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Abstract

To model a risk-averse attitude (instead of a risk-neutral attitude), we
may require that the 90% quantile (instead of the expected value) of a
specific uncertain (or random) response satisfy a prespecified threshold
which corresponds with a chance constraint. We include a case study;
namely, an (s, S ) inventory model that is specified in the literature. In
this study we require that the 90% quantile of the service level exceed a
prespecified threshold. So, we need to estimate the optimal values of s and
S, which satisfy this service-level constraint while minimizing the expected
inventory cost. To solve the resulting constrained optimization problem,
we apply a recent variant of “effi cient global optimization”(also known as
“Bayesian optimization”and related to “active”machine learning). Our
numerical results for the case study imply that the mean inventory cost
increases by 2.4% if management is risk-averse instead of risk-neutral.

Keywords: risk aversion, chance constraint, inventory management, simula-
tion optimization
JEL: C0, C1, C9, C15, C44
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1 Introduction

In this paper, we investigate the financial consequences if managers are risk-
averse instead of risk-neutral, in their control of inventory systems. We model
this risk attitude through quantiles that characterize the tail of the probability
density function (PDF) of the disservice level; this level is the complement of
the service level (it is mathematically convenient to measure the disservice level
instead of the service level, as we shall see in (3); quantiles are also used to
quantify “value at risk”in financial portfolio management).
We let w1 denote the percentage (or fraction) of customers that experience

a stockout or disservice, per period (e.g., per day). The 90% quantile of w1–
denoted by q0.90(w1)– implies that the probability is at least 90% that this
percentage does not exceed q0.90(w1). We assume that the managers are risk-
neutral regarding the relevant inventory cost– denoted by w0– which excludes
the hard-to-quantify cost of out-of-stock, so we use a service-level constraint.
Altogether, our goal is to minimize E(w0) (expected value or mean of w0),
while satisfying the constraint q0.90(w1) ≤ c1; e.g., c1 = 0.10. Our formulation
with quantile constraints also covers probabilistic or chance constraints; see (4).
(Another example of quantiles in inventory management is a warehouse with a
capacity c where the selected quantile of the physical inventory PDF should not
exceed this c.)

The precise definition of the service level is a moot issue; e.g.,
https://en.wikipedia.org/wiki/Service_level (edited 22 February 2022)
states “Several definitions of service levels are used in the literature as well

as in practice. These may differ ... with respect to the time interval they
are related to”. That website includes a definition of “β service level (type
2)”, which agrees with our definition. Furthermore, Bashyam and Fu (1998)
discusses various definitions; we use the definition selected in that article. Chen
and Thomas (2017, Table 1) also discusses different definitions. Maitra (2024)
uses a “cumulative demand fill rate”.
We assume that management controls the inventory through the popular

(s, S) model ; i.e., a new order is placed as soon as the inventory position–
defined as on-hand stock minus backorders plus outstanding orders– decreases
below the reorder level s, and the size of this order is such that the inventory
position increases to the order-up-to level S. Additionally, we assume that the
inventory is monitored per period (e.g., per day) p with p = 1, 2, ..., P where
P denotes the end of the evaluation. To find the optimal s and S when orders
may cross in time, we need to apply simulation. Obviously, P terminates the
simulation run. Furthermore, we assume identically and independently distrib-
uted (IID) demand in period p– denoted by Dp– and IID lead time L. Both
Dp and L have known PDFs with known parameters, so, this model does have
aleatory uncertainty, but no epistemic uncertainty; these two types of uncer-
tainty are detailed in Kleijnen (2015). Finally, we assume that P = 30,000 gives
steady-state (stationary or long-run) outputs For more details on the assumed
(s, S) model we refer to Bashyam and Fu (1998).
In practice, (s, S) models– for a single article or stock-keeping unit (SKU)–
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are major building blocks for inventory management with multiple SKUs and
production-inventory supply networks.
Obviously, risk-aversion implies that E(w0) increases when satisfying (say)

q0.90(w1) ≤ 0.10 instead of E(w1) ≤ 0.10. However, it is not obvious how much
E(w0) increases; i.e., how much s and S change, and what the effect is on
E(w0). It is well known that the optimal selection of s and S– given a service
level constraint– is a hard mathematical problem; we summarize some solution
methods.
Kleijnen et al. (2023) combines the popular effi cient global optimization

(EGO) algorithm– which is closely related to Bayesian optimization (BO) and
machine learning (ML), especially active learning– and theKarush-Kuhn-Tucker
(KKT) conditions– which are well-known (first-order necessary) optimality con-
ditions in mathematical programming (MP), but are not used in other EGO
methods. More precisely, EGO uses Kriging or Gaussian process (GP) “meta-
models”(approximations, emulators, surrogates) of simulation models. EGO is
a rapidly evolving field.
Whereas Kleijnen et al. (2023) assumes deterministic simulation, Angün

and Kleijnen (2023) assumes random or stochastic simulation with outputs that
are means (not quantiles). We shall summarize Angün and Kleijnen (2023)’s
algorithm– which we call EGO-KKT– and apply it to our (s, S) model with a
service-level constraint involving a quantile.
Maitra (2024) solves a related optimization problem– in a stochastic system

dynamics model of inventory management– via BO, but uses neither quantiles
nor the KKT conditions. Ouyang et al. (2023) uses stochastic Kriging (SK)
as Angün and Kleijnen (2023) does, but does not use EGO or BO for the
optimization of an (s, S) model without a service-constraint; i.e., this model
assumes known out-of-stock cost. Coelho and Pinto (2018) applies EGO– using
ordinary Kriging (OK)– to minimize the mean (not a quantile) response time
of a medical emergency system by allocating ambulances to several city bases.
The main result of our (s, S) case study is that E(w0) increases by 2.4% if

management is risk-averse (modeled by q0.90(w1)) instead of risk-neutral (mod-
eled by E(w1)).
We organize the rest of this paper as follows. Section 2 reviews related recent

literature. Section 3 details the mathematical formulation of our inventory
problem, and its solution via Angün and Kleijnen (2023)’s EGO variant. Section
4 gives numerical results for the simulation optimization of our (s, S)model with
a constraint for either E(w1) or q0.90(w1). Section 5 summarizes our conclusions
and possible future research topics.

2 Literature review

We summarize some recent publications on quantiles of simulation output.
These quantiles are frequently used as risk measures for different types of prob-
lems such as our simulation optimization problems and input uncertainty (or
epistemic) problems discussed in Parmar et al. (2022) and Song et al. (2024).
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(We do not discuss publications– such as Lu and Paulson (2023)– that use
quantiles of the infill criterion, which is used to select input combinations to be
simulated; see (12).)
Chang (2015) considers unconstrained optimization of a quantile, including

optimal order quantities of multiple SKUs while assuming known back-order
penalty cost. That publication does not use EGO. Chang (2015) is extended
in Chang and Lu (2016), adding deterministic output constraints solved by
penalty functions (whereas we allow random output constraints and use EGO
combined with a penalty function that measures how well the KKT conditions
hold). Chang (2016a) further extends Chang (2015), adding constraints for
quantiles– while another quantile is minimized– and deterministic constraints
for inputs. Chang (2016b) considers a deterministic simulation model with in-
puts sampled from given PDFs. Chang and Cuckler (2022) develops a simulation
optimization method that minimizes a specific quantile (e.g., the 95% quantile)
while satisfying an upper bound for the total cost which is assumed analytically
available. That publication applies that method to solve vehicle fleet sizing for
an automated material handling system in a wafer fab in Taiwan, minimizing a
specific quantile of transport time of wafer lots; obviously, this fleet sizing im-
plies integer (instead of continuous) variables. The method does not use EGO.
Chang and Lin (2023) includes a chance constraint in a simulation-optimization
method for system reliability via the allocation of redundant system components
(obviously, the number of components is an integer); that method does not use
EGO.
Hu et al. (2022) considers unconstrained optimization of a quantile in invest-

ment portfolio simulation (instead of inventory simulation), but that publication
does not estimate these quantiles and their derivatives through Kriging.
Wang et al. (2022) discusses some algorithms for unconstrained optimization

of loss functions. These algorithms should not require strict properties for the
loss functions such as convexity, and should allow computationally expensive
simulations. Therefore that article uses metamodels; namely Kriging models.
Baker et al. (2022, Section 3.3.1) briefly discusses output quantiles, in a

review of Kriging for analyzing stochastic simulation.
Kleijnen (2015, p. 208) gives additional references for Kriging of quantiles.

3 Mathematical problem formulation

Section 3.1 discusses quantiles in our (s, S) simulation model. Focusing on these
quantiles, Section 3.2 summarizes constrained optimization. Section 3.3 sum-
marizes Kriging. Section 3.4 summarizes EGO combined with KKT conditions.

3.1 An (s, S) simulation model with a quantile constraint

Following Bashyam and Fu (1998, eq. 3), we define Yp as the stockout (demand
not satisfied from on hand stock) in period p and we estimate the disservice
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level through the running average of P ′ periods:

w1;P ′ =

∑P ′

p=1 Yp∑P ′

p=1Dp

with P ′ = 1, ..., P = 30, 000. (1)

Note: Because E(Dp) is a known input, an alternative estimator replaces
the denominator in (1) by P ′ × E(Dp); however, we do not know whether this
alternative estimator has a smaller mean squared error (MSE). An alternative
definition of the service level replaces the right-hand side in (1) by Σ(Yp/Dp)/P

′,
which turns out to give lower observations on w1;P ′ .
We let F (w1) denote the marginal cumulative density function (CDF) of

w1;P ′ (serial correlations among w1;P ′ do affect the joint CDF, but not the
marginal CDF in the steady state). Then the standard definition of the (1−α)
quantile of w1 is

q1−α(w1) = F−1(1− α) = inf [w1 : F (w1) ≥ 1− α]; (2)

see Alexopoulos et al. (2019, p. 1162) and Lolos et al. (2023), which give more
references.
Whereas Bashyam and Fu (1998) uses E(w1;P ′) with P ′ ↑ ∞ and the estima-

tor w1;P ′ with P ′ = P = 30,000, we use q1−α(w1) and the estimator q̂1−α(w1)–
computed as follows. We sort the P ′ observations w1;P ′ in ascending order,
so w1;(1) ≤ w1;(2) ≤ ... ≤ w1;(P ′−1) ≤ w1;(P ′); i.e., we use the order statistic
w1;(d(1−α)P ′e) (where dxe denotes the ceiling function of the real number x), so,
α = 0.10 and P ′ = 30,000 gives q̂1−α(w1) = w1;(27000). This popular quantile
estimator is also used in Alexopoulos et al. (2019), focusing on confidence inter-
vals (CIs) for quantiles based on a single replication, whereas we use multiple
replications– as we shall see below (Section 3.3).
The upper part of Fig. 1 displays the estimated PDF (or histogram) of w1;P ′

that uses 100 bins, for P ′ = 1, ..., 30,000, in a specific simulation replication.
We start (initialize) this replication with an on-hand (physical) inventory of S
units and S = 1,247.8 and s = 1,161.9 (these specific values for s and S are the
estimated optimal values in Angün and Kleijnen (2023), using the constraint
E(w1) ≤ 0.10 instead of q1−α(w1) ≤ 0.10). This histogram shows w1;P ′ = 0 for
a few P ′-values (actually, these values occur in the initial phase, because the
simulation starts with a high physical inventory, zero backorders YP ′ , and zero
outstanding orders; it turns out that YP ′ = 0 for P ′ = 1, ..., 21).
The lower part of Fig. 1 displays the estimated CDF or empirical density

function (EDF), which makes jumps at the values of w1;(P ′); because some
w1;(P ′)-values turn out to be the same, some jumps are higher than 1/30,000.
This plot implies (for example) q̂0.80 = 0.1158, q̂0.90 = 0.1171, q̂0.95 = 0.1178,
and q̂0.99 = 0.1226. To eliminate the initial, transient phase, we might delete
the first observations on w1:P ′ ; however, we find that eliminating the first 30
observations changes only the fourth decimal of q̂0.80, q̂0.90 and q̂0.95 and the
third decimal of q̂0.99.
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Figure 1: Running average of disservice fraction after P ′ periods with P ′ = 1,
..., 30,000: PDF and CDF

3.2 Optimization with a constrained quantile

Whereas Angün and Kleijnen (2023) investigates general constrained optimiza-
tion problems with simulation estimates of means instead of quantiles, we focus
on a specific (s, S) simulation model with the goal output E(w0), denoting the
mean cost (see Section 1) and the constrained output q0.90(w1) denoting the
90% quantile of the disservice fraction (see Section 3.1). Let c1 denote the up-
per threshold for q0.90(w1). Let x = (x1, x2)

′ denote the k = 2 control or decision
variables x1 = s and x2 = Q with Q = S - s; it is convenient not to use x2 = S
> s (see Section 4 on our numerical experiments). Finally, we use the popular
box constraints lj ≤ xj ≤ uj for the (deterministic) inputs xj , which determine
the experimental area. Altogether, we wish to solve the following constrained
optimization problem:

min
x
E[w0(x)] subject to

q1−α[w1(x)] ≤ c1
l ≤ x ≤ u with l = (l1, l2)

′, u = (u1, u2)
′. (3)

This problem formulation also covers chance constraints:

Prob[w1(x)] ≤ c1] ≥ 1− α ⇐⇒ q1−α[w1(x)] ≤ c1. (4)

However, a practical simulation model is a black box ; i.e., E[w0(x)] and
q1−α[w1(x)] in (3) are unknown input/output (I/O) functions. Consequently,
we do not know whether this problem is non-convex (with multiple optima)
or convex (with a single optimum). Like many authors, we estimate these
functions through Kriging (meta)models, which give explicit approximations of
the implicit I/O functions defined by the underlying simulation model. More
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details on Kriging are given in Kleijnen (2015, p. 284). For our problem defined
in (3) we use specific Kriging models, as follows.

3.3 Kriging

Like most publications on Kriging/GP in EGO/BO, we apply univariate Kriging
instead of multivariate Kriging or co-Kriging ; i.e., we ignore the correlations
between different types of simulation outputs (in our case study, the correlation
between w0(x) and w1(x); obviously, q̂(1−α)[w1(x)] depends on w1(x)). Because
the (s, S) simulation is stochastic instead of deterministic, we apply SK instead
of OK. We use the– rather complicated– formulas for the SK predictor ŷ and its
variance s2(ŷ) that are derived in Ankenman et al. (2010) (this ŷ and Yp in (1)
denote different random variables). These formulas assume mi > 1 replications
for the old simulated input combination xi (i = 1, ..., n where n is selected via
(8)). Obviously, these replications have a common fixed simulation-runlength
P = 30,000, and they use non-overlapping streams of pseudorandom numbers
(PRN). These replications give themi IID outputs w0;r(xi) and q̂(1−α);r[w1(xi)]
with r = 1, ..., mi. For SK, we find it convenient to denote these two outputs
by o0;r = w0;r and o1;r = q̂1−α;r(w1). Obviously, these mi replications give the
averages

oh(xi) =

∑mi

r=1 oh;r(xi)

mi
(h = 0, 1) (i = 1, ..., n) (5)

and the (classic) unbiased estimators of the (heterogeneous) variances

s2[oh(xi)] =

∑mi

r=1[oh;r(xi)− oh(xi)]
2

(mi − 1)
; s2[oh(xi)] =

s2[o(xi)]

mi
. (6)

SK assumes that the so-called intrinsic noise– caused by the PRN– has a
Gaussian (or normal) distribution with zero mean and heterogeneous variances.
We apply SK to w0(xi) and q̂1−α[w1(xi)], which are averages of mi IID obser-
vations w0;r and q̂(1−α);r[w1(xi)] so we assume that the central limit theorem
(CLT) applies; i.e., we assume that w0(xi) and q̂1−α[w1(xi)] are normally dis-
tributed. We denote the intrinsic noise by eh;r(xi)– or briefly ei;h;r– and its
average by eh(xi)– or ei;h. Let Σe;h denote the covariance matrix of ei;h. Like
most publications on SK, we do not apply common random numbers (CRN) so
Σe;h is an n× n diagonal matrix. We define Σ̂e;h as the corresponding matrix
with the main-diagonal elements s2[oh(xi)] (defined in (6)).
Besides intrinsic noise, Kriging (including SK) considers extrinsic noise which

models how the Kriging outputs– of a given type h– at two points x and x′ are
more correlated, the “closer”x and x′ are– which is a realistic assumption if
the simulation output functions are smooth. This noise implies that a Kriging
model is a stationary GP or a multivariate normal distribution with a specific
covariance matrix. This covariance matrix is determined by the specific type of
correlation function that is selected; we select the popular Gaussian or squared
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exponential correlation function with the so—called length-scale hyperparameters
θh = (θh;1, ..., θh;k)′ where θh;j ≥ 0:

ρ(θh, x, x
′) =

k∏
j=1

exp [−θh;j(xj − x′j)2] = exp [−
k∑
j=1

θh;j(xj − x′j)2], (7)

which implies that the correlation between oh(x) and oh(x′) decreases expo-
nentially, as x and x′ are farther apart.

Because we use MATLAB software for SK (developed by Gonzalez– see Ac-
knowledgment) to compute the predictor ŷh(x∗) for a new point x∗ and its
estimated variance s2[ŷh(x∗)]– given the old points xi and the corresponding
suffi cient output statistics oh(xi) and s2[oh(xi)] (defined in (5) and (6))– we
present the exact formulas for ŷh(x∗) and s2[ŷh(x∗)] in Appendix 1. Obvi-
ously, these xi determine the n × k (deterministic) input matrix X and the
n-dimensional (random) output vector oh(xi) and the diagonal covariance ma-
trix for the intrinsic noise Σ̂e;h with s2[oh(xi)]. To compute θ̂h (in (7)), we
must select a search area; we select the lower bound 0.001 and Gonzalez’s upper
bound 31/2, for each θh;j .
We let n0 denote the initial number of input combinations of the input matrix

X. To select n0, we follow Angün and Kleijnen (2023):

n0 = (k + 1)(k + 2)/2 if k ≤ 6; else n0 = 5k. (8)

Our (s, S) example has k = 2, so (8) gives n0 = 6. Like most publications
on Kriging, we use Latin hypercube sampling (LHS) to select a space-filling de-
sign with l ≤ x ≤ u (see (3)); like Angün and Kleijnen (2023) we use LHS
with midpoints, so the n0 points projected onto the k axes are equidistant (in-
stead of clustered), which gives better θ̂h. LHS with midpoints is an option in
MATLAB’s function lhsdesign.
Besides n0, we must select m0 which denotes the initial number of replica-

tions for point i with i = 1, ..., n0. We start with m0 = 2, which is the smallest
value of m0 that enables the computation of s(oh) (defined in (6)). Because our
(s, S) model has a large simulation-runlength P , we expect a small s(oh) so m0

= 2 might suffi ce.
Like Angün and Kleijnen (2023), we validate the SK models– estimated

from the initial or pilot stage with n0 input combinations– via the popular
leave-one-out cross-validation (LOO-CV) test with prespecified error rate (say)
αCV . In our numerical experiment with an (s, S) model, we specify αCV =
0.20. LOO-CV means that we delete xi (with i = 1, ..., n0) and its oh(xi) and
s2[oh(xi)], and use the remaining simulation I/O data to compute ŷ−i;h and
s2(ŷ−i;h), etc. We use the Bonferroni inequality with 2n0 CIs (because i = 1,
..., n0 and our (s, S) model has two outputs), two-sided CIs (so we halve αCV),
and the standard normal variable z; i.e., we reject the SK models if

maxi;h

[
|oi;h − ŷ−i;h|√

s2(oi;h) + s2(ŷ−i;h)

]
> z1−[αC V /(4n0)]. (9)

8



If (9) holds, then we add a single replication to those points that require addi-
tional replications according to the following procedure.
Angün and Kleijnen (2023) applies Law (2005, p. 505)’s sequential procedure

for estimating E(oh) with prespecified relative error γ (with 0 < γ < 1) and
prespecified confidence level 1− αm (we use αm, because we have already used
α in q1−α(w1)); in our experiment with an (s, S) model, we specify γ = 0.10
and αm = 0.10:

m̂h = min

[
r ≥ m :

tr−1;1−αm/2sh(m)/
√
r

|oh(m)| ≤ γ

1 + γ

]
, (10)

where sh/oh is the coeffi cient of variation of output h. However, if oh(m) ≈
0, then (10) gives m̂h so high that we apply Law (2005, p. 504)’s procedure;
i.e., in (10) we replace γ/(1 + γ) by the absolute error β and |oh(m)| by the
constant 1. Indeed, our (s, S) model tends to give q̂1−α[w1(x)] ≈ 0 if x lies far
away inside the feasible area so w1;r(x) ≈ 0; we then specify β = 0.01.
Because the simulation model gives multiple types of output oh, we apply

(10)– possibly adapted for oh(m) ≈ 0– such that this equation holds for all
these outputs, at a given x. So, the estimated desired number of replications
at x is

m̂i(x) = max
h

[m̂h(x)]. (11)

Our replication rule stops adding replications for x, as soon as mi ≥ m̂i holds.
After the initial stage with n0 simulation input combinations, we also apply

this replication rule to the one input combination that a next iteration selects as
the new combination to be simulated; see the next section. (Chang and Cuckler
(2022, Section 3.2) also discusses the selection of m in simulation optimization
involving a quantile; Baker et al. (2022, Section 4) discusses the selection of n
and m in the prediction of means and quantiles.)

3.4 EGO with KKT conditions

To solve our problem defined in (3), we apply Angün and Kleijnen (2023)’s
algorithm which we call EGO-KKT. EGO is a popular method that uses Kriging
and was originally developed for non-constrained optimization in deterministic
simulation. Because the simulation-optimization problem may have multiple
optima, EGO balances global search and local search– or exploration of the
whole experimental area versus exploitation of a local promising area. EGO is
sequential; i.e., it selects a new input combination x∗ to be simulated next–
given the n old (already simulated) combinations xi with i = 1, ..., n (in the
initial stage, n = n0; in the next stages n is updated one-by-one). To select x∗,
EGO’s most popular criterion is the infill criterion or the acquisition function
that uses the expected improvement (EI) which– in deterministic unconstrained
minimization– is defined as

EI(x∗) = E[max (w0; min − ŷ(x∗), 0)] with w0; min = min
1≤i≤n

[w0(xi)]. (12)
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Jones et al. (1998) derives the following estimator ÊI0(x∗) where Φ and φ
denote the CDF and the PDF of z:

ÊI0(x∗) = (w0; min − ŷ0(x∗)) Φ

(
w0; min − ŷ0(x∗)

s[ŷ0(x∗)]

)
+

s[ŷ0(x∗)]φ

(
w0; min − ŷ0(x∗)

s[ŷ0(x∗)]

)
.

If s[ŷ0(x∗)] is high, then ÊI0(x∗) stimulates exploration instead of exploitation.
For random simulation (such as our (s, S) simulation), Angün and Kleijnen

(2023) uses the estimated modified EI (MEI):

M̂EI(x) = (ŷ0; min − ŷ0(x)) Φ

(
ŷ0; min − ŷ0(x)

sOK [ŷ0(x)]

)
+

sOK [ŷ0(x)]φ

(
ŷ0; min − ŷ0(x)

sOK [ŷ0(x)]

)
. (13)

To control the probability of selecting an infeasible solution, EGO-KTT uses
a prespecified αinfe and accepts x as a feasible point only if in our experiment
with an (s, S) model

ŷ1(x) + z(1−αi n f e )s[ŷ1(x)] ≤ c1. (14)

In our experiment we select αinfe = 1% (so z(1−α) = 2.3263).

EGO-KKT penalizes M̂EI(x)– where x satisfies (14)– if theKKT conditions
do not hold at this x (as we shall see in (18)). These conditions use ∇0 (gradient
of E[w0(x)]) and ∇1 (gradient of q1−α[w1(x)])– provided the constraint for
q1−α[w1(x)] holds (i.e., x lies on the boundary of the feasible area). These ∇h
(h = 0, 1) imply that E[w0(x)] and q1−α[w1(x)] are differentiable, so we assume
that F (w1) (defined in (2)) is differentiable (i.e., F (w1) has no jumps or kinks).
The black-box simulation model implies that ∇h and the boundary are un-

known. Therefore, EGO-KKT estimates ∇h via ŷ(x), which gives ∇̂h(x) =
∇[ŷh(x)] = (∂[ŷh(x)]/∂xj)

′. Defining τ2h = V ar(yh), Angün and Kleijnen (2023)
derives that (7) gives

∂[ŷh(x)]

∂xj
= −2τ̂2h θ̂h;j{Σni=1ch;i(x∗;j − xi:j ) exp[Σkj′=1 − θ̂h;j′(x∗;j′ − xi:j′ )2]}.

(15)
Furthermore, EGO-KKT estimates that the output constraint is binding at x if
the following two-sided CI with prespecified αB C (where BC stands for “binding
constraint”) holds:

|ŷ1(x)− c1|
s[ŷ1(x)]

≤ z1−α
B C /

2. (16)

Because in our (s, S) simulation, the input bounds l and u in (3) are rather

arbitrary, we assume that the input constraints are not binding when searching

10



for x (if input constraints are binding, then Angün and Kleijnen (2023) extends
the KKT conditions).
Letting the symbol ˜ denote least squares (LS) estimators, we obtain the

following LS estimator of the Lagrange multiplier :

λ̃1(x) = [∇̂1(x)
′∇̂1(x)]−1∇̂1(x)

′
[−∇̂0(x)].

This λ̃1(x) gives the following LS model with the explained (dependent) variable
−∇̃0(x) and the explanatory (independent) variable ∇̂1(x) that models the
KKT stationarity conditions:

−∇̃0(x) = λ̃1(x)∇̂1(x)] with λ̃1(x) ≥ 0.

To quantify how well these conditions hold, Angün and Kleijnen (2023) com-
putes the angle between ∇̂[ŷ0(x)] and ∇̃[ŷ0(x)]. It is well known that this angle
is measured by the following cosine where • denotes the inner product of two
vectors and || || denotes the l2-norm:

c̃os(x) =
∇̂[ŷ0(x)] • ∇̃[ŷ0(x)]

||∇̂[ŷ0(x)]|| × ||∇̃[ŷ0(x)]||
. (17)

Ideally, ∇̂[ŷ0(x)] and ∇̃[ŷ0(x)] point into exactly the same direction so their
angle is zero and c̃os(x) = 1.
Altogether, EGO-KKT tries to find x̂o (estimated optimal x) that maximizes

the infill criterion:
x̂o = arg [max

x
M̂EI(x)× c̃os(x)] (18)

where x in c̃os(x) lies within the two-sided CI for the binding constraint in (16),

and the search is limited to the estimated feasible area defined by the one-sided
CI in (14).
To find this x̂o , EGO-KKT uses MATLAB’s function for finding the min-

imum of a constrained problem– called fmincon. Because fmincon is a local
optimizer, we use nfmincon > 1 starting points; for our (s, S)model we select
nfmincon = 20. To sample these nfmincon points in l ≤ x ≤ u, we apply LHS
without midpoints. Because fmincon requires a feasible starting point, we use
only feasible points among these nfmincon points. For further details on the use
of fmincon in EGO-KKT, we refer to Angün and Kleijnen (2023).
After finding x̂o (solving (18) with its constraints), EGO-KKT obtains repli-

cations for x̂o– applying (11). EGO-KKT terminates when it satisfies a pre-
specified stopping criterion; in our experiments, it terminates after 95 iterations.
More details of EGO-KKT are given in Angün and Kleijnen (2023), including
a pseudo-code for EGO-KKT.

4 Numerical example: a specific (s, S) model

For our numerical experiment, we use a PC with multiple cores and parallel
software that enable 12 restarts of EGO-KKT such that each restart samples
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its own initial design. Such parallel computing implies that the restarts do not
increase wall-clock time. Within each of these restarts, we use 20 non-parallel
restarts of fmincon.
In our specific (s, S) discrete-event simulation, demand D is exponentially

distributed with mean 100, and lead time L is integer-valued Poisson distributed
with mean 6. The basic sequence of events in each period p is as follows:
Orders are received at the beginning of the period, the demand for the period
is subtracted, then an order review is carried out.
To quantify the consequences of risk aversion, we compare the results of

an (s, S) simulation model with a constraint for the expected disservice level
(also studied in Angün and Kleijnen (2023)) and our inventory simulation. In
Section 1 we have already mentioned that risk-aversion– modeled through a
“high”quantile such as q0.90;1– implies that s and S change. Now we add that
obviously s and S increase, so we should explore an experimental area with
higher maximum values for s and S. Therefore we now keep the same minimum
value for s as Angün and Kleijnen (2023) uses; namely, smin = 600. For the
maximum of s we select smax = 2,400 (instead of 1,200). Furthermore, besides
x1 = s we define x2 = Q = S − s. To select the bounds for Q, we again use the
economic order quantity (EOQ), which equals 85. We vary Q between EOQ/8
= 10.625 and 8×EOQ = 680, Altogether, we use the box constraints 600 ≤ s ≤
2,400 and 10.625 ≤ Q ≤ 680.

Table 1: Initial design for s and Q with S = s + Q in restart 1 of macrorepli-
cation 1, with its average outputs w0 and q̂0.90;1 and their estimated standard
deviations s; * denotes q̂0.90;1(xi) significantly higher than c1 = 0.1; number of
replications m

s Q S = s+Q w0 s(w0) q̂0.90;1 s(q̂0.90;1) m

1950 66.4 2016.4 1423.3 0.9682 0.0014 0.0002 14
1650 624.2 2274.2 1412.1 1.2475 0.0044 0.0005 14
2250 178.0 2428.0 1787.3 0.9550 0.0000 0.0000 3
1350 289.5 1639.5 943.0 1.7477 0.0277 0.0015 4
750 401.1 1151.1 483.8 0.7007 0.2970* 0.0058 3
1050 512.7 1562.7 777.4 5.0430 0.0890 0.0046 3

As we discussed in Section 3.3, we initially select n = 6 for Xn×k, and
m0 = 2. Columns 1 and 2 of Table 1 display an example of X6×2 selected
through LHS-with-midpoints of s and Q (so S = s + Q in column 3) in restart
1 of macroreplication 1; e.g., n = 6 and 600 ≤ s ≤ 2,400 implies that the
smallest midpoint for s is 750 (see cell (5,1)). Columns 4 and 5 display w0
and s(w0), computed from m replications per (s, S) combination. Likewise,
columns 6 and 7 display q̂0.90;1 and s(q̂0.90;1), which determine a one-sided CI
such that the symbol * denotes a q̂0.90;1-value that is significantly higher than
c1 = 0.10. Actually, αm = 0.10 implies that q̂0.90;1 is significantly higher than
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Figure 2: Example of trajectory’s first and last iterations in the search for
(ŝo , Ŝo) where integers identify the iteration

c1, in combination 5, which has the lowest s and S. This combination also
gives the lowest w0 (low s and S implies low average inventory) The other five
combinations give low q̂0.90;1-values, so they are points inside the feasible area.
The last column displays m, which depends on sh/oh; e.g., the combinations 1
and 6 give s1/o1 equal to 0.0002/ 0.0014 = 0.14 and 0.0046/ 0.0890 = 0.05 so
m equals 14 and 3 respectively. Combination 3 gives q̂0.90;1 = 0.0000, so we use
the absolute error β = 0.01 instead of γ.
After this initial design– or iteration 0– the EGO-KKT algorithm estimates

the optimal point (ŝo , Ŝo) and the corresponding optimal outputs w0 and q̂0.90;1;

see the trajectory of the search for (ŝo , Ŝo) in Fig. 2, which displays (ŝo , Q̂o) (so
Ŝo = ŝo + Q̂o ) for the initial design, the first six iterations, and the last six
iterations for restart 2 of macroreplication 1. We select this restart because it is
one of the few trajectories that includes a point that is estimated to be infeasible
upon actual simulation. We (rather arbitrarily) decided to stop the search
for the (unknown) true optimum, after 95 iterations. In each iteration, the
algorithm selects a new point x̂o that it estimates to be optimal. However, after
actual simulation, the algorithm may estimate (via (14)) that x̂o is infeasible–
see iteration 4 (colored read; plots use color in the PDF file)– so it does not
change the estimated optimal input x̂min = (ŝo , Q̂o). If the algorithm estimates
x̂oto be feasible, then it may estimate that this x̂o does or does not give a better
x̂min ; i.e., w0(x̂min) decreases or stays the same as in the previous iteration.
Because we do not know the true I/O functions wh(x), we cannot display the
boundary of the feasible area in the plot; iteration 4 does confirm that too small
values for ŝo and Q̂o do not satisfy the service-level constraint.
Appendix 2 displays a plot form for each of the 95 iterations in one macrorepli-

cation, for the two alternative constraints This plot shows that the smallest m
is 3 and the highest m is14 (these values also appear in the pilot stage displayed
in Table .1, which samples the experimental area uniformly). As we expected,
the q0.90(w1) constraint more often requires 14 replications. In total, the 95 iter-
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Figure 3: Final (ŝo , Q̂o) with either E[w1(x)] ≤ 0.1 (red balls) or q0.90[w1(x)] ≤
0.1 (blue squares); lines denote averages

ations for the q0.90(w1) constraint require 709 simulation observations, whereas
the E(w1) constraint requires 449 observations; i.e., on average, the q0.90(w1)
constraint increases m by 58%.
Next we decide to obtain R = 10 macroreplications, which sample different

X6×2 (so the smallest midpoint for s is likely to be combined with a midpoint
for Q that is not displayed in Table 1). We do not display the resulting Tables,
but only mention that all combinations require m > m0 = 2 (because s(q̂0.90;1)
is relatively high).
Fig. 3 displays (ŝo , Q̂o) for the E[w1(x)] constraint (red balls) and for the

q0.90;1 constraint (blue squares), respectively, after 95 iterations for each of the
10 macroreplications. Given the scale of the plot, some (ŝo , Q̂o) combinations
coincide; e.g., “5”means that five combinations coincide for the E[w1(x)] con-
straint. The average values of ŝo and Q̂o are displayed by lines. This plot shows
that the q0.90;1 constraint gives a higher average for ŝo . This higher ŝo implies
that the inventory level remains relatively high during the P simulated peri-

ods. Because the total demand during these P periods remains constant, Q̂o
decreases; i.e., smaller orders are placed more frequently. Furthermore, when
the constraint changes, ŝo and Q̂o do not change much– given the scale of the
plot (the total experimental area is defined by 600 ≤ s ≤ 2,400 and 10.625 ≤ Q

≤ 680). However, the key question is whether changes in ŝo and Q̂o have large
effects on the cost and service level; we answer this question next.
Fig. 3 gives Fig. 4, which displays the estimated disservice level versus

cost. This plot shows that the average values of the disservice measures w1 and
q̂0.90;1 are close to their (common) threshold 0.10, and these values are nearly
the same; i.e., our algorithm searches for the constrained optimum, and finds it
near the boundary of the feasible area (this algorithm stays on the “safe”side
of the constraint; see αinfe = 1% in (14)). This plot also shows that the average
cost w0 is higher for the q0.90[w1(x)] constraint than it is for the E[w1(x)]
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Figure 4: Final (q̂0.90;1, w0) with E[w1(x)] ≤ 0.1 (red balls), q0.90[w1(x)] ≤ 0.1
(blue squares); lines denote averages

constraint; Appendix 3 gives the precise values, which imply that w0 is 2.4%
higher (namely, (659.7 - 643.9)/643.9 = 0.024). This 2.4% increase may be
prohibitive in supermarket inventory management with its small profit margin.
This appendix also details our statistical analysis of Fig. 4, which shows that
w0 for the q0.90[w1(x)] constraint is significantly higher if we use a type-I error
rate of 10% or 5% (not 1%).

5 Conclusions and future research

In this paper we investigated the cost of risk-aversion in an inventory system
that is controlled by an (s, S) model with parameters specified in Bashyam and
Fu (1998). We defined risk-aversion as the requirement that the 90% quantile–
instead of the expected value– of the disservice level remain below 0.10. To
estimate the values of the decision variables s and S that satisfy this service-
level constraint while minimizing the expected inventory cost, we apply Angün
and Kleijnen (2023)’s algorithm that combines EGO with the KKT conditions.
Our numerical results show that the risk-averse requirement increases cost by
2.4%. It is up to management to decide whether this cost increase is acceptable.
In future research, we may investigate epistemic uncertainty (besides aleatory

uncertainty). Parmar et al. (2022) investigates this uncertainty– but not in the
context of optimization. Wauters (2024) investigates epistemic and aleatory
uncertainties in robust optimization.
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Appendix 1: Stochastic Kriging: predictor and variance formulas
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Let Mh denote the extrinsic noise of output h. Kriging assumes that Mh is
independent of the intrinsic noise eh. ThisMh has the mean µh = E(yh) and the
variance τ2h = V ar(yh), so the correlation matrix Rh = (ρi;i′;h) equals τ−2h ΣM ;h

with the covariance matrix ΣM ;h = (Cov(yh;i, yh;i′)) where yh;i = yh(xi) and
i
′
= 1, ..., n. The correlations between the Kriging outputs of type h at the

new point x∗ and the n old points are ρh(x∗) = τ−2h σM ;h(x∗) with the n-
dimensional covariance vector σM ;h(x∗) = (σh;∗) = (Cov(yh;∗, yh;i) with yh;∗ =
yh(x∗). Like most publications on SK, we assume constant means µh = E(yh)
(so we use OK) instead of low-order polynomials in x (assumed in universal
Kriging). Finally, 1n denotes the n-dimensional vector with all elements equal
to 1. Like most publications on Kriging (including SK), we use the maximum
likelihood estimator (MLE) for the parameters of the extrinsic noise and the
unbiased estimators for the intrinsic noise; we let the symbol ̂ denote these
MLEs and unbiased estimators. Using these symbols, SK gives the predictor

ŷh(x∗) = µ̂h + σ̂M ;h(x∗)
′(Σ̂M ;h + Σ̂e;h)−1(oh−µ̂h1n), (19)

and

s2[ŷh(x∗)] = τ̂2h − τ̂4hρ′h(x∗)[τ̂
2
hRh + Σ̂e;h]−1ρh(x∗) + δ̂2h[1′n(τ̂2hRh + Σ̂e;h)−11n]−1

with δ̂h = 1− 1′n(τ̂2hRh + Σ̂e;h)−1ρh(x∗)τ̂
2
h . (20)

The modified EI (MEI) also uses s2OK , which denotes the estimated variance of
the OK predictor; obviously, s2OK equals s[ŷh(x∗)] after deleting Σ̂e;h in (20).

If the Gaussian correlation function is selected, then Mh is specified by the
parameter vector ψh = (µh, τ2h , θh;1, ..., θh;k)′. The MLE of ψh is denoted by
ψ̂h.

Appendix 2: Number of replications per iteration

Fig. 5 displays m for the two alternative constraints, for each of the 95
iterations in a specific macroreplication.

Appendix 3: Statistical analysis of numerical results for (s, S)
model

Fig. 6 displays the scatterplot of w0;r in (w1;r, w0;r) versus w0;r in (q̂0.90;1;r, w0;)
in R = 10 macroreplications; i.e., the main text displays a plot with the final
(w1;r, w0;r) (using E[w1(x)] ≤ 0.1) and the final (q̂0.90;1;r, w0;r) (using the con-
straint q0.90;1 ≤ 0.1) for macroreplication r with r = 1, ..., R. Obviously, the
two constraints given different observations on w0. In a given macroreplication
r for the two constraints, we use the same PRN seed to start the search for
the optimum during 95 iterations. However, we do not try to synchronize the
PRN streams with the same seed, so these streams get out-of-step because the
q0.90;1 constraint tends to require more replications than the E(w1) constraint
does; see Fig. 5. Therefore we hypothesize that the observations on w0 for the
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Figure 5: Number of replications m per iteration in a specific macroreplica-
tion; red balls correspond with the E(w1) constraint and blue squares with the
q0.90(w1) constraint

Figure 6: Scatterplot of w0;r in (w1;r, w0;r) versus w0;r in (q̂0.90;1;r, wo;r) with
r = 1, ..., 10
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two constraints in the same macroreplication are only weakly correlated; see the
scatterplot in Fig. 6. (This scatterplot has five observations on w0 for the E(w1)
constraint that are very close to 635, which agrees with plot in the main text.)
Let w0;E and w0;q0.90 denote wo when using the constraint E[w1(x)] ≤ 0.1 and
q0.90;1 ≤ 0.1, respectively. We denote the estimated correlation coeffi cient for
(w0;E ,w0;q0.90) by ρ̂(w0;E , w0;q0.90) or briefly ρ̂0. The data that give Fig. 6, also
give ρ̂0 = −0.1965. To test the null-hypothesis H0: E(ρ̂0) = 0, we use the
well-known formula

tR−2 = ρ̂0 ×
√
R− 2

1− ρ̂20
(21)

which gives t8 = −0.1965× [8/(1−0.19652)]1/2 = −0.5668. So if the alternative
hypothesis is H1: E(ρ̂0) > 0 (because of the expected effect of CRN), then p
= PR(t8 > −0.5668) = 0.7068 so– for any usual value of the type-I error rate
(say) αI– we do not reject E(ρ̂0) = 0 in favor of E(ρ̂0) > 0. If H1: E(ρ̂0) 6=
0, then p = 2 × PR(t8 < −0.5668) = 2 × 0.2932= 0.5864, so we again do not
reject E(ρ̂0) = 0.
To test whether w0;q0.90and w0;E have different expected values, we might

use the paired t statistic (even though (21) does not reject E(ρ̂0) = 0):

tR−1(q0.90) =
d

sd
with dr = w0;q0.90;r − w0;E;r, (22)

which gives 15.7089/7.5083 = 2.0922 so p = PR(t9 > 2.0922) = 0.0330 so for
αI = 10% or αI = 5% we “accept”E(d) > 0 or E(w0;q0.90) > E(w0;E) (for αI
= 1% we do not reject E(d) = 0).
Instead of (22) we may use the two-sample t statistic, assuming that w0;q;r

and w0;E;r are independent and have equal variances (σ2(w0;q0.90) = σ2(w0;E))
so we pool the estimated variances, which doubles the degrees of freedom:

t2R−2(q0.90) =
w0;q0.90 − w0;E√

s2(w0;q0.90) + s2(w0;E)
, (23)

which gives (659.6536−643.9447)/(32.1001+15.5054)1/2 = 2.2768 so p = PR(t18
> 2.2768) = 0.0176, so αI = 10% or αI = 5% implies that we “accept”E(w0;q0.90)
> E(w0;E).
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