolution and566

L2 regularizer was selected based the CV C-index.567

Through this optimization process, the optimal Leiden resolution was determined to be 1.5, and the568

L2 regularizer alpha was fixed at 0.1842.Of the note, this optimal Leiden resolution of 1.5 concurred with569

the result from the unsupervised approaches. An HPC-based classifier was determined by the median570
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predicted hazard obtained in the TCGA-COAD. Once the Cox model is optimized, we evaluated the571

final model performance in the external test set consisting of the AVANT-standard care group.First, the572

47 HPCs were integrated into the AVANT-standard care group by employing the K-nearest neighbors573

method (K=250), where each AVANT tile’s HPC label was determined based on the majority votes574

from its nearest neighbors in the TCGA training set. Next, the trained Cox model, with optimized575

regularization and parameter estimates for the HPCs, was then applied to the AVANT-standard care576

group to test the prediction of OS (Supplementary Figure 2b).577

Furthermore, employing the same CV method, we trained a clinical baseline model on OS in TCGA-578

COAD using L2 regularized Cox regression incorporating age, sex, TNM staging, and TSR as predictors.579

We observed a c-index of 0.58 (bootstrap 95% CI 0.49-0.67) in the independent AVANT AVANT-580

standard care group and the model-based risk classifier did not reach the statistical significance level581

(Supplementary Figure 2c). This baseline model illustrates a simulation of decision-making in clinical582

practice as control, using the most readily available and relevant clinical and demographic variables.583

Our HPC-based model outperformed this clinical baseline model. In addition, we explored whether584

the HPC-based classifier add additional prognostic value to the existing important clinical predictors.585

We fitted an ordinary multivariable Cox regression within the external AVANT-standard care group,586

including HPC-based classifier, sex, age, tumor-stroma ratio, and AJCC stage (Supplementary Figure587

2d).588

clr(xi) = ln

(
xi

g

)
, xi =

counting of tiles in Ci

total number of tiles in each WSI
, g =

(
n∏

i=1

xi

) 1
n

(2)

The center-log-ratio transformation (clr) calculates the natural logarithm of the

ratio (xi) of compositional data for a specific cluster (Ci) to the geometric mean

(g) of the compositional data across all clusters. The compositional data (xi) is

obtained by dividing the counting of tiles in cluster Ci by the total number of tiles

in each WSI. The geometric mean (g) is computed by multiplying the compositional

data values (xi) for each cluster (Ci), ranging from i = 1 to n (where n is the total

number of clusters), and raising the resulting product to the power of 1
n
.

589

OS prediction in the AVANT-experimental group590

Bevacizumab, a unique intervention investigated in the AVANT trial, was unlikely accessed by591

patients from the TCGA-COAD cohort. Considering the significant poor prognostic outcome associated592
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with bevacizumab in non-metastatic colorectal cancer, we postulated that the relationship between593

HPCs on OS might be influenced by this intervention. Furthermore, we hypothesized that estimates of594

HPCs on OS trained from the general COAD population, such as TCGA, might not be applicable to595

bevacizumab-treated patients.596

To address these hypotheses, we conducted a separate 5-fold CV estimating the relationship between597

HPCs and OS within the bevacizumab-treated patients (AVANT-experimental group). Similarly, we598

generated 5-fold train-validation split stratified by TNM stage and survival time. We used the same599

sets of HPCs obtained at the previously optimized Leiden 1.5 resolution. Similarly, we modelled the600

center-log-transformed compositional data of HPCs on OS using Cox regressions with L2 regularization.601

We fine tuned the L2 regularizer specifically for AVANT-experimental group. The model performance602

of HPCs on OS prediction was evaluated using c-index in the 5-fold CV validation sets.603

To understand the importance of each HPC on OS, we employed SHAP values[50]. SHAP values604

measure the marginal contribution of a HPC towards the predicted OS, considering all possible com-605

binations of features. We highlighted top 20 important HPCs favoring and hindering survival for both606

standard-of-care and AVANT-experimental treated COAD patients.607

Interpretation of HPCs608

Plotting HPCs using UMAP and PAGA plot609

We applied UMAP dimensionality reduction [51] to TCGA-COAD tile vector representations (128-610

dimensional vectors), color-coded by 47 HPC IDs using optimized Leiden clustering configuration from611

the prior step. Next, we generated a PAGA plot where each HPC is a node connected by lines based on612

vector similarity. Pie charts within each HPC node showed annotated tissue type percentages annotated613

independently by three experts (ASLPC, JHJMvK, and MP) (see below). We analyzed this plot to614

identify and describe significant interconnected clusters (see Main Figure 2b). Based on the PAGA615

plot, we also defined the "super-clusters" according to the interconnections among HPCs and tissue616

composition (see Main Figure 2b).617
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Pathologist assessment of HPCs618

Histopathological assessment and characterization of HPCs The histomorphological features619

of 47 HPCs derived in TCGA training set were comprehensively and independently analyzed by two620

expert pathologists (ASLPC and JHJMvK) and one medical researcher (MP). The analysis was exclu-621

sively conducted using image tiles and the assessors were kept blinded to results from other analyses.622

Specifically, we randomly selected a set of 32 tiles from each HPC within TCGA and each individual623

tile was examined with specific focus on tumor epithelium, tumor stroma, and immune cells. Attention624

was also paid to general tumor differentiation grade, tumor stromal amount, stromal classification, i.e.625

aligned or disorganized, stromal neovascularization or other notable patterns (e.g. dysplastic tissue,626

fatty tissue, muscle tissue fibers, blood vessels, erythrocytes, etc.)[3, 32, 44]. Each assessor evaluated627

the tissue composition based on 32 randomly selected tiles per HPC, providing an average tissue com-628

position for each HPC. In cases of conflicting tissue annotations, the assessors carried out discussions to629

achieve consensus. In addition, a short label was given to each HPC based on tissue annotation either630

according to the first and second predominant tissue types and patterns (e.g. "aligned stroma - well631

differentiated tumor epithelium"), or as the single most dominant tissue type covering ≥70% area of an632

average tile (e.g. "necrotic"). The tissue description, composition, and short labels of all 47 HPCs were633

displayed in Supplementary Table 1.634

Assessment of HPC consistency within and across TCGA and AVANT cohorts We per-635

formed various qualitative and quantitative analyses to evaluate the within-cluster and between-cluster636

heterogeneity of HPCs, as well as their transferability from TCGA to AVANT cohorts. Initially, quali-637

tative visual assessments were independently conducted by three experts (ASLPC, JHJMvK, and MP)638

to evaluate the concordance within and discordance between HPCs. This evaluation followed the estab-639

lished protocol for tissue type analysis, utilizing the previously randomly selected 32 tiles per HPC. The640

assessors noted consistent histomorphological patterns within HPCs and diverse patterns across various641

HPCs.642

In addition, we conducted quantitative objective tests within TCGA and AVANT tiles seperately643

to determine if the learned morphological features of the HPCs could be replicated by human eyes. We644

displayed three rows, each containing five tiles, which is referred to as a "question". Among these rows,645

two belonged to the same HPC, while the third row, also referred to as the "odd HPC", were tiles646
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randomly selected from a different HPC. All example tiles were randomly selected within each HPC.647

The researcher (MP) was required to identify the "odd HPC", and upon doing so, the next question648

was presented (example shown in Supplementary Figure 2). In order to calculate the success rate, we649

ran 50 questions per HPC and we repeated the experiment for all 47 HPCs. The test was conducted650

on a closed website accessible through login and was conducted seperately for tiles randomly selected651

from TCGA and AVANT. The conducted experiment exhibited an average completion time of under652

10 seconds per question. The success rate was determined for each HPC by dividing the number of653

incorrect answers by the total number of questions (50 questions per HPC). We hypothesized that most654

HPCs would be distinguishable. However, some HPCs may be challenging to differentiate due to tissue655

similarities, either within the same super-cluster or through similar tissue morphology (e.g., muscle656

tissue and tumor stroma). The results showed that HPCs in close proximity to each other in the PAGA657

or belonging to the same super-cluster were indeed more prone to being mistaken.658

To validate HPCs derived from the TCGA training set were generalized well in the external AVANT659

test set, three assessors independently carried out visual examination of tissue characteristics in 32660

randomly selected tiles from each HPC in both the AVANT trial and the TCGA set, comparing their661

histomorphological features regarding tissue types and composition established in the previous step.662

Assessors confirmed that the consistent and meaningful patterns learned by the Barlow Twins, could be663

replicated across other clinical cohorts like the AVANT trial. To validate our observation, we compared664

the objective test results between TCGA and AVANT, focusing on the overlap in both misclassified and665

correctly classified HPCs across the datasets.666

Linkage between survival-related HPCs, immune landscape, and gene expression data667

We calculated Spearman correlations between HPCs and RNASeq-derived immune features from TCGA-668

COAD data, correcting for false discovery rate (0.05) using Benjamini-Hochberg correction. We cre-669

ated bi-hierarchical clusters for immune features and top 20 significant HPCs linked to OS in both670

standard-of-care and AVANT-experimental groups. Clustering was based on correlation coefficients671

using Euclidean distance and Ward’s aggregation.672

In addition, we performed GSEA to explore the potential associations between HPCs and the major673

cancer hallmark pathways, as previously described [52]. The analysis was conducted within 282 TCGA-674

COAD patients with available gene expression data for 20,530 genes. For each HPC, we calculated the675
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Spearman correlation coefficients with the expression data of these 20,530 genes and sorted the resulting676

correlation coefficients to rank the genes in a descending order. Subsequently, enrichment scores for 50677

major cancer hallmark pathways, as defined by the "MSigDB_Hallmark_2020" gene set [42], were678

computed for each HPC based on the generated ranked gene list. A positive enrichment score indicated679

higher composition of a HPC was associated with gene enrichment in a pathway and a negative value680

suggested higher composition of a HPC was associated with underrepresentation of a pathway. We681

plotted the cancer hallmark enrichment scores for the top 20 important HPCs related to OS, for both682

the general and experimental treatment groups. We set a significance level of 0.01 of the false discovery683

q value. The analysis was conducted using the gseapy (1.0.4) Python package. Two-way hierarchical684

clustering was based on the Euclidean distance of the enrichment scores and Ward’s aggregation method.685

Code and data availability686

All data analyses are based upon publicly available Python software packages and codes are avail-687

able from our previous publication (https://github.com/AdalbertoCq/Histomorphological-Phenotype-688

Learning)[17]. The data that support the findings of this study are available from Genentech Inc., Roche689
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