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Abstract

We show by simulation that the test for an unknown threshold in models with endogenous regressors

- proposed in Caner and Hansen (2004) - can exhibit severe size distortions both in small and in moder-

ately large samples, pertinent to empirical applications. We propose three new tests that rectify these size

distortions. The first test is based on GMM estimators. The other two are based on unconventional 2SLS

estimators, that use additional information about the linearity (or lack of linearity) of the first stage.

Just like the test in Caner and Hansen (2004), our tests are non-pivotal, and we prove their bootstrap va-

lidity. The empirical application revisits the question in Ramey and Zubairy (2018) whether government

spending multipliers are larger in recessions, but using tests for an unknown threshold. Consistent with

Ramey and Zubairy (2018), we do not find strong evidence that these multipliers are larger in recessions.

Keywords: 2SLS, GMM, instrumental variables, government spending, unknown thresh-

old, wild bootstrap

∗Amsterdam School of Economics, University of Amsterdam, and Tinbergen Institute. Address: University of Amsterdam,
Roetersstraat 11, 1018WB Amsterdam, The Netherlands. Email: m.p.rothfelder@uva.nl

†Corresponding Author. Department of Econometrics and Operations Research, Tilburg School of Economics and Man-
agement, Tilburg University. Address: Tilburg University, Warandelaan 2, 5037AB, Tilburg, The Netherlands. Email:
o.boldea@tilburguniversity.edu

‡We would like to thank for very valuable comments and suggestions on this work: Jeffrey Campbell, Mehmet Caner, Pavel
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1 Introduction

In the aftermath of the 2008 financial crisis, there has been a surge in the macroeconomic literature investi-

gating whether the response of many key macroeconomic variables to monetary and fiscal policies depends

on the state of the economy - see, among others, Auerbach and Gorodnichenko (2013), Owyang et al. (2013),

Caggiano et al. (2015), Cugnasca and Rother (2015), Ramey and Zubairy (2018), Alloza (2022) and Jo and

Zubairy (2022) for fiscal policy examples, and Santoro et al. (2014), Barnichon and Matthes (2018), Jordá

et al. (2020), Alpanda et al. (2021), Bruns and Piffer (2021) and Klepacz (2021) for monetary policy exam-

ples. These papers model state dependence in various ways, including via threshold models, in which case

the state dependence is typically driven by a particular variable such as the unemployment rate, interest

rates, or credit conditions.

Threshold models were also widely used in economics to model unemployment, growth, bank profits, asset

prices, exchange rates, and interest rates; see Hansen (2011) for a survey of economic applications. While

threshold models with exogenous regressors have been widely studied and their asymptotic properties are

well known1, the literature on threshold models with endogenous regressors remains relatively scarce.2 Nev-

ertheless, in many applications, the regressors are endogenous and the existence of a threshold has important

policy implications. For example, among the empirical papers cited above, Owyang et al. (2013), Cugnasca

and Rother (2015), Ramey and Zubairy (2018) and Jo and Zubairy (2022) use a threshold model with en-

dogenous regressors, where the state dependence of the macroeconomic response is driven by a threshold

variable being above or below a certain a-priori fixed value. Ramey and Zubairy (2018) (RZ henceforth)

used a threshold model with endogenous regressors to investigate whether the government spending multi-

plier is larger in recessions, where recessions were defined by the unemployment rate being below or above a

threshold parameter. This has important policy implications, because if the government spending multiplier

is larger (above one) in recessions, it implies that governments should spend more in recessions to boost the

economy.

In their analysis, RZ fix this threshold parameter at an unemployment rate of 6.5%.3 As the threshold

parameter is typically unknown, we revisit their question and test for an unknown threshold, using - to our

knowledge - the only parametric test available for linear time series models with endogenous regressors that

directly applies to the RZ model. This test was proposed in Caner and Hansen (2004) (CH henceforth). CH

first compute a Wald test statistic for all candidate threshold values between the ε and (1 − ε) quantiles of

the threshold variable, then take the maximum over this sequence to obtain a test for the null hypothesis of

no threshold against the alternative hypothesis of an unknown threshold in (otherwise) linear models with

1See inter alia Tong (1990), Hansen (1996, 1999, 2000) and Gonzalo and Wolf (2005) for inference, Gonzalo and Pitarakis
(2002) for multiple threshold regression and model selection, Caner and Hansen (2001) and Gonzalo and Pitarakis (2006) for
threshold regression with unit roots, Seo and Linton (2007) for smoothed estimators of threshold models, Lee et al. (2011) for
testing for thresholds, and Hansen (2017) for threshold regressions with a kink.

2For some contributions with endogenous regressors, see inter alia: for time-series, Caner and Hansen (2004), who consider
exogenous threshold variables and Kourtellos et al. (2015) who consider endogenous threshold variables; for cross-sections and
(short) panels, Seo and Shin (2016) (and references therein), Yu and Phillips (2018) and Christopoulos et al. (2021), who consider
endogenous threshold variables.

3This is based on the Federal Reserve’s use of this threshold in a policy announcement. They later do robustness checks with
a larger threshold, and modelled time-varying thresholds.
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endogenous regressors and exogenous threshold variables.

Our simulations show that this test has serious size distortions, with rejection frequencies up to three

times the nominal size in small samples (see Tables 1 and 2), accompanied by a reversal to severe under-

rejections for larger samples of 1000 observations. Tables 1 and 2 show that these size distortions are already

present in just-identified models with strong instruments and homoskedastic data. We identify two problems

with the CH test that lead to these size distortions, and proceed to correct them.

The first problem is illustrated in Figure 1, where we test for an unknown threshold in the RZ model, and

plot the sequence of the CH test statistics over the candidate threshold values, along with the same sequence

for three tests we propose.4 The plot shows erratic behavior of the CH test sequence, switching frequently

between low and high values, especially around the sample edges, but starting already at the 25% and the

75% sample quantiles of the threshold variable. Therefore, the CH test, the maximum of the plotted sequence

of tests, can change by a large amount when slightly changing the trimming.5 This is problematic for its

application in practice, as in general, it may lead to both over- or under-rejection of the null hypothesis,

especially since this non-monotonic behavior is not well replicated by the bootstrap critical values even for

samples of 1000 observations, as shown in our simulations.

Figure 1: Plot of the CH test sequence (black) versus our proposed test sequences (blue, red, green) for the
model in RZ
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Note: Above, WGT,CH(γ) refers to the CH test sequence, and WGT,BR(γ), WT (γ) and LRT (γ) to our
three test sequences: the first one is based on GMM estimators, and the last two on 2SLS estimators. The

sample size is 500.

4Section 2.1 explains how these tests are calculated. Section 4 describes the threshold estimator, the model and the data.
5Note that this is not due to the actual threshold estimate being between cut-off points: if there was a threshold, its consistent

estimate, based on 2SLS or in CH, with 25% cut-off, is 8.33; however, in our application in Section 4, and in line with RZ, we
do not find evidence of such a threshold.
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We identify the source of this problem to lie in the computation of the variance estimator in the middle

of each Wald test for a candidate threshold. The residuals in the variance estimator are obtained with sub-

sample parameter estimators, using observations only below or above each candidate threshold value. When

the threshold value is close to the sample edges, these residuals can be very inaccurate approximations of

the true underlying errors, because of the slow convergence rate of the sub-sample estimators employed to

obtain them. We correct this by obtaining the residuals with full-sample estimators instead. Figure 1 shows

that all three test statistics we propose no longer display this non-monotonic behavior, whether computed

with generalized method of moment estimators (GMM) estimators as in CH, or with two-stage least squares

estimators (2SLS).

A second, yet related issue arises in the construction of the critical values of the CH test. The critical

values of unknown threshold tests typically depend on the data, and therefore need to be simulated or

bootstrapped. CH propose to bootstrap the critical values via a wild fixed regressor bootstrap and prove

the bootstrap validity of their test. However, just like the variance estimator, the bootstrap residuals (and

therefore the bootstrap samples) are computed with estimators under the alternative of each candidate

threshold value.6

While bootstrapping under the alternative does not affect the asymptotic validity of the CH test, it is

problematic for two reasons. First, it is computationally much more intensive than computing the boot-

strap samples just once, under the null hypothesis, using full-sample estimators. This is because for each

bootstrapped test, one needs to compute many bootstrap samples corresponding to each candidate threshold

value. Second, just like their sample equivalents, the bootstrap residuals will be inaccurate at the sample

edges due to slow convergence of the sub-sample estimators used to employ them. When taking the maxi-

mum over the sequence of bootstrapped tests, then doing so for many bootstrap samples, the bootstrapped

critical values can become highly unreliable for the original test statistic, even for sample sizes up to 1000

observations. Tables 1 and 2 in the simulation section show severe under-rejection of the null hypothesis for

sample sizes of 1000 observations. They also show that bootstrapping under the null hypothesis fixes this

issue, leading to correctly sized tests, but only if the variance correction discussed earlier is also employed.7

In this paper, we propose three test statistics for testing the null hypothesis of an unknown threshold in

threshold models with endogenous regressors and exogenous regressors, and because both their computation

and the bootstrap is different than CH, we derive for all three tests their asymptotic distribution and bootstrap

validity. The first test we propose is similar to the CH test and uses sub-sample GMM estimators, but, unlike

CH, employs a different variance estimator and a null bootstrap. The other two tests are a likelihood ratio

(LR) test and a Wald test, both based on 2SLS estimators. The 2SLS estimators are not conventional

6Note that bootstrapping under the alternative is not necessary even when the variance estimator is computed with residuals
under each alternative hypothesis of a candidate threshold value.

7Note that all test statistics for an unknown threshold we consider are non-pivotal, so one cannot expect any bootstrap to
provide asymptotic refinements. While for the (trimmed) edges of the sample, the residuals computed with sub-sample estimators
and their bootstrapped version are clearly inaccurately estimating the true underlying errors, because of slow convergence of
the sub-sample estimator employed to construct them, this is not the case for the middle of the sample. Because both our tests
and the CH test take the maximum over all candidate threshold values, around the (trimmed) sample edges or not, it is not
possible to derive uniform asymptotic refinements of our tests over the CH test; these refinements will only hold for candidate
threshold values around the sample edges. We would like to thank a referee for raising this issue.
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and therefore not a special case of the sub-sample GMM estimators used in the CH test, because they use

additional information about the first stage being either linear or having itself a threshold, while the GMM

estimators do not use this information by construction. Therefore, the resulting test statistics can be equally

reliable to the test based on GMM estimators, as shown in our simulations. Because the 2SLS with a first

stage threshold require consistent estimators of the first stage threshold parameter, as a by-product of our

analysis, we also prove the consistency of ordinary least-squares threshold estimators with a fixed threshold,

a result we could not find in the extant literature, only for very specific regression models.8

Our paper is closely related to several papers in the change-point literature. Boldea et al. (2019) study

the same 2SLS-based test statistics as this paper but for change-points. They also prove bootstrap validity

of their tests, however we employ different proof techniques in this paper because the threshold variable is

typically correlated with regressors, while the change-points are not, and the asymptotic distributions will

also be different. Magnusson and Mavroeidis (2014) use information about change-points in the first stage

to improve the power of tests for moment conditions, while we use similar information to improve the size

of our tests. Antoine and Boldea (2015) and Antoine and Boldea (2018) also use a full sample first stage or

change points in the first stage for more efficient estimation, while we focus on testing.

It should be noted that we allow for endogenous regressors, but not for endogenous threshold variables.

For the latter, see inter alia Kourtellos et al. (2015), Yu and Phillips (2018), Christopoulos et al. (2021)

and Liao et al. (2019). To account for regressor endogeneity, we use instruments for constructing parametric

test statistics for thresholds. As a result, our tests have nontrivial local power for O(T−1/2) threshold shifts,

where T is the sample size. This is in contrast to Yu and Phillips (2018), who do not use instruments, but

rather local shifts around the threshold to construct a nonparametric threshold test. As a result, their test

covers more general functional forms, at the cost of losing power in O(T−1/2) neighborhoods. Additionally,

the later paper focuses on cross-sectional models, while our tests are applicable to both cross-sectional models

and time series models.

In the empirical application, using the same data and model specification as in RZ, we revisit the question

of whether the government spending multipliers are larger in recessions. As in RZ, we cannot rule out that the

cumulative government spending multipliers are the same in recessions and expansions. However, we estimate

the threshold unemployment rate to be 8.3%, rather than 6.5% as imposed in RZ. This new threshold causes

the military spending instrument constructed in RZ to become weaker for deep recessions, suggesting that

this instrument is probably most informative at moderate unemployment rates somewhere between 6.5% and

8.3%.

The paper is organized as follows. Section 2 describes the model, the CH test and our test statistics,

the proposed bootstrap, as well as the assumptions and all the bootstrap validity results. Section 3 contains

simulations and Section 4 contains the empirical application. Section 5 concludes. The Online Supplement,

at the end of this document, contains all the proofs.

8See Theorem A.2 in the Online Supplement.

5



2 Threshold Model, Test Statistics and Bootstrap Validity

2.1 Threshold Model and Test Statistics

Our framework is a linear model with a possible threshold at γ0:

yt =
(
x>t θ

0
1x + z>1tθ

0
1z

)
1[qt ≤ γ0] +

(
x>t θ

0
2x + z>1tθ

0
2z

)
1[qt > γ0] + εt

= w>t θ
0
1 1[qt ≤ γ0] + w>t θ

0
2 1[qt > γ0] + εt, (1)

where yt is the scalar dependent variable, xt is a p1 × 1 vector of endogenous variables, z1t a p2 × 1 vector

of exogenous variables including the intercept and possibly lags of yt, qt is the scalar exogenous threshold

variable, 1[·] is the indicator function, wt = (x>t , z
>
1t)
> and θ0

i = (θ0>
ix , θ

0>
iz )>. Let γ0 ∈ Γ, a strict subset of

the support of qt, and let p = p1 + p2. The threshold variable is assumed exogenous and it can be a function

of the exogenous regressors. As in CH, the first stage can be a linear model:

xt = Π0>zt + ut, (2)

or a threshold model:

xt = Π0>
1 zt1[qt ≤ ρ0] + Π0>

2 zt1[qt > ρ0] + ut, (3)

where ρ0 ∈ Γ is a threshold not necessarily coinciding with γ0, and zt are q× 1 strong and valid instruments,

including z1t, with q − p2 ≥ p1. We assume that E[(εt, u
>
t )|Ft] = 0, where Ft = σ{zt−s, vt−s−1, qt−s|s ≥ 0},

so that equation (1) can be estimated by either 2SLS or by GMM.

We are interested in testing for an unknown threshold, i.e. the null hypothesis H0 : θ0
1 = θ0

2 = θ0. CH

proposed a test based on GMM estimators of θ0
i , (i = 1, 2) for each γ ∈ Γ. Because zt and qt are exogenous,

the moment conditions

E[ztεt1[qt ≤ γ]] = 0, E[ztεt1[qt > γ]] = 0 (4)

hold for all γ ∈ Γ. Based on these moment conditions, they construct the two-step GMM estimators:

θ̂iγ,(2) =
(
N̂iγĤ

−1
ε,iγN̂

>
iγ

)−1

N̂iγĤ
−1
ε,iγ

(
T−1

∑
iγ

ztyt

)
, (5)

with
∑

1γ(·) =
∑T
t=1(·)1[qt ≤ γ],

∑
2γ(·) =

∑T
t=1(·)1[qt > γ], N̂iγ = T−1

∑
iγ wtz

>
t and with Ĥε,iγ =

T−1
∑
iγ ε̂

2
t,γ,(1)ztz

>
t . Here, ε̂t,γ,(1) = yt − w>t θ̂1γ,(1)1[qt ≤ γ] − w>t θ̂2γ,(1)1[qt > γ] are the first step GMM

residuals for each γ, and θ̂iγ,(1) are consistent first-step versions of θ̂iγ,(2), for example by replacing Ĥε,iγ

with M̂iγ = T−1
∑
iγ ztz

>
t . These estimators can be used to construct a Wald test for each γ, and taking the

supremum of this sequence of Wald tests over γ ∈ Γ yields the test in CH:

WGT,CH = sup
γ∈Γ

WGT,CH(γ) = sup
γ∈Γ

T
(
θ̂1γ,(2) − θ̂2γ,(2)

)>
V̂ −1
γ,(1)

(
θ̂1γ,(2) − θ̂2γ,(2)

)
, (6)
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where V̂γ,(1) =
∑2
i=1

(
N̂iγĤ

−1
ε,iγN̂

>
iγ

)−1

.

As shown in CH, the asymptotic distribution of the test statistic (6) is non-pivotal and therefore needs to

be simulated/bootstrapped for a given application. CH propose to generate new pseudo-dependent variables

ybt,γ = ε̂t,γ,(2)ηt, where ηt
iid∼ N (0, 1) and ε̂t,γ,(2) denote the second step GMM residuals for each value of

γ, and recalculate the test statistic (6) for each γ using ybt,γ instead of yt, and then for many bootstrap

samples.9 Even though CH prove validity of their bootstrap procedure in large samples, Tables 1 and 2 show

that their bootstrap does not replicate well the empirical distribution of the test statistic in finite samples,

being severely over-/undersized for small/large samples.

Tables 1 and 2 in the simulation section show that these size distortions are due to two interacting

phenomena: the type of bootstrap employed, and the way the heteroskedasticity-robust variance estimators

are computed. We therefore employ two corrections. First, we adjust the bootstrap such that the pseudo-

dependent variable ybt is constructed using full-sample residuals. That is, we replace ybt = ε̂t,γ,(2)ηt by

ybt = ε̂t,(2)ηt where ε̂t,(2) = yt − w>t θ̂(2) and θ̂(2) is the second step GMM estimate under H0. This gets rid

of the undersizing of the CH test statistic documented in the simulation section: the residuals become more

accurate around the sample edges as they are not constructed with sub-sample estimators. However, the

simulations now indicate that the test is oversized (see Tables 1 and 2 , column “Mix”).

Therefore, we employ a second correction, where the heteroskedasticity-robust variance estimators are

also computed with full-sample parameter estimates. More exactly, rather than using ε̂t,γ,(1) and ε̂t,γ,(2) in the

expression for Ĥε,iγ , we use ε̂t,(1) = yt−w>t θ̂(1) instead, where θ̂(1) is the first step full-sample GMM estimate

(so we redefine Ĥε,iγ =
∑
iγ ε̂

2
t,(1)ztz

>
t ). As Tables 1 and 2 show (column “BR”, “bootstrap/rectification”),

this yields correctly sized sample test statistics in all samples considered.

Note that both effects that we correct for are due to unstable estimates of the residuals at the sample

edges below/above the 15%/85%-quantiles of the empirical distribution of qt. The test employing these two

corrections is denoted by WGT,BR = sup
γ∈Γ

WGT,BR(γ).

We also consider two 2SLS-based test statistics, because the GMM estimators involved in the computation

of the tests above do not use information about the linearity or lack of linearity of the first stage. Therefore,

they are not more efficient than the 2SLS estimators that use this information (see Antoine and Boldea

(2015) for a formal proof of this statement for change-point models), so there is no reason to expect that

2SLS-based tests will be inferior to the GMM-based tests.

9Note that the pseudo-dependent variables are generated without adding back the estimated mean to the bootstrap residuals.
This is inconsequential to the analysis because the test statistic is based on mean differences across regimes of low or high qt,
and these are zero under the null of no threshold.
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The likelihood-ratio type and a Wald-type test statistic for H0 : θ0
1 = θ0

2 based on 2SLS estimators are:

LRT = sup
γ∈Γ

SSR0 − SSR1(γ)

SSR1(γ)/(T − 2p)
(7a)

WT = sup
γ∈Γ

T
(
θ̂1γ − θ̂2γ

)>
V̂ −1
γ

(
θ̂1γ − θ̂2γ

)
(7b)

where SSR0 =
∑T
t=1(yt − ŵ>t θ̂)

2, with θ̂ = (
∑T
t=1 ŵtŵ

>
t )−1(

∑T
t=1 ŵtyt) the full-sample 2SLS estimator,

SSR1(γ) =
∑2
i=1

∑
iγ(yt − ŵ>t θ̂iγ)2, with θ̂iγ = (

∑
iγ ŵtŵ

>
t )−1(

∑
iγ ŵtyt) the split-sample 2SLS estimators.

Here, ŵt = (x̂>t , z
>
1t)
> stacks the predicted endogenous variables x̂t and the exogenous variables z1t. The

predicted endogenous variables are obtained either via estimating the linear first stage equation (2):

Π̂ =
( T∑
t=1

ztz
>
t

)−1( T∑
t=1

ztx
>
t

)
, x̂t = Π̂>zt (8)

or via estimating the threshold first-stage equation (3):

Π̂iρ =
(∑

iρ

ztz
>
t

)−1(∑
iρ

ztx
>
t

)
i = 1, 2, Π̂tρ = Π̂1ρ1[qt ≤ ρ] + Π̂2ρ1[qt > ρ] (9a)

ρ̂ = argmin
ρ∈Γ

[
tr

T∑
t=1

(xt − Π̂>tρzt)(xt − Π̂>tρzt)
>

]
Π̂i =

( T∑
iρ̂

ztz
>
t

)−1(∑
iρ̂

ztx
>
t

)
, i = 1, 2 (9b)

x̂t = Π̂>1 zt1[qt ≤ ρ̂] + Π̂>2 zt1[qt > ρ̂] (9c)

Lastly, V̂γ
p−→Vγ = lim Var[T 1/2(θ̂1γ − θ̂2γ)].10 Unlike the sup Wald test in Hall et al. (2012), which is the

change-point counterpart of the test here, our test – through the way V̂γ is defined – takes into account that the

2SLS estimators θ̂1γ and θ̂2γ are correlated through either a full-sample first-stage or through misalignment of

ρ0 and γ. Moreover, as in the case of CH’s GMM-test, the 2SLS test-statistics are non-pivotal and, therefore,

need to be simulated/bootstrapped. The next subsection describes the bootstrap we propose and contains

results for asymptotic validity of this bootstrap for all three tests proposed.

2.2 Bootstraps and their Validity

The bootstrap employed for both CH GMM test and our GMM test is a wild bootstrap with fixed regressors

because it does not bootstrap the regressors wt, xt and the instruments z1,t. We already alluded to the

proposed change in the bootstrap procedure for the CH test in the previous section. These changes are

summarized in the Algorithms 1 and 2 below. The difference between the CH test and our test are highlighted

in lines 3–6 of the below algorithms. Since CH construct their pseudo-dependent variable for each γ separately,

the for-loop over γ starts already in line 3 of Algorithm 1, as opposed to line 5 in Algorithm 2 when the same

10The explicit expressions for V̂γ and Vγ are given in Online Supplement Section A.3.1, and Definition 1 for a linear first
stage, and in Online Supplement Section A.4.1, Definition 2 for a threshold first stage, together with the expressions in the
asymptotic distributions of the 2SLS test-statistics.
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pseudo-dependent variable is used for all values of γ. Line 6 in both algorithms indicates the difference in

constructing the heteroskedasticity-robust variance estimators Ĥb
ε,iγ and in Ĥε,iγ .

Algorithm 1: CH Bootstrap

1: Input: {ε̂t,γ,(2)}t,γ , {wt}t,Γ, B
2: for b ∈ {1, .., B} do
3: for γ ∈ Γ do
4: ηt ∼ i.i.d.N (0, 1)
5: ybt,γ ← ε̂t,γ,(2)ηt

6: WGbT,CH(γ)← use {(ybt,γ , wt)}t to compute RHS

in (6) using ε̂b
t,γ,(1)

in Ĥb
ε,iγ

7: end for
8: WGbT,CH ← supγ∈Γ WGbT,CH(γ)
9: end for

10: Return {WGbT,CH}b

Algorithm 2: Modified CH Bootstrap

1: Input: {ε̂t,(2)}t, {wt}t,Γ, B
2: for b ∈ {1, .., B} do
3: ηt ∼ i.i.d. (0, 1)
4: ybt ← ε̂t,(2)ηt
5: for γ ∈ Γ do
6: WGbT,BR(γ)← use {(ybt , wt)}t to compute RHS in

(6) using ε̂b
t,(1)

in Ĥb
ε,iγ

7: end for
8: WGbT,BR ← supγ∈Γ WGbT,BR(γ)
9: end for

10: Return {WGbT,BR}b

Algorithm 3 below describes the wild fixed regressor bootstrap for our proposed 2SLS test-statistics,

where regressors wt and instruments z1,t are kept fixed in the bootstrap. The first stage linearity or lack

thereof is taken into account in computing x̂t - equation (8) or (9c) respectively. For these tests, we need to

know whether the first stage is linear or not; however, this is not necessarily a drawback in empirical work,

because such knowledge is required for estimating the threshold parameter γ0 consistently (see CH).

Algorithm 3: 2SLS Bootstrap

1: Input: {yt, xt, zt, x̂t}t, θ̂, Γ, B
2: wt ← (x>t , z

>
1t)
>

3: ε̂t ← yt − w>t θ̂
4: ût ← xt − x̂t
5: for b ∈ {1, ..., B} do
6: ηt ∼ (0, 1)
7: ubt ← ûtηt
8: xbt ← x̂t + ubt
9: wbt ← (xb>t , z>1,t)

>

10: εbt ← ε̂tηt
11: ybt ← wb>t θ̂ + εbt
12: for γ ∈ Γ do
13: LRbT (γ)← use (ybt , w

b
t , zt) to compute RHS in (7a) using either (8) or (9a)–(9c)

14: W b
T (γ)← use (ybt , w

b
t , zt) to compute RHS in (7b) using either (8) or (9a)–(9c)

15: end for
16: LRbT ← supγ∈Γ LR

b
T (γ)

17: W b
T ← supγ∈ΓW

b
T (γ)

18: end for
19: Return: {LRbT ,W b

T }b

We now derive the asymptotic properties of our tests11 and show their bootstrap validity. First define

gt = xt − ut, ht = yt − εt, M1γ = E[ztz
>
t 1[qt ≤ γ]], M = plimγ→∞M1γ = E[ztz

>
t ], M2γ = M −M1γ , and

11We focus on the GMM-based test; the asymptotic distributions of the 2SLS tests are given in the Online Supplement,
Sections A.3.1 and A.4.1.
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vt = (εt, u
>
t )>. Let ‖ · ‖ be the Euclidean norm. The following assumptions are similar to CH.

Assumption 1.

(a) E[vt|Ft] = 0 with Ft = σ{zt−s, vt−s−1, qt−s|s ≥ 0};

(b) The series (vt, gt, ht, qt, zt) is strictly stationary with ρ-mixing coefficient ρ(m) = O(m−A) for some

A > a
a−1 and 1 < a ≤ r;

(c) E
[
‖zt‖4r

]
<∞, E

[
‖vt‖4r

]
<∞ for some r > 1;

(d) inf
γ∈Γ0

detM1γ > 0, and if (3) holds, then M1γ1 −M1γ2 has eigenvalues bounded away from zero for any

γ1 > γ2. Moreover, M1γ is continuous at γ = ρ0;

(e) The threshold variable qt has a continuous pdf f(qt) with sup
qt∈Γ
|f(qt)| <∞;

(f) E[vtv
>
t ] and E[(vtv

>
t )⊗ (ztz

>
t )] are two p.d. matrices of constants;

(g) The coefficient matrices Π0 (for the linear first stage (2)) or Π0
1,Π

0
2 (for the threshold first stage (3)) are

full rank, and Π0
1 −Π0

2 6= 0.

Most of these assumptions are also used in CH. Assumption 1 (a) is typically needed for nonlinear

models. Assumption 1 (b) is also needed, as the only uniform law of large numbers and functional central

limit theorem for partial sums in 1[qt ≤ γ] that we are aware of derives from Hansen (1996) and require

strict stationarity (see Lemma A.1-A.2 in the Online Supplement). Assumption 1 (c) is a typical moment

condition. Assumption 1 (d) is slightly different than CH: they also impose that M1γ is p.d. for all γ, but

we require that the increments in M1γ are p.d. in the limit with eigenvalues bounded away from zero. The

latter is technical in nature and required to obtain quantities bounded in probability in order to provide a

self-contained proof of super-consistency of ρ̂ in a threshold first stage model. Assumptions 1 (e) is standard

in the threshold literature, and 1 (g) is an identification condition for a possible threshold in the first stage.

Assumption 1 (f) is needed for uniqueness of the asymptotic distributions of the test statistics proposed.

With this assumption, we first show that employing the new heteroskedasticity-robust estimators do not

alter the distribution of the CH test.

Theorem 1 (Asymptotics Modified GMM Wald-Test). Let yt be generated by (1), xt be generated by either

a linear first stage (2) or a threshold first stage (3). Moreover, let the GMM test be computed as in (6)

but with Ĥε,iγ constructed using ε̂t,(1). Then, under H0 and Assumption 1, WGT,BR has the same limiting

distribution as WGT,CH .

To show the validity of the null bootstrap, we require the following additional assumption:

Assumption 2.

(a) ηt
iid∼ (0, 1) with Eb[η4

t ] < ∞, where Eb[·] is the expectation with respect to the bootstrap probability

measure;
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(b) E
[
‖zt‖8r

]
<∞ and E

[
‖vt‖8r

]
<∞ for some r > 1.

Assumption 2 (a) is common for the wild bootstrap (also see Boldea et al., 2019), and typical choices for

ηt are the normal distribution, the Rademacher distribution, and the asymmetric two-point distribution in

Mammen (1993). CH propose using the normal distribution, but we use both the normal distribution and

the Mammen (1993) distribution, as the latter yields better results for the GMM-Wald test, see Tables 1–4.

Assumption 2 (b) is only needed for Ĥb
ε,iγ to weakly converge to Hb

ε,iγ in probability under the bootstrap

measure. Theorem 2 proves the asymptotic validity of the null bootstrap for WGT,BR.

Theorem 2 (Bootstrap Validity Modified GMM Wald-Test). Let yt be generated by (1), xt be generated by

either a linear first stage (2) or a threshold first stage (3). Moreover, let the GMM Wald-test be computed

as in (6) but with Ĥε,iγ constructed using ε̂t,(1) and using the bootstrap in Algorithm 2. Then, under H0 and

Assumptions 1 and 2,

sup
c∈R
|P b(WGbT,BR ≤ c)− P (WGT,BR ≤ c)| p−→ 0.

For the 2SLS-based test-statistics, the asymptotic distributions are cumbersome and not of main interest.

Therefore, we relegate these results to the Online Supplement, Sections A.3.1 and A.4.1. However, in order to

derive these asymptotic distributions, we also provide in the Online Supplement, Theorem 5, a self-contained

proof of super-consistency of the first stage (ordinary least-squares) threshold parameter estimate ρ̂. This

was also shown in Chan (1993), but for a threshold autoregressive model where zt and qt are lags of xt.

This proof may be of interest in its own right, as it extends proof techniques from change point analysis to

threshold models.

The asymptotic distributions of the 2SLS based tests are also non-pivotal, and we conclude this section

by stating the asymptotic validity of the bootstrap for these tests.

Theorem 3 (Bootstrap Validity – 2SLS Tests). Let yt be generated by (1) and xt be generated by the linear

first stage (2) or by the threshold first stage (3). Moreover, let the 2SLS-based test-statistics be computed as

described in (7a) and (7b), and using the bootstrap in Algorithm 3. Then, under H0 and Assumption 1,

(i) supc∈R
∣∣P b (LRbT ≤ c)− P (LRT ≤ c

)∣∣ p−→ 0 if Assumption 2 (a) holds in addition;

(ii) supc∈R
∣∣P b (W b

T ≤ c)− P (WT ≤ c
)∣∣ p−→ 0 if Assumption 2 holds in addition.

3 Simulations

Consider the following data generating process (DGP) for t = 1, . . . , T :

yt = 1 + xt + δx xt1[qt > γ0] + εt, xt = 1 + zt + δΠ zt1[qt > ρ0] + ut,

where zt
iid∼ N (1, 1), qt = zt + 1, and zt, xt, and qt are scalars. We set δΠ = 0 for a linear first stage (LFS)

and δΠ ∈ {−0.5, 0.5, 1} for a threshold first stage (TFS) with ρ0 = 1.75. Under the null hypothesis, δx = 0,

11



and under the alternative hypothesis, δx = 0.25 with γ0 = 2.25.12 To generate εt, we define et
iid∼ N (0, 1)

and consider the following three cases.

In case (a), the errors are homoskedastic, i.e. εt = et, and the econometrician knows this. Therefore,

we use the i.i.d. bootstrap instead of the wild bootstrap, and make two adjustments to the computation

of the test statistics. First, vbt
iid∼ N (0, Σ̂v) with Σ̂v = T−1

∑T
t=1 v̂tv̂

>
t for 2SLS. For GMM, εbt

iid∼ N (0, σ̂2
ε )

given the data, with σ̂2
ε = T−1

∑T
t=1 ε̂

2
t,(1), and ε̂t,(1) = yt − w>t θ̂, with θ̂ the full-sample 2SLS estimator.

Second, all heteroskedasticity-robust estimators are replaced by their homoskedastic analogs. For example,

E[ztz
>
t ε

2
t1[qt ≤ γ]] is no longer estimated by T−1

∑
1γ ztz

>
t ε̂

2
t1[qt ≤ γ], but by σ̂2

ε (T−1
∑

1γ ztz
>
t 1[qt ≤ γ]).

The same applies to the case of CH’s original bootstrap, except that the residuals are computed for each

value of γ rather than under H0.

In case (b), the errors are still homoskedastic, i.e. εt = et, but this is not known to the econometrician.

Therefore, the heteroskedasticity-robust variance estimators described in Sections 2.1 and 2.2 are employed.

In case (c), the errors are conditional heteroskedastic, i.e. εt = et · zt/
√

2 with V ar(et) = V ar(ut) = 1

and Cov(ut, et) = 0.5, and heteroskedasticity-robust variance estimators are employed.

In Tables 1 and 3 cases (b)-(c), the bootstrap is performed using ηt
iid∼ N (0, 1). For all other results,

ηt
iid∼ (0, 1) with draws from the asymmetric two-point distribution proposed by Mammen (1993). In all cases

besides (a), we use the wild bootstrap as described in Section 2.2.

There are 500 bootstrap samples. For each simulation, we compute the 95% quantile of the bootstrap

distribution of the test statistic, and if the test in the original sample is above this quantile, we reject, else

we do not reject. γ is varied between all sample realizations of qt from its 15% quantile to its 85% quantile.

We report the rejection frequency of each test statistic in 1000 simulations under the null and at 5% nominal

size (Tables 1–4), and under the alternative we plot the size-adjusted power, where the size-adjustment is

made relative to the null DGPs described above (Figure 2).

Tables 1 and 2 show that the bootstrap procedure originally proposed by CH has heavy size distor-

tions in both directions. In particular, the test moves from being heavily oversized in small samples to

severely undersized in large samples (columns “CH”). This originates from imprecise residual estimates and

imprecise Ĥε,iγ for small and moderate sample sizes pertinent to applications. In particular, when γ is close

to the 15% or 85% quantiles of qt, there is not enough data to obtain precise residuals and precisely estimate

Hε,iγ . Moreover, changing the CH bootstrap to a null bootstrap results in oversized tests for all considered

sample sizes (columns “Mix”). This problem is rectified by modifying Ĥε,iγ in the original test statistic, as

evident from columns “BR” in Tables 1 and 2, where the empirical sizes are much closer to the nominal size.

Tables 3 and 4 show that the 2SLS tests are in almost all cases close to nominal sizes, even in small samples,

and that there is no clear ranking among the three proposed tests.

12Note that because of just-identification, there is no difference between the first and the second-step GMM estimators,
therefore θ̂(2) = θ̂(1) = (

∑T
t=1 wtz

>
t )−1(T−1

∑T
t=1 ztyt), and θ̂iγ,(2) = θ̂iγ,(1) = (N̂>iγ)−1(T−1

∑
iγ ztyt).
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Table 1: Rejection frequencies under the null DGP, 5% nominal size and ηt
iid∼ N (0, 1) – GMM Tests

LFS TFS, δΠ = −0.5 TFS, δΠ = 0.5 TFS, δΠ = 1

T CH Mix BR CH Mix BR CH Mix BR CH Mix BR

(a)

100 11.5% 17.9% 4.8% 10.8% 17.0% 3.9% 10.0% 15.0% 4.5% 8.0% 13.4% 4.5%
250 8.6% 12.9% 5.8% 7.8% 13.6% 4.8% 6.1% 10.1% 5.7% 5.1% 8.9% 5.7%
500 4.4% 11.2% 4.3% 4.6% 14.2% 5.5% 2.9% 9.6% 4.6% 2.5% 8.8% 4.6%
1000 1.8% 9.5% 4.9% 2.9% 11.3% 4.9% 1.7% 9.1% 4.9% 1.2% 8.8% 4.5%

(b)

100 12.0% 17.4% 7.5% 11.1% 17.3% 6.2% 10.5% 15.6% 7.9% 9.6% 15.0% 8.0%
250 4.9% 11.8% 7.5% 6.0% 14.1% 7.2% 4.8% 10.9% 7.2% 4.3% 10.2% 7.1%
500 2.4% 10.7% 6.4% 3.5% 12.3% 6.3% 2.3% 9.4% 6.9% 2.4% 9.1% 6.8%
1000 0.7% 8.7% 4.6% 1.3% 10.6% 4.6% 0.7% 8.2% 4.3% 0.6% 7.8% 4.4%

(c)

100 6.9% 13.8% 8.1% 7.2% 12.9% 6.8% 7.8% 12.6% 8.6% 8.0% 12.6% 8.9%
250 2.7% 11.2% 6.3% 3.1% 11.9% 5.6% 2.8% 9.6% 5.9% 2.2% 8.8% 6.0%
500 2.0% 8.6% 6.6% 2.3% 11.0% 7.6% 1.8% 7.8% 6.7% 1.7% 7.1% 6.6%
1000 0.4% 9.7% 4.7% 0.8% 11.2% 4.6% 0.5% 8.8% 4.4% 0.5% 8.4% 3.8%

CH refers to the WGT,CH test in CH (Algorithm 1) and BR refers to our modified WGT,BR test (Algorithm 2). Mix refers

to the mixture between the two, where the bootstrap is conducted using H0 residuals, whereas Ĥε,iγ are constructed using

HA-residuals. Panel (a) corresponds to known homoskedasticity, panel (b) to unknown homoskedasticity and panel (c) to known

heteroskedasticity.

Table 2: Rejection frequencies under the null DGP, 5% nominal size and ηt
iid∼ Mammen – GMM Tests

LFS TFS, δΠ = −0.5 TFS, δΠ = 0.5 TFS, δΠ = 1

T CH Mix BR CH Mix BR CH Mix BR CH Mix BR

(b)

100 12.0% 13.1% 5.5% 11.7% 14.1% 4.9% 10.6% 11.6% 6.1% 9.6% 11.0% 5.9%
250 4.6% 11.9% 5.5% 5.5% 13.7% 4.7% 4.0% 10.5% 5.6% 3.9% 9.5% 5.6%
500 2.2% 8.7% 5.3% 2.7% 11.3% 4.8% 1.8% 8.6% 5.0% 1.8% 8.5% 5.2%
1000 0.9% 9.3% 5.6% 1.7% 9.4% 5.5% 0.7% 8.8% 5.7% 0.6% 8.0% 5.4%

(c)

100 7.9% 10.5% 6.1% 7.3% 10.6% 4.8% 7.9% 9.4% 6.3% 8.3% 8.9% 6.3%
250 3.3% 9.9% 5.0% 3.7% 11.4% 4.5% 2.9% 7.7% 4.5% 2.8% 7.3% 4.1%
500 1.2% 6.6% 4.8% 1.5% 7.8% 4.6% 1.2% 5.0% 4.9% 1.0% 4.6% 4.9%
1000 0.8% 6.9% 5.3% 1.3% 9.3% 5.1% 0.6% 6.4% 5.4% 0.3% 5.9% 5.7%

See Table 1 Notes.
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Table 3: Rejection frequencies under the null DGP, 5% nominal size and ηt
iid∼ N (0, 1) – 2SLS Tests

LFS TFS, δΠ = −0.5 TFS, δΠ = 0.5 TFS, δΠ = 1

T LR W LR W LR W LR W

(a)

100 6.0% 6.2% 2.9% 4.5% 2.1% 2.4% 2.9% 2.6%
250 5.0% 5.0% 2.0% 4.0% 2.6% 3.2% 3.4% 3.8%
500 5.3% 5.0% 2.8% 3.4% 2.8% 2.8% 4.5% 4.3%
1000 4.2% 4.4% 3.9% 3.4% 4.2% 3.3% 4.9% 3.7%

(b)

100 4.6% 8.4% 2.3% 8.2% 1.5% 5.5% 2.1% 7.2%
250 5.3% 8.8% 2.3% 6.0% 2.3% 5.4% 4.2% 7.0%
500 5.7% 6.7% 4.0% 6.0% 3.3% 5.6% 5.5% 6.7%
1000 6.5% 6.9% 3.0% 4.8% 3.7% 5.5% 4.8% 6.3%

(c)

100 5.1% 8.2% 3.7% 7.8% 2.7% 5.1% 3.2% 6.3%
250 5.3% 6.9% 3.9% 5.4% 3.9% 5.4% 5.7% 6.7%
500 7.0% 7.6% 5.9% 6.6% 5.9% 5.2% 6.9% 7.2%
1000 6.6% 5.3% 5.8% 4.1% 5.2% 3.5% 5.5% 4.0%

LR and W refer to the LRT and WT tests. Panel (a) corresponds to known homoskedas-

ticity, panel (b) to unknown homoskedasticity and panel (c) to known heteroskedasticity.

Table 4: Rejection frequencies under the null DGP, 5% nominal size and ηt
iid∼ Mammen – 2SLS Tests

LFS TFS, δΠ = −0.5 TFS, δΠ = 0.5 TFS, δΠ = 1

T LR W LR W LR W LR W

(b)

100 5.0% 5.9% 2.1% 6.3% 2.0% 4.1% 2.2% 5.1%
250 5.6% 6.8% 2.5% 5.2% 1.9% 4.2% 3.3% 5.1%
500 4.4% 4.6% 3.2% 4.0% 3.1% 4.1% 4.7% 4.3%
1000 5.4% 6.0% 4.6% 4.7% 3.0% 4.5% 4.4% 5.2%

(c)

100 5.3% 5.2% 3.8% 6.4% 3.2% 3.9% 3.7% 4.0%
250 5.3% 5.6% 3.4% 4.8% 3.3% 3.8% 4.4% 3.9%
500 5.3% 5.9% 4.6% 2.8% 4.7% 3.2% 5.4% 4.1%
1000 5.1% 6.6% 4.0% 4.8% 4.4% 4.3% 4.4% 5.3%

See Table 3 Notes
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We also assess the power of all tests. For a large threshold δx = 1, all tests have power virtually equal to

one even for sample sizes of T = 250 and therefore we do not report these results. Figure 2 shows the power

properties for a small threshold of δx = 0.25. In small samples, the Wald tests dominate the LR test for all

cases (a)-(c). Note that this is not necessarily for classical reasons of correcting for heteroskedasticity, as all

tests are non-pivotal and bootstrapped. The power differences among all three tests vanish as the sample

size grows. Therefore, we argue that all the tests proposed provide reliable alternatives in moderate samples

pertinent to macroeconomic applications.

Figure 2: Size-Adjusted Power Plots for δx = 0.25

Case LFS TFS, δΠ = −0.5 TFS, δΠ = 0.5 TFS, δΠ = 1
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LR and W refer to our LRT and WT tests. CH refers to the WGT,CH test in CH (Algorithm 1) and BR
refers to our modified WGT,BR test (Algorithm 2).

4 Application to government spending multipliers

In this section, we revisit the question whether government spending is more effective in recessions, and

address it as in RZ, using exactly the same data and model specifications, except that we test and estimate

an unknown threshold rather than imposing it. For simplicity, we first focus on the instantaneous government
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spending multiplier θg,i(i = 1, 2), estimated similarly to RZ from:

yt = (θg,1 gt + z>1,tθz,1)1[qt ≤ γ0] + (θg,2 gt + z>1,tθz,2)1[qt > γ0]) + εt (10)

gt = Π>1 zt1[qt ≤ ρ0] + Π>2 zt1[qt > ρ0] + vt (11)

where yt is real GDP divided by trend GDP, gt is real government spending divided by trend GDP – which

is endogenous and instrumented by military spending news mt – and the threshold variable is qt, the first

lag of the unemployment rate. The exogenous regressors z1t are also included in zt and contain an intercept

and four lags of gt, yt, mt. Thus, zt = [z>1t,m
>
t ]>.

The data is from the RZ replication package.13 For details on the data construction, instrument validity,

or interpretation of θg,i(i = 1, 2) as cumulative spending multipliers, we refer the interested reader to RZ.

Letting θ0
i = (θg,i, θ

>
z,i)
> and wt = (gt, z

>
1,t)
>, the RZ estimators of θ0

i are exactly the just-identified GMM

(or instrumental variables, IV henceforth) estimators θ̂iγ,(1) defined in Section 2.1, but evaluated in RZ at

γ = 6.5 (and ignoring the first stage which is irrelevant for conventional IV estimators).14 The threshold

γ = 6.5 is chosen by RZ as in Owyang et al. (2013), based on the US Federal Reserve use of this threshold in

its policy announcement; RZ also do a robustness check with a threshold of 8.0. Since it is unclear why 6.5

or 8.0 would be the threshold that defines recessions versus expansions, we do not assume that the threshold

γ0 is known or even that there is a threshold γ0; we instead test for the presence of γ0 first.

The 2SLS tests require first estimating ρ0 in equation (11). Table 5 reports the multivariate threshold

estimates ρ̂ described in Section 2.1, along with the decisions of a LFS or a TFS based on the BIC3 criterion

proposed in Gonzalo and Pitarakis (2002) and on the ordinary least-squares (OLS) versions of LRbT and W b
T

tests described in Section 2.2, which were proposed in Hansen (1996). The estimate of ρ0 change with the

cut-off considered, but there is considerable evidence of a threshold in the first stage. The maximizer of the

OLS version of LRT (γ) is exactly ρ̂, a consistent estimator of ρ0 as shown in Theorem A.2. Therefore, we

use a TFS with ρ̂ in Table 5.

Table 5: Presence of Thresholds in the First Stage

Trim ρ̂ BIC3 LR W

10% 3.5264 TFS TFS LFS
15% 3.5264 TFS TFS LFS
20% 3.7530 LFS TFS LFS
25% 4.0636 LFS TFS LFS

BIC3 is the BIC3 criterion in Gonzalo

and Pitarakis (2002), and LR and W are

the OLS bootstrap equivalents of our tests

LRT and WT

Given ρ̂ obtained for each cut-off, we test for an unknown threshold in equation (10). Table 6 shows that

13http://econweb.ucsd.edu/~vramey/research/Ramey_Zubairy_replication_codes.zip
14All numbers referring to unemployment rates, such as 6.5, should be interpreted as percentages: 6.5%.
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Table 6: Presence of Thresholds in the Equation of Interest

GMM Tests

Trim TFS ρ̂ γ̂ WGT,CH 5%CV Reject WGT,BR 5%CV Reject

10% 3.5264 11.9660 178.296 1213.488 No 25.258 27.007 No
15% 3.5264 10.7000 66.523 1097.046 No 25.258 27.327 No
20% 3.7530 9.3443 66.523 809.764 No 25.258 26.631 No
25% 4.0636 8.3363 66.523 250.830 No 22.787 27.133 No

2SLS Tests

Trim TFS ρ̂ γ̂ LRT 5%CV Reject WT 5%CV Reject

10% 3.5264 11.9660 93.526 74.011 Yes 29.335 29.348 No
15% 3.5264 10.7000 78.158 56.963 Yes 27.698 29.348 No
20% 3.7530 9.3443 75.332 52.066 Yes 27.505 29.197 No
25% 4.0636 8.3363 65.719 50.498 Yes 24.365 29.137 No

“5%CV ’ display the bootstrap 5% critical values, “Reject” indicates whether the null of no threshold

in (8) is rejected. For all specifications, a TFS is used with ρ̂ obtained with the same cut-offs in the

first stage as the column “Trim” indicates.

the LR test rejects the null. The 2SLS Wald test and our modified GMM Wald-test do not reject (but their

values are relatively close to the critical values at certain cut-offs). From Figure 1, it is evident that the

sequence of all our test statistics are relatively flat for all values of γ. The CH test also never rejects the null,

but its sequence is not flat: its value is relatively large at 10% trimming, and its critical values are very large

at all trimming levels. This is in line with our simulations, which indicated that the tests are undersized at

500 observations, the number of observations in our sample. Its erratic behavior near the sample edges was

further illustrated in Figure 1.

Because Equations (10)–(11) control for several lags – in line with the RZ specification – we choose the

25% cut-off results with ρ̂ = 4.0636 and γ̂ = 8.3363, where the latter is the 2SLS threshold estimate proposed

in CH (or, equivalently, the implicit maximizer of the LRT (γ) quantity in this paper).15

We could conclude based on Figure 1 and Table 6 that there is little evidence that the instantaneous

multipliers are different in recessions and expansions. In what follows, we also show that there is little

evidence that the multipliers at other horizons than zero are different. To that end, as in RZ, we compute

the cumulative government spending multipliers θhg,i(i = 1, 2) at horizon h = 1, . . . ,H from the IV regression:

∑H

h=0
yht+h = (θhg,1

∑H

h=0
gt+h + z>1,tθ

h
z,1)1[qt ≤ γ̂]

+ (θhg,2
∑H

h=0
gt+h + z>1,tθ

h
z,2)1[qt > γ̂] + εt,

where
∑H
h=0 gt+h is instrumented by mt.

16

Tables 7-9 show the RZ multipliers (using 6.5 and 8 - robustness check in RZ - as thresholds), and our

15The confidence sets for both these thresholds obtained by inverting the likelihood ratio tests in Hansen (2000) and CH, or
by simulating the asymptotic distribution in CH, are very tight when using the default nonparametric kernel. However, since
both estimators are close to the 25% cut-off, and increase (γ̂) or decrease (ρ̂) when decreasing the cut-offs used, we can only
interpret these estimators as close to the lower bounds of the true threshold values that are identified in the sample.

16It is unclear how to use the TFS specification (11) to obtain cumulative government spending multipliers at h > 0, because
of the misalignment between the first and the second stage threshold, and we leave this to future research.
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multipliers for fifteen quarters ahead, calculated exactly as in RZ but with γ̂ = 8.3383. We also report

classical heteroskedasticity and autocorrelation (HAC) robust standard errors, weak instrument HAC robust

confidence sets, and classical and weak-instrument HAC-robust tests for the difference in multipliers at the

imposed thresholds. These tables show that in all cases, there is no evidence that government spending

multipliers are different in recessions, once the possibility of weak instruments is taken into account at all

horizons.

Table 7: IV Multipliers with RZ threshold

State 1, qt ≤ 6.5: 319 obs. State 2, qt > 6.5: 181 obs.

h Mult. s.e. AR LB AR UB Mult. s.e. AR LB AR UB p-val. AR p-val.

0 1.24 0.45 -0.51 2.99 -0.61 0.98 -4.43 3.22 0.04 0.22
1 1.11 0.29 -0.02 2.24 -1.92 1.54 -7.95 4.10 0.04 0.24
2 0.89 0.19 0.13 1.64 -0.17 0.25 -1.16 0.81 0.00 0.24
3 0.71 0.14 0.15 1.28 0.22 0.16 -0.42 0.87 0.01 0.25
4 0.64 0.12 0.17 1.12 0.46 0.14 -0.09 1.01 0.26 0.39
5 0.63 0.10 0.24 1.03 0.54 0.12 0.08 1.00 0.52 0.57
6 0.62 0.09 0.26 0.99 0.59 0.11 0.17 1.01 0.81 0.82
7 0.59 0.09 0.24 0.95 0.60 0.10 0.23 0.97 0.95 0.95
8 0.59 0.09 0.23 0.95 0.62 0.09 0.29 0.95 0.82 0.82
9 0.62 0.10 0.25 1.00 0.63 0.08 0.33 0.92 0.97 0.97
10 0.66 0.10 0.27 1.05 0.64 0.07 0.37 0.91 0.87 0.87
11 0.68 0.10 0.28 1.08 0.64 0.07 0.39 0.90 0.79 0.80
12 0.68 0.11 0.27 1.10 0.65 0.06 0.41 0.90 0.81 0.82
13 0.68 0.11 0.26 1.11 0.67 0.06 0.44 0.89 0.89 0.90
14 0.68 0.11 0.24 1.13 0.68 0.05 0.47 0.89 0.99 0.99
15 0.67 0.12 0.19 1.15 0.68 0.05 0.48 0.88 0.92 0.92

”Mult.” indicates the IV estimates at each horizon, ”obs.” the number of observations, and
”s.e.” the Newey-West HAC standard errors using the Bartlett kernel and the data-dependent
bandwidth. ”AR LB (AR UB)” refer to 95% Anderson-Rubin confidence lower (upper) bounds.
”p-val.” indicate classical p-values for the t-test of no difference between the multipliers, and
”AR p-val.” indicate Anderson-Rubin p-values for the same test. All the results are computed
with RZ’s replication package code.

Table 8: IV Multipliers with a threshold equal to 8 (robustness check in RZ)

State 1, qt ≤ 8: 396 obs. State 2, qt > 8: 104 obs.

h Mult. s.e. AR LB AR UB Mult. s.e. AR CI LB AR CI UB p-val. AR p-val.

0 1.29 0.37 -0.17 2.74 -0.44 1.11 -4.79 3.92 0.10 0.26
1 1.13 0.24 0.20 2.05 -1.05 1.25 -5.94 3.83 0.08 0.30
2 0.92 0.15 0.31 1.52 -0.29 0.41 -1.89 1.31 0.01 0.31
3 0.73 0.12 0.27 1.19 0.16 0.25 -0.82 1.13 0.05 0.36
4 0.66 0.10 0.26 1.07 0.48 0.23 -0.42 1.38 0.47 0.59
5 0.65 0.09 0.28 1.02 0.65 0.21 -0.17 1.47 0.99 0.99
6 0.63 0.09 0.26 1.00 0.76 0.21 -0.06 1.57 0.60 0.58
7 0.60 0.09 0.24 0.97 0.80 0.21 -0.01 1.60 0.40 0.42
8 0.60 0.09 0.24 0.95 0.79 0.18 0.08 1.50 0.35 0.38
9 0.63 0.09 0.28 0.98 0.76 0.15 0.18 1.34 0.45 0.48
10 0.66 0.09 0.30 1.01 0.75 0.13 0.25 1.24 0.58 0.58
11 0.68 0.09 0.31 1.04 0.72 0.11 0.28 1.16 0.77 0.77
12 0.68 0.09 0.31 1.05 0.71 0.11 0.29 1.12 0.85 0.84
13 0.67 0.10 0.29 1.05 0.72 0.10 0.33 1.12 0.72 0.72
14 0.66 0.10 0.26 1.07 0.75 0.10 0.36 1.13 0.55 0.55
15 0.65 0.12 0.20 1.10 0.76 0.10 0.37 1.15 0.45 0.43

See Table 7 notes.
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Table 9: IV Multipliers with our threshold

State 1, qt ≤ 8.3363: 410 obs. State 2, qt > 8.3363: 90 obs.

h Mult. s.e. AR LB AR UB Mult. s.e. AR LB AR UB p-val. AR p-val.

0 1.30 0.38 -0.20 2.80 -0.93 1.36 -6.27 4.41 0.05 0.19
1 1.14 0.25 0.17 2.11 -1.68 1.37 -7.05 3.68 0.03 0.23
2 0.93 0.16 0.28 1.57 -0.55 0.48 -2.42 1.33 0.00 0.25
3 0.74 0.13 0.25 1.23 -0.02 0.20 -0.80 0.76 0.00 0.26
4 0.67 0.11 0.24 1.09 0.32 0.17 -0.36 1.00 0.07 0.31
5 0.65 0.10 0.28 1.03 0.52 0.18 -0.19 1.22 0.45 0.52
6 0.63 0.10 0.26 1.01 0.62 0.19 -0.14 1.38 0.94 0.94
7 0.60 0.09 0.24 0.96 0.66 0.20 -0.13 1.45 0.77 0.78
8 0.60 0.09 0.25 0.94 0.66 0.18 -0.04 1.37 0.71 0.73
9 0.62 0.09 0.29 0.96 0.66 0.15 0.07 1.25 0.84 0.85
10 0.65 0.09 0.31 0.10 0.66 0.13 0.14 1.18 0.96 0.96
11 0.67 0.09 0.32 1.02 0.65 0.12 0.17 1.13 0.87 0.87
12 0.67 0.09 0.32 1.03 0.64 0.12 0.17 1.11 0.85 0.85
13 0.66 0.09 0.30 1.03 0.67 0.11 0.22 1.11 0.98 0.98
14 0.65 0.10 0.27 1.03 0.70 0.11 0.28 1.11 0.75 0.76
15 0.64 0.11 0.22 1.05 0.71 0.10 0.31 1.18 0.58 0.60

See Table 7 notes.

Figure 3: Effective F-Statistic
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The effective F- or KP-statistic is calculated as the Kleibergen and Paap (2006) Wald rank test in Stata, equal to the
(HAC-robust) F-test on the first-stage coefficient on mt in each regime, minus the Montiel-Olea and Pflueger (2013)
critical value 23.11, the 5% critical value that tolerates 10% relative bias of 2SLS compared to OLS. The values are
capped just below 40. The first two plots reproduce Figure 10 in RZ.
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Figure 4: Effective F-Statistic

Figure 5: Data plots with with shaded areas qt > 8.3363
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d) News Variable

We therefore assess the possibility of weak instruments at various horizons in Figures 3 and 4, plotting the

effective F-statistic for the null hypothesis of weak instruments in each regime across horizons. These figures

show evidence of weak instruments in both regimes at short horizons, for all thresholds. This also holds for

the effective F-statistics minus their critical value for our TFS specification with ρ̂ = 4.0636: they are equal

to approximately −19 for qt ≤ 4.0636 (101 observations), and −17.5 for qt > 4.0636 (399 observations), so
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well below zero. Therefore, the weak instrument robust p-values should be used, even for Table 9, at shorter

horizons. Hence, once weak instruments are accounted for, there is no evidence that government spending

multipliers are different in recessions, both in our paper and in RZ.

What we do learn from the analysis is that military spending news becomes a weaker instrument for

longer horizons when the threshold increases from 6.5 to 8.0 or to 8.3363, and therefore that the instrument

relevance is not robust to the threshold used. This is also indicated in Figure 5, which shows that, except for

the World War II period, the news variable does not exhibit much variation when the unemployment rate

is above 8.3363. This suggests that the RZ military news instrument is more informative for intermediate

values of unemployment, so for ”normal” recessions rather than ”deep” recessions.

5 Conclusions

In this paper we proposed two adjustments to the GMM Wald test of Caner and Hansen (2004), and two

new 2SLS test statistics for threshold detection in linear models with endogenous regressors and exogenous

thresholds. We derived the asymptotic validity of their null bootstrap equivalents, and showed through

simulations and an application that these tests have better finite sample properties than the test proposed

in Caner and Hansen (2004).

Rothfelder and Boldea (2016) show in their Theorem 1 that under conditional homoskedasticity and one

endogenous regressor, the 2SLS estimators with a linear first stage or a threshold first stage can be more

efficient than the GMM estimators that ignore this information. It would be interesting to assess when this

efficiency carries over to more general settings, and whether there exists an optimal GMM estimator that

uses similar information from the first stage as the 2SLS estimators.
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A Online Supplement: Proofs

A.1 General Notation and Results

Before proving our results, we introduce some more required notation and provide additional Lemmas with

helpful results.

General notation. Let ‖ · ‖ be the Euclidean norm for vectors, respectively the Frobenius norm for

matrices: ‖P‖ =
√

tr(P>P ). Also, for a (matrix valued) random variable P , let ‖P‖α = (E‖P‖α)1/α, for

any α > 0. Let Im the m×m-identity matrix, 0a×b a a× b vector of zeros (we use this notation only when

the dimension is not obvious from the derivations, else we use 0), and let K denote a generic constant.

Let Pt be a matrix of random variables. We define P1γ = E[Pt1[qt ≤ γ]], P = limγ→∞ P1γ = E[Pt],

and P2γ = P − P1γ . For example, since M1γ = E[ztz
>
t 1[qt ≤ γ]], we have M = E[ztz

>
t ] and M2γ =

E[ztz
′
t1[qt > γ]]. Let their sample equivalents (replacing expectations by averages and unobserved quantities

with estimates) be denoted by hats, for example, for M1γ , its sample equivalent is M̂1γ = T−1
∑

1γ ztz
>
t , for

M it is M̂ = T−1
∑T
t=1 ztz

>
t , for Hε,1γ = E[ztz

>
t ε

2
t1[qt ≤ γ]], it is Ĥε,1γ = T−1

∑
1γ ztz

>
t ε̂

2
t , where ε̂t is an

estimate of the residual εt, and so on. When the notation P̂iγ does not conform with this definition, it is

specifically indicated in the text.

Throughout the text, quantities of the form vtv
>
t ⊗ ztz

>
t should be read as (vtv

>
t ) ⊗ (ztz

>
t ). Let

G1γ = (G>ε,1γ
1×q

,G>u,1γ
1×qp1

)> be a q(p1 + 1) vector of zero mean Gaussian processes with covariance matrix

H1γ = E[(vtv
>
t ⊗ztz>t )1[qt ≤ γ]] =

 E[ε2t ztz
>
t 1[qt ≤ γ]] E[εtu

>
t ⊗ ztz>t 1[qt ≤ γ]]

E[εtut ⊗ ztz>t 1[qt ≤ γ]] E[utu
>
t ⊗ ztz>t 1[qt ≤ γ]]

 =

Hε,1γ H>εu,1γ

Hεu,1γ Hu,1γ


and covariance function E[G1γ1G>1γ2 ] = E[(vtv

>
t ⊗ ztz

>
t )1[qt ≤ (γ1 ∧ γ2)]. Hence, Gε,1γ , respectively Gu,1γ

corresponds to the parts of G1γ induced by εt, respectively ut. Moreover, G = limγ→∞ G1γ and G2γ = G−G1γ .

Let σ2 = E[(εt + u>t θ
0
x)2], θ̃0 = vec(1, θ0

x) and θ̌0 = vec(0, θ0
x). Define ε̃t = εt + (xt − x̂t)>θ0

x, where x̂t is

obtained either with a LFS (linear first stage) or a TFS (threshold first stage) specification, depending on

the context. Define Ĉiγ = T−1
∑
iγ ŵtŵ

>
t , and Ĉ = Ĉ1γ + Ĉ2γ , both for a LFS and a TFS.

Let A0 = [Π0, S>]> be the augmented matrix of the LFS slope parameters, where S = [Ip2 , 0p2×(q−p2)].

Hence, z1t = Szt and wt = A0zt+(u>t , 01×q1)> = A0zt+ūt. Similarly, let A0
1 = [Π0

1, S
>]> and A0

2 = [Π0
2, S
>]>

be the augmented matrix of TFS parameters such that wt = (A0
11[qt ≤ ρ0] +A0

21[qt > ρ0])zt + ūt.

All convergence results, if not stated otherwise, are uniformly in γ ∈ Γ, and all op(1) terms are uniform in

γ. “⇒” stands for weak convergence in Skorokhod metric, “
db
p⇒ ” for weak convergence in Skorokhod metric

under the bootstrap measure, and “
pb

−→ ” for weak convergence in probability under the bootstrap measure.

Lemma A.1. [ULLN] If (i) {at} and {qt} are scalar strictly stationary and ρ-mixing series, with mixing coef-

ficient ρ(m) = O(m−A) for some A > a
a−1 and 1 < a ≤ r;(ii) ‖at‖r <∞ for some r > 1; (iii) qt has a contin-
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uous distribution, with pdf f(·) bounded: supx∈Γ |f(x)| <∞, then supγ∈Γ

∣∣∣T−1
∑

1γ at − E[at1[qt ≤ γ]]
∣∣∣ p−→ 0.

Proof of Lemma A.1. This uniform law of large numbers (ULLN) can be proven using the same steps

as the proof of Lemma 1 in Hansen (1996), with a slight modification as we do not assume that at has

a continuous and bounded pdf. First, note that ρ-mixing implies ergodicity. Second, set in the proof of

their Lemma 1 wt = (at, qt), φ(wt) = at, and {wt ≤ γ} = 1[qt ≤ γ]. Follow the steps in Hansen (1996),

until their equation (15). Then note that ||at||r = K < ∞ by Assumption 1(c), and for some ε > 0, set

Kε = (2K/ε)r/(r−1). Since qt is assumed to have a continuous and bounded pdf, there exists an ε such that∫ γk+1

γk
f(x)dx ≤ 1/Kε = (ε/(2K))r/(1−r). Therefore, replace equation (15) by the inequality below (derived

using Hölder’s inequality with p = r and q = r/(r − 1)):

E[|at|1[γk < qt ≤ γk+1]] ≤ ‖at‖r‖1[γk < qt ≤ γk+1]]‖r/(r−1)

=K

(∫ γk+1

γk

f(x)dx

)(r−1)/r

≤ K(ε/(2K)) = ε/2.

The rest of the proof is as in Hansen (1996), where only the last equation in their proof should be replaced

by:

E|fuε,k(wt)− f lε,k(wt)| ≤ 2E[|at|1[γk < qt ≤ γk+1]] ≤ ε.

�

Lemma A.2. [FCLT] If the assumptions in Lemma A.1 hold but with at being a vector of m.d.s, and

additionally (i) ‖at‖2r < ∞ for some r > 1; (ii) E[ata
′
t1[qt ≤ γ]] = Fγ , a p.d. matrix of constants, (iii)

infγ∈Γ detFγ > 0, then: T−1/2
∑

1γ at ⇒ J1γ , a vector of Gaussian processes with covariance function

E[ata
>
t 1[qt ≤ (γ1 ∧ γ2)]].

Proof of Lemma A.2. This functional central limit theorem (FCLT) follows directly from Theorem 3 and

then Theorem 1 in Hansen (1996). Note that only ‖at‖2r <∞ is needed, as evident from replacing xtεt with

at in the first two equations of the proof of Theorem 3 in Hansen (1996). �

Note that, Lemmas A.1 and A.2 imply that supγ∈Γ |T−1
∑

2γ at−E[at1[qt > γ]]| p−→ 0, and T−1/2
∑

2γ at ⇒

J2γ since
∑

2γ(·) =
∑T
t=1(·)−∑1γ(·) by definition.

Lemma A.3. Suppose Assumption 1 holds. Then: (i) T−1
∑

1γ ztz
>
t

p−→M1γ and T−1
∑

2γ ztz
>
t

p−→M2γ , and

(ii) T−1/2
∑
iγ vt ⊗ zt ⇒ Giγ .

If, additionally, Assumption 2 holds, then, under the bootstrap measure: (iii) T−1
∑
iγ ztz

>
t ηt = obp(1) and

(iv) T−1/2
∑
iγ vtηt ⊗ zt

db
p⇒Giγ .

Proof of Lemma A.3. Part (i) follows from Assumptions 1 (b), (c) and (e), ensuring that the assumptions

of Lemma A.1 are satisfied for elements of ztz
>
t . Hence, T−1

∑
iγ ztz

>
t

p−→Miγ .
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Part (ii) follows from Assumptions 1 (a)–(f), ensuring that the conditions of Lemma A.2 are satisfied

since ‖vt ⊗ zt‖2r ≤ ‖vt‖4r‖zt‖4r <∞. So, T−1/2
∑

1γ vt ⊗ zt⇒G1γ .

We will show Parts (iii) and (iv) only for i = 1; for i = 2, the proofs follow the same arguments

by noting that, for example,
∑

2γ ztz
>
t ηt =

∑T
t=1 ztz

>
t ηt −

∑
1γ ztz

>
t ηt. To prove Part (iii), note that

Eb[T−1
∑

1γ ztz
>
t ηt] = 0. Hence, Chebyshev’s and Minkowski’s inequalities imply P b(‖T−1

∑
1γ ztz

>
t ηt‖ >

K) ≤ K−2T−1(T−1
∑

1γ ‖zt‖4 + (Eb|ηt|)2T−1
∑

1γ,t6=s ‖zt‖2‖zs‖2) = K−2T−1(Op(1) + O(1)Op(1)) = op(1),

where the second to last equality follows from Assumptions 1 (b), (c), (e), 2 (a) and Lemma A.1. So,

T−1
∑

1γ ztz
>
t ηt = obp(1).

Finally, to prove Part (iv) for i = 1, we apply Lemma A.2 and verify that V arb(T−1/2
∑

1γ vtηt ⊗

zt)
p−→H1γ . First, Eb(vtηt ⊗ zt) = 0. Conditions (ii) and (iii) in Lemma A.2 are satisfied by Assump-

tion 1 (b), (c), (e) and Assumption 2 (a). Condition (i) is satisfied because (Eb‖vtηt ⊗ zt‖r)1/(r) =

(Eb|ηt|r)1/(r)‖vt‖‖zt|| = Op(1) by Assumptions 1 (c) and 2. Finally, V arb(T−1/2
∑

1γ vtηt⊗zt) = T−1
∑

1γ vtv
>
t ⊗

ztz
>
t

p−→H1γ , where the last statement follows by applying Lemma A.1. So, by Lemma A.2, T−1/2
∑

1γ vtηt ⊗

zt
db
p⇒G1γ . �

A.2 Proofs of GMM Results

A.2.1 Asymptotic Distribution of GMM

In order to simplify exposition for these proofs, define the quantity

Ã =


A0 if LFS

A0
11[qt ≤ ρ0] +A0

21[qt > ρ0] if TFS

.

Hence, wt = Ãzt + ūt.

Proof of Theorem 1. First, we show that N̂iγ
p−→ Niγ . Note, N̂iγ = T−1

∑
iγ wtz

>
t = Ã

(
T−1

∑
iγ ztz

>
t

)
+

T−1
∑
iγ ūtz

>
t = ÃMiγ +op(1) = Niγ , where the second to last equality follows from Lemma A.3 (i)–(ii) and

the last equality from Assumption 1 (a) implying that N1γ = E[wtz
>
t 1{qt ≤ γ}] = E[(A0zt + ūt)z

>
t 1{qt ≤

γ}] = A0E[ztz
>
t 1{qt ≤ γ}] = A0M1γ and, similarly, N2γ = A0M2γ in case of a LFS. In case of a TFS, some

more algebra provides the appropriate result.

Next, we show that Ĥε,iγ
p−→ Hε,iγ . Note that Ĥε,iγ = T−1

∑
iγ ztz

>
t ε̂

2
t where ε̂t = yt − w>t θ̂(1). Hence,

Ĥε,iγ = T−1
∑
iγ ztz

>
t ε

2
t−2[T−1

∑
iγ ztz

>
t ⊗εtw>t ][Iq⊗(θ̂(1)−θ0)]+[Iq⊗(θ̂(1)−θ0)>][T−1

∑
iγ ztz

>
t ⊗wtw>t ][Iq⊗

(θ̂(1) − θ0)]. By Assumptions 4.1 (b), (c), (e) and Lemma A.1 it holds that T−1
∑
iγ ztz

>
t ε

2
t = Hε,iγ + op(1).

Moreover, for any r > 1, ‖ztz>t ⊗wtw>t ‖r ≤ ‖Iq⊗ Ã‖2 · ‖ztz>t ⊗ztz>t ‖r +2‖Iq⊗ Ã‖ · ‖ztz>t ⊗ztū>t ‖r +‖ztz>t ⊗

ūtū
>
t ‖r by Minkowski’s inequality and sub-multiplicativity of the Frobenius norm. Using Hölder’s inequality

and Assumption 4.1 (c) it follows that ‖ztz>t ⊗ztz>t ‖r ≤ ‖zt‖44r <∞, ‖ztz>t ⊗ztū>t ‖r ≤ ‖zt‖34r‖ūt‖4r <∞ and

‖ztz>t ⊗ūtū>t ‖r ≤ ‖zt‖24r‖ūt‖24r <∞. Additionally, ‖Iq⊗Ã‖ = O(1). Hence, T−1
∑
iγ ztz

>
t ⊗wtw>t = Op(1) by

Lemma A.2. By standard arguments for GMM estimators of linear models θ̂(1)−θ0 = Op(T
−1/2). Therefore,
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[Iq ⊗ (θ̂(1) − θ)>][T−1
∑
iγ ztz

>
t ⊗ wtw>t ][Iq ⊗ (θ̂(1) − θ0)] = Op(T

−1/2)Op(1)Op(T
−1/2) = op(1). Similarly,

[T−1
∑
iγ ztz

>
t ⊗ εtw>t ][Iq ⊗ (θ̂(1) − θ0)] = op(1). Hence, Ĥε,iγ = Hε,iγ + op(1).

Last, we show that T 1/2(θ̂iγ − θ0) ⇒ (NiγH
−1
ε,iγN

>
iγ)−1NiγH

−1
ε,iγGε,iγ . Since θ̂iγ = θ0 + (N̂iγĤ

−1
ε,iγN̂

>
iγ)−1

(N̂iγĤ
−1
ε,iγ [T−1

∑
iγ ztεt]), T

−1/2
∑
iγ ztεt ⇒ Gε,iγ by Lemma A.3 (ii), parts (i) and (ii) above, the continuous

mapping theorem and Slutksy’s theorem it follows that T 1/2(θ̂iγ − θ0)⇒ (NiγH
−1
ε,iγN

>
iγ)−1NiγH

−1
ε,iγGε,iγ .

Using parts (i)–(iii) and continuous mapping theorem and Slutsky’s theorem concludes the proof. �

A.2.2 Bootstrap Validity for GMM Tests

Lemma A.4. Suppose Assumptions 1 and 2 hold. Then, under H0 and for i = 1, 2, (i) T−1/2
∑
iγ zty

b
t

dbp
==⇒

Gε,iγ , (ii) T 1/2θ̂b(1) = Obp(1), and (iii) Ĥb
ε,iγ

pb−→ Hε,iγ

Proof of Lemma A.4. Part (i). Note T−1/2
∑
iγ zty

b
t = T−1/2

∑
iγ ztηtεt−

(
T−1

∑
iγ ztw

>
t ηt

)(
T 1/2[θ̂(2)−

θ0]
)

. From Lemma A.3 (iii), respectively standard arguments for GMM estimators for linear models it

follows that T−1/2
∑
iγ ztηtεt

dbp
==⇒ Gε,iγ , respectively T 1/2[θ̂(2) − θ0] = Op(1). Moreover, T−1

∑
iγ ztw

>
t ηt =(

T−1
∑
iγ ztz

>
t ηt

)
Ã> + T−1

∑
iγ ztū

>
t ηt = obp(1)O(1) + obp(1) = obp(1) by Lemma A.3 (iii)–(iv) and since

Ã = O(1). Thus, T−1/2
∑T
iγ zty

b
t

dbp
==⇒ Gε,iγ under the null hypothesis.

Part (ii). Recall that θ̂(1) = (N̂M̂−1N̂>)−1(N̂M̂−1
∑T
t=1 zty

b
t ) where M̂

p−→ M by Lemma A.3, N̂
p−→ N

as shown in the proof of Theorem 1 and T−1/2
∑T
t=1 zty

b
t

dbp
==⇒ Gε by part (i). Hence, T 1/2θ̂b(1) = Obp(1).

Part (iii). Note that ε̂bt = εtηt − w>t (θ̂(2) − θ0)ηt − w>t θ̂b(1). Hence,

Ĥb
ε,iγ = T−1

∑
iγ

ztz
>
t

(
ε2tη

2
t + w>t (θ̂(2) − θ0)(θ̂(2) − θ0)>wtη

2
t + w>t θ̂

b
(1)θ̂

b>
(1)wt

−2εtη
2
tw
>
t (θ̂(2) − θ0)− 2εtηtw

>
t θ̂

b
(1) + 2ηtw

>
t (θ̂(2) − θ0)θ̂b>(1)wt

)
= I + II + III − 2IV − 2V + 2V I. (A.12)

We proceed by first showing that II, ..., V I = obp(1) and then that I = Hε,iγ + obp(1).

Note that II =
(
Iq⊗(θ̂(2)−θ0)>

)[
T−1

∑
iγ ztz

>
t ⊗wtw>t η2

t

](
Iq⊗(θ̂(2)−θ0)

)
. Using Markov’s inequality,

the term in brackets satisfies P b(‖T−1
∑
iγ ztz

>
t ⊗ wtw>t η2

t ‖ ≥ K) ≤ K−1T−1
∑T
iγ ‖ztz>t ⊗ wtw>t ‖ = Op(1)

where the last equality was shown in the proof of Theorem 1. Hence, T−α[T−1
∑T
iγ ztz

>
t ⊗wtw>t η2

t ] = obp(1)

for any α > 0. By standard arguments for GMM-estimators in linear models, θ̂(2) − θ0 = Op(T
−1/2) under

Assumption 4.1. Hence, II = Op(T
−1/2)obp(T

α)Op(T
−1/2) = Tα−1Op(1)obp(1)Op(1) = obp(1) for 0 < α ≤ 1.

Moreover, III =
(
Iq⊗ θ̂b>(1)

)[
T−1

∑
iγ ztz

>
t ⊗wtw>t

](
Iq⊗ θ̂b(1)

)
. By part (ii), T 1/2θ̂b(1) = Obp(1). As shown

above, T−1
∑
iγ ztz

>
t ⊗ wtw>t = Op(1). Hence, III = Obp(T

−1/2)Op(1)Obp(T
−1/2) = obp(1).

By the same arguments as for terms II and III above, IV = Op(T
−1/2)obp(T

α) = obp(1) and V =

Obp(T
−1/2)obp(T

α) = obp(1) for any 0 < α ≤ 1
2 , respectively V I = Op(T

−1/2)obp(T
α)Obp(T

−1/2) = obp(1) for any

0 < α ≤ 1. Hence, Ĥb
ε,iγ = T−1

∑
iγ ztz

>
t ε

2
tη

2
t + obp(1), for any 0 < α ≤ 1

2 .

Thus, it is left to show that T−1
∑
iγ ztz

>
t ε

2
tη

2
t −T−1

∑
iγ ztz

>
t ε

2
t = obp(1) since T−1

∑
iγ ztz

>
t ε

2
t = Hε,iγ +
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op(1) by Assumptions 4.1 (b), (c), (e) and Lemma A.1. Since Eb[T−1
∑
iγ ztz

>
t ε

2
tη

2
t ] = T−1

∑
iγ ztz

>
t ε

2
t , we

verify the claim by Chebychev’s inequality: P b(‖T−1
∑
iγ ztz

>
t ε

2
t (η

2
t−1)‖ > K) ≤ K−2Eb‖T−1

∑
iγ ztz

>
t ε

2
t (η

2
t−

1)‖2 ≤ K−2T−1[T−1
∑
iγ,t 6=s ‖ztz>t ε2t zsz>s ε2s‖Eb|(η2

t − 1)(η2
s − 1)|]. By Assumption 2 and applying Hölder’s

inequality with p = q = 2r iteratively, Eb|(η2
t − 1)(η2

s − 1)| < ∞ and ‖ztz>t zsz>s ε2t ε2s‖r ≤ ‖zt‖48r‖εt‖48r < ∞

for some r > 1. Hence, P b(‖T−1
∑
iγ ztz

>
t ε

2
t (η

2
t − 1)‖ > K) ≤ T−1Op(1) = op(1) by Lemma A.1, concluding

the proof. �

Proof of Theorem 2. First, by Lemma A.4 (iii), the first result in the proof of Theorem 1, Slutky’s theorem

and the continuous mapping theorem it follows that N̂iγĤ
b−1

ε,iγ N̂
>
iγ

pb−→ NiγH
−1
ε,iγN

>
iγ ≡ Viγ for i = 1, 2. Next,

recall that θ̂biγ,(2) = (N̂iγĤ
b−1

ε,iγ N̂
>
iγ)−1(N̂iγĤ

b−1

ε,iγT
−1
∑
iγ zty

b
t ) for i = 1, 2. Hence, T 1/2(θ̂b1γ,(2) − θ̂b2γ,(2))

dbp
==⇒

V −1
1γ N1γHε,1γGε,1γ − V −1

2γ N2γHε,2γGε,2γ , by Lemma A.4, Slutsky’s theorem and the continuous mapping

theorem. Putting these results together yields the claim. �

A.3 Proofs of 2SLS Results with a LFS

A.3.1 Asymptotic Distribution of 2SLS Test Statistics with a LFS

Definition 1. Let Ciγ = A0MiγA
0>, Riγ = MiγM

−1, Cγ = [C−1
1γ ,−C−1

2γ ], and Qγ = C1γC
−1C2γ . Also,

define the Gaussian processes Biγ = A0[(θ̃0> ⊗ Iq)Giγ − Riγ(θ̌0> ⊗ Iq)G] for i = 1, 2, and B = B1γ + B2γ ,

as well as the processes Bγ = vec(B1γ ,B2γ) and Eγ = CγBγ . Let VBiγ = A0DiγHiγD
>
iγA

0 for i = 1, 2,

and VB = A0DHD>A0 and VB,12,γ = A0D1γH1γD
>A0>, VB,2γ denote the covariances of Biγ , B, and the

covariance between B1γ and B2γ . Then, VBγ =

(
VB1γ VB12γ

V >B12γ VB2γ

)
, and Vγ = CγVBγC

>
γ , respectively. Define

D̄iγ = [θ̃>⊗Iq]−[θ̌>⊗R̂iγ ], where θ̃ = [1, θ̂x] and θ̌ = [0, θ̂x]. Then V̂γ is defined as Vγ , but replacing Ciγ with

Ĉiγ , A0 with Â, Diγ by D̄iγ , and H1γ by Ĥ1γ = T−1
∑
γ v̂tv̂

>
t ⊗ ztz>t , and H by Ĥ = T−1

∑T
t=1 v̂tv̂

>
t ⊗ ztz>t .

Lemma A.5. Suppose Assumption 1 holds, yt is generated by (1) and xt is generated by the LFS (2). Then,

under H0 and for i = 1, 2, (i) T−1
∑
iγ ŵtŵ

>
t

p−→Ciγ ; (ii) T−1/2
∑
iγ ŵtε̃t ⇒ Biγ , and

T−1/2 vec(
∑

1γ ŵtε̃t,
∑

2γ ŵtε̃t)⇒ Bγ .

Proof of Lemma A.5. Part (i). T−1
∑
iγ ŵtŵ

>
t = T−1

∑
iγ Âztz

>
t Â
>. By Assumption 1 and standard

arguments, we have that Â = A0 + op(1), so T−1
∑
iγ ŵtŵ

>
t = (A0 + op(1))T−1

∑
iγ ztz

>
t (A0 + op(1))>. By

Lemma A.3, T−1
∑
iγ ztz

>
t

p−→Miγ , for i = 1, 2. Hence, T−1
∑
iγ ŵtŵ

>
t

p−→A0MiγA
0> = Ciγ .

Part (ii). Note,

T−1/2
∑
iγ

ŵtε̃t = Â
(
T−1/2

∑
iγ

zt(εt + u>t θ
0
x)− R̂iγT−1/2

T∑
t=1

ztu
>
t θ

0
x

)
= Â

(
[θ̃0> ⊗ Iq]T−1/2

∑
iγ

vt ⊗ zt − R̂iγ [θ̌0> ⊗ Iq]T−1/2
T∑
t=1

vt ⊗ zt
)
.

By Lemma A.3, R̂iγ
p−→Riγ , T−1/2

∑
iγ vt⊗zt⇒Giγ and T−1/2

∑T
t=1 vt⊗zt⇒G. Hence, T−1/2

∑
iγ ŵtε̃t⇒Biγ
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and T−1/2 vec(
∑

1γ ŵtε̃t,
∑

2γ ŵtε̃t)⇒ Bγ . �

Theorem A.1 (Asymptotic Distribution LFS). Let yt be generated by (1) and xt be generated by the LFS

(2). Then, under H0 and Assumption 1,

(i) T 1/2(θ̂1γ − θ̂2γ)⇒Eγ ,

(ii) supγ∈Γ LRT (γ)⇒ supγ∈Γ[E>γ Qγ Eγ/σ2],

(iii) supγ∈ΓWT (γ)⇒ supγ∈Γ E>γ V −1
γ Eγ , where Vγ was defined in Definition 1.

Proof of Theorem A.1. Part (i). T 1/2(θ̂iγ − θ0) = Ĉ−1
iγ (T−1/2

∑
iγ ŵtε̃t)⇒C−1

iγ Biγ by Lemma A.5. So,

T 1/2(θ̂1γ − θ̂2γ)⇒[C−1
1γ ,−C−1

2γ ] vec(B1γ ,B2γ) = Cγ Bγ = Eγ .

Part (ii). Since θ̂ = Ĉ−1(T−1
∑T
t=1 ŵtyt) = Ĉ−1(

∑2
i=1 T

−1
∑
iγ ŵtyt) and θ̂iγ = Ĉ−1

iγ (T−1
∑
iγ ŵtyy), it

follows that θ̂ =
∑2
i=1 Ĉ

−1Ĉiγ θ̂iγ . So θ̂ =
∑2
i=1 C

−1Ciγ θ̂iγ + op(1), and therefore θ̂1γ − θ̂ = C−1C2γ(θ̂1γ −

θ̂2γ) + op(1) and θ̂2γ − θ̂ = C−1C1γ(θ̂2γ − θ̂1γ) + op(1) . Hence,

SSR0 − SSR1(γ) =

2∑
i=1

∑
iγ

(yt − ŵ>t θ̂)2 − (yt − ŵ>t θ̂iγ)2


=

2∑
i=1

(θ̂iγ − θ̂)>
2
∑
iγ

ŵtε̃t −
∑
iγ

ŵtŵ
>
t (θ̂ − θ0)−

∑
iγ

ŵtŵ
>
t (θ̂iγ − θ0)


=

2∑
i=1

T 1/2(θ̂iγ − θ̂)>
T−1

∑
iγ

ŵtŵ
>
t

T 1/2(θ̂iγ − θ̂)

= T 1/2(θ̂1γ − θ̂2γ)[C2γC
−1C1γC

−1C2γ + C1γC
−1C2γC

−1C1γ ]T 1/2(θ̂1γ − θ̂2γ) + op(1)

= T 1/2(θ̂1γ − θ̂2γ)>Qγ T
1/2(θ̂1γ − θ̂2γ) + op(1),

where the last line follows because C =
∑2
i=1 Ciγ , therefore C−1C1γ = Ip − C−1C2γ , C1γC

−1C2γ = (C −

C2γ)C−1(C−C1γ) = C−C1γ−C2γ+C2γC
−1C1γ = C2γC

−1C1γ , so C2γC
−1C1γC

−1C2γ+C1γC
−1C2γC

−1C1γ =

C2γC
−1C1γC

−1C2γ + C1γC
−1C2γ(Ip − C−1C2γ) = Qγ + (C2γC

−1C1γ − C1γC
−1C2γ)C−1C2γ = Qγ . Since

T−1/2(θ̂1γ − θ̂2γ)⇒Eγ , SSR0 − SSR1(γ)⇒E>γ Qγ Eγ .

Next, SSR1(γ)/(T − 2p) = σ2 + op(1), since, as shown below, T−1SSR1(γ)
p−→σ2:

T−1SSR1(γ) =

2∑
i=1

T−1
∑
iγ

(yt − ŵ>t θ̂iγ)2

=

2∑
i=1

T−1
∑
iγ

(ε̃t − ŵ>t (θ̂iγ − θ0))2

= T−1
T∑
t=1

ε̃2t − 2

2∑
i=1

T−1
∑
iγ

ε̃tŵ
>
t (θ̂iγ − θ0) +

2∑
i=1

(θ̂iγ − θ0)>(T−1
∑
iγ

ŵtŵ
>
t )(θ̂iγ − θ0).

By Lemma A.5, T−1
∑
iγ ŵtŵ

>
t

p−→Ciγ , and T−1
∑
iγ ε̃tŵ

>
t = op(1) and, as shown in Part (ii) above, θ̂iγ−θ0 =
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op(1). Hence:

T−1SSR1(γ) = T−1
T∑
t=1

(εt + u>t θ
0
x − z>t (Π̂−Π0)θ0

x)2 + op(1)

= T−1
T∑
t=1

(εt + u>t θ
0
x)2 + θ0>

x (Π̂−Π0)T−1
T∑
t=1

ztz
>
t (Π̂−Π0)θ0

x

−2T−1
T∑
t=1

zt(εt + u>t θ
0
x)(Π̂−Π0)θ0

x + op(1)

= T−1
T∑
t=1

(εt + u>t θ
0
x)2 + op(1), (A.13)

where the last equality used Lemma A.3 (ii) and the fact that Π̂ − Π0 = op(1). We now apply Lemma A.1

to (εt +u>t θ
0
x)2. First, E[(εt +u>t θ

0
x)2] = σ2. Second, by Assumption 1 (b), (εt +u>t θ

0
x)2 is strictly stationary

with ρ-mixing coefficients satisfying condition (i) in Lemma A.1. Third, by Minkowski’s inequality, ‖(εt +

u>t θ
0
x)2‖2 ≤ ‖ε2t‖2 +‖(θ0>

x ut)
2‖2 +2‖εtu>t θ0

x‖2. Note that ‖ε2t‖2 = ‖εt‖24 < K, ‖(θ0>
x ut)

2‖2 ≤ ‖θ0
z‖2‖ut‖24 < K

and ‖εtu>t θ0
x‖2 ≤ ‖θ0

x‖‖εt‖4‖ut‖44 < K by Assumption 1 (c). Therefore, by Lemma A.1, T−1
∑T
t=1(εt +

u>t θ
0
x)2 p−→σ2, completing the proof of Part (ii).

Part (iii). We are left to show V̂γ
p−→Vγ . Since Ĉiγ

p−→Ciγ , Â
p−→A0, θ̂x

p−→ θ0
x, to show that V̂γ

p−→Vγ , it

suffices to show that Ĥiγ = T−1
∑
iγ v̂tv̂

>
t ⊗ ztz

>
t

p−→Hiγ for i = 1, 2. We proceed to show that Ĥε,iγ =

T−1
∑
iγ ztz

>
t ε̂

2
t

p−→Hε,iγ :

Ĥε,iγ = T−1
∑
1γ

ztz
>
t ε̂

2
t = T−1

∑
1γ

ztz
>
t [εt + w>t (θ0 − θ̂)]2 (A.14)

= T−1
∑
1γ

ztz
>
t ε

2
t + T−1

∑
1γ

ztz
>
t [(θ0 − θ̂)>wtw>t (θ0 − θ̂)]

+ 2T−1
∑
1γ

ztz
>
t [(θ0 − θ̂)>wtεt]. (A.15)

First, by Assumption 1 (b), (c) and (e), and Lemma A.1, T−1
∑
iγ ztz

>
t ε

2
t

p−→Hε,iγ . Second, T−1
∑
iγ ztz

>
t [(θ0−

θ̂)>wtw
>
t (θ0− θ̂)] = [Iq⊗(θ0− θ̂)]>[T−1

∑
iγ ztz

>
t ⊗wtw>t ][Iq⊗(θ0− θ̂)]. Note that θ0− θ̂ = Op(T

−1/2). More-

over, the asymptotic behavior of the terms II and III in (A.12), implies that T−1
∑
iγ ztz

>
t ⊗wtw>t = Op(1).

Hence, T−1
∑
iγ ztz

>
t [(θ0− θ̂)>wtw>t (θ0− θ̂)] = op(1). Similarly, T−1

∑
iγ ztz

>
t (θ0− θ̂)>wtεt = op(1). There-

fore, Ĥε,iγ
p−→Hε,1γ .

By similar arguments, Ĥu,iγ
p−→Hu,iγ and Ĥεu,iγ

p−→Hεu,iγ , completing the proof of Part (iii). �

A.3.2 Bootstrap Validity for 2SLS Test Statistics with LFS

Lemma A.6. Let Assumptions 1-2 hold, yt be generated by (1), and xt be generated by (2). Then, un-

der H0 and for i = 1, 2, (i) T−1/2
∑
iγ v

b
t ⊗ zt

db
p⇒Giγ ; (ii) T 1/2(Π̂b − Π̂) = T 1/2(Π̂ − Π0) + obp(1); (iii)

T−1
∑
iγ ŵ

b
t ŵ

b>
t

pb

−→Ciγ ; (iv) T−1/2
∑
iγ ŵ

b
t ε̃
b
t

db
p⇒Biγ and vec(T−1/2

∑
1γ ŵ

b
t ε̃
b
t , T
−1/2

∑
2γ ŵ

b
t ε̃
b
t)

db
p⇒Bγ , where

ε̃bt = ybt − ŵb>t θ̂.
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Proof of Lemma A.6. Part (i). Since ût = xt − x̂t = ut − (Π̂−Π0)>zt,

T−1/2
∑
iγ

ubt ⊗ zt = T−1/2
∑
iγ

ûtηt ⊗ zt

= T−1/2
∑
iγ

utηt ⊗ zt − (T 1/2(Π̂−Π0)> ⊗ Iq)
(
T−1

∑
iγ

ztηt ⊗ zt
)

= T−1/2
∑
iγ

utηt ⊗ zt +Op(1)× vec(T−1
∑
iγ

ztz
>
t ηt)

= T−1/2
∑
iγ

utηt ⊗ zt + obp(1).

where the last equality follows from Lemma A.3 (iii). Similarly, T−1/2
∑
iγ ε

b
tzt = T−1/2

∑
iγ εtηtzt + obp(1),

therefore T−1/2
∑
iγ v

b
t ⊗ zt

db
p⇒Giγ by Lemma A.3 (iv).

Part (ii). Since vec(ztu
b>
t ) = ubt ⊗ zt, from Part (i), and Lemma A.3 (ii) and (iv), T 1/2(Π̂b − Π̂) =

M̂−1(T−1/2
∑T
t=1 ztu

b>
t ) = M̂−1(T−1/2

∑T
t=1 ztu

>
t + obp(1)) = T 1/2(Π̂−Π0) + obp(1).

Part (iii). T−1
∑
iγ ŵ

b
t ŵ

b
t = Âb(T−1

∑
iγ ztz

>
t )Âb>, where Âb = [Π̂b, S>]>. By Part (ii), T 1/2(Π̂b−Π0) =

Obp(1), so Π̂b pb

−→Π0, therefore Âb
pb

−→A0, and T−1
∑
iγ ŵ

b
t ŵ

b>
t

pb

−→Ciγ .

Part (iv). By Parts (i) and (ii) and Lemma A.5 (i)-(ii), and recalling that [θ̃>⊗ Iq]− [θ̌>⊗ R̂iγ ]
p−→[θ̃0>⊗

Iq]− [θ̌0> ⊗Riγ ], we have:

T−1/2
∑
iγ

ŵbt ε̃
b
t = Âb

T−1/2
∑
iγ

zt(ε
b
t + (wbt − ŵbt )>θ̂)


= Âb

T−1/2
∑
iγ

zt(ε
b
t + ub>t θ̂x)− [T−1

∑
iγ

ztz
>
t ]T 1/2(Π̂b − Π̂)θ̂x


= Âb

T−1/2
∑
iγ

zt(ε
b
t + ub>t θ̂x)− M̂iγM̂

−1T−1/2
T∑
t=1

ztu
>
t θ̂x

+ obp(1)

= A0
(

[θ̃> ⊗ Iq]T−1/2
∑
iγ

vbt ⊗ zt − R̂iγ [θ̌> ⊗ Iq]
(
T−1/2

T∑
t=1

vbt ⊗ zt
))

+ obp(1)

= A0
(

[θ̃0> ⊗ Iq]T−1/2
∑
iγ

vbt ⊗ zt −Riγ [θ̌0> ⊗ Iq]
(
T−1/2

T∑
t=1

vbt ⊗ zt
))

+ obp(1)

db
p⇒B1γ .

Hence, also vec(T−1/2
∑

1γ ŵ
b
t ε̃
b
t , T
−1/2

∑
2γ ŵ

b
t ε̃
b
t)

db
p⇒Bγ . �

Proof of Theorem 3. Part (i). We have

SSRb0 − SSRb1(γ) =

2∑
i=1

∑
iγ

(ybt − ŵb>t θ̂b)2 − (ybt − ŵb>t θ̂biγ)2


=

2∑
i=1

(θ̂biγ − θ̂b)>
2
∑

iγ
ŵbt ε̃

b
t −

∑
iγ

ŵbt ŵ
b>
t (θ̂b − θ̂)−

∑
iγ

ŵbt ŵ
b>
t (θ̂biγ − θ̂)


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=

2∑
i=1

T 1/2(θ̂biγ − θ̂b)>
T−1

∑
iγ

ŵbt ŵ
b>
t

T 1/2(θ̂biγ − θ̂b)

=

2∑
i=1

T 1/2(θ̂biγ − θ̂b)>CiγT 1/2(θ̂biγ − θ̂b) + obp(1)

= T 1/2(θ̂b1γ − θ̂b2γ)>QγT
1/2(θ̂b1γ − θ̂b2γ) + obp(1), (A.16)

where the second to last line follows by Lemma A.6 (iii). By Lemma A.6 (iii) and (iv),

T 1/2(θ̂b1γ − θ̂b2γ) = T 1/2(θ̂b1γ − θ̂)− T 1/2(θ̂b2γ − θ̂)

= (T−1
∑
1γ

ŵbt ŵ
b>
t )−1T−1/2

∑
1γ

ŵbt ε̃
b>
t − (T−1

∑
2γ

ŵbt ŵ
b>
t )−1T−1/2

∑
2γ

ŵbt ε̃
b>
t

db
p⇒ C−1

1γ B1γ − C−1
2γ B2γ = Eγ . (A.17)

Using (A.17) in (A.16), we have: SSRb0 − SSRb1(γ)
db
p⇒E>γ QγEγ .

It remains to show that SSRb1(γ)/(T − 2p)
pb

−→σ2, or, equivalently, that T−1SSRb1(γ)
pb

−→σ2:

T−1SSRb1(γ) =

2∑
i=1

T−1
∑
iγ

(ybt − ŵb>t θ̂biγ)2

=

2∑
i=1

T−1
∑
iγ

(ε̃bt − ŵb>t (θ̂biγ − θ̂))2

= T−1
T∑
t=1

(ε̃bt)
2 − 2

2∑
i=1

T−1
∑
iγ

ε̃btŵ
b>
t (θ̂biγ − θ̂)

+

2∑
i=1

(θ̂biγ − θ̂)>
(
T−1

∑
iγ

ŵbt ŵ
b>
t

)
(θ̂biγ − θ̂).

By Lemma A.6 (iii) and (iv), T−1
∑
iγ ŵ

b
t ŵ

b>
t

pb

−→Ciγ , and T−1
∑
iγ ε̃

b
tŵ

b>
t = Obp(T

−1/2). From (A.17),

θ̂biγ − θ̂ = Obp(T
−1/2). Therefore, T−1SSRb1(γ) = T−1

∑T
t=1(ε̃bt)

2 + obp(1) = T−1
∑T
t=1(εbt + ub>t θ̂x − z>t (Π̂b −

Π̂)>θ̂x)2 +obp(1) = T−1
∑T
t=1(εbt+ub>t θ0

x)2 +obp(1), where the last equality used Lemma A.6 (ii), which implies

Π̂b − Π̂ = op(1), and the fact that θ̂x
p−→ θ0

x. We now show that T−1
∑T
t=1(εbt + ub>t θ0

x)2 pb

−→σ2, which then

completes the proof of Part (i).

Since T−1
∑T
t=1(εbt + ub>t θ0

x)2 = θ̃0>(T−1
∑T
t=1 v̂tv̂

>
t η

2
t )θ̃0, we analyze T−1

∑T
t=1 v̂tv̂

>
t η

2
t . First consider

T−1
∑T
t=1 ε̂

2
tη

2
t , the first element of this matrix. We have:

T−1
T∑
t=1

ε̂2tη
2
t = T−1

T∑
t=1

(εt − w>t (θ̂ − θ0))2η2
t

= T−1
T∑
t=1

ε2tη
2
t + (θ̂ − θ0)>A0

(
T−1

T∑
t=1

ztz
>
t η

2
t

)
A0>(θ̂ − θ0)

−2

(
T−1

T∑
t=1

εtz
>
t η

2
t

)
A0>(θ̂ − θ0)
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= T−1
T∑
t=1

ε2tη
2
t + op(1)

(
T−1

T∑
t=1

ztz
>
t η

2
t

)
op(1)−

(
T−1

T∑
t=1

εtz
>
t η

2
t

)
op(1). (A.18)

First, we show that T−1
∑T
t=1 ε

2
tη

2
t

pb

−→E[ε2t ]. Note that Eb[T−1
∑T
t=1 ε

2
t (η

2
t − 1)] = 0. Hence, we have

Varb(T−1
∑T
t=1 ε

2
t (η

2
t −1)) = Eb[(T−1

∑T
t=1 ε

2
t (η

2
t −1))2] = Eb[(η2

t −1)2]T−2
∑T
t=1 ε

4
t = op(1), since ε4t satisfies

the assumptions of Lemma A.1 and Eb[(η2
t −1)2] <∞ by Assumption 2 (i). Thus, P b(|T−1

∑T
t=1 ε

2
t (η

2
t −1)| >

K) ≤ K−2Eb[(η2
t − 1)2]T−2

∑T
t=1 ε

4
t = op(1). Hence, T−1

∑T
t=1 ε

2
tη

2
t
pb−→ E[ε2t ].

Second, we show that T−1
∑T
t=1 ztz

>
t η

2
t
pb−→ M . Note Eb[T−1

∑T
t=1 ztz

>
t η

2
t ] = T−1

∑T
t=1 ztz

>
t

p−→E[ztz
>
t ]

by Lemma A.1. Hence, P b(‖T−1
∑T
t=1 ztz

>
t (η2

t − 1)‖ > K) ≤ K−2T−1(T−1
∑
t,s ‖zt‖2‖zs‖2Eb[|(η2

t − 1)(η2
s −

1)|] = op(1) where the last equality follows from Assumption 2 (i), implying Eb[|(η2
t − 1)(η2

s − 1)|] ≤ K̃ <∞

for some K̃ > 0 and for all s, t, and Lemma A.1 applied to ‖zt‖2‖zs‖2, which ensures T−1
∑
t,s ‖zt‖2‖zs‖2 =

Op(1). Thus, T−1
∑T
t=1 ztz

>
t η

2
t

pb

−→E[ztz
>
t ].

Third, we show that T−1
∑T
t=1 εtztη

2
t = obp(1). Note that Eb[T−1

∑T
t=1 εtzt(η

2
t − 1)] = 0. Hence,

P b(‖T−1
∑T
t=1 εtzt(η

2
t − 1)‖ > K) ≤ K−2T−1(T−1

∑T
t=1 ‖zt‖‖zs‖|εtεs|) = obp(1), by the same arguments as

before. Thus, T−1
∑T
t=1 εtztηt

pb

−→ 0. Substituting these results into (A.18), T−1
∑T
t=1 ε̂

2
tη

2
t

pb

−→E[ε2t ]. Next,

T−1
T∑
t=1

ûtû
>
t η

2
t = T−1

T∑
t=1

(ut + (Π̂−Π0)>zt)(ut + (Π̂−Π0)>zt)
>η2

t

= T−1
T∑
t=1

utu
>
t η

2
t + (Π̂−Π0)>T−1

T∑
t=1

ztz
>
t η

2
t (Π̂−Π0)

+[T−1
T∑
t=1

utz
>
t η

2
t (Π̂−Π0)] + (Π̂−Π0)]>[T−1

T∑
t=1

utztη
2
t

pb

−→ E[utu
>
t ],

by similar arguments as for T−1
∑T
t=1 ε̂

2
tη

2
t

pb

−→E[ε2t ]. Similarly, T−1
∑T
t=1 ûtε̂

>
t η

2
t

pb

−→E[utεt]. Therefore,

T−1
∑T
t=1(εbt + ub>t θ0

x)2 = θ̃0>(T−1
∑T
t=1 v̂tv̂

>
t η

2
t )θ̃0 = θ̃0>E[vtv

>
t ]θ̃0 + obp(1) = σ2 + obp(1), completing the

proof of Part (i).

Part (ii). From (A.17), T 1/2(θ̂b1γ − θ̂b2γ)
db
p⇒Eγ , so it remains to show that V̂ bγ

pb

−→Vγ . We will only show that

V̂ bB,iγ = Âb{(θ̃b> ⊗ Iq)Ĥb
iγ(θ̃b ⊗ Iq) + (θ̌b> ⊗ Iq)Ĥb(θ̌b ⊗ Iq) − (θ̃b> ⊗ Iq)Ĥb

iγ(θ̌b ⊗ Iq) − (θ̌b> ⊗ Iq)Ĥb
iγ(θ̃b ⊗

Iq)}Âb> p−→A0{(θ̃0> ⊗ Iq)Hiγ(θ̃0 ⊗ Iq) + (θ̌0> ⊗ Iq)H(θ̌0 ⊗ Iq)− (θ̃0> ⊗ Iq)Hiγ(θ̌0 ⊗ Iq)− (θ̌0> ⊗ Iq)Hiγ(θ̃0 ⊗

Iq)}A0> = VB,iγ , where Ĥb
iγ = T−1

∑
iγ v̂

b
t v̂
b
t ⊗ ztz>t ; the rest follows by similar arguments. We have already

shown that Âb
pb

−→A0, θ̃b
p−→ θ̃0, and θ̌b

p−→ θ̌0. Since the proof for Ĥb
iγ

pb

−→Hiγ is similar to Ĥb
ε,iγ

pb

−→Hε,iγ , where

Ĥb
ε,iγ = T−1

∑
iγ(ε̂bt)

2ztz
>
t , we only show Ĥb

ε,iγ
pb

−→Hε,iγ . As in Equation (A.15) in the proof of Theorem A.1,
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replacing εt, wt and θ0 by εbt , w
b
t and θ̂:

Ĥb
ε,iγ = T−1

∑
iγ

ztz
>
t (εbt)

2 + T−1
∑
iγ

ztz
>
t [wb>t (θ̂biγ − θ̂)]2 + 2T−1

∑
iγ

ztz
>
t [εbtw

b>
t (θ̂biγ − θ̂)]

= T−1
∑
iγ

ztz
>
t (εbt)

2 + [Iq ⊗ ((θ̂biγ − θ̂)>Âb)]

T−1
∑
iγ

ztz
>
t ⊗ ztz>t

 [Iq ⊗ (Âb>(θ̂biγ − θ̂))]

+2[Iq ⊗ ((θ̂biγ − θ̂)>Âb)]

T−1
∑
iγ

ztz
>
t ε

b
t ⊗ zt

 .

We have already shown that T−1
∑T
t=1 ztz

>
t ⊗ztz>t = Op(1) (in the proof of Theorem 1), θ̂biγ− θ̂ = Obp(T

−1/2)

(from equation (A.17)), and Âb = A0 + obp(1) (proof of Part (ii) in Lemma A.3). Recall that εbt = ε̂tηt, so

Ĥb
ε,iγ = T−1

∑
iγ

ztz
>
t ε̂

2
tη

2
t +Obp(T

−1/2)

T−1
∑
iγ

ztz
>
t ε̂tηt ⊗ zt

+ obp(1)

As before,

T−1
∑

iγ
ztz
>
t ε̂

2
tη

2
t = T−1

∑
iγ

ztz
>
t ε

2
tη

2
t

+[Iq ⊗ ((θ̂ − θ0)>A0)]

T−1
∑
iγ

ztz
>
t ⊗ ztz>t η2

t

 [Iq ⊗ (A0>(θ̂ − θ0))]

−2[Iq ⊗ ((θ̂ − θ0)>A0)]

T−1
∑
iγ

ztz
>
t ⊗ εtztη2

t


pb

−→ Hε,iγ

where the convergence was already shown in the Proof of Theorem 2 (cf. the asymptotic behaviour of the

terms I, II and IV in Equation (A.12)). By similar arguments,

T−1
∑
iγ

ztz
>
t ε̂tηt ⊗ zt = T−1

∑
iγ

ztz
>
t ⊗ ztεtηt − (T−1

∑
iγ

ztz
>
t ⊗ ztz>t ηt) [Iq ⊗A0>(θ̂ − θ0)]

= obp(T
α) + obp(T

α)Op(T
−1/2).

Hence, Op(T
−1/2)

(
T−1

∑
1γ ztz

>
t ε̂tηt ⊗ zt

)
= Obp(T

−1/2)(obp(T
α) + obp(T

α)Op(T
−1/2)) = obp(1) if α ≤ 1

2 .

Hence, we conclude that Ĥb
ε,iγ = E[ztz

>
t ε

2
t1[qt ≤ γ]] + obp(1) for any α ≤ 1

2 . �

A.4 Proofs of 2SLS Results with a TFS

Theorem A.2. Under Assumption 1 and the TFS in (3), (i) ρ̂ − ρ0 p−→ 0; (ii) T (ρ̂ − ρ0) = Op(1); (iii)

T 1/2 vec(Π̂i −Π0
i ) = T 1/2 vec(Π̂iρ0 −Π0

i ) + op(1).

Proof of Theorem A.2. Wlog, assume that ρ̂ ≤ ρ0 (the proofs for ρ̂ > ρ0 are similar and omitted for

simplicity).
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Part (i). Let Q(Π̂1ρ̂, Π̂2ρ̂, ρ̂) = tr
(
T−1

∑T
t=1 ûtû

>
t

)
= T−1

∑T
t=1 û

>
t ût = T−1

∑2
i=1

∑
iρ̂(x

>
t −z>t Π̂iρ̂)(xt−

Π̂>iρ̂zt), and dt = ût−ut. Then, by definition, Q(Π̂1ρ̂, Π̂2ρ̂, ρ̂) = T−1
∑T
t=1(ut+dt)

>(ut+dt) ≤ Q(Π0
1,Π

0
2, ρ

0) =

T−1
∑T
t=1 u

>
t ut with probability one. This implies that 2T−1

∑T
t=1 u

>
t dt + T−1

∑T
t=1 d

>
t dt ≤ 0 with prob-

ability one. We now prove consistency in two steps. In part (i1), we show that T−1
∑T
t=1 u

>
t dt = op(1),

implying T−1
∑T
t=1 d

>
t dt = op(1), since T−1

∑T
t=1 d

>
t dt ≥ 0. In part (i2), we show that if ρ̂

p9 ρ0, then, with

strictly positive probability, T−1
∑T
t=1 d

>
t dt > K for some K > 0, contradicting T−1

∑T
t=1 d

>
t dt = op(1), and

therefore yielding ρ̂
p−→ ρ0.

Part (i1). Define
∑

∆(·) =
∑T
t=1(·)1[ρ < qt ≤ ρ0]. Then, for any ρ ≤ ρ0 instead of just ρ̂17, and using

vec(ABC) = (C> ⊗A) vec(B), we have:

T−1
∑T

t=1
u>t dt = T−1

∑
1ρ
u>t (Π0

1 − Π̂1ρ)
>zt + T−1

∑
∆
u>t (Π0

1 − Π̂2ρ)
>zt + T−1

∑
2ρ0

u>t (Π0
2 − Π̂2ρ)

>zt

= (T−1
∑

1ρ
zt ⊗ ut)> vec(Π0

1 − Π̂1ρ) + (T−1
∑

∆
zt ⊗ ut)> vec(Π0

1 − Π̂2ρ)

+ (T−1
∑

2ρ0
zt ⊗ ut)> vec(Π0

2 − Π̂2ρ).

Since ρ ≤ ρ0, it follows that Π̂1ρ is computed based on observations corresponding to subsamples 1[qt ≤ ρ0]

only and, therefore, by standard arguments Π̂1ρ − Π0
1 = op(1). On the other hand, Π̂2ρ is constructed using

observations from both subsamples satisfying 1[qt ≤ ρ0], respectively 1[qt > ρ]. Straightforward calculations

give Π̂2 = (T−1
∑

2ρ ztz
>
t )−1[(T−1

∑
∆ ztz

>
t )Π0

1 + (T−1
∑

2ρ0 ztz
>
t )Π0

2 + (T−1
∑

2ρ ztu
>
t )] = Op(1)[Op(1) +

Op(1) + op(1)] = Op(1), by Lemma A.3 (i) and (ii). Hence, Π0
1 − Π̂2ρ = Op(1), and Π0

2 − Π̂2ρ = Op(1). Also

by Lemma A.3 (ii), T−1
∑

1ρ zt⊗ut, T−1
∑

2ρ0 zt⊗ut, T−1
∑

∆ zt⊗ut = op(1). Therefore, T−1
∑T
t=1 u

>
t dt =

op(1) (uniformly in ρ). Because these results hold uniformly over ρ, we have op(1) + T−1
∑T
t=1 d

>
t dt ≤ 0

uniformly over ρ, and therefore also at ρ̂, so T−1
∑T
t=1 d

>
t dt = op(1).

Part (i2). By the continuity assumption 1 (e), there exists an ε > 0 such that with positive probability,

qt ∈ [ρ0− ε, ρ0 + ε]. If ρ̂
p9 ρ0, then ρ̂ < ρ0− ε because ρ̂ ≤ ρ0. Consequently, the residuals evaluated over the

sub-sample qt ∈ [ρ0− ε, ρ0 + ε] will also be evaluated at Π̂2ρ̂ = Π̂2 since Π̂2 is the multivariate LS estimator in

the sample qt > ρ̂. However, the true parameter values are Π0
1 for qt ∈ [ρ0− ε, ρ0], and Π0

2 for qt ∈ (ρ0, ρ0 + ε].

Let
∑
A =

∑
1[qt ∈ [ρ0 − ε, ρ0]],

∑
B =

∑
1[qt ∈ (ρ0, ρ0 + ε]], and

∑
AB =

∑
1[qt ∈ [ρ0 − ε, ρ0 + ε]]. Denote

by π0
1,i, π

0
2,i and π̂2,i the i-th columns of Π0

1, Π0
2, respectively Π̂2. Further, let η1 and η2 be the minimum

eigenvalues of M1ρ0 −M1ρ0−ε, respectively M1ρ0+ε −M1ρ0 . Recall that tr(ABC) = vec(A>)>(I ⊗B) vec(C)

for conformable matrices A, B and C. Then:

T−1
∑
AB

d>t dt = T−1
∑
A

tr
(

[Π0
1 − Π̂2]>ztz

>
t [Π0

1 − Π̂2]
)

+ T−1
∑
B

tr
(

[Π0
2 − Π̂2]>ztz

>
t [Π0

2 − Π̂2]
)

= vec(Π0
1 − Π̂2)>

(
T−1

∑
A

Ip1 ⊗ ztz>t
)

vec(Π0
1 − Π̂2)

+ vec(Π0
2 − Π̂2)>

(
T−1

∑
B

Ip1 ⊗ ztz>t
)

vec(Π0
2 − Π̂2)

17Note that
∑

∆() = 0 in case of ρ = ρ0.
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=

p1∑
i=1

(π0
1,i − π̂2,i)

>(M1ρ0 −M1ρ0−ε)(π
0
1,i − π̂2,i)

+

p1∑
i=1

(π0
2,i − π̂2,i)

>(M1ρ0+ε −M1ρ0)(π0
2,i − π̂2,i) + op(1)

≥ η1

p1∑
i=1

‖π0
1,i − π̂2,i‖2 + η2

p1∑
i=1

‖π0
2,i − π̂2,i‖2 + op(1)

≥ min{η1, η2}
p1∑
i=1

‖π0
1,i − π0

2,i‖2
2

+ op(1)

where the last equality used continuity of M1ρ at ρ0 (Assumption 1 (d)) and the last inequality used the fact

that for any vectors a, b, c of the same length, (a − b)>(a − b) + (c − b)>(c − b) ≥ (a − c)>(a − c)/2. Next,

min{η1, η2} > K > 0 by Assumption 1 (d) and there exists at least one i = 1, ..., p1 such that ‖Π0
1,i−Π0

2,i‖ > 0

by Assumption 1 (g). Hence, plimT−1
∑t
t=1 d

>
t dt > K > 0 with strictly positive probability, reaching a

contradiction.

Part (ii). Let ζ0 = T−1
∑T
t=1 1[qt ≤ ρ0], ζ = T−1

∑T
t=1 1[qt ≤ ρ] and ζ̂ = T−1

∑T
t=1 1[qt ≤ ρ̂]. Then

ρ0 − ρ < ε, for some small ε, can equivalently be written as ζ0 − ζ < ω, for some small ω (where there

is a one-to-one correspondence between ω and ε), or in other words, the difference between the fraction of

observations below the ρ0 and below the ρ quantiles is smaller than ω, as the distribution of qt is continuous.

Define the set Vω = {ζ : ζ0 − ζ < ω} for some ω > 0. Since ρ̂
p−→ ρ0 by Part (i), it holds that ζ̂ ∈ Vω, for

large enough T and small enough ω. Thus, we only need to consider the case where ζ0 − ζ < ω, for some

small ω > 0. For C > 0, define the set Vω(C) = {ζ : ζ0 − ζ ≤ ω, T (ζ0 − ζ) > C}, i.e. the set of all values

such that the number of observations between the two quantiles is larger C. By construction Vω(C) ⊂ Vω.

Thus, if we can show that ζ̂ /∈ Vω(C), it follows that the number of observations Tζ0−Tζ ≤ C, which means

in turn that T (ρ̂ − ρ0) = Op(1). Hence, the quantiles ρ̂ and ρ cannot be more than a fixed number apart

with large probability. To this extent, recall the definition Q(Π̂1ρ, Π̂2ρ, ρ) of the multivariate SSR in Part (i)

and that Q(Π̂1ρ̂, Π̂2ρ̂, ρ̂) ≤ Q(Π̂1ρ0 , Π̂2ρ0 , ρ
0) with probability one. To verify the claim, we show that for each

K > 0 there exist C > 0 and ε > 0 such that P (minζ∈Vω(C){Q(Π̂1ρ, Π̂2ρ, ρ) − Q(Π̂1ρ0 , Π̂2ρ0 , ρ
0)} ≤ 0) < K

for large T . That is, we are going to show that ζ̂ /∈ Vω(C). Thus, it must follow that T (ζ̂ − ζ0) ≤ C with

large probability.

To this extent, define Q(Π̂1ρ, Π̂∆, Π̂2ρ0 , ρ, ρ
0) where Π̂∆ is constructed using observations ρ < qt ≤ ρ0;

i.e., next to ρ we introduce a second threshold at ρ0 such that Π̂∆ is evaluated over samples associated

with Π0
1 only. Note that Q(Π̂1ρ̂, Π̂2ρ̂, ρ̂) − Q(Π̂1ρ0 , Π̂2ρ0 , ρ

0) = (Q(Π̂1ρ̂, Π̂2ρ̂, ρ̂) − Q(Π̂1ρ, Π̂∆, Π̂2ρ0 , ρ, ρ
0)) −

(Q(Π̂1ρ0 , Π̂2ρ0 , ρ
0)−Q(Π̂1ρ, Π̂∆, Π̂2ρ0 , ρ, ρ

0)). Define Q̂∆ = 1
T (ζ0−ζ)

∑
∆ ztz

>
t and M̂∆ = (ζ0 − ζ)Q̂∆. Then,

by Bai and Perron (1998), pp. 70,

Q(Π̂1ρ̂, Π̂2ρ̂, ρ̂)−Q(Π̂1ρ, Π̂∆, Π̂2ρ0 , ρ, ρ
0)

T (ζ0 − ζ)
= tr[(Π̂2ρ0 − Π̂∆)>(Q̂∆ − Q̂∆M̂

−1
2ρ M̂∆)(Π̂2ρ0 − Π̂∆)]

Q(Π̂1ρ0 , Π̂2ρ0 , ρ
0)−Q(Π̂1ρ, Π̂∆, Π̂2ρ0 , ρ, ρ

0)

T (ζ0 − ζ)
= tr[(Π̂1ρ − Π̂∆)>(Q̂∆ − Q̂∆M̂

−1
1ρ0M̂∆)(Π̂1ρ − Π̂∆)].
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By Lemma A.3 (i) and (ii), M̂1ρ0 = M1ρ0 + op(1) and M̂2ρ = M2ρ + op(1) so that their inverses are Op(1).

Thus, also on Vω(C). Similarly, Π̂1ρ = Π0
1 + op(1) (since it only uses observations satisfying qt ≤ ρ < ρ0) and

Π̂2ρ0 = Π0
2 + op(1). Straightforward calculations show that Π̂∆ = Π0

1 + (T−1
∑

∆ ztz
>
t )−1(T−1

∑
∆ ztu

>
t ) if

ρ < ρ0. By Lemma 3, we have M̂∆ = T−1
∑

∆ ztz
>
t = T−1

∑
1ρ0 ztz

>
t −T−1

∑
1ρ ztz

>
t = M1ρ0 −M1ρ + op(1)

and, similarly T−1
∑

∆ ztu
>
t = op(1). For the former term, we have that M1ρ0−M1ρ has eigenvalues bounded

away from 0 on Vω(C) by Assumption 1 (d) and its inverse is therefore bounded (in the sense that its largest

eigenvalue is smaller/equal than some finite constant). Hence, it follows that Π̂∆ = Π0
1 + op(1) on Vω(C).

Moreover, on Vω(C), we have

‖M̂∆‖ = ‖E[ztz
>
t (1[qt ≤ ρ0]− 1[qt ≤ ρ])] + op(1)‖ ≤ (E‖zt‖4)1/2

(∫ ρ0

ρ

f(x)dx

)1/2

+ op(1)

≤M
(∫ ρ0

ρ0−ε
f(x)dx

)1/2

+ op(1) = M
√
f(b)ε+ op(1) =

√
εOp(1),

where the second-to-last equality holds by continuity and boundedness of f(x) (Assumption 1 (e)) for some

b ∈ [ρ0 − ε, ρ0]. Moreover, Q̂∆ = 1
T (ζ0−ζ)

∑
∆ ztz

>
t = Op(1) on Vω(C) for large enough C by Lemma A.3

since T (ζ0 − ζ) > C > 0 such that [T (ζ0 − ζ)]−1 is bounded. Thus, on Vω(C) it follows that

Q(Π̂1ρ̂, Π̂2ρ̂, ρ̂)−Q(Π̂1ρ, Π̂∆, Π̂2ρ0 , ρ, ρ
0)

T (ζ0 − ζ)
= tr[(Π0

2 −Π0
1)>Q̂∆(Π0

2 −Π0
1)>] +

√
εOp(1) + op(1)

Q(Π̂1ρ0 , Π̂2ρ0 , ρ
0)−Q(Π̂1ρ, Π̂∆, Π̂2ρ0 , ρ, ρ

0)

T (ζ0 − ζ)
= op(1)

and consequently that

Q(Π̂1ρ̂, Π̂2ρ̂, ρ̂)−Q(Π̂1ρ0 , Π̂2ρ0 , ρ
0)

T (ζ0 − ζ)
= tr[(Π0

2 −Π0
1)>Q̂∆(Π0

2 −Π0
1)>] +

√
εOp(1) + op(1).

Finally, Q̂∆ =
M1ρ0−M1ρ

ζ0−ζ + op(1) on Vω(C) for large enough C. Since M1ρ0 −M1ρ has smallest eigenvalue

bounded away from zero (Assumption 1 (d)) and since ρ0−ρ > 0 it follows that tr[(Π0
2−Π0

1)>
M1ρ0−M1ρ

ζ0−ζ (Π0
2−

Π0
1)>] > K > 0. Hence,

Q(Π̂1ρ̂,Π̂2ρ̂,ρ̂)−Q(Π̂1ρ0 ,Π̂2ρ0 ,ρ
0)

T (ζ0−ζ) > K > 0. Hence, ζ̂ /∈ Vω(C) and therefore, T (ζ0−ζ̂) ≤ C

with large probability, hence T (ρ0 − ρ) = Op(1).

Part (iii). Since any partial sum in the expression of Π̂i differs by the partial sum in the expression of

Π̂iρ0 by |T (ρ0− ρ̂)| < D terms, for some D > 0, which are uniformly bounded by Assumption 1(c), it follows

that T 1/2 vec(Π̂i − Π0
i ) = T 1/2 vec(Π̂iρ0 − Π0

i ) + op(1), for i = 1, 2. The rest of the proof follows standard

arguments. �

By Theorem A.2 and its proof, wlog, we treat in what follows ρ̂ as if it was equal to ρ0.
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A.4.1 Asymptotic Distribution of 2SLS Test Statistics with a TFS

Definition 2. Let A0
i = [Π0

i , S
>]> be the augmented matrices of the FS slope parameters, where S =

[Ip2 ,0p2×q1 ], q1 = q−p2, and Âi = [Π̂i, S
>]>. Hence, z1t = Szt and wt = A0

1zt1[qt ≤ ρ0]+A0
2zt1[qt > ρ0]+ūt.

Let A0
t = A0

11[qt ≤ ρ0] +A0
21[qt > ρ0], Πt = Π0

11[qt ≤ ρ0] + Π0
21[qt > ρ0].

Let ∧ and ∨ define the minimum and maximum operators. Let C1γ = A0
1M1,ρ0∧γA

0>
1 + A0

2(M1γ −

M1,ρ0∧γ)A0>
2 and C2γ = A0

1(M1,ρ0∨γ−M1γ)A0>
1 +A0

2M2,ρ0∨γA
0>
2 . Also, Cγ = [C−1

1γ ,−C−1
2γ ], C = C1γ +C2γ ,

Riγ = MiγM
−1
iρ0 for i = 1, 2, D = [1, 01×p1 ] ⊗ Iq, and Qγ = C1γC

−1C2γ . Let Fiγ = [θ̌0> ⊗ Riγ ] and

Diγ = [θ̃0> ⊗ Iq]− Fiγ . Also define the Gaussian processes:

B1(γ) =


A0

1

(
D1γG1(γ)− F1γ(G1(ρ0)− G1(γ)

)
, γ ≤ ρ0

B −A0
2

(
D2γG2(γ)− F2γ(G1(γ)− G1(ρ0)) γ > ρ0,

where B =
∑2
i=1A

0
iDGi(ρ0). Let VB =

∑2
i=1A

0
iDHi,ρ0D

>A0>
i ,

VB,1γ =


A0

1[D1γH1γD1γ + F1γ(H1,ρ0 −H1γ)F1γ ]A0>
1 , γ ≤ ρ0,

A0
1DH1ρ0DA

0
1 +A0

2[(D + F2γ)(H1γ −H1ρ0)(D + F2γ)>

+(D −D2γ)H2γ(D −D2γ)>]A0>
2 , γ > ρ0

,

VB,12γ =


A0

1[D1γH1γ − F1γ(H1,ρ0 −H1γ)]D>A0>
1 − VB,1γ , γ ≤ ρ0

A0
2[(D −D2γ)H2γD

>
2γ − (F2γ +D)(H1γ −H1ρ0)F>2γ ]A0>

2 , γ > ρ0

,

and VB,2γ = VB − VB,1γ − VB,12,γ − V >B,12,γ denote the covariances of B, B1γ , the covariance between B1γ and

B2γ , as well as the covariance of B2γ . Then VB,γ =

 VB,1γ VB,12,γ

V >B,12,γ VB,2γ

 , and Vγ = CγVB,γC
>
γ .

Let F̄iγ = [θ̌> ⊗ R̂iγ ] and D̄iγ = [θ̃> ⊗ Iq] − F̄iγ , where θ̃> = [1, θ̂x] and θ̌ = [0, θ̂>]. where θ̃ = [1, θ̂x] and

θ̌ = [0, θ̂x]. Then V̂γ is defined as Vγ , but replacing Ciγ with Ĉiγ , A0
i with Âi, Diγ by D̄iγ , Fıγ by F̄iγ , Hiγ

by Ĥiγ = T−1
∑
iγ v̂tv̂

>
t ⊗ ztz>t .

With this new notation, we now reprove Lemmas A.5 and A.6, and Theorems A.1 and 3, for

xt generated by the TFS (3) instead of the LFS (2).

Proof of Lemma A.5. Part (i). T−1
∑
iγ ztz

>
t

p−→Miγ still holds, as the result is not specific to a LFS or
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TFS. So,

T−1
∑

1γ
ŵtŵ

>
t = Â1T

−1
∑

1,ρ0∧γ
ztz
>
t Â
>
1 + Â2

(
T−1

∑
1γ
ztz
>
t − T−1

∑
1,ρ0∧γ

ztz
>
t

)
Â>2

p−→A0
1M1,ρ0∧γA

0>
1 +A0

2(M1γ −M1,ρ0∧γ)A0>
2 = C1γ

T−1
∑

2γ
ŵtŵ

>
t = Â1

(
T−1

∑
1,ρ0∨γ

ztz
>
t − T−1

∑
1,γ

ztz
>
t

)
Â>1 + Â2T

−1
∑

2ρ0∨γ
ztz
>
t Â
>
2

p−→A0
1(M1,ρ0∨γ −M1γ)A0>

1 +A0
2M2ρ0∨γA

0>
2 = C2γ .

Part (ii). The result T−1/2
∑
iγ vt ⊗ zt ⇒ Gi(γ) still holds. But now,

ε̃t = εt + (x̂t − xt)>θ0
x = εt + u>t θ

0
x − 1[qt ≤ ρ0][z>t (Π̂1 −Π0

1)θ0
x]− 1[qt > ρ0][z>t (Π̂2 −Π0

2)θ0
x].

Therefore, for γ ≤ ρ0,

T−1/2
∑

1γ
ŵtε̃t = A0

1

(
T−1/2

∑
1γ
zt(εt + u>t θ

0
x)−M1γM

−1
1ρ0T

−1/2
∑

1ρ0
ztu
>
t θ

0
x)
)

⇒A0
1

(
[θ̃0 ⊗ Iq]G1(γ)− [θ̌0 ⊗R1γ ]G1(ρ0)

)
= A0

1

(
D1γ G1(γ)− F1γ(G1(ρ0)− G1(γ)

)
= B1(γ).

For γ > ρ0,

T−1/2
∑

1γ
ŵtε̃t = T−1/2

∑T

t=1
ŵtε̃t − T−1/2

∑
2γ
ŵtε̃t

⇒A0
1D G1(ρ0) +A0

2DG2(ρ0)−A0
2([θ̃0 ⊗ Iq]G2(γ)− F2γG2(ρ0))

= B −A0
2

(
D2γ G2(γ)− F2γ(G1(γ)− G1(ρ0)) = B1(γ).

Because T−1/2
∑T
t=1 ŵtε̃t⇒A0

1D G1(ρ0)+A0
2DG2(ρ0), T−1/2

∑
2γ ŵtε̃t ⇒ A0

1D G1(ρ0)+A0
2D G2(ρ0)−B1(γ) =

B − B1(γ) = B2(γ), and vec(T−1/2
∑

1γ ŵtε̃t, T
−1/2

∑
2γ ŵtε̃t)⇒ B(γ). �

Proof of Theorem A.1. Part (i). Because T−1/2(θ̂1γ− θ̂2γ) = Ĉ−1
1γ T

−1/2
∑

1γ ŵtε̃t− Ĉ−1
2γ T

−1/2
∑

2γ ŵtε̃t,

the desired result follows directly from Lemma A.3.

Part (ii). Follows the same steps as for the LFS proof until equation (A.13). Then note that because

Π̂i −Π0
i = op(1),

T−1SSR1(γ) = T−1
∑2

i=1

(∑
iρ0

(εt + u>t θ
0
x)2 − 2

∑
iρ0

(εt + u>t θ
0
x)z>t (Π̂i −Π0

i )θ
0
x

+
∑

iρ0
θ0>
x (Π̂i −Π0

i )
>T−1

∑
iρ0

ztz
>
t (Π̂i −Π0

i )θ
0
x

)
= σ2 + op(1),

following the same arguments as in the LFS proof.
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Part (iii). It can be shown by similar arguments to the LFS, but now separately for cases γ ≤ ρ0 and

γ ≥ ρ0, and taking to account the different parameter estimates in different regimes, that V̂γ
p−→Vγ . Because

of part (i) of this theorem, the desired result follows. �

Proof of Lemma A.5 and Theorem 3. As evident from the proof of Theorem A.1 for a TFS, besides

replacing Π̂ with Π̂i, and Π̂b with Π̂b
i , and re-deriving the terms involving these, there are no essential

differences between the proofs for a LFS and a TFS, and for brevity we omit these proofs. �
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