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Abstract

Clearing payments are payments between agents to settle their mutual liabilities.
The interdependence between agents in financial networks complicates the analysis
of clearing payments as the extent to which an agent can pay its creditors depends
not only on its own assets but also on the incoming payments from the other agents.
Each financial network is endowed with agent-specific claims rules that prescribe how
each agent pays its creditors. Consequently, our model not only captures standard
principles of bankruptcy law, such as limited liability of equity, absolute priority of
debt over equity, proportionality, and priority, but also allows for more general un-
derlying payment mechanisms. A payment matrix that contains clearing payments in
accordance with claims rules is a transfer scheme, which is not necessarily uniquely
determined. This article is the first to provide the complete characterization of all
such transfer schemes. Our characterization relies on additional cash vectors, which
summarize the payments in excess of the minimum clearing payments. The set of such
vectors is shown to be homeomorphic to the set of transfer schemes. We introduce a
recursive procedure to compute any additional cash vector, and thereby indirectly a
corresponding transfer scheme. The characterization opens up the opportunity for a
network-based axiomatic analysis of transfer rules, which prescribe clearing payments
for each financial network. In fact, we show that the characterization can be used to
provide new axiomatizations of transfer rules in which each agent pays its creditors in
accordance with the proportional claims rule.
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proportional rule.
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1 Introduction

Financial globalization, spurred on by the fact that financial interconnectedness allows risk
diversification, is not always to the benefit of the resilience of the financial system as a
whole. A noteworthy example is the 2007-2008 financial crisis in which instability in the
United States housing market led, as a result of financial interconnectedness, to financial
instability in markets elsewhere in the world. Financial instability in one market spreading
to other markets is a phenomenon known as financial contagion. Glasserman and Young
(2016), Jackson and Pernoud (2021), and Elliott and Golub (2022) provide excellent surveys
of recent research on financial contagion in financial networks.

Clearing payments are at the core of the global financial system, especially in times of
financial distress. Clearing payments are payments between agents (e.g., financial institu-
tions) to settle their mutual liabilities. The interdependence between agents complicates
the analysis of clearing payments in a network setting because the payment of one agent
to another agent is contingent on its own assets as well as the payments it receives from
other agents. Understanding clearing payments is therefore fundamental to facilitate proper
decision-making, both from a normative and a positive point of view. The current article is,
to our knowledge, the first to provide a complete characterization of clearing payments.

The model of a financial network we consider is in line with Eisenberg and Noe (2001),
a seminal article on financial contagion. A financial network is characterized by a finite
set of agents that each have an estate and liabilities to the other agents. Eisenberg and
Noe (2001), along with extensions of its model such as Cifuentes, Ferrucci, and Shin (2005),
Elsinger, Lehar, and Summer (2006), Rogers and Veraart (2013), and Demange (2018),
assume proportionality of the payments. From the outset, however, we do not restrict our
analysis to proportional repayments of liabilities by the agents. Instead, we allow each
financial network to be endowed with agent-specific claims rules that prescribe how each
agent pays its creditors (cf. Csóka and Herings (2018); Ketelaars, Borm, and Herings (2023);
Csóka and Herings (2024)). In particular, for each agent, its payments to its creditors follow
from allocating its asset value (i.e., its initial estate plus incoming payments) in accordance
with its claims rule. For example, the proportional rule states that the creditors of an agent
should be paid in proportion to their claims on that agent.

The agent-specific claims rules ensure that the payments adhere to two standard princi-
ples of bankruptcy law, namely limited liability of equity and absolute priority of debt over
equity (cf. Eisenberg and Noe (2001)). The first requires that the total payments by an
agent can never exceed the amount it has at its disposal to pay its creditors. The second
requires that an agent can have a strictly positive equity — available to be divided among
the shareholders — only if it has paid all its debts in full.

As claims may be of different seniority, creditors in insolvency proceedings (e.g., in the
United States and the European Union) are partitioned into classes of different priority and
within each class the creditors are paid proportionally (see, e.g., Kaminski (2000), and Chap-
ter 4 of Wessels and Madaus (2017)). Moulin (2000) provides an axiomatic characterization
of claims rules that incorporate such a priority structure, in which the payments within each
priority class can also differ from proportional payments. The claims rules that we consider
capture the priority and proportionality principles of bankruptcy law, but also allow for more
general underlying payment mechanisms.
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Our focus of interest is on clearing payments that are in accordance with claims rules.
We define a transfer scheme as a clearing payment matrix that respects the claims rules.
Csóka and Herings (2024) formulate a sufficient condition for uniqueness of transfer schemes
in financial networks. In general, the set of transfer schemes for a financial network is a non-
empty complete lattice, so both a bottom transfer scheme and top transfer scheme exist.
A bottom (resp. top) transfer scheme contains the minimum (resp. maximum) amount of
payments required to clear the financial network. However, there can exist infinitely many
transfer schemes for a financial network.

We call the agents for which the payments are not uniquely determined irregular. We
partition the set of irregular agents into strongly connected components. Two distinct irreg-
ular agents are connected if there exists a chain of payments from one agent to the other,
such that for any two adjacent irregular agents in the chain, their mutual payments are not
uniquely determined. A strongly connected component is a set of irregular agents in which
any two distinct agents in that set are connected, and that set is maximal with respect to
this property. We show that the mutual payments that are not uniquely determined are re-
stricted to strongly connected components. More specifically, the payments between agents
in a strongly connected component and agents outside that strongly connected component
are always uniquely determined.

Our characterization of transfer schemes is based on additional cash vectors. An addi-
tional cash vector for a financial network contains the total cash of an agent in excess of the
total cash under the bottom transfer scheme for that financial network. Agents use their
additional cash to pay their creditors an additional amount. Additional cash vectors are
consistent in the sense that, for each agent, its total additional outgoing payments equal its
total additional incoming payments. We show that, for each financial network, the set of
transfer schemes is homeomorphic to the set of additional cash vectors. That is, we provide a
continuous one-to-one correspondence between transfer schemes and additional cash vectors.
We also establish that our correspondence is monotonic.

So far, the literature on financial networks has introduced procedures to determine the
bottom and top transfer schemes for a financial network. For example, Eisenberg and Noe
(2001) introduces the fictitious default algorithm, which computes the top transfer scheme
for a financial network in which each agent uses the proportional rule and in which each
estate is non-negative. In a more general setting, which allows for general agent-specific
claims rules and possibly negative estates, like we do in this article, Ketelaars et al. (2023)
shows that the bottom and top transfer schemes can be obtained as the limit of iterative
procedures.

Computing a transfer scheme that is different from the bottom and the top transfer
schemes requires more work. We introduce a recursive procedure to compute every addi-
tional cash vector for an arbitrary financial network. The set of additional cash vectors is
homeomorphic to the set of transfer schemes, so the iterative procedure indirectly computes
any transfer scheme as well. We take as input a vector of agent-specific weights that are
between zero and one. The weight corresponding to an agent determines the additional cash
of that agent. In each step, the additional cash of each agent determined in a previous step
is fixed, and the procedure determines the corresponding minimum and maximum additional
cash of the current agent under consideration, which may require an infinite number of iter-
ations. The additional cash of this agent is then a convex combination of its minimum and
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maximum additional cash. The convex combination is based on the agent-specific weight.
If the agent-specific weight is zero, the additional cash of that agent equals the minimum;
if it is one, it equals the maximum. The result of the iterative procedure is an additional
cash vector that is based on a vector of weights. In particular, if all agent-specific weights
are equal to zero (resp. one), we obtain the bottom (resp. top) transfer scheme. The set
of additional cash vectors for a financial network is then characterized by considering all
possible vectors of weights.

Our analysis shows that computing additional cash vectors is generally complex. Inter-
estingly, as we will see, it is significantly simpler when each agent uses the proportional rule
to pay its creditors. The literature on financial contagion emphasizes uniqueness of propor-
tional payments, in which case only one proportional transfer scheme has to be computed.
For example, conditions for uniqueness of proportional payments in a financial network are
stated in Eisenberg and Noe (2001) and Glasserman and Young (2015). Nevertheless, it is
quite common for proportional payments not to be uniquely determined. This occurs, for
instance, when at least two agents have an estate of zero and have positive liabilities towards
each other, but no liabilities to the other agents.

Even if proportional payments are not uniquely determined, we show that proportional
additional cash vectors and proportional transfer schemes still have a relatively simple
structure. We accomplish this by associating each strongly connected component with a
component-specific weight between zero and one, which is shared among the irregular agents
within that component. The total excess of an agent is defined as the total amount this agent
could receive in excess of the bottom transfer scheme. Then, for each strongly connected
component, and for each agent belonging to that component, its proportional additional
cash is equal to a fraction of its total excess, and its proportional payments are given by a
convex combination of its proportional bottom and top payments. The specific fraction and
convex combination are determined by the weight associated with the strongly connected
component, which is allowed to differ across strongly connected components.

Furthermore, the characterization of the set of transfer schemes facilitates the formula-
tion of axioms that lay the foundations of clearing payments in a financial network. We
introduce three axioms specific to the financial network setting: weak convexity, decomposi-
tion, and convexity. We show that each of three axioms, when considered individually, lead
to an axiomatization of the proportional rule in financial networks. Our axioms, weak con-
vexity, decomposition, and convexity are related to homogeneity, additivity, and linearity for
functions on general vector spaces, respectively. In general, homogeneity and additivity are
independent axioms, and they jointly imply linearity (see also Hamel (1905), and Torchinsky
(1988)). Conversely, linearity implies both homogeneity and additivity.

Weak convexity states that any convex combination of the bottom and top transfer
schemes for a financial network is also a transfer scheme for that financial network. Convexity
extends this notion by requiring that any convex combination of any two transfer schemes
is also a transfer scheme. Both axioms provide a remedy when one has two candidate
transfer schemes for a financial network. As only one transfer scheme can be carried out,
one could, as a compromise, take a payment matrix that is in between the two transfer
schemes. However, in general, such a payment matrix is not a transfer scheme, unless the
agents pay according to the proportional rule. Decomposition requires that the additional
payments by the agents can be decomposed as follows. Consider a transfer scheme based on
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a vector of weights. First, subtract from this transfer scheme the bottom transfer scheme.
This constitutes an additional payment matrix that contains the payments by the agents
net of the bottom transfer scheme. Second, decompose the vector of weights and construct
the corresponding additional payment matrices. Decomposition states that the additional
payment matrices obtained in the second part added together are equal to the additional
payment matrix obtained in the first part. Decomposition thus facilitates prescribing clearing
payments either in stages or at once.

Csóka and Herings (2021) provides an axiomatization of the proportional rule in finan-
cial networks using invariance to mitosis, impartiality, and continuity.1 This axiomatization
is on the class of financial networks for which the estate of each agent is strictly positive,
which implies that there always exists exactly one proportional transfer scheme. Calleja
and Llerena (2023) generalizes this result by considering non-negative estates. On the other
hand, our characterization of transfer schemes and the axiomatizations of the proportional
rule hold for any real value of the estates (i.e., negative, zero, or positive).

This article is organized as follows. Section 2 introduces additional cash vectors and
shows that, for each financial network, the set of all such vectors is homeomorphic to the set
of transfer schemes. Section 3 contains our characterization result via additional cash vectors
that are constructed by a recursive procedure. Section 4 shows that the set of irregular agents
in a financial network can be partitioned into strongly connected components. This result
is then used to show that proportional clearing payments have a relatively simple structure.
Section 5 provides new axiomatizations of the proportional rule in financial networks. Section
6 concludes. The proofs of the main results are given in the main text, whereas the remaining
proofs are presented in the appendix.

2 Towards Characterizing Transfer Schemes

2.1 Financial Networks

A financial network is a pair (E,C) ∈ RN × RN×N
+ in which N is a finite set of agents,

E = (ei)i∈N is an estates vector, and C = (cij)i,j∈N is a claims matrix. Each coordinate ei
of E represents the, possibly negative, estate corresponding to agent i ∈ N . The negative
estate of an agent is interpreted as the amount that it uses for own consumption before it
pays its creditors. The claims matrix C represents mutual liabilities between agents. Each
cell cij of C represents the non-negative claim of agent j ∈ N on agent i ∈ N . Row i in
C thus captures creditors of agent i, whereas column i of C captures debtors of agent i.
We assume that agents have no claim on themselves, that is, cii = 0 for all i ∈ N . No
additional conditions are imposed on the claims matrix; in particular, there is no condition
on the relation between claims cij and cji for i ̸= j. The class of all financial networks on N
is denoted by FN .

Each financial network on N is endowed with a vector of claims rules ϕ = (φi)i∈N in

1The axiomatization relies also on claims boundedness, limited liability of equity, and absolute priority
of debt over equity. In this article, these axioms are already embedded in the claims rules associated with a
financial network.
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which φi : R × (RN\{i}
+ × {0}{i}) → RN

+ is the claims rule associated with agent i ∈ N that
prescribes how each creditor of agent i is to be paid. The vector of claims on agent i ∈ N
is denoted by ci = (cij)j∈N ∈ RN

+ , in which cii = 0 because agent i has no claim on itself.

Formally, for all i ∈ N , a claims rule φi prescribes, for all a ∈ R and ci ∈ (RN\{i}
+ × {0}{i}),

the allocation vector φi(a, ci) that satisfies

(i) 0 ≤ φi
j(a, ci) ≤ cij for all j ∈ N ,

(ii)
∑
j∈N

φi
j(a, ci) = min{max{0, a},

∑
j∈N

cij}.

The set of all vectors of claims rules on N that satisfy (i) and (ii) is denoted by VN .

Consider i ∈ N , a ∈ R, and ci ∈ (RN\{i}
+ × {0}{i}). The claim of agent i on itself is zero,

so condition (i) implies that φi
i(a, ci) = 0. Conditions (i) and (ii) imply that φi(a, ci) = 0N in

case a, the amount agent i has at its disposal to pay its creditors, is negative, and φi(a, ci) = ci
in case a is larger than or equal to the sum of the claims. Otherwise 0 ≤ a <

∑
j∈N cij, so

condition (ii) is given by
∑

j∈N φi
j(a, ci) = a, which entails that all what agent i has at its

disposal to pay its creditors is paid to its creditors.
We assume that all the claims rules satisfy resource monotonicity : for all i ∈ N , for all

ci ∈ (RN\{i}
+ × {0}{i}), and for all a′ ∈ R and a ∈ R with a′ ≤ a, it holds that φi(a′, ci) ≤

φi(a, ci).
2 Define

RN = {ϕ ∈ VN | for all i ∈ N,φi satisfies resource monotonicity}

as the set of all vectors of claims rules on N for which each claims rule satisfies resource
monotonicity.

We consider two claims rules in particular, namely the proportional rule, and the Talmud
rule (Aumann & Maschler, 1985). Both rules satisfy resource monotonicity.

The proportional rule allocates, to each creditor, a proportion of the amount to be di-
vided, where the proportions are determined on the basis of each creditor’s claim relative to
the total claims. A claims rule φi is the proportional rule PROP (i.e., φi = PROP) if, for

all a ∈ R and ci ∈ (RN\{i}
+ × {0}{i}) with 0 ≤ a <

∑
k∈N cik, and all j ∈ N ,

φi
j(a, ci) =

cij∑
k∈N cik

a.

If the amount to be divided is relatively small, the Talmud rule divides the estate equally
among the creditors, where the amount that each creditor receives is capped at half its
claim. If the amount to be divided is relatively large, all creditors receive at least half their
claim, and what they receive on top of that is such that the losses (i.e., the part of the claim
that each creditor does not receive) are incurred equally by the creditors, where the loss of

2Resource monotonicity implies another desirable property, namely resource continuity (i.e., continuity
with respect to the amount to be divided among the creditors). All the claims rules that we consider in this
article are thus also resource continuous.

6



each creditor cannot exceed half its claim. A claims rule φi is the Talmud rule TAL (i.e.,

φi = TAL) if, for all a ∈ R and ci ∈ (RN\{i}
+ ×{0}{i}) with 0 ≤ a <

∑
k∈N cik, and all j ∈ N ,

φi
j(a, ci) =

{
min{β, 1

2
cij} if a ≤ 1

2

∑
k∈N cik,

1
2
cij +max{1

2
cij − β, 0} if a > 1

2

∑
k∈N cik,

where, in both cases, β ≥ 0 is such that
∑

j∈N φi
j(a, ci) = a.

2.2 Transfer Schemes and Additional Cash Vectors

A payment matrix for a financial network on N that contains consistent transfers between
agents in accordance with ϕ ∈ RN is a transfer scheme. For each agent, its payments to
its creditors follow from allocating its estate plus incoming payments in accordance with its
claims rule. Moreover, for each agent, the payment to itself is equal to zero because it has
no claim on itself.

Definition 2.1. Let (E,C) ∈ FN , and let ϕ ∈ RN . The payment matrix P is a transfer
scheme for (E,C) with respect to ϕ if, for all i, j ∈ N ,

pij = φi
j(ei +

∑
k∈N

pki, ci). (2.1)

The set of all possible transfer schemes for (E,C) with respect to ϕ is denoted by Pϕ(E,C).

Payments in a transfer scheme P ∈ Pϕ(E,C) are in accordance with claims rules, which
implies that limited liability of equity and absolute priority of debt over equity are satisfied.
Limited liability of equity entails that the total outgoing payments of each agent cannot
exceed the amount it has at its disposal. That is, for all i ∈ N ,∑

j∈N

pij ≤ max{0, ei +
∑
j∈N

pji}.

Absolute priority of debt over equity implies that an agent has a strictly positive equity only
if it has paid off all its outstanding liabilities. Hence, each agent either settles all its claims
or pays everything it has at its disposal to his creditors. That is, for all i ∈ N , either pij = cij
for all j ∈ N , or ∑

j∈N

pij = max{0, ei +
∑
j∈N

pji}.

Ketelaars et al. (2023) shows that the set of transfer schemes for a financial network
is a non-empty complete lattice with respect to the element-wise ordering ≤ of RN×N . A
lattice is a partially ordered set in which every pair of elements has a greatest lower bound
(bottom) and a least upper bound (top) within the lattice. A lattice is complete if also every
non-empty subset has a bottom and a top within the lattice.

Proposition 2.2 (Proposition 3.4 in Ketelaars et al. (2023)). Let (E,C) ∈ FN , and let
ϕ ∈ RN . Then, the set of transfer schemes Pϕ(E,C) is a non-empty complete lattice.
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The set of ϕ-transfer schemes for a financial network (E,C) ∈ FN is a non-empty complete
lattice, so there exists a bottom transfer scheme and a top transfer scheme within the lattice.
The bottom transfer scheme P ϕ(E,C) ∈ Pϕ(E,C) is such that, for all P ∈ Pϕ(E,C), it

holds that P ϕ(E,C) ≤ P ; the top transfer scheme P
ϕ
(E,C) ∈ Pϕ(E,C) is such that, for all

P ∈ Pϕ(E,C), it holds that P
ϕ
(E,C) ≥ P .

In the remainder of this section, we provide a new equivalent representation of the set
of transfer schemes that relies on the bottom and top transfer schemes and on vectors that
contain a specific additional amount of cash that agents receive and use to pay their creditors.
This turns out to be useful later on when we introduce a recursive procedure, which takes
as input the bottom and top transfer schemes, that characterizes all transfer schemes for a
financial network.

We distinguish between two types of agents in a financial network, namely those for
which the payments to their creditors are the same under any two transfer schemes, and
those for which this is not the case. We focus our attention on the latter type of agents
because their irregular payments are the reason why transfer schemes need not necessarily
be unique. Agents for which their payments under the bottom transfer scheme differ from
their payments under the top transfer scheme, are called irregular. Agents for which this is
not the case are called regular. The total amount each agent could receive in excess of the
bottom transfer scheme is called the total excess.

Definition 2.3. Let (E,C) ∈ FN , and let ϕ ∈ RN . The set of irregular agents Iϕ(E,C) for
(E,C) with respect to ϕ is defined by

Iϕ(E,C) = {i ∈ N | for some j ∈ N, pϕ
ij
< pϕij}.

Additionally, the vector of total excess d
ϕ
(E,C) ∈ RN for (E,C) with respect to ϕ is given

by, for all i ∈ N , d
ϕ

i (E,C) =
∑

j∈N(p
ϕ
ji − pϕ

ji
).

Note that there may exist two transfer schemes under which an irregular agent pays its
creditors equally. In general, however, there always exist two transfer schemes under which
an irregular agent pays at least one of it creditors differently.

The following example demonstrates that irregular agents appear not only when each
agent uses the proportional rule, and at least two of them have an estate of zero and the
others have a non-negative estate (see, e.g., Eisenberg and Noe (2001)).

Example 2.4. Consider the financial network (E,C) ∈ FN given by N = {1, 2, 3, 4},

E =


0
4
−3
1

 and C =


0 1 2 0
0 0 1 2
0 1 0 2
3 0 3 0

 .

Let ϕ = (TAL,TAL,TAL,TAL) ≡ TAL. The bottom transfer scheme and the top transfer
scheme for (E,C) with respect to TAL are given by

PTAL(E,C) =


0 1

2
11
4

0
0 0 1 2
0 1

2
0 1

2

13
4

0 13
4

0

 and P
TAL

(E,C) =


0 1

2
11
2

0
0 0 1 2
0 1

2
0 1

2 0 2 0

 , (2.2)
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respectively. It holds that ITAL(E,C) = {1, 3, 4} and d
TAL

(E,C) = (1
4
, 0, 1

2
, 1
2
). △

The following proposition states four properties regarding regular and irregular agents.

Proposition 2.5. Let (E,C) ∈ FN , and let ϕ ∈ RN .

(i) It holds that |Iϕ(E,C)| ≠ 1.

(ii) Let i ∈ N . Then, i ∈ Iϕ(E,C) if and only if
∑

j∈N pϕ
ji
<

∑
j∈N pϕji.

(iii) If i ∈ Iϕ(E,C), then, for all P ∈ Pϕ(E,C),∑
j∈N

pij = ei +
∑
j∈N

pji.

(iv) Let i ∈ N . Then, for all ∆ ∈ [0, d
ϕ

i (E,C)],∑
j∈N

pϕ
ij
+∆ =

∑
j∈N

φi
j(ei +

∑
k∈N

pϕ
ki
+∆, ci).

Proposition 2.5 (i) states there can not be exactly one irregular agent in a financial
network. The number of irregular agents is either equal to zero, that is, there is exactly one
transfer scheme for the financial network, or the number of irregular agents is at least equal
to two and at most equal to the number of agents in the financial network.

Second, the payments that irregular agents receive from the other agents are strictly
smaller under the bottom transfer scheme than under the top transfer scheme. The total
excess is therefore always strictly positive for an irregular agent. On the other hand, regular
agents receive the same amount from the other agents under any transfer scheme. The total
excess is therefore equal to zero for regular agents. Agents with a negative estate and no
incoming payments and agents with an estate exceeding their total liabilities are always
regular.

Third, for each irregular agent, its total outgoing payments equal its estate plus its total
incoming payments.3 It implies that the total excess of each irregular agent is alternatively
given by the difference between its outgoing payments under the top transfer scheme and its
outgoing payments under the bottom transfer scheme. Formally, for all i ∈ Iϕ(E,C), it holds

that d
ϕ

i (E,C) =
∑

j∈N(p
ϕ
ij − pϕ

ij
). A total excess can as such be interpreted as a total excess

of incoming payments or a total excess of outgoing payments. Additionally, Proposition 2.5
(iii) and condition (ii) of a claims rule imply that, for all P ∈ Pϕ(E,C) and all i ∈ Iϕ(E,C),
0 ≤ ei +

∑
j∈N pji ≤

∑
j∈N cij.

Fourth, if an agent has additional cash at its disposal and distributes this among its
creditors, then this additional cash is distributed in full among its creditors.

The following definition introduces additional cash vectors that represent the cash of
agents in excess of the cash under the bottom transfer scheme. An additional cash vector

3Proposition 2.5 (iii) generalizes Proposition 1 in Csóka and Herings (2024) as result (iii) allows for
negative estates.
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contains the additional cash that each agent has at its disposal to pay its creditors, which
is bounded from below by zero and bounded from above by its total excess. An additional
cash vector satisfies a consistency requirement in the sense that, for each agent, the total
additional outgoing payments (i.e., the left-hand side of (2.3)) equal the total additional
incoming payments (i.e., the right-hand side of (2.3)). Thus, the additional cash of an agent
can be interpreted as either the total additional incoming payments or the total additional
outgoing payments of this agent.

Definition 2.6. Let (E,C) ∈ FN , and let ϕ ∈ RN . The vector d ∈ [0N , d
ϕ
(E,C)] is an

additional cash vector for (E,C) with respect to ϕ if, for all i ∈ N ,

di =
∑
j∈N

(φj
i (ej +

∑
k∈N

pϕ
kj
+ dj, cj)− pϕ

ji
). (2.3)

The set of all possible additional cash vectors for (E,C) with respect to ϕ is denoted by
Dϕ(E,C).

Condition (2.3) essentially relates only to irregular agents because it is always satisfied for
regular agents. If i /∈ Iϕ(E,C), then, by Proposition 2.5 (ii), agent i always gets paid the

same under any transfer scheme, so d
ϕ

i (E,C) = 0 and di = 0; furthermore, the right-hand
side of condition (2.3) denotes the total additional incoming payments of agent i that is

bounded from below by zero and from above by d
ϕ

i (E,C), which in this case means that it
is zero as well.

For each irregular agent, condition (2.3) requires that its total additional payments flow
through the financial network in such a way that this exact amount is being paid back to
this irregular agent. If that were not the case, then this irregular agent could not have paid

this additional amount in the first place. Note that 0N and d
ϕ
(E,C) are solutions to (2.3),

corresponding to the bottom and top transfer schemes, respectively.
The following example illustrates additional cash vectors with respect to the financial

network of Example 2.4.

Example 2.7. According to (2.3), an additional cash vector for the financial network
(E,C) ∈ FN of Example 2.4 with respect to TAL follows from solving

d1 = TAL1(1 + 21
2
+ d4, (3, 0, 3, 0))− 13

4
, (Agent 1)

d3 = TAL3(0 + 13
4
+ d1, (0, 1, 2, 0))− 11

4
+ TAL3(1 + 21

2
+ d4, (3, 0, 3, 0))− 13

4
, (Agent 3)

d4 = TAL4(−3 + 4 + d3, (0, 1, 0, 2))− 1
2
. (Agent 4)

It follows that the set of additional cash vectors for (E,C) with respect to TAL is given by
DTAL(E,C) = {(∆, 0, 2∆, 2∆) |∆ ∈ [0, 1

4
]}. If ∆ = 1

8
, then d = (1

8
, 0, 1

4
, 1
4
). The inflow of

payments to agent 1 equals 1
8
, which comes from agent 4; the outflow of payments from agent

1 equals 1
8
as well, which goes to agent 3. The inflow to agent 3 equals 1

4
, of which 1

8
comes

from agent 1 and 1
8
comes from agent 4; the outflow from agent 3 equals 1

4
as well, which

goes to agent 4. The inflow to agent 4 equals 1
4
, which comes from agent 3; the outflow from

agent 4 equals 1
4
as well, of which 1

8
goes to agent 1 and 1

8
goes to agent 3. △
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In Example 2.7, the set of additional cash vectors has one degree of freedom. In general,
however, this need not always be the case as the following example illustrates.

Example 2.8. Consider the financial network (E,C) ∈ FN given by N = {1, 2, 3, 4},

E =


0
0
0
0

 and C =


0 0 2 1
0 0 1 2
3 0 0 0
0 3 0 0

 .

Let ϕ = TAL. The bottom transfer scheme and the top transfer scheme for (E,C) with
respect to TAL are given by 0N×N and C, respectively. Therefore, ITAL(E,C) = N and

d
TAL

(E,C) = (3, 3, 3, 3).
Anything that agents 3 and 4 have at their disposal is paid to agents 1 and 2, respectively.

Therefore, any additional cash vector has the form d = (d1, d2, d1, d2). Figure 2.1 visualizes
all additional cash vectors for (E,C) with respect to TAL. Any point on the solid black line
or in the shaded gray area corresponds to an additional cash vector for (E,C) with respect
to TAL.

0 1 2 3
0

1

2

3

Figure 2.1: The solid black line and the shaded gray area represent the set of additional cash
vectors for (E,C) with respect to TAL.

△

In the following definition, we translate an additional cash vector into a payment matrix
in the sense that agents pay their creditors using the additional cash that they receive on
top of what they receive under the bottom transfer scheme.

Definition 2.9. Let (E,C) ∈ FN , let ϕ ∈ RN , and let d ∈ Dϕ(E,C). Then, the function f
on Dϕ(E,C) produces an N ×N payment matrix that is defined by setting, for all i, j ∈ N ,

fij(d) = φi
j(ei +

∑
k∈N

pϕ
ki
+ di, ci). (2.4)

11



In a similar fashion, we can define the function that translates a payment matrix into a
vector in which each coordinate equals the total excess, albeit with respect to an arbitrary
transfer scheme instead of the top transfer scheme. For each (E,C) ∈ FN and ϕ ∈ RN , the
function g on Pϕ(E,C) is defined by setting, for all P ∈ Pϕ(E,C) and all i ∈ N ,

gi(P ) =
∑
j∈N

pji −
∑
j∈N

pϕ
ji
. (2.5)

In this way, as the following proposition states, the function g is the inverse of f . This
implies that the function f produces a transfer scheme and the function g produces an
additional cash vector. The proposition additionally states that the function f and its
inverse g are monotone.

Proposition 2.10. The function g is the inverse of f , and the functions f and g are mono-
tone.

As a consequence of the following theorem, finding a transfer scheme boils down to finding
an additional cash vector. It states that the set of additional cash vectors is homeomorphic
to the set of transfer schemes. That is, the function f is continuous and provides a one-to-one
correspondence between additional cash vectors and transfer schemes, and its inverse, given
by g, is continuous as well.

Theorem 2.11. Let (E,C) ∈ FN , and let ϕ ∈ RN . Then, Dϕ(E,C) and Pϕ(E,C) are
homeomorphic through f .

Proof. We have to show that f is bijective and continuous, and that g is continuous. Propo-
sition 2.10 implies that f is invertible, so it is bijective. Because, for all i ∈ N , φi satisfies
resource continuity, the function f is continuous. Clearly, g is continuous.

The following corollary follows from Theorem 2.11 and the fact that the set of transfer
schemes is a non-empty complete lattice (see Proposition 2.2). It states that the set of
additional cash vectors for a financial network is a non-empty complete lattice, so there
exists a bottom additional cash vector and a top additional cash vector.

Corollary 2.12. Let (E,C) ∈ FN , and let ϕ ∈ RN . Then, the set of additional cash vectors
Dϕ(E,C) is a non-empty complete lattice.

For all (E,C) ∈ FN and ϕ ∈ RN , it holds that 0N ∈ Dϕ(E,C) is the bottom additional

cash vector and that d
ϕ
(E,C) ∈ Dϕ(E,C) is the top additional cash vector.

The following example builds on Example 2.7 and illustrates how additional cash vectors
can be used to construct the set of transfer schemes.

Example 2.13. Recall from Example 2.7 that the set of additional cash vectors for (E,C)
with respect to TAL is given by DTAL(E,C) = {(∆, 0, 2∆, 2∆) |∆ ∈ [0, 1

4
]}. Then, for all

d ∈ DTAL(E,C),

TAL(0 + 13
4
+∆, (0, 1, 2, 0)) = (0, 1

2
, 11

4
+∆, 0), (Agent 1)

TAL(−3 + 4 + 2∆, (0, 1, 0, 2)) = (0, 1
2
, 0, 1

2
+ 2∆), (Agent 3)

12



TAL(1 + 21
2
+ 2∆, (3, 0, 3, 0)) = (13

4
+∆, 0, 13

4
+∆, 0), (Agent 4)

such that the set of transfer schemes for (E,C) with respect to TAL comprises

P∆ =


0 1

2
11
4
+∆ 0

0 0 1 2
0 1

2
0 1

2
+ 2∆

13
4
+∆ 0 13

4
+∆ 0

 ,

in which ∆ ∈ [0, 1
4
]. Note that ∆ = 0 gives the bottom transfer scheme and that ∆ = 1

4
gives

the top transfer scheme (see also (2.2)). △

3 The Characterization of Transfer Schemes

In the existing literature on financial networks, there exist iterative procedures to find only
the bottom and top transfer schemes. Ketelaars et al. (2023) shows that the bottom (resp.
top) transfer scheme is obtained by a, possibly infinite, iterative procedure that generates a
monotonically increasing (resp. decreasing) sequence of payment matrices that approaches
the complete lattice of transfer schemes from below (resp. above). The iterative procedures
are defined on [0N×N , C] = {P ∈ RN×N | for all i, j ∈ N, 0 ≤ pij ≤ cij}, which is a complete
lattice.

Proposition 3.1 (cf. Theorem 3.10 in Ketelaars et al. (2023)). Let (E,C) ∈ FN , let
ϕ ∈ RN , and let h : [0N×N , C] → [0N×N , C] be defined by setting, for all P ∈ [0N×N , C], and
for all i, j ∈ N , hij(P ) = φi

j(ei +
∑

k∈N pki, ci). Then,

(i) P ϕ(E,C) = lim
k→∞

P k, where, for all k ∈ N, P k+1 = h(P k) with P 1 = 0N×N ;

(ii) P
ϕ
(E,C) = lim

k→∞
P k, where, for all k ∈ N, P k+1 = h(P k) with P 1 = C.

Alternatively, one can obtain the bottom and top transfer schemes by solving an appro-
priately defined optimization problem (see, e.g., Eisenberg and Noe (2001) and Csóka and
Herings (2022)).

In this section, we introduce an iterative procedure that one can use to find any ad-
ditional cash vector that differs from the zero vector and the vector of total excess. The
homeomorphism between the set of additional cash vectors and the set of transfer schemes
(Theorem 2.11) implies that iterative procedure can be used to find a transfer scheme that
differs from the bottom and top transfer schemes.

For ease of exposition, we set N = {1, . . . , n}, in which n = |N |. We take a vector
λ ∈ [0, 1]N of weights as given, in which, for each i ∈ N , λi is a measure of the payment by this
agent, in addition to what it pays in total under the bottom transfer scheme. The procedure
constructs a vector of additional cash in the following recursive way. The procedure starts
with agent 1 for which λ1 determines its additional cash, which stay constant throughout.
Agent 1 essentially injects cash into the financial network, so the procedure subsequently
constructs two vectors of additional cash such that, for each agent, the inflow of additional

13



payments equals the outflow of additional payments. The procedure determines both the
minimum and maximum additional cash of the next agent, which is agent 2. These two
bounds on the additional cash together with λ2 determine the additional cash of agent 2,
which stay constant throughout. Keeping the additional cash of agents 1 and 2 fixed, the
procedure determines the minimum and maximum additional cash of agent 3, which are
then used to construct the additional cash of agent 3. This process is repeated until the
additional cash of each agent is determined, which takes exactly n steps.

Definition 3.2. Let (E,C) ∈ FN , let ϕ ∈ RN , and let λ ∈ [0, 1]N . The vector θ ∈ RN is
a λ-additional cash vector for (E,C) with respect to ϕ if there exists θ = (θ1, . . . , θn) and
θ = (θ1, . . . , θn) such that the additional cash of agent 1 is given by

θ1 = (1− λ1)θ1 + λ1θ1

with θ1 = 0 and θ1 = d
ϕ

1(E,C), and, recursively, for all ℓ ∈ {2, . . . , n}, the additional cash
of agent ℓ is given by

θℓ = (1− λℓ)θℓ + λℓθℓ

in which θℓ and θℓ are equal to

θℓ = min
d∈Dϕ(E,C)

dℓ

subject to di = θi ∀ i < ℓ,
(3.1)

and

θℓ = max
d∈Dϕ(E,C)

dℓ

subject to di = θi ∀ i < ℓ,
(3.2)

respectively.

It is important to note that the additional cash of agent n follows directly from the
additional cash of the other agents, irrespective of λn ∈ [0, 1]. The optimization prob-
lems (3.1) and (3.2) lead to two additional cash vectors (θ1, . . . , θn−1, θn) ∈ Dϕ(E,C) and
(θ1, . . . , θn−1, θn) ∈ Dϕ(E,C). As a result, we obtain that

θn =
∑
j<n

(φj
n(ej +

∑
k∈N

pϕ
kj
+ θj, cj)− pϕ

jn
) = θn, (3.3)

which implies that θn = (1 − λn)θn + λnθn = θn. Hence, a λ-additional cash vector, if it
exists, is an additional cash vector, that is, θ ∈ Dϕ(E,C).

We will now describe the recursive procedure of Definition 3.2 in more detail and show
how to construct solutions to (3.1) and (3.2), which are in fact well-defined in each step.

Let (E,C) ∈ FN , and let ϕ ∈ RN . As agent 1 is the first agent, the minimum additional

cash is zero, whereas the maximum additional cash is d
ϕ

1(E,C). The additional cash of agent
1 is given by

θ1 = (1− λ1)0 + λ1d
ϕ

1(E,C),
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and stays constant throughout. If agent 1 is regular (i.e., 1 /∈ Iϕ(E,C)), then d
ϕ

1(E,C) = 0
and therefore θ1 = 0. Given θ1, we construct a vector of additional cash in such a way that
the additional cash of agent 2 is minimal, and that the vector of all these additional cash
constitutes an additional cash vector. That is, we solve the following optimization problem:

min
d∈Dϕ(E,C)

d2

subject to d1 = θ1.
(3.4)

To find a solution to (3.4), we define, for all k ∈ N, the vector γ2(k) ∈ R{2,...,n}, in which, for
all i ∈ {2, . . . , n},

γ2

i
(1) = φ1

i (e1 +
∑
h∈N

pϕ
h1

+ θ1, c1)− pϕ
1i
), (3.5)

and, recursively, for all k ∈ N,

γ2

i
(k + 1) = γ2

i
(1) +

∑
j≥2

(φj
i (ej +

∑
h∈N

pϕ
hj
+ γ2

j
(k), cj)− pϕ

ji
). (3.6)

The additional payments by agent 1 with respect θ1 are represented by γ2(1) (see (3.5)).

Indeed, because θ1 ∈ [0, d
ϕ

1(E,C)], Proposition 2.5 (iv) implies that∑
j≥2

γ2

j
(1) =

∑
j≥2

φ1
j(e1 +

∑
h∈N

pϕ
h1

+ θ1, c1)− pϕ
1j
) = θ1. (3.7)

Resource monotonicity of φ1 and θ1 ∈ [0, d
ϕ

1(E,C)] imply that, for all i ∈ {2, . . . , n}, γ2
i
(1) ∈

[0, d
ϕ

i (E,C)] as well. The additional payment by agent 1 that is given in (3.5) induces a
sequence (γ2(k))k∈N. This sequence is monotonically increasing and bounded from above,
so by the monotone convergence theorem for sequences it has a limit. To see this, let
i ∈ {2, . . . , n}, and note that

γ2

i
(1) ≤ γ2

i
(1) +

∑
j≥2

(φj
i (ej +

∑
h∈N

pϕ
hj
+ γ2

j
(1), cj)− pϕ

ji
) = γ2

i
(2),

in which the inequality follows from the fact that, for all j ∈ {2, . . . , n}, φj satisfies resource

monotonicity and γ2
j
(1) ∈ [0, d

ϕ

j (E,C)]. Let k ∈ N and assume that γ2(k) ≤ γ2(k+1). Then,

by resource monotonicity of the claims rules in ϕ, it follows that

γ2

i
(k + 1) = γ2

i
(1) +

∑
j≥2

(φj
i (ej +

∑
h∈N

pϕ
hj
+ γ2

j
(k), cj)− pϕ

ji
)

≤ γ2

i
(1) +

∑
j≥2

(φj
i (ej +

∑
h∈N

pϕ
hj
+ γ2

j
(k + 1), cj)− pϕ

ji
)

= γ2

i
(k + 2),

in which the first and second equality follow from (3.6). By induction, the sequence (γ2
i
(k))k∈N

is monotonically increasing. In addition to this, because, for all k ∈ N, and for all j ∈
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{2, . . . , n}, γ2
j
(k) ∈ [0, d

ϕ

j (E,C)], the sequence (γ2
i
(k))k∈N is bounded from above by d

ϕ

i (E,C).

We denote the limit of the sequence (γ2(k))k∈N by θ2, that is, for all i ∈ {2, . . . , n},

θ2i = lim
k→∞

γ2

i
(k). (3.8)

Combining the vector in (3.8) with the additional cash of agent 1 results in an additional cash
vector. In fact, the additional cash of the other agents, which are induced by the additional
payments of agent 1, are minimal. The following lemma formalizes this.

Lemma 3.3. It holds that (θ1, θ
2
2, . . . , θ

2
n) ∈ Dϕ(E,C). Furthermore, for all d ∈ Dϕ(E,C)

with d1 = θ1, it holds that di ≥ θ2i for all i ∈ {2, . . . , n}. In particular, if λ1 = 0, then θ2i = 0
for all i ∈ {2, . . . , n}.

Lemma 3.3 implies that θ22 is the optimal value of the minimization problem (3.4).
Second, given θ1, we can also determine the maximum additional cash vector in which the

additional cash of agent 1 is fixed, but the additional cash of agent 2 is maximal, such that,
for all agents, the inflow of additional payments equals the outflow of additional payments.
This entails solving the following optimization problem:

max
d∈Dϕ(E,C)

d2

subject to d1 = θ1.
(3.9)

To find a solution to (3.9), we define, for all k ∈ N, the vector γ2(k) ∈ R{2,...,n}, in which, for
all i ∈ {2, . . . , n},

γ2
i (1) = d

ϕ

i (E,C)− (pϕ1i − φ1
i (e1 +

∑
h∈N

pϕ
h1

+ θ1, c1)), (3.10)

and, recursively, for all k ∈ N,

γ2
i (k + 1) = γ2

i (1)−
∑
j≥2

(pϕji − φj
i (ej +

∑
h∈N

pϕ
hj
+ γ2

j(k), cj)).

Here, for each agent i ∈ {2, . . . , n}, γ2
i (1) denotes the excess amount this agent has at its

disposal initially, net of the payment by agent 1 with respect to θ1. In particular, although the
additional payments by agent 1 to the other agents remain the same in this ‘top’ procedure
in comparison with the previous ‘bottom’ procedure, the additional total amount available
to the remaining agents with respect to (3.10) differs (see (3.7)) and is equal to∑

j≥2

γ2
j(1) =

∑
j≥2

d
ϕ

j (E,C)− (d
ϕ

1(E,C)− θ1),

in which the equality follows from Proposition 2.5 (iv). In contrast to the sequence (γ2(k))k∈N,
the sequence (γ2(k))k∈N is monotonically decreasing and bounded from below by zero — one
can verify this by applying the same arguments that we used for the sequence (γ2(k))k∈N.

We denote the limit of the sequence (γ2(k))k∈N by θ
2
, that is, for all i ∈ {2, . . . , n},

θ
2

i = lim
k→∞

γ2
i (k). (3.11)
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The following lemma states that the vector in (3.11) combined with the additional cash of
agent 1 is an additional cash vector in which the additional cash of the agents are maximal,
though they are not necessarily maximal for agent 1. The lemma is stated without an explicit
proof because its proof is along the lines of the proof of Lemma 3.3.

Lemma 3.4. It holds that (θ1, θ
2

2, . . . , θ
2

n) ∈ Dϕ(E,C). Furthermore, for all d ∈ Dϕ(E,C)

with d1 = θ1, it holds that di ≤ θ
2

i for all i ∈ {2, . . . , n}. In particular, if λ1 = 1, then

θ
2

i = d
ϕ

i (E,C) for all i ∈ {2, . . . , n}.

Likewise Lemma 3.3, it follows from Lemma 3.4 that θ
2

2 is the optimal value of the maxi-
mization problem (3.9).

The following example demonstrates how a minimum and a maximum additional cash
vector is constructed, provided that the additional cash of agent 1 is fixed. The example
additionally shows that the minimum and maximum additional cash of the remaining agents
need not necessarily coincide.

Example 3.5. Reconsider the financial network (E,C) ∈ FN of Example 2.8 given by
N = {1, 2, 3, 4},

E =


0
0
0
0

 and C =


0 0 2 1
0 0 1 2
3 0 0 0
0 3 0 0

 .

Let ϕ = TAL. Recall that the bottom transfer scheme and the top transfer scheme for (E,C)
with respect to TAL are given by 0N×N and C, respectively, and that ITAL(E,C) = N and

d
TAL

(E,C) = (3, 3, 3, 3).
Let λ1 = 1

3
, so θ1 = 2

3
0 + 1

3
3 = 1 and the additional payments by agent 1 to the other

agents are given by (see (3.5))

γ2(1) = (TALi(1, (0, 0, 2, 1)))i≥2 = (0, 1
2
, 1
2
).

The excess amounts that the other agents have at their disposal with respect to θ1, are given
by (see (3.10))

γ2(1) = (3, 3, 3)− ((0, 2, 1)− (TALi(1, (0, 0, 2, 1)))i≥2) = (3, 11
2
, 21

2
).

Table 3.1 shows γ2(k) and γ2(k) for the next four steps. The sequences (γ2(k))k∈N and

(γ2(k))k∈N converge to θ2 = (1, 1, 1) and θ
2
= (2, 1, 2), respectively.

k 1 2 3 4 5 . . .

γ2(k) (0, 1
2
, 1
2
) (1

2
, 1
2
, 1
2
) (1

2
, 3
4
, 3
4
) (3

4
, 3
4
, 3
4
) (3

4
, 7
8
, 7
8
) . . .

γ2(k) (3, 11
2
, 21

2
) (21

2
, 11

2
, 21

2
) (21

2
, 11

4
, 21

4
) (21

4
, 11

4
, 21

4
) (21

4
, 11

8
, 21

8
) . . .

Table 3.1: The values of the first five elements of the sequences (γ2(k))k∈N and (γ2(k))k∈N,
generated for the financial network (E,C) with respect to the Talmud claims rule TAL.
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Figure 3.1a visualizes θ22, the minimum additional cash of agent 2, as θ1, the additional
cash of agent 1, varies from 0 to 3. Figure 3.1b visualizes this for the maximum additional

cash of agent 2. Note that θ
2

2 is discontinuous at θ1 = 1, whereas θ22 is discontinuous at
θ1 = 2.

0 1 2 3

0

1

2

3

(a) The minimum additional cash of agent 2,
θ22, as a function of θ1, the additional cash of
agent 1.

0 1 2 3

0

1

2

3

(b) The maximum additional cash of agent 2,

θ
2
2, as a function of θ1, the additional cash of
agent 1.

Figure 3.1

△

As the additional cash of agent i ∈ {2, . . . , n} is bounded from below by θ2i (Lemma 3.3)

and bounded from above by θ
2

i (Lemma 3.4), we thus also find that θ2i is at most equal to

θ
2

i .

Corollary 3.6. For all i ∈ {2, . . . , n}, it holds that θ2i ≤ θ
2

i .

Now, we fix the additional cash of agent 2:

θ2 = (1− λ2)θ
2
2 + λ2θ

2

2,

which is a convex combination of its minimum additional cash and maximum additional
cash. Moreover, by combining the results of Lemmas 3.3 and 3.4 and Corollary 3.6, for any
d ∈ Dϕ(E,C), we can set

λ2 =


d2 − θ22

θ
2

2 − θ22
if θ22 < θ

2

2

0 if θ22 = θ
2

2,

such that λ2 ∈ [0, 1] and θ2 = d2. The choice of λ2 = 0 in case θ22 = θ
2

2 is arbitrary.
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Given the additional cash of agents 1 and 2, we can subsequently determine the minimum
and maximum additional cash of agent 3 in order to construct the additional cash of agent
3. By repeating this recursive process, the additional cash of each agent can be constructed,
which takes exactly n steps. This leads to the following definition.

Definition 3.7. Let (E,C) ∈ FN , let ϕ ∈ RN , and let λ ∈ [0, 1]N . The vector θ(λ) ∈ RN

is defined by setting

θ1(λ) = (1− λ1)θ
1
1 + λ1θ

1

1

with θ1 = 0N and θ
1
= d

ϕ
(E,C), and, recursively, for all ℓ ∈ {2, . . . , n},

θℓ(λ) = (1− λℓ)θ
ℓ
ℓ + λℓθ

ℓ

ℓ,

in which θℓ, θ
ℓ ∈ R{ℓ,...,n} are, for all i ∈ {ℓ, . . . , n}, given by

θℓi = lim
k→∞

γℓ

i
(k) and θ

ℓ

i = lim
k→∞

γℓ
i(k), (3.12)

respectively, in which,

γℓ

i
(1) =

∑
j<ℓ

(φj
i (ej +

∑
h∈N

pϕ
hj
+ θj(λ), cj)− pϕ

ji
) (3.13)

and

γℓ
i(1) = d

ϕ

i (E,C)−
∑
j<ℓ

(pϕji − φj
i (ej +

∑
h∈N

pϕ
hj
+ θj(λ), cj)),

and, recursively, for all k ∈ N,

γℓ

i
(k + 1) = γℓ

i
(1) +

∑
j≥ℓ

(φj
i (ej +

∑
h∈N

pϕ
hj
+ γℓ

j
(k), cj)− pϕ

ji
), (3.14)

and

γℓ
i(k + 1) = γℓ

i(1)−
∑
j≥ℓ

(pϕji − φj
i (ej +

∑
h∈N

pϕ
hj
+ γℓ

j(k), cj)). (3.15)

By applying the same arguments that we used for the sequence (γ2(k))k∈N, it follows
that, in each step, the sequences given by (3.14) and (3.15) are monotonically increasing and
monotonically decreasing, respectively. As both sequences are bounded from below by zero
and from above by the total excess, their limits, which are given in (3.12), exist.

The vector that is the result of the recursive procedure given in Definition 3.7 is a λ-
additional cash vector; in fact, it is the only one.

Proposition 3.8. Let (E,C) ∈ FN , let ϕ ∈ RN , and let λ ∈ [0, 1]N . Then, the vector θ(λ)
is the only λ-additional cash vector for (E,C) with respect to ϕ.
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Using the following three lemmas, we are able to characterize the set of additional cash
vectors via λ-additional cash vectors that follow from the recursive procedure given in Defi-
nition 3.7.

The additional cash of exactly one agent is determined in each step of the iterative
procedure given in Definition 3.7. As a result, the range of additional cash available to
subsequent agents, which is always well-defined, becomes smaller. The following lemma
formalizes this observation.

Lemma 3.9. Let (E,C) ∈ FN , let ϕ ∈ RN , and let λ ∈ [0, 1]N . Then, for all ℓ ∈ {2, . . . , n−
1} and all i ∈ {ℓ + 1, . . . , n}, it holds that θℓi ≤ θℓ+1

i and θ
ℓ

i ≥ θ
ℓ+1

i . Moreover, for all

ℓ ∈ {2, . . . , n}, it holds that θℓ ≤ θ
ℓ
.

The following lemma generalizes Lemma 3.3 and Lemma 3.4 in the sense that in each step
of the iterative procedure given in Definition 3.7 two additional cash vectors are obtained.

Lemma 3.10. Let (E,C) ∈ FN , let ϕ ∈ RN , and let λ ∈ [0, 1]N . Then, for all ℓ ∈
{2, . . . , n}, it holds that

(i) (θ1(λ), . . . , θℓ−1(λ), θ
ℓ
ℓ, . . . , θ

ℓ
n) ∈ Dϕ(E,C)

(ii) (θ1(λ), . . . , θℓ−1(λ), θ
ℓ

ℓ, . . . , θ
ℓ

n) ∈ Dϕ(E,C).

As the following lemma implies, the additional cash vectors that are constructed in each
step of the iterative procedure given in Definition 3.7 are minimal and maximal. Moreover,
if the additional cash of each agent equals the minimum amount (i.e., λ = 0N), then the
iterative procedure yields the zero vector. On the other hand, if the additional cash of each
agent equals the maximum amount (i.e., λ = 1N), then the iterative procedures yields the
total excess vector.

Lemma 3.11. Let (E,C) ∈ FN , let ϕ ∈ RN , and let λ ∈ [0, 1]N . Then, for all ℓ ∈
{2, . . . , n}, and all d ∈ Dϕ(E,C) with di = θi(λ) for all i ∈ {1, . . . , ℓ − 1}, it holds that

di ≥ θℓi and di ≤ θ
ℓ

i for all i ∈ {ℓ, . . . , n}; in particular, if, for all i ∈ {1, . . . , ℓ− 1}, λi = 0

(λi = 1), then θℓi = 0 (θ
ℓ

i = d
ϕ

i (E,C)) for all i ∈ {ℓ, . . . , n}.

More importantly, Lemma 3.10 implies that the vector of additional cash that is the
result of the iterative procedure is an additional cash vector — after all, if the additional
cash of the first n − 1 agents are known, then so is the additional cash of agent n. And,
Lemma 3.9 and Lemma 3.11 imply that, for any d ∈ Dϕ(E,C), we can set, for each agent
ℓ ∈ {1, . . . , n},

λℓ =


dℓ − θℓℓ

θ
ℓ

ℓ − θℓℓ
if θℓℓ < θ

ℓ

ℓ

0 if θℓℓ = θ
ℓ

ℓ,

(3.16)

to obtain θℓ(λ) = dℓ. Combining Lemma 3.9, Lemma 3.10 and Lemma 3.11 therefore yields
the following characterization of the set of additional cash vectors.
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Theorem 3.12. Let (E,C) ∈ FN , and let ϕ ∈ RN . Then,

Dϕ(E,C) = {θ(λ) |λ ∈ [0, 1]N}.

Proof. First, let λ ∈ [0, 1]N . From Lemma 3.10 it follows that (θ1(λ), . . . , θn−1(λ), θ
n
n) ∈

Dϕ(E,C) and (θ1(λ), . . . , θn−1(λ), θ
n

n) ∈ Dϕ(E,C). Then, by (3.3), θnn = θ
n

n, which implies
that θn(λ) = (1− λn)θ

n
n + λnθ

n

n = θnn. Hence, we have that θ(λ) ∈ Dϕ(E,C).
Second, let d ∈ Dϕ(E,C). For each ℓ ∈ {1, . . . , n}, set λℓ according to (3.16). If

d
ϕ

1(E,C) > 0, then λ1 = (d1/d
ϕ

1(E,C)) ∈ [0, 1] such that θ1(λ) = λ1d
ϕ

1(E,C) = d1. Other-

wise d
ϕ

1(E,C) = 0, so d1 = 0 and θ1(λ) = 0. Next, let ℓ ∈ {2, . . . , n} and assume that, for

all i ∈ {1, . . . , ℓ− 1}, θi(λ) = di. From θℓℓ ≤ θ
ℓ

ℓ (Lemma 3.9) and θℓℓ ≤ dℓ ≤ θ
ℓ

ℓ (Lemma 3.11)
it follows that λℓ ∈ [0, 1] such that

θℓ(λ) = θℓℓ + λℓ(θ
ℓ

ℓ − θℓℓ) = θℓℓ + dℓ − θℓℓ = dℓ.

By induction, for all i ∈ {1, . . . , n}, it holds that λi ∈ [0, 1] and θi(λ) = di.

Because the iterative procedure given in Definition 3.7 can be used to obtain any ad-
ditional cash vector, and because each additional cash vector corresponds to exactly one
transfer scheme, the iterative procedure can also be used to obtain any transfer scheme. To
emphasize that, for each λ ∈ [0, 1]N , the vector θ(λ) corresponds to an additional cash vector
for a financial network (E,C) ∈ FN with respect to ϕ ∈ RN , we henceforth denote θ(λ) by
θϕ,λ(E,C). Hence, for all (E,C) ∈ FN and for all ϕ ∈ RN ,

Pϕ(E,C) = {f(θϕ,λ(E,C)) |λ ∈ [0, 1]N}.

Correspondingly, we define a (ϕ, λ)-based transfer rule τϕ,λ on FN that assigns to each
financial network exactly one ϕ-based transfer scheme with respect to λ, which indicates the
extent to which agents pay in addition to what they pay under the ϕ-based bottom transfer
scheme.

Definition 3.13. Let ϕ ∈ RN , and let λ ∈ [0, 1]N . The (ϕ, λ)-based transfer rule τϕ,λ : FN →
RN×N is, for all (E,C) ∈ FN , given by

τϕ,λ(E,C) = f(θϕ,λ(E,C)).

Denote the set of transfer rules by T ϕ = {(λ, τϕ,λ) |λ ∈ [0, 1]N}.
For each vector of agent-specific claims rules ϕ ∈ RN , the set of transfer rules T ϕ consists
of pairs of weight vectors and associated transfer rules that prescribe, for each financial
network, a transfer scheme based on ϕ and λ ∈ [0, 1]N .

Given ϕ ∈ RN , two distinct weight vectors λ, λ′ ∈ [0, 1]N with λi ̸= λ′
i for some i ∈

{1, . . . , n − 1}, lead to two distinct transfer rules τϕ,λ and τϕ,λ
′
.4 However, two weight

vectors λ, λ′ ∈ [0, 1]N that are equal except for the last coordinate, lead to identical transfer
rules τϕ,λ and τϕ,λ

′
because λn can be chosen arbitrarily in the construction of a λ-additional

cash vector.
4To illustrate this, consider the financial network (E,C) ∈ FN given by N = {1, 2},

E =

(
0
0

)
and C =

[
0 1
1 0

]
.

Let ϕ ∈ RN and λ, λ′ ∈ [0, 1]N with λ1 ̸= λ′
1. Then, τ

ϕ,λ(E,C) = λ1C and τϕ,λ
′
(E,C) = λ′

1C.
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4 Strongly Connected Components in Financial

Networks

In this section, we show the general result that the set of irregular agents can be partitioned
into strongly connected components for which the payments between any pair of strongly
connected components are uniquely determined. We then use this result to show that the
set of PROP-based transfer schemes has a relatively simple structure.

Let (E,C) ∈ FN , and let ϕ ∈ RN . We define the directed graph Gϕ(E,C) = (Iϕ(E,C), A)
that consists of the irregular agents in (E,C) with respect to ϕ and in which there is an arc
from i ∈ Iϕ(E,C) to j ∈ Iϕ(E,C) if agent i pays agent j differently with respect to the
bottom and top transfer schemes; that is, the set of arcs is given by

A = {(i, j) ∈ Iϕ(E,C)× Iϕ(E,C) | pϕ
ij
< pϕij}.

Note that, for all i ∈ Iϕ(E,C), (i, i) /∈ A because cii = 0, which implies that pϕ
ii
= 0 = pϕii.

An irregular agent i ∈ Iϕ(E,C) is connected to another irregular agent j ∈ Iϕ(E,C) in
Gϕ(E,C) if, for some k ≥ 2, there is a directed path of agents (i1, . . . , ik) such that i1 = i and
ik = j and, for all ℓ ∈ {1, . . . , k − 1}, (iℓ, iℓ+1) ∈ A. A set of irregular agents S ⊆ Iϕ(E,C)
is a strongly connected component in Gϕ(E,C) if any two distinct irregular agents in S are
connected, and S is maximal with respect to this property. For each i ∈ Iϕ(E,C), let S(i)
denote the strongly connected component to which i belongs. Then, the collection of strongly
connected components Cϕ(E,C) = {S(i) | i ∈ Iϕ(E,C)} forms a partition of Iϕ(E,C).

The following theorem implies that the payments between two distinct strongly connected
components are uniquely determined. The payments to and by regular agents are always
uniquely determined. Therefore, in particular, the payments between agents in a strongly
connected component and agents outside that strongly connected component, are uniquely
determined.

Theorem 4.1. Let (E,C) ∈ FN , and let ϕ ∈ RN . Then, for all S ∈ Cϕ(E,C), for all i ∈ S,
and for all j ∈ Iϕ(E,C) \ S, it holds that pϕ

ij
= pϕij.

Proof. Assume that |Cϕ(E,C)| ≥ 2. Define the following subcollection of strongly connected
components:

S = {S ∈ Cϕ(E,C) | for all i ∈ S, for all j ∈ Iϕ(E,C) \ S, pϕ
ij
= pϕij}.

If S ∈ S, then there is no arc from S to a different strongly connected component S ′ ∈
Cϕ(E,C). On the other hand, if S ∈ Cϕ(E,C) \ S, then there is an arc from S to a different
strongly connected component S ′ ∈ Cϕ(E,C).

It suffices to prove that S = Cϕ(E,C). To this end, we will prove that, for all S ∈ S,∑
j∈Iϕ(E,C)\S

∑
i∈S

(φj
i (ej +

∑
k∈N

pϕ
kj
+ dj, cj)− pϕ

ji
) = 0, (4.1)

which implies that there is also no arc from a different strongly connected component S ′ ∈
Cϕ(E,C) to S. And, for all S ∈ Cϕ(E,C) \ S,∑

j∈Iϕ(E,C)\S

∑
i∈S

(φj
i (ej +

∑
k∈N

pϕ
kj
+ dj, cj)− pϕ

ji
) > 0, (4.2)
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which implies that there exist an arc from a different strongly connected component S ′ ∈
Cϕ(E,C) to S.

Combining (4.1) and (4.2) gives the desired result. To see this, suppose that S ≠
Cϕ(E,C). It follows from (4.1) that each S ∈ Cϕ(E,C) \ S must have an outgoing arc
that points to a different S ′ ∈ Cϕ(E,C) \ S. Additionally, from (4.2) it follows that each
S ∈ Cϕ(E,C) \ S must have an incoming arc that comes from a different S ′ ∈ Cϕ(E,C) \ S.
As a consequence, at least two strongly connected components S, S ′ ∈ Cϕ(E,C) \ S are
connected in the sense that for all i ∈ S and all j ∈ S ′, i is connected to j and j is connected
to i. However, this is a contradiction because it entails that neither S nor S ′ is a strongly
connected component.

Let S ∈ Cϕ(E,C). For all j ∈ Iϕ(E,C) \ S, condition (2.3) of an additional cash vector
can be restricted to irregular agents, so it can be written as

dj =
∑
i∈S

(φi
j(ei +

∑
k∈N

pϕ
ki
+ di, ci)− pϕ

ij
) +

∑
i∈Iϕ(E,C)\S

(φi
j(ei +

∑
k∈N

pϕ
ki
+ di, ci)− pϕ

ij
). (4.3)

Similarly, for all j ∈ Iϕ(E,C) \ S, Proposition 2.5 (iv) is given by

dj =
∑
i∈S

(φj
i (ej +

∑
k∈N

pϕ
kj
+ dj, cj)− pϕ

ji
) +

∑
i∈Iϕ(E,C)\S

(φj
i (ej +

∑
k∈N

pϕ
kj
+ dj, cj)− pϕ

ji
). (4.4)

Using (4.3) and (4.4), we find that∑
i∈S

∑
j∈Iϕ(E,C)\S

(φi
j(ei +

∑
k∈N

pϕ
ki
+ di, ci)− pϕ

ij
)

=
∑

j∈Iϕ(E,C)\S

dj −
∑

j∈Iϕ(E,C)\S

∑
i∈Iϕ(E,C)\S

(φi
j(ei +

∑
k∈N

pϕ
ki
+ di, ci)− pϕ

ij
)

=
∑

j∈Iϕ(E,C)\S

∑
i∈S

(φj
i (ej +

∑
k∈N

pϕ
kj
+ dj, cj)− pϕ

ji
)

+
∑

j∈Iϕ(E,C)\S

∑
i∈Iϕ(E,C)\S

(φj
i (ej +

∑
k∈N

pϕ
kj
+ dj, cj)− pϕ

ji
)

−
∑

j∈Iϕ(E,C)\S

∑
i∈Iϕ(E,C)\S

(φi
j(ei +

∑
k∈N

pϕ
ki
+ di, ci)− pϕ

ij
)

=
∑

j∈Iϕ(E,C)\S

∑
i∈S

(φj
i (ej +

∑
k∈N

pϕ
kj
+ dj, cj)− pϕ

ji
).

The first equality follows from (4.3); the second equality follows from (4.4). If S ∈ S, we
obtain (4.1); if S ∈ Cϕ(E,C) \ S, we obtain (4.2).

Using Theorem 4.1, we will show that the set of additional cash vectors with respect to
the proportional rule has a relatively simple structure. For each financial network and each
vector of claims rules, the set of irregular agents can be partitioned into strongly connected
components in which the payments between any two strongly connected components are
uniquely determined. With each strongly connected component we associate a specific weight
that is common between all agents in that strongly connected component.
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Definition 4.2. Let (E,C) ∈ FN , and let ϕ ∈ RN . Then, λ ∈ [0, 1]N is a component-based
weight vector for (E,C) with respect to ϕ if, for each S ∈ Sϕ(E,C), there exists a λS ∈ [0, 1]
such that, for all i ∈ S, λi = λS. The set of all possible component-based weight vectors for
(E,C) with respect to ϕ is denoted by Λϕ(E,C).

Let (E,C) ∈ FN , and let ϕ = (PROP)i∈N ≡ PROP. For each λ ∈ Λϕ(E,C), define the
vector of additional cash d(λ) ∈ RN as follows. The additional cash of a regular agent is set
to zero, thus, for all i /∈ Iϕ(E,C), di(λ) = 0. On the other hand, for all S ∈ Cϕ(E,C) and all
i ∈ S, the additional cash of irregular agent i is determined by the weight λS that is associated

with the strongly connected component to which agent i belongs, thus di(λ) = λSd
ϕ

i (E,C).
Indeed, as the following theorem states, d(λ) is an additional cash vector for (E,C) with

respect to PROP. Furthermore, any additional cash vector for (E,C) ∈ FN with respect to
PROP can be written as d(λ) for some λ ∈ ΛPROP(E,C).

Theorem 4.3. Let (E,C) ∈ FN . Then, DPROP(E,C) = {d(λ) |λ ∈ ΛPROP(E,C)}.

Proof. For ease of exposition, set ϕ = PROP. Theorem 4.1 implies that, for each i ∈
Iϕ(E,C), condition (2.3) of an additional cash vector can be restricted to the strongly con-

nected component S ∈ Cϕ(E,C) to which irregular agent i belongs. That is, d ∈ [0, d
ϕ
(E,C)]

is an additional cash vector for (E,C) with respect to ϕ if, for all i /∈ Iϕ(E,C), di = 0, and,
for all S ∈ Cϕ(E,C) and all i ∈ S,

di =
∑
j∈S

(φj
i (ej +

∑
k∈N

pϕ
kj
+ dj, cj)− pϕ

ji
).

We need thus only focus on the irregular agents and the strongly connected components to
which they belong.

For all S ∈ Cϕ(E,C) and all i ∈ S, we have cij ≥ pϕij > pϕ
ij

≥ 0 for some j ∈ S, so

also
∑

k∈N cik > 0; furthermore, Proposition 2.5 (iii) implies that, for all P ∈ Pϕ(E,C),
0 ≤ ei +

∑
k∈N pki ≤

∑
k∈N cik. Consequently, when ϕ = PROP, we have d ∈ Dϕ(E,C) if,

for all S ∈ Cϕ(E,C) and all i ∈ S,

di =
∑
j∈S

(φj
i (ej +

∑
k∈N

pϕ
kj
+ dj, cj)− pϕ

ji
)

=
∑
j∈S

(
(ej +

∑
k∈N

pϕ
kj
+ dj)

cji∑
k∈N cjk

− (ej +
∑
k∈N

pϕ
kj
)

cji∑
k∈N cjk

)
=

∑
j∈S

dj
cji∑

k∈N cjk
.

First, let λ ∈ Λϕ(E,C). Then, for all S ∈ Cϕ(E,C) and all i ∈ S,

di(λ) = λSd
ϕ
i (E,C) =

∑
j∈S

λSd
ϕ

j (E,C)
cji∑

k∈N cjk
=

∑
j∈S

λSdj(λ)
cji∑

k∈N cjk
,
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in which the second equality follows from d
ϕ
(E,C) ∈ Dϕ(E,C). Thus, d(λ) ∈ Dϕ(E,C).

Second, let d ∈ Dϕ(E,C) and let λ ∈ [0, 1]N . Let S ∈ Cϕ(E,C) and, for all i ∈ S, set

λi = di/d
ϕ

i (E,C) such that di = λid
ϕ

i (E,C). We will prove that there exists a λS ∈ [0, 1]
such that, for all i ∈ S, λi = λS. This implies that, for all i ∈ N , di = di(λ).

Because d ∈ Dϕ(E,C), for all i ∈ S, it holds that

λid
ϕ

i (E,C) =
∑
j∈S

λjd
ϕ

j (E,C)
cji∑

k∈N cjk
. (4.5)

In addition to this, because d
ϕ
(E,C) ∈ Dϕ(E,C), for all i ∈ S, it holds that

λid
ϕ

i (E,C) =
∑
j∈S

λid
ϕ

j (E,C)
cji∑

k∈N cjk
. (4.6)

Combining (4.5) and (4.6) implies that, for all i ∈ S,∑
j∈S

(λj − λi)d
ϕ

j (E,C)
cji∑

k∈N cjk
= 0. (4.7)

Without loss of generality, let S = {i1, . . . , is} with s = |S| be such that λi1 ≥ · · · ≥ λis .
Let ℓ ∈ {1, . . . , s − 1} and assume that λi1 = · · · = λiℓ . We will show that λiℓ = λiℓ+1

. If
λi1 = · · · = λiℓ , then, for all i ∈ {i1, . . . , iℓ}, (4.7) simplifies to∑

j∈{iℓ+1,...,is}

(λj − λi)d
ϕ

j (E,C)
cji∑

k∈N cjk
= 0. (4.8)

As a result, we obtain

(λiℓ+1
− λiℓ)

∑
j∈{iℓ+1,...,is}

d
ϕ

j (E,C)

∑
i∈{i1,...,iℓ} cji∑

k∈N cjk

= (λiℓ+1
− λiℓ)

∑
i∈{i1,...,iℓ}

∑
j∈{iℓ+1,...,is}

d
ϕ

j (E,C)
cji∑

k∈N cjk

=
∑

i∈{i1,...,iℓ}

(λiℓ+1
− λi)

∑
j∈{iℓ+1,...,is}

d
ϕ

j (E,C)
cji∑

k∈N cjk

≥
∑

i∈{i1,...,iℓ}

∑
j∈{iℓ+1,...,is}

(λj − λi)d
ϕ

j (E,C)
cji∑

k∈N cjk

= 0.

The second equality follows from λi1 = · · · = λiℓ ; the inequality follows from λiℓ+1
≥ · · · ≥ λis ;

the last equality follows from (4.8).
Because S ∈ Cϕ(E,C), agents iℓ and iℓ+1 are connected, and thus by Theorem 4.1,

cji ≥ pϕji > pϕ
ji

≥ 0 for some j ∈ {iℓ+1, . . . , is} and i ∈ {i1, . . . , iℓ}. Consequently, it

follows that λiℓ+1
− λiℓ ≥ 0, which, in turn, implies that λiℓ = λiℓ+1

. Hence, by induction,
λi1 = · · · = λis . In particular, if we set λS = λi1 = · · · = λis , then λS ∈ [0, 1].
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Theorem 4.3 that characterizes the set of additional cash vectors with respect to the
proportional rule implies that the iterative procedure as given in Definition 3.7 simplifies
considerably when ϕ = PROP. Let (E,C) ∈ FN , and let λ ∈ [0, 1]N . Consider S ∈ Cϕ(E,C)
and let ℓ = min{j | j ∈ S} be the first agent in the strongly connected component S that
is selected in the iterative procedure. Theorem 4.3 implies that, for all i ∈ S, θϕ,λi (E,C) =

λSd
ϕ

i (E,C), in which λS = λℓ. The weight λℓ ∈ [0, 1] of agent ℓ ∈ S thus determines the
additional cash of the other agents in the strongly connected component S. In fact, only the
bottom and top PROP-based transfer schemes have to be determined to construct the set
of PROP-based additional cash vectors.

The set of additional cash vectors is homeomorphic to the set of transfer schemes (Theo-
rem 2.11), which means that Theorem 4.3 reveals the structure of the set of transfer schemes
with respect to the proportional rule. Let (E,C) ∈ FN . For each λ ∈ ΛPROP(E,C), the pay-
ment matrix f(d(λ)) is a transfer scheme for (E,C) with respect to PROP. More specifically,
for all S ∈ CPROP(E,C) and all i ∈ S, the payment by agent i to agent j ∈ N is given by a
convex combination of the bottom PROP-based payment and the top PROP-based payment
with respect to λS ∈ [0, 1], that is,

fij(d(λ)) = (1− λS)p
PROP

ij
+ λSp

PROP
ij . (4.9)

All mutual payments between agents in a strongly connected component and agents outside
that strongly connected component are uniquely determined, which is not the case for mutual
payments inside the strongly connected component (Theorem 4.1). In the latter case, the
convex combination in (4.9) is therefore nontrivial. Theorem 2.11 and Theorem 4.3 imply
the following corollary.

Corollary 4.4. Let (E,C) ∈ FN . Then, PPROP(E,C) = {f(d(λ)) |λ ∈ ΛPROP(E,C)}.

5 Axiomatizations of the Proportional Rule

This section demonstrates that Theorem 3.12 on the characterization of additional cash
vectors lends itself to an axiomatic analysis of proportional clearing payments.

We will introduce axioms for any set of transfer rules T ϕ. Recall from Definition 3.13
that a set of transfer rules T ϕ comprises pairs of weight vectors and associated transfer
rules. A transfer rule τϕ,λ prescribes, for each financial network (E,C) ∈ FN , a transfer
scheme based on λ ∈ [0, 1]N in which each agent i ∈ N uses its claims rule φi to pay its
creditors. A proportional transfer rule τPROP,λ is a specific type of transfer rule in which
each agent i ∈ N uses the proportional rule (i.e., φi = PROP). The set T PROP contains such
proportional transfer rules.

Our axioms are weak convexity, convexity, and decomposition, which are related to ho-
mogeneity, linearity, and additivity for mappings on general vector spaces, respectively. Ho-
mogeneity and additivity are independent axioms in general. There exist mappings that
are homogeneous but not additive, and vice versa. A mapping is linear if and only if it is
homogeneous and additive.

For example, let M = {1, 2} and c > 0 and consider the mapping g : [0, 1]M → R in
which, for all λ ∈ [0, 1]M , g(λ) = λ1c if λ1 = λ2, and g(λ) = 0 otherwise. The mapping g is
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homogeneous if, for all µ ∈ [0, 1] and all λ ∈ [0, 1]M , g(µλ) = µg(λ). Clearly, the mapping
g is homogeneous. The mapping g is additive if, for all λ, λ′ ∈ [0, 1]M with λ+ λ′ ∈ [0, 1]M ,
g(λ+λ′) = g(λ)+g(λ′). Consider λ = (0, 1/2) and λ′ = (1/2, 0). Then, g(λ+λ′) = (1/2)c ̸=
0 = g(λ) + g(λ′), illustrating that g is not additive.

Mappings that are additive but not homogeneous exist, too, and such mappings must be
discontinuous. Exemplifying existence of such mappings requires the axiom of choice, which
goes beyond the scope of this article. We refer the interested reader to Hamel (1905), and
also to page 20 of Torchinsky (1988).

Interestingly, we will see that weak convexity, convexity, and decomposition are equivalent
in the financial network setting because all three characterize the set of proportional transfer
rules. In fact, weak convexity, being the axiom imposing the least restrictive conditions on
the clearing payments, suffices to characterize the proportional rule in financial networks.

Weak convexity entails that any convex combination of the bottom and top transfer
schemes is also a transfer scheme.

Definition 5.1. Let ϕ ∈ RN , and let σ0 = (0N , τϕ,0
N
) ∈ T ϕ and σ1 = (1N , τϕ,1

N
) ∈ T ϕ.

The set of transfer rules T ϕ satisfies weak convexity if, for all µ ∈ [0, 1], (1 − µ)σ0 + µσ1 =
(µN , (1− µ)τϕ,0

N
+ µτϕ,1

N
) ∈ T ϕ.

That is, weak convexity requires that a convex combination of the transfer rules τϕ,0
N
and

τϕ,1
N
with respect to µ ∈ [0, 1] equals the transfer rule τϕ,µ

N
.

In the unilateral claims problem setting, in which an amount is to be divided among a
group of claimants with respect to a claims vector, weak convexity as in Definition 5.1 has no
bite because it is satisfied by any claims rule. The claims rule φi of agent i ∈ N prescribes a
unique allocation vector for each claims problem. In the financial network setting, however,
multiple transfer schemes can exist for a financial network and there is a choice to be made.

Theorem 5.2 states that only the set of proportional transfer rules is weakly convex.

Theorem 5.2. Let ϕ ∈ RN . Then, T ϕ satisfies weak convexity if and only if ϕ = PROP.

Proof. First, assume that T ϕ satisfies weak convexity. Consider (E,C) ∈ FN with E = 0N

and C > 0, in which C is a symmetric claims matrix. Then, it holds that τϕ,0
N
(E,C) =

P ϕ(E,C) = 0N×N and τϕ,1
N
(E,C) = P

ϕ
(E,C) = C.

Let i ∈ N . Weak convexity of T ϕ implies that, for all µ ∈ [0, 1], τϕ,µ
N
(E,C) = (1 −

µ)τϕ,0
N
(E,C) + µτϕ,1

N
(E,C) = (1− µ)0N×N + µC and thus

µci = φi(µ
∑
k∈N

cki, ci), (5.1)

in which the equality follows from τϕ,µ
N
(E,C) = µC ∈ Pϕ(E,C). The claims matrix C

is symmetric, so
∑

k∈N cki =
∑

k∈N cik. Let µ ∈ [0, 1) and set a = µ
∑

k∈N cki. Then,
a ∈ [0,

∑
k∈N cik) and

φi(a, ci) = µci = µ
∑
k∈N

cki
ci∑

k∈N cik
=

ci∑
k∈N cik

a = PROP(a, ci),
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in which the first equality follows from (5.1) and the second equality follows from
∑

k∈N cki =∑
k∈N cik. Hence, we establish that φi = PROP.

Second, assume that ϕ = PROP. Let µ ∈ [0, 1], and let (E,C) ∈ FN . To prove that
T PROP satisfies weak convexity, it suffices to show that

τPROP,µN

(E,C) = (1− µ)PPROP(E,C) + µP
PROP

(E,C). (5.2)

It holds that µN ∈ ΛPROP(E,C), so (4.9) and Corollary 4.4 imply that (5.2) holds.

Convexity generalizes weak convexity by requiring that any convex combination of any
two transfer rules must also be a transfer rule.

Definition 5.3. Let ϕ ∈ RN . The set of transfer rules T ϕ satisfies convexity if, for all
σ = (λ, τϕ,λ) ∈ T ϕ and σ′ = (λ′, τϕ,λ

′
) ∈ T ϕ, and for all µ ∈ [0, 1], it holds that (1 − µ)σ +

µσ′ = ((1− µ)λ+ µλ′, (1− µ)τϕ,λ + µτϕ,λ
′
) ∈ T ϕ.

That is, convexity requires that a convex combination of the transfer rules τϕ,λ and τϕ,λ
′

with respect to µ ∈ [0, 1] equals the transfer rule τϕ,(1−µ)λ+µλ′
. In essence, convexity means

that any convex combination of any two transfer schemes is also a transfer scheme.
In the financial network setting, only the set of proportional transfer rules is weakly

convex. In fact, as the following proposition states, it is also the only one to be convex.

Proposition 5.4. Let ϕ ∈ RN . Then, T ϕ satisfies convexity if and only if ϕ = PROP.

We conclude the section by introducing decomposition. Let ϕ ∈ RN , and define the
set T̃ ϕ = T ϕ − {(0N , τϕ,0N )}. A pair (λ, τ̃ϕ,λ) ∈ T̃ ϕ prescribes, for each financial network
(E,C) ∈ FN , the additional payment matrix τ̃ϕ,λ(E,C) = τϕ,λ(E,C) − τϕ,0

N
(E,C) that

contains payments net of the bottom transfer scheme P ϕ(E,C). Weak convexity can be

expressed in terms of T̃ ϕ by requiring that, for all µ ∈ [0, 1], (µN , µτ̃ϕ,1
N
) ∈ T̃ ϕ.

Decomposition says that the ϕ-based additional payments by the agents can be decom-
posed as follows. If we have the pair (λ + λ′, τ̃ϕ,λ+λ′

) ∈ T̃ ϕ with λ + λ′ ∈ [0, 1]N , then
decomposition implies that the additional payment matrices prescribed by τ̃ϕ,λ+λ′

can be
decomposed into the payment matrices prescribed by τ̃ϕ,λ and τ̃ϕ,λ

′
.

Definition 5.5. Let ϕ ∈ RN . The set T̃ ϕ satisfies decomposition if, for all σ = (λ, τ̃ϕ,λ) ∈ T̃ ϕ,

and σ′ = (λ′, τ̃ϕ,λ
′
) ∈ T̃ ϕ with λ+λ′ ∈ [0, 1]N , it holds that σ+σ′ = (λ+λ′, τ̃ϕ,λ+ τ̃ϕ,λ

′
) ∈ T̃ ϕ.

Also decomposition has no bite in the unilateral context of claims problems and claims
rules because the allocation vector prescribed by each claims rule is uniquely determined,
which implies that any claims rule satisfies decomposition.

Decomposition entails that there exist a way to prescribe the payments between agents
in stages. For example, to prescribe the top transfer scheme for a financial network (i.e.,
λ+λ′ = 1N), one can first prescribe a transfer scheme with respect to λ = (1/m)N withm ∈ N
and subsequently construct the additional payment matrix with respect to λ′ = (1− 1/m)N

to prescribe the remaining transfers. That is, decomposition of T̃ ϕ implies that

τϕ,1
N

= τϕ,(1/m)N + (τϕ,(1−1/m)N − τϕ,0
N

). (5.3)
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In fact, as the following proposition states, decomposition implies weak convexity. Crucial
in proving this result is that the agent-specific claims rules satisfy resource monotonicity, and,
by extension, also resource continuity.

Proposition 5.6. Let ϕ ∈ RN . If T̃ ϕ satisfies decomposition, then T ϕ satisfies weak con-
vexity.

In addition to Proposition 5.6, the set T̃ PROP satisfies decomposition. This leads to the
following result that the proportional rule can also be axiomatized using decomposition.

Proposition 5.7. Let ϕ ∈ RN . Then, T̃ ϕ satisfies decomposition if and only if ϕ = PROP.

6 Concluding Remarks

This article analyzes financial networks that consist of agents that have assets and are con-
nected to each other by mutual liabilities. We study transfer schemes, which are payment
matrices that contain clearing payments in accordance with claims rules. A transfer scheme
prescribes, for each financial network, payments between agents to settle their mutual li-
abilities. This article is the first to fully characterize such transfer schemes. In fact, our
characterization result, which relies on additional cash vectors, encompasses a wide variety
of claims rules that dictate how agents should pay their creditors, including the proportional
rule that is commonly used in practice.

We introduce a recursive procedure that computes all transfer schemes for an arbitrary
financial network. Using this complete characterization, we show that transfer schemes in
which each agent pays its creditors in accordance with the proportional rule, have a relatively
simple structure. When the mutual payments of an agent are not uniquely determined, we
speak of an irregular agent, whereas we speak of regular agent otherwise. Payments between
irregular agents in any proportional transfer scheme can be written as a component-based
convex combination of their proportional bottom and top payments. Irregular agents be-
longing to the same strongly connected component have the same weight that determines
the convex combination, but the weights may vary across strongly connected components.

Our characterization additionally facilitates a general network-based axiomatic analysis
of transfer rules, which associate with each financial network a transfer scheme. We introduce
three axioms, namely weak convexity, convexity, and decomposition, that each individually
provide an axiomatization of transfer rules that are based on proportional claims rules. To
formulate different axioms specific to the financial network setting, one can take inspiration
from axiomatizations of claims rules for a unilateral bankruptcy situation. Thomson (2019)
provides an extensive survey of the literature on axiomatizations of claims rules. We leave a
study in this vein as future research.

Finally, we want to stress that Demange (2023) and Csóka and Herings (2023) focus on
kinds of proportionality that are different from ours. Demange (2023) provides an axiom-
atization of the constrained proportional rule in financial networks, which is not a claims
rule because payments can be larger than the claims to prevent bankruptcy of some agents.
Csóka and Herings (2023) provides an axiomatization of the pairwise netting proportional
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rule in financial networks in which agents first settle their bilateral claims after which the
proportional rule is applied with respect to the reduced claims. The two consecutive steps
of the pairwise netting proportional rule can not be captured by a single claims rule.
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A Proofs

Payments in accordance with a transfer scheme give rise to a redistribution of the estates
vector, which we call a transfer allocation.

Definition A.1. Let (E,C) ∈ FN , let ϕ ∈ RN , and let P ∈ Pϕ(E,C). The vector
a(P ) ∈ RN is the transfer allocation corresponding to P with respect to ϕ if, for all i ∈ N ,

ai(P ) = ei +
∑
j∈N

pji −
∑
j∈N

pij. (A.1)

If an agent has a positive transfer allocation, then it has paid off all its debts; if an agent
has a negative transfer allocation, then it has not paid any of its creditors. This is what the
following lemma formalizes.

Lemma A.2 (Lemma 5.2 in Ketelaars et al. (2023)). Let (E,C) ∈ FN , let ϕ ∈ RN , let
P ∈ Pϕ(E,C), and let i ∈ N . Then,

(i) if ai(P ) > 0, then pij = cij for all j ∈ N ;

(ii) if ai(P ) < 0, then pij = 0 for all j ∈ N .

As the following lemma states, any two transfer schemes lead to the same transfer allo-
cation.

Lemma A.3 (Proposition 5.3 in Ketelaars et al. (2023)). Let (E,C) ∈ FN , let ϕ ∈ RN ,
and let P, P ′ ∈ Pϕ(E,C). Then, a(P ) = a(P ′).

Both Lemma A.2 and Lemma A.3 are used in the proof of Proposition 2.5.

Proof of Proposition 2.5. (i). Suppose that |Iϕ(E,C)| = 1. Let i ∈ Iϕ(E,C). Then,
there exists a j ∈ N with j ̸= i such that

pϕ
ij
= φi

j(ei +
∑
k∈N

pϕ
ki
, ci) < φi

j(ei +
∑
k∈N

pϕki, ci) = pϕij.

By resource monotonicity of φi, it holds that

ei +
∑
k∈N

pϕ
ki
< ei +

∑
k∈N

pϕki,

or, equivalently, ∑
k∈N

pϕ
ki
<

∑
k∈N

pϕki.

Therefore, because pϕii = pϕ
ii
= 0, there must exist an ℓ ∈ N with ℓ ̸= i such that pϕ

ℓi
< pϕℓi,

that is, ℓ ∈ Iϕ(E,C). This contradicts |Iϕ(E,C)| = 1.
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(ii). Let i ∈ N . First, assume that i ∈ Iϕ(E,C). Suppose that
∑

k∈N pϕ
ki

=
∑

k∈N pϕki.
Then,

ei +
∑
k∈N

pϕ
ki
= ei +

∑
k∈N

pϕki,

such that, for all j ∈ N \ {i},

pϕ
ij
= φi

j(ei +
∑
k∈N

pϕ
ki
, ci) = φi

j(ei +
∑
k∈N

pϕki, ci) = pϕij,

which contradicts i ∈ Iϕ(E,C). Hence, it must hold that
∑

k∈N pϕ
ki
<

∑
k∈N pϕki.

Second, assume that
∑

k∈N pϕ
ki

<
∑

k∈N pϕki. Resource monotonicity of φi implies that
there exists a j ∈ N \ {i} such that

pϕ
ij
= φi

j(ei +
∑
k∈N

pϕ
ki
, ci) < φi

j(ei +
∑
k∈N

pϕki, ci) = pϕij,

which implies that i ∈ Iϕ(E,C).

(iii). Let i ∈ Iϕ(E,C), and let P ∈ Pϕ(E,C). First, suppose that P ∈ Pϕ(E,C) is such

that ai(P ) > 0. Then, by Lemma A.3, ai(P ) = ai(P
ϕ(E,C)) = ai(P

ϕ
(E,C)) > 0. From

Lemma A.2 it consequently follows that pϕ
ij
= pϕij = cij for all j ∈ N , which contradicts the

assumption that i ∈ Iϕ(E,C).
Second, suppose that P ∈ Pϕ(E,C) is such that ai(P ) < 0. Then, by applying similar

arguments as for the case in which ai(P ) > 0, it follows that pϕ
ij
= pϕij = 0 for all j ∈ N ,

which contradicts the assumption that i ∈ Iϕ(E,C).
Hence, it must hold that ai(P ) = 0, which is equivalent to

∑
j∈N pij = ei +

∑
j∈N pji (see

(A.1)).

(iv). Let i ∈ N , and let ∆ ∈ [0, d
ϕ

i (E,C)]. If i /∈ Iϕ(E,C), then Proposition 2.5 (ii)

implies that d
ϕ

i (E,C) = 0 and ∆ = 0. The fact that P ϕ(E,C) ∈ Pϕ(E,C) implies that∑
j∈N

pϕ
ij
+∆ =

∑
j∈N

φi
j(ei +

∑
k∈N

pϕ
ki
+∆, ci).

Assume that i ∈ Iϕ(E,C). We distinguish between two cases with respect to ∆.
First, let ∆ be such that

ei +
∑
k∈N

pϕ
ki
+∆ <

∑
j∈N

cij.

Then, by condition (ii) of claims rule φi,∑
j∈N

φi
j(ei +

∑
k∈N

pϕ
ki
+∆, ci) = ei +

∑
k∈N

pϕ
ki
+∆. (A.2)

32



Furthermore, from Proposition 2.5 (iii) it follows that∑
j∈N

pϕ
ij
= ei +

∑
k∈N

pϕ
ki
. (A.3)

Therefore, (A.2) and (A.3) imply that∑
j∈N

pϕ
ij
+∆ =

∑
j∈N

φi
j(ei +

∑
k∈N

pϕ
ki
+∆, ci).

Second, let ∆ be such that

ei +
∑
k∈N

pϕ
ki
+∆ ≥

∑
j∈N

cij. (A.4)

We will first show that (A.4) implies that ∆ =
∑

j∈N(p
ϕ
ji−pϕ

ji
). If (A.4) holds, then condition

(ii) of claims rule φi implies that∑
j∈N

φi
j(ei +

∑
k∈N

pϕ
ki
+∆, ci) =

∑
j∈N

cij. (A.5)

Moreover, if (A.4) holds, then, because ∆ ≤
∑

j∈N(p
ϕ
ji − pϕ

ji
), it must also hold that

ei +
∑
k∈N

pϕki ≥
∑
j∈N

cij,

and conditions (i) and (ii) of claims rule φi imply that pϕij = cij for all j ∈ N . Moreover,
from Proposition 2.5 (iii) it follows that∑

j∈N

cij =
∑
j∈N

pϕij = ei +
∑
k∈N

pϕki. (A.6)

Combining (A.4) and (A.6) gives∑
j∈N

cij ≤ ei +
∑
k∈N

pϕ
ki
+∆ ≤ ei +

∑
k∈N

pϕki =
∑
j∈N

cij,

from which it follows that ei +
∑

k∈N pϕ
ki
+∆ = ei +

∑
k∈N pϕki so that

∆ =
∑
j∈N

(pϕji − pϕ
ji
). (A.7)

Lastly, Proposition 2.5 (iii) implies that∑
j∈N

pϕ
ij
= ei +

∑
k∈N

pϕ
ki
. (A.8)
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Therefore, ∑
j∈N

pϕ
ij
+∆ = ei +

∑
k∈N

pϕ
ki
+∆

= ei +
∑
k∈N

pϕ
ki
+

∑
k∈N

(pϕki − pϕ
ki
)

= ei +
∑
k∈N

pϕki

=
∑
j∈N

cij

=
∑
j∈N

φi
j(ei +

∑
k∈N

pϕ
ki
+∆, ci).

The first equality follows from (A.8); the second equality follows from (A.7); the fourth
equality follows from (A.6); the last equality follows from (A.5).

Proof of Proposition 2.10. Let (E,C) ∈ FN , and let ϕ ∈ RN . To show that g is the
inverse of f , we first show that, for all d ∈ Dϕ(E,C), f(d) ∈ Pϕ(E,C), and that, for
all P ∈ Pϕ(E,C), g(P ) ∈ Dϕ(E,C). Subsequently, we show that, for all d ∈ Dϕ(E,C),
g(f(d)) = d, and that, for all P ∈ Pϕ(E,C), f(g(P )) = P . Finally, we show that f and g
are monotone.

Let d ∈ Dϕ(E,C). We will show that f(d) ∈ Pϕ(E,C). By (2.1), it suffices to show that,
for all i, j ∈ N , it holds that

fij(d) = φi
j(ei +

∑
k∈N

fki(d), ci).

Let i ∈ N . Then, for all j ∈ N ,

fij(d) = φi
j(ei +

∑
k∈N

pϕ
ki
+ di, ci)

= φi
j(ei +

∑
k∈N

φk
i (ek +

∑
h∈N

pϕ
hk

+ dk, ck), ci)

= φi
j(ei +

∑
k∈N

fki(d), ci),

in which the first equality follows from (2.4), the second equality follows from d ∈ Dϕ(E,C),
and the third equality follows from (2.4).

Let P ∈ Pϕ(E,C). As P ∈ Pϕ(E,C), it holds that, for all i, j ∈ N ,

pij = φi
j(ei +

∑
k∈N

pki, ci).

Then, for all i, j ∈ N , it also holds that

pij = φi
j(ei +

∑
k∈N

pϕ
ki
+ gi(P ), ci). (A.9)
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From P ≥ P ϕ(E,C) it follows that gi(P ) ≥ 0 for all i ∈ N ; from P ≤ P
ϕ
(E,C) it follows

that gi(P ) ≤ d
ϕ

i (E,C) for all i ∈ N . For all i ∈ N , (2.5) and (A.9) imply that

gi(P ) =
∑
j∈N

(φj
i (ej +

∑
k∈N

pϕ
kj
+ gj(P ), cj)− pϕ

ji
).

Therefore, it holds that g(P ) ∈ Dϕ(E,C).

Let d ∈ Dϕ(E,C). Then, for all i ∈ N ,

gi(f(d)) =
∑
j∈N

fji(d)−
∑
j∈N

pϕ
ji
=

∑
j∈N

(φj
i (ej +

∑
k∈N

pϕ
kj
+ dj, cj)− pϕ

ji
) = di,

which implies that g(f(d)) = d.
Let P ∈ Pϕ(E,C). Then, for all i, j ∈ N , it holds that

fij(g(P )) = φi
j(ei +

∑
k∈N

pϕ
ki
+ gi(P ), ci) = φi

j(ei +
∑
k∈N

pki, ci) = pij,

which implies that f(g(P )) = P .

Let d, d′ ∈ Dϕ(E,C) such that d ≤ d′. Then, for all i, j ∈ N ,

fij(d) = φi
j(ei +

∑
k∈N

pϕ
ki
+ di, ci) ≤ φi

j(ei +
∑
k∈N

pϕ
ki
+ d′i, ci) = fij(d

′),

in which the inequality follows from resource monotonicity of φi. Hence, f(d) ≤ f(d′), so f
is monotone.

Let P, P ′ ∈ Pϕ(E,C) such that P ≤ P ′. Then, for all i ∈ N , gi(P ) =
∑

j∈N pji −∑
j∈N pϕ

ji
≤

∑
j∈N p′ji −

∑
j∈N pϕ

ji
= gi(P

′). Hence, g is monotone.

Proof of Lemma 3.3. To show that (θ1, θ
2
2, . . . , θ

2
n) ∈ Dϕ(E,C), we have to show that,

θ1 =
∑
j≥2

(φj
1(ej +

∑
h∈N

pϕ
hj
+ θ2j , cj)− pϕ

j1
),

and, for all i ∈ {2, . . . , n},

θ2i = γ2

i
(1) +

∑
j≥2

(φj
i (ej +

∑
h∈N

pϕ
hj
+ θ2j , cj)− pϕ

ji
), (A.10)

in which γ2
i
(1) is given by (3.5). Let i ∈ {2, . . . , n}. Then,

θ2i = lim
k→∞

γ2

i
(k)

= γ2

i
(1) + lim

k→∞

∑
j≥2

(φj
i (ej +

∑
h∈N

pϕ
hj
+ γ2

j
(k), cj)− pϕ

ji
)
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= γ2

i
(1) +

∑
j≥2

(φj
i (ej +

∑
h∈N

pϕ
hj
+ lim

k→∞
γ2

j
(k), cj)− pϕ

ji
)

= γ2

i
(1) +

∑
j≥2

(φj
i (ej +

∑
h∈N

pϕ
hj
+ θ2j , cj)− pϕ

ji
).

The first equality follows from (3.8); the second equality follows from (3.6); the third equal-
ity follows from the fact that, for all j ∈ {2, . . . , n}, φj satisfies resource continuity and
limk→∞ φj

i (ej +
∑

h∈N pϕ
hj

+ γ2
j
(k), cj) exists; the last equality follows from (3.8). Hence,

(A.10) holds. Finally, for agent 1 it holds that

θ1 =
∑
j≥2

(φ1
j(e1 +

∑
h∈N

pϕ
h1

+ θ1, c1)− pϕ
1j
)

=
∑
j≥2

γ2

j
(1)

=
∑
j≥2

(θ2j −
∑
k≥2

(φk
j (ek +

∑
h∈N

pϕ
hk

+ θ2k, ck)− pϕ
kj
))

=
∑
j≥2

∑
k≥1

(φj
k(ej +

∑
h∈N

pϕ
hj
+ θ2j , cj)− pϕ

jk
)

−
∑
j≥2

∑
k≥2

(φk
j (ek +

∑
h∈N

pϕ
hk

+ θ2k, ck)− pϕ
kj
)

=
∑
j≥2

(φj
1(ej +

∑
h∈N

pϕ
hj
+ θ2j , cj)− pϕ

j1
).

The first equality follows from Proposition 2.5 (iv); the second equality follows from (3.5);
the third equality follows from (A.10); the fourth equality follows from Proposition 2.5 (iv).

Let d ∈ Dϕ(E,C) with d1 = θ1. Let i ∈ {2, . . . , n}. The proof that di ≥ θ2i follows by
contradiction. Assume that di < θ2i . Note that

di =
∑
j∈N

(φj
i (ej +

∑
h∈N

pϕ
hj
+ dj, cj)− pϕ

ji
)

≥ φ1
i (e1 +

∑
h∈N

pϕ
h1

+ θ1, c1)− pϕ
1i
)

= γ2

i
(1),

in which the first equality follows from d ∈ Dϕ(E,C), the inequality follows from d1 = θ1
and resource monotonicity of φj for all j ∈ {2, . . . , n}, and the last equality follows from
(3.5). Therefore, because di < θ2i , there must exist a Ki ∈ N such that

γ2

i
(1) ≤ · · · ≤ γ2

i
(Ki) ≤ di < γ2

i
(Ki + 1) ≤ · · · ≤ θ2i .

Consequently, using d ∈ Dϕ(E,C) and (3.6),

di = γ2

i
(1) +

∑
j≥2

(φj
i (ej +

∑
h∈N

pϕ
hj
+ dj, cj)− pϕ

ji
)
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< γ2

i
(1) +

∑
j≥2

(φj
i (ej +

∑
h∈N

pϕ
hj
+ γ2

j
(Ki), cj)− pϕ

ji
)

= γ2

i
(Ki + 1),

which implies that

φj
i (ej +

∑
h∈N

pϕ
hj
+ dj, cj) < φj

i (ej +
∑
h∈N

pϕ
hj
+ γ2

j
(Ki), cj)

for some j ∈ {2, . . . , n} \ {i}. In fact, resource monotonicity of the claims rules in ϕ implies
that dj < γ2

j
(Ki) for some j ∈ {2, . . . , n} \ {i}. Let i1 ∈ {2, . . . , n} \ {i} be such that

di1 < γ2
i1
(Ki). Then, there exists a Ki1 ∈ N such that

γ2

i1
(1) ≤ · · · ≤ γ2

i1
(Ki1) ≤ di1 < γ2

i1
(Ki1 + 1) ≤ · · · ≤ θ2i1 .

Note that γ2
i1
(Ki1) < γ2

i1
(Ki); hence Ki1 < Ki and di ≥ γ2

i
(Ki) ≥ γ2

i
(Ki1). Subsequently, in

a similar fashion as for agent i, di1 < γ2
i1
(Ki1 + 1) implies that

φj
i1
(ej +

∑
h∈N

pϕ
hj
+ dj, cj) < φj

i1
(ej +

∑
h∈N

pϕ
hj
+ γ2

j
(Ki1), cj)

for some j ∈ {2, . . . , n} \ {i1}. Resource monotonicity of the claims rules in ϕ implies that
there exists a j ∈ {2, . . . , n} \ {i1, i} such that dj < γ2

j
(Ki1). Let i2 ∈ {2, . . . , n} \ {i1, i}

be such that di2 < γ2
j
(Ki1). Note that i2 /∈ {i1, i} because di ≥ γ2

i
(Ki1) and agent i1 can

not make a payment to itself, that is, we must be able to select an agent that is different
from agents i1 and i. By repeatedly applying the same arguments, we eventually run out of
agents to select because the number of agents is finite. This thus leads to a contradiction,
so we can assert that di ≥ θ2i .

If λ1 = 0, then θ1 = 0. If we consider 0N ∈ Dϕ(E,C), then, for all i ∈ {2, . . . , n}, we
must have that 0 = di ≥ θ2i ≥ 0, which implies that θ2i = 0.

Proof of Lemma 3.9. Let ℓ ∈ {2, . . . , n − 1}. We prove that, for all i ∈ {ℓ + 1, . . . , n},
θℓi ≤ θℓ+1

i . The proof for θ
ℓ

i ≥ θ
ℓ+1

i follows by applying similar arguments. It suffices to show
that, for all i ∈ {ℓ+ 1, . . . , n} and all k ∈ N, γℓ

i
(k) ≤ γℓ+1

i
(k).

First, for all i ∈ {ℓ+ 1, . . . , n},

γℓ

i
(1) =

∑
j<ℓ

(φj
i (ej +

∑
h∈N

pϕ
hj
+ θj(λ), cj)− pϕ

ji
)

≤
∑
j<ℓ+1

(φj
i (ej +

∑
h∈N

pϕ
hj
+ θj(λ), cj)− pϕ

ji
)

= γℓ+1

i
(1),

in which the inequality follows from resource monotonicity of φℓ and θℓ(λ) ∈ [0, d
ϕ

ℓ (E,C)].
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Second, let k ∈ N and let i ∈ {ℓ + 1, . . . , n}. Assume that, for all j ∈ {ℓ + 1, . . . , n},
γℓ
j
(k) ≤ γℓ+1

j
(k). Then,

γℓ

i
(k + 1) = γℓ

i
(1) +

∑
j≥ℓ

(φj
i (ej +

∑
h∈N

pϕ
hj
+ γℓ

j
(k), cj)− pϕ

ji
)

=
∑
j<ℓ

(φj
i (ej +

∑
h∈N

pϕ
hj
+ θj(λ), cj)− pϕ

ji
)

+ (φℓ
i(eℓ +

∑
h∈N

pϕ
hℓ
+ γℓ

ℓ
(k), cℓ)− pϕ

ℓi
)

+
∑
j≥ℓ+1

(φj
i (ej +

∑
h∈N

pϕ
hj
+ γℓ

j
(k), cj)− pϕ

ji
)

≤
∑
j<ℓ+1

(φj
i (ej +

∑
h∈N

pϕ
hj
+ θj(λ), cj)− pϕ

ji
)

+
∑
j≥ℓ+1

(φj
i (ej +

∑
h∈N

pϕ
hj
+ γℓ+1

j
(k), cj)− pϕ

ji
)

= γℓ+1

i
(k + 1),

in which the inequality follows from resource monotonicity of φℓ and γℓ
ℓ
(k) ≤ θℓℓ ≤ θℓ(λ),

and resource monotonicity of φj and γℓ
j
(k) ≤ γℓ+1

j
(k) for all j ∈ {ℓ+ 1, . . . , n}.

Therefore, by induction, for all i ∈ {ℓ+ 1, . . . , n} and all k ∈ N, γℓ
i
(k) ≤ γℓ+1

i
(k).

Now, let ℓ ∈ {2, . . . , n}. To show that θℓ ≤ θ
ℓ
, it suffices to show that, for all k ∈ N,

γℓ(k)− γℓ(k) ≥ 0. Let i ∈ {ℓ, . . . , n}. Then,

γℓ
i(1)− γℓ

i
(1) =

∑
j≥ℓ

(pϕji − pϕ
ji
) ≥ 0.

Let k ∈ N, and assume that γℓ(k) − γℓ(k) ≥ 0. Because, for all j ∈ {ℓ, . . . , n}, φj satisfies
resource monotonicity, it follows that

γℓ
i(k + 1)− γℓ

i
(k + 1) =

∑
j≥ℓ

(φj
i (ej +

∑
h∈N

pϕ
hj
+ γℓ

j(k), cj)− φj
i (ej +

∑
h∈N

pϕ
hj
+ γℓ

j
(k), cj))

≥
∑
j≥ℓ

(φj
i (ej +

∑
h∈N

pϕ
hj
+ γℓ

j
(k), cj)− φj

i (ej +
∑
h∈N

pϕ
hj
+ γℓ

j
(k), cj))

= 0.

Hence, by induction, for all k ∈ N, γℓ
i(k)− γℓ

i
(k) ≥ 0, which implies that θℓi ≤ θ

ℓ

i .

Proof of Lemma 3.10. For all ℓ ∈ {2, . . . , n}, let

αℓ = (θ1(λ), . . . , θℓ−1(λ), θ
ℓ
ℓ, . . . , θ

ℓ
n),

αℓ = (θ1(λ), . . . , θℓ−1(λ), θ
ℓ

ℓ, . . . , θ
ℓ

n).
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By Lemma 3.3 and Lemma 3.4, we know that α2, α2 ∈ Dϕ(E,C). Let q ∈ {2, . . . , n− 1}.
Assume that αq, αq ∈ Dϕ(E,C). We show that αq+1 ∈ Dϕ(E,C). The proof for αq+1 ∈
Dϕ(E,C) follows by applying similar arguments.

For notational convenience, we set, for all j ∈ N ,

ξj = ej +
∑
h∈N

pϕ
hj
.

First, let i ∈ {q + 1, . . . , n}. Then,

θq+1
i = lim

k→∞
γq+1

i
(k)

= γq+1

i
(1) + lim

k→∞

∑
j≥q+1

(φj
i (ξj + γq+1

j
(k), cj)− pϕ

ji
)

= γq+1

i
(1) +

∑
j≥q+1

(φj
i (ξj + lim

k→∞
γq+1

j
(k), cj)− pϕ

ji
)

= γq+1

i
(1) +

∑
j≥q+1

(φj
i (ξj + θq+1

j , cj)− pϕ
ji
).

The first equality follows from (3.12); the second equality follows from (3.14); the third
equality follows from the fact that, for all j ∈ {q+ 1, . . . , n}, φj satisfies resource continuity
and limk→∞ φj

i (ξj + γq+1
j

(k), cj) exists; the last equality follows from (3.12). Hence, for all

i ∈ {q + 1, . . . , n},

θq+1
i =

∑
j<q+1

(φj
i (ξj + θj(λ), cj)− pϕ

ji
) +

∑
j≥q+1

(φj
i (ξj + θq+1

j , cj)− pϕ
ji
). (A.11)

What remains to be shown is that, for all i ∈ {1, . . . , q},

θi(λ) =
∑

j<q+1

(φj
i (ξj + θj(λ), cj)− pϕ

ji
) +

∑
j≥q+1

(φj
i (ξj + θq+1

j , cj)− pϕ
ji
).

Let i ∈ {1, . . . , q − 1}. The fact that αq, αq ∈ Dϕ(E,C) implies that

θi(λ) =
∑
j<q

(φj
i (ξj + θj(λ), cj)− pϕ

ji
) +

∑
j≥q

(φj
i (ξj + θqj , cj)− pϕ

ji
)

=
∑
j<q

(φj
i (ξj + θj(λ), cj)− pϕ

ji
) +

∑
j≥q

(φj
i (ξj + θ

q

j , cj)− pϕ
ji
)

= θi(λ).

Hence, it must hold that ∑
j≥q

φj
i (ξj + θqj , cj) =

∑
j≥q

φj
i (ξj + θ

q

j , cj). (A.12)

Recall from Lemma 3.9 that θq ≤ θ
q
. As a consequence, because, for all j ∈ {q, . . . , n}, φj

satisfies resource monotonicity, (A.12) implies that, for all j ∈ {q, . . . , n},

φj
i (ξj + θqj , cj) = φj

i (ξj + θ
q

j , cj). (A.13)
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For all j ∈ {q + 1, . . . , n}, Lemma 3.9 implies that θqj ≤ θq+1
j ≤ θ

q+1

j ≤ θ
q

j , so resource
monotonicity of φj and (A.13) imply that

φj
i (ξj + θqj , cj) = φj

i (ξj + θq+1
j , cj). (A.14)

In particular, for agent q, θqq ≤ θq(λ) ≤ θ
q

q, so resource monotonicity of φq and (A.13) imply
that

φq
i (ξq + θqq, cq) = φq

i (ξq + θq(λ), cq). (A.15)

Using αq ∈ Dϕ(E,C), (A.14) and (A.15), we obtain that

θi(λ) =
∑
j<q

(φj
i (ξj + θj(λ), cj)− pϕ

ji
) +

∑
j≥q

(φj
i (ξj + θqj , cj)− pϕ

ji
)

=
∑

j<q+1

(φj
i (ξj + θj(λ), cj)− pϕ

ji
) +

∑
j≥q+1

(φj
i (ξj + θq+1

j , cj)− pϕ
ji
).

Hence, for all i ∈ {1, . . . , q − 1},

θi(λ) =
∑

j<q+1

(φj
i (ξj + θj(λ), cj)− pϕ

ji
) +

∑
j≥q+1

(φj
i (ξj + θq+1

j , cj)− pϕ
ji
) (A.16)

Finally, for agent q it holds that

θq(λ) =
∑
j<q

(φq
j(ξq + θq(λ), cq)− pϕ

qj
) +

∑
j≥q+1

(φq
j(ξq + θq(λ), cq)− pϕ

qj
)

=
∑
j<q

θj(λ)−
∑
j<q

∑
k<q

(φk
j (ξk + θk(λ), ck)− pϕ

kj
)−

∑
j<q

∑
k≥q+1

(φk
j (ξk + θq+1

k , ck)− pϕ
kj
)

+
∑

j≥q+1

θq+1
j −

∑
j≥q+1

∑
k<q

(φk
j (ξk + θk(λ), ck)− pϕ

kj
)

−
∑

j≥q+1

∑
k≥q+1

(φk
j (ξk + θq+1

k , ck)− pϕ
kj
)

=
∑
j<q

∑
k<q+1

(φj
k(ξj + θj(λ), cj)− pϕ

jk
) +

∑
j<q

∑
k≥q+1

(φj
k(ξj + θj(λ), cj)− pϕ

jk
)

−
∑
j<q

∑
k<q

(φk
j (ξk + θk(λ), ck)− pϕ

kj
)−

∑
j<q

∑
k≥q+1

(φk
j (ξk + θq+1

k , ck)− pϕ
kj
)

+
∑

j≥q+1

∑
k<q+1

(φj
k(ξj + θq+1

j , cj)− pϕ
jk
) +

∑
j≥q+1

∑
k≥q+1

(φj
k(ξj + θq+1

j , cj)− pϕ
jk
)

−
∑

j≥q+1

∑
k<q

(φk
j (ξk + θk(λ), ck)− pϕ

kj
)−

∑
j≥q+1

∑
k≥q+1

(φk
j (ξk + θq+1

k , ck)− pϕ
kj
)

=
∑
j<q

(φj
q(ξj + θj(λ), cj)− pϕ

jq
) +

∑
j≥q+1

(φj
q(ξj + θq+1

j , cj)− pϕ
jq
)

+
∑
j<q

∑
k<q

(φj
k(ξj + θj(λ), cj)− pϕ

jk
)−

∑
j<q

∑
k<q

(φk
j (ξk + θk(λ), ck)− pϕ

kj
)

40



+
∑
j<q

∑
k≥q+1

(φj
k(ξj + θj(λ), cj)− pϕ

jk
)−

∑
j≥q+1

∑
k<q

(φk
j (ξk + θk(λ), ck)− pϕ

kj
)

+
∑

j≥q+1

∑
k<q

(φj
k(ξj + θq+1

j , cj)− pϕ
jk
)−

∑
j<q

∑
k≥q+1

(φk
j (ξk + θq+1

k , ck)− pϕ
kj
)

+
∑

j≥q+1

∑
k≥q+1

(φj
k(ξj + θq+1

j , cj)− pϕ
jk
)−

∑
j≥q+1

∑
k≥q+1

(φk
j (ξk + θq+1

k , ck)− pϕ
kj
)

=
∑

j<q+1

(φj
q(ξj + θj(λ), cj)− pϕ

jq
) +

∑
j≥q+1

(φj
q(ξj + θq+1

j , cj)− pϕ
jq
).

The first equality follows from Proposition 2.5 (iv); the second equality follows from (A.16)
and (A.11); the third equality follows from Proposition 2.5 (iv); in the fourth equality, we
rearrange the summations such that each row between the fourth equality and the fifth
equality, except the first one, equals zero; the fifth equality follows from the fact that the
payment of agent q to itself is zero.

Proof of Lemma 3.11. By Lemma 3.3 and Lemma 3.4, we know that, for all d ∈ Dϕ(E,C)

with d1 = θ1(λ), it holds that di ∈ [θ2i , θ
2

i ] for all i ∈ {2, . . . , n}.
Let ℓ ∈ {3, . . . , n} and d ∈ Dϕ(E,C) with, for all i ∈ {1, . . . , ℓ− 1}, di = θi(λ). We need

to show that, for all i ∈ {ℓ, . . . , n}, it holds that di ≥ θℓi and di ≤ θ
ℓ

i . In particular, we will

show that, for all i ∈ {ℓ, . . . , n}, we have di ≥ θℓi . The proof for di ≤ θ
ℓ

i follows by applying
similar arguments.

Note that, for all i ∈ {ℓ, . . . , n},

di =
∑
j<ℓ

(φj
i (ej +

∑
h∈N

pϕ
hj
+ dj, cj)− pϕ

ji
) +

∑
j≥ℓ

(φj
i (ej +

∑
h∈N

pϕ
hj
+ dj, cj)− pϕ

ji
)

=
∑
j<ℓ

(φj
i (ej +

∑
h∈N

pϕ
hj
+ θj(λ), cj)− pϕ

ji
) +

∑
j≥ℓ

(φj
i (ej +

∑
h∈N

pϕ
hj
+ dj, cj)− pϕ

ji
)

= γℓ

i
(1) +

∑
j≥ℓ

(φj
i (ej +

∑
h∈N

pϕ
hj
+ dj, cj)− pϕ

ji
)

≥ γℓ

i
(1),

in which the first equality follows from d ∈ Dϕ(E,C), the second equality follows from
θj(λ) = dj for all j ∈ {1, . . . , ℓ−1}, the third equality follows from (3.13), and the inequality
follows from resource monotonicity of the claims rules in ϕ. Hence, if there exists an i ∈
{ℓ, . . . , n} such that di < θℓi , then there must exist a Ki ∈ N such that

γℓ

i
(1) ≤ · · · ≤ γℓ

i
(Ki) ≤ di < γℓ

i
(Ki + 1) ≤ · · · ≤ θℓi .

In the proof of Lemma 3.3, we have shown that this leads to a contradiction. Therefore, for
all i ∈ {ℓ, . . . , n}, it holds that di ≥ θℓi .

Consider d = 0N ∈ Dϕ(E,C). Let ℓ ∈ {2, . . . , n}. Assume that, for all i ∈ {1, . . . , ℓ− 1},
λi = 0. If λ1 = 0, then θ1(λ) = θ11 = 0, and, by Lemma 3.3, θ22 = 0. Consequently, λ2 = 0
implies that θ2(λ) = θ22 = 0. We now have that d1 = 0 = θ1(λ) and d2 = 0 = θ2(λ), so
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0 = d3 ≥ θ33 ≥ 0, which gives θ33 = 0 and, as a result of λ3 = 0, θ3(λ) = θ33 = 0. By induction,
we obtain that, for all i ∈ {1, . . . , ℓ − 1}, θi(λ) = 0 = di. Hence, for all i ∈ {ℓ, . . . , n},
0 = di ≥ θℓi ≥ 0, which implies that θℓi = 0. If we consider d

ϕ
(E,C) ∈ Dϕ(E,C) instead,

then, by applying similar arguments, we find that λi = 1 for all i ∈ {1, . . . , ℓ − 1} implies

that θ
ℓ

i = d
ϕ

i (E,C) for all i ∈ {ℓ, . . . , n}.

Proof of Proposition 3.8. The proof of Proposition 3.8 follows from Lemma 3.10 and
Lemma 3.11, which is why it is given after the proofs of these two respective lemmas.

Set θ = (θ11, . . . , θ
n
n) and θ = (θ

1

1, . . . , θ
n

n).

We have to show that, for all ℓ ∈ {2, . . . , n}, θℓℓ and θ
ℓ

ℓ are given by (3.1) and (3.2), respec-

tively. Let ℓ ∈ {2, . . . , n}. Then, θℓ(λ) = (1−λℓ)θ
ℓ
ℓ+λℓθ

ℓ

ℓ, and, by Lemma 3.10, we have that

(θ1(λ), . . . , θℓ−1(λ), θ
ℓ
ℓ, . . . , θ

ℓ
n) ∈ Dϕ(E,C) and (θ1(λ), . . . , θℓ−1(λ), θ

ℓ

ℓ, . . . , θ
ℓ

n) ∈ Dϕ(E,C).
Lemma 3.11 implies that, for all d ∈ Dϕ(E,C) with di = θi(λ) for all i ∈ {1, . . . , ℓ − 1}, it
holds that dℓ ≥ θℓℓ and dℓ ≤ θ

ℓ

ℓ.

Assume that d′ ∈ RN is a λ-additional cash vector for (E,C) with respect to ϕ. We

will show that θ(λ) = d′. First, θ1(λ) = λ1d
ϕ

1(E,C) = d′1. Second, let ℓ ∈ {2, . . . , n} and
assume that, for all i ∈ {1, . . . , ℓ − 1}, θi(λ) = d′i. We will show that θℓ(λ) = d′ℓ. Con-
sider d ∈ Dϕ(E,C) with di = d′i for all i ∈ {1, . . . , ℓ − 1}. Because d′ is a λ-additional

cash vector for (E,C) with respect to ϕ, we know that d′ℓ = (1 − λℓ)d
′
ℓ + λℓd

′
ℓ in which

d′ℓ ≤ dℓ and d
′
ℓ ≥ dℓ. In particular, as (θ1(λ), . . . , θℓ−1(λ), θ

ℓ
ℓ, . . . , θ

ℓ
n) ∈ Dϕ(E,C) and

(θ1(λ), . . . , θℓ−1(λ), θ
ℓ

ℓ, . . . , θ
ℓ

n) ∈ Dϕ(E,C) (see Lemma 3.10), it follows that d′ℓ ≤ θℓ and

d
′
ℓ ≥ θℓ. Lemma 3.11 implies that d′ℓ ≥ θℓ and d

′
ℓ ≤ θℓ. Hence, we find that d′ℓ = θℓ

and d
′
ℓ = θℓ, so θℓ(λ) = d′ℓ. By induction, for all i ∈ {1, . . . , n}, θi(λ) = d′i and therefore

θ(λ) = d′.

Proof of Proposition 5.6. Assume that T̃ ϕ satisfies decomposition. Let m ∈ N and set
λ = (1/m)N and λ′ = (1− 1/m)N such that λ+ λ′ = 1N . Let (λ, τ̃ϕ,λ), (λ′, τ̃ϕ,λ

′
) ∈ T̃ ϕ. Let

(E,C) ∈ FN . Decomposition of T̃ ϕ implies that

τϕ,1
N

(E,C) = τϕ,(1/m)N (E,C) + τϕ,(1−1/m)N (E,C)− τϕ,0
N

(E,C)

= mτϕ,(1/m)N (E,C)− (m− 1)τϕ,0
N

(E,C).

By using the fact that τϕ,0
N
(E,C) = P ϕ(E,C) and τϕ,1

N
(E,C) = P

ϕ
(E,C), we find that

τϕ,(1/m)N (E,C) = (1− 1

m
)P ϕ(E,C) +

1

m
P

ϕ
(E,C).

Furthermore, if λ = (m′/m)N , in which m′,m ∈ N with m′ ≤ m, then decomposition of T̃ ϕ

implies that

τϕ,(m
′/m)N (E,C) = m′τϕ,(1/m)N (E,C)− (m′ − 1)P ϕ(E,C)

= (1− m′

m
)P ϕ(E,C) +

m′

m
P

ϕ
(E,C).

(A.17)
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Let µ ∈ [0, 1] and consider the sequences (m′
ℓ)ℓ∈N and (mℓ)ℓ∈N in which, for all ℓ ∈ N,

m′
ℓ,mℓ ∈ N with m′

ℓ ≤ mℓ such that limℓ→∞(m′
ℓ/mℓ) = µ. Then, for all i, j ∈ N ,

τϕ,µ
N

ij (E,C) = φi
j(ei +

∑
k∈N

pϕ
ki
+ θii + µ(θ

i

i − θii), ci)

= φi
j(ei +

∑
k∈N

pϕ
ki
+ θii + lim

ℓ→∞

m′
ℓ

mℓ

(θ
i

i − θii), ci)

= lim
ℓ→∞

φi
j(ei +

∑
k∈N

pϕ
ki
+ θii +

m′
ℓ

mℓ

(θ
i

i − θii), ci)

= lim
ℓ→∞

τ
ϕ,(m′

ℓ/mℓ)
N

ij (E,C)

= lim
ℓ→∞

(
(1− m′

ℓ

mℓ

)pϕ
ij
+

m′
ℓ

mℓ

pϕij
)

= (1− µ)pϕ
ij
+ µpϕij

= (1− µ)τϕ,0
N

ij (E,C) + µτϕ,1
N

ij (E,C),

in which the first equality follows from the definition of τϕ,µ
N
, the third equality follows from

resource continuity of φi, the fourth equality follows from the definition of τϕ,(mℓ/m
′
ℓ)

N
, and

the fifth equality follows from (A.17).

Proof of Proposition 5.7. First, assume that T̃ ϕ satisfies decomposition. Proposition
5.6 implies that T ϕ satisfies weak convexity, and Theorem 5.2 implies that ϕ = PROP.

Second, assume that ϕ = PROP. To prove that T̃ PROP satisfies decomposition, it suffices
to show that

(τPROP,λ+λ′ − τPROP,0N ) = (τPROP,λ − τPROP,0N ) + (τPROP,λ′ − τPROP,0N ). (A.18)

Let (λ, τ̃PROP,λ), (λ′, τ̃PROP,λ′
) ∈ T̃ PROP with λ + λ′ ≤ 1N . Let (E,C) ∈ FN . For all

i /∈ IPROP(E,C), the payments are uniquely determined, which implies that (A.18) is satisfied
with respect to such mutual payments. Thus, let S ∈ CPROP(E,C), i ∈ S, and j ∈ N .
Corollary 4.4 and (4.9) imply that there exists a (λS + λ′

S) ∈ [0, 1] such that the left-hand
side of (A.18) boils down to

(λS + λ′
S)(p

PROP
ij − pPROP

ij
). (A.19)

In a similar fashion, we obtain that the right-hand side of (A.18) boils down to

λS(p
PROP
ij − pPROP

ij
) + λ′

S(p
PROP
ij − pPROP

ij
). (A.20)

Clearly, (A.19) equals (A.20), so T̃ PROP satisfies decomposition.

Proof of Proposition 5.4. First, assume that T ϕ satisfies convexity. Consider σ = (0N , τϕ,0
N
) ∈

T ϕ and σ′ = (1N , τϕ,1
N
) ∈ T ϕ. Then, by convexity, for all µ ∈ [0, 1], (1 − µ)σ + µσ′ ∈ T ϕ.
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Because T ϕ satisfies weak convexity, Theorem 5.2 implies that ϕ = PROP.

Second, assume that ϕ = PROP. Let σ = (λ, τϕ,λ) ∈ T ϕ and σ′ = (λ′, τϕ,λ
′
) ∈ T ϕ, let

µ ∈ [0, 1], and let (E,C) ∈ FN . To prove that (1 − µ)σ + µσ′ ∈ T ϕ, we have to show that
(1− µ)τϕ,λ(E,C) + µτϕ,λ

′
(E,C) = τϕ,(1−µ)λ+µλ′

(E,C).

Let i /∈ Iϕ(E,C). Then, for all λ′′ ∈ [0, 1]N , it holds that θϕ,λ
′′

i (E,C) = 0 which implies
that, for all j ∈ N ,

(1− µ)τϕ,λij (E,C) + µτϕ,λ
′

ij (E,C) = (1− µ)pϕ
ij
+ µpϕ

ij
= pϕ

ij
= τ

ϕ,(1−µ)λ+µλ′

ij (E,C).

Let i ∈ Iϕ(E,C), and let S ∈ Cϕ(E,C) with S ∋ i. In addition, let ℓ = min{j | j ∈ S} be the
first agent in the strongly connected component S that is selected in the iterative procedure.

Theorem 4.3 implies that, for all λ′′ ∈ [0, 1]N , θϕ,λ
′′

i (E,C) = λ′′
Sd

ϕ

i (E,C), in which λ′′
S = λ′′

ℓ ;

correspondingly, Corollary 4.4 implies that, for all j ∈ N , τϕ,λ
′′

ij (E,C) = (1− λ′′
S)p

ϕ
ij
+ λ′′

Sp
ϕ
ij.

Consequently, if we denote λℓ and λ′
ℓ by λS and λ′

S, respectively, we obtain, for all j ∈ N ,

(1− µ)τϕ,λij (E,C) + µτϕ,λ
′

ij (E,C) = (1− µ)(1− λS)p
ϕ

ij
+ (1− µ)λSp

ϕ
ij

+ µ(1− λ′
S)p

ϕ

ij
+ µλ′

Sp
ϕ
ij

= (1− (1− µ)λS − µλ′
S)p

ϕ

ij
+ ((1− µ)λS + µλ′

S)p
ϕ
ij

= τ
ϕ,(1−µ)λ+µλ′

ij (E,C).
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