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Society requires a stable and secure supply of raw materials. Raw
materials supply stability and security are, amongst others, addressed
by the concept of raw materials criticality, which focuses on the vul-
nerability of an economic unit (most commonly a country or region, but
also the world, specific sectors, companies or products) to supply re-
strictions of certain mineral raw materials (cf. Schrijvers et al., 2020).
The idea of keeping materials in the economic cycle for longer is spe-
cified in the Circular Economy (CE) concept, which encompasses efforts
that reduce waste and improve material efficiency (Ellen McArthur
Foundation, 2013; European Commission, 2018). So far, CE beyond
recycling has not played a prominent role in the criticality debate. At
the same time, critical raw materials (CRM) have only been a minor
topic in the discussion on CE (recent exceptions include European
Commission, 2018, and Gaustad et al., 2018). If properly aligned, cri-
ticality assessments might help in defining priority materials for the CE,
and circularity strategies could substantially mitigate supply risks. In
this paper, we explore the potential benefits, as well as caveats, of
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adopting a CE approach to CRM, based on our own experiences and our
discussions organized by the IRTC (International Round Table on Ma-
terials Criticality) project.

For orientation, we use a simplified representation (Fig. 1) of CE and
match this to key issues addressed in the criticality discussion: the di-
versity and stability of supply chains, including the contribution of
recycling to supply, and the ability to use different materials or tech-
nologies to achieve a given function (substitution).

Diversity and stability of primary supply are fundamental to criti-
cality assessment methodologies and reflected in all of them (cf.
Schrijvers et al., 2020). Although CE models can have supply security as
an objective, the aspect of securing primary supply is absent. Instead,
they focus on gaining more value from raw material extraction and
maintaining this value (cf. European Commission, 2018).

CE and criticality share common ground regarding recycling: both
encourage it. Recycling of end-of-life (EoL) products, constituting the
longest loop of CE models, is an important component of both (Fig. 1).
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Fig. 1. Simplified representation of a more circular economy (all loops) coupled to key points of the criticality concept, formulated as objectives for the stages “raw
materials”, “design” and “recycling”. The material losses occurring at all stages of the life cycle are not shown.

Recycling is also regarded as a mitigation strategy in the criticality
discussion because it can increase supply independence and comple-
ment current primary extraction. In particular, a number of critical
materials are by-products or co-products of other metals and minerals
mined and their markets are dependent on those of the host metals.
Introducing supply through recycling could potentially reduce risks by
partially decoupling supply from the primary material source. Three
caveats should be considered. First, primary and secondary production
of a given raw material affect economic viability of recycling through
price; however, this is not explicitly accounted for, either in criticality
methodologies or in the CE model. Second, although recycling is
usually considered riskless in criticality methodologies and has priority
over disposal in the CE model, neither of these is necessarily the case.
The quality and quantity of EoL scrap cannot be taken as a given in
many cases. There are challenges in collecting and channeling EoL
products to the appropriate facilities, and it can be impractical during
recycling to recover certain metals that are used together in products
but which are thermodynamically incompatible with conventional
thermal or chemical separation processes used in recycling
(International Resource Panel, 2013). In the latter case, the EoL product
is recycled but some materials (including CRM) are nevertheless lost to
other cycles or to slags because their recovery would imply prohibitive
economic and/or environmental burdens. Third, bulk materials such as
cement, paper, plastics, iron and copper dominate current discussions
on CE. CRM tend to be used in smaller volumes than these base ma-
terials and are not in high profile from a CE perspective alone (although
some CE models look at individual material flows, e.g. the EU Material
System Analysis). Since recycling targets are usually mass-based, there
is a need for adequate indicators and targets for the circularity of CRM.
Ideally, both indicators and targets could be standardized in a way that
is directly useful at the level of individual companies and for policy
making.

The shorter loops of the CE model are neglected in many discussions
on criticality (cf. Schrijvers et al., 2020), as is the discussion on resource
efficiency in CE (i.e., improving the ratio between a certain benefit or
result and the resource use and environmental burdens associated with

it). Nevertheless, a move towards a more circular economy could re-
duce material resource demand by increasing the longevity of products
and parts even though the enabling technologies for the “shorter loop”
activities (reuse, repair, refurbish/remanufacture) can be CRM depen-
dent themselves. Overall, the “shorter loops” could limit demand
growth, which is included as an indicator in some criticality meth-
odologies. This is particularly important for CRM related to the energy
transition. If demand stagnates or even decreases, it is possible that the
share of recycling in total supply would increase — also seen as positive
in criticality discussions within the caveats sketched above.

A key pillar for establishing all loops in the CE model is appropriate
design for circularity, for example material selection that includes the
use of metal mixtures which are compatible with recycling technologies
(International Resource Panel, 2013). Design for the shorter loops of the
circularity model could use a modular approach which makes it easier
for components to be separated, recovered, or replaced during repair,
reuse, or remanufacturing. Increased recyclability and longevity of
products — as a consequence of design for circularity — support supply
security, which is a central aspect in criticality assessments.

Another aspect of design pertains to material flexibility: the ability
to provide the same function using different raw materials and/or
technologies, also discussed as “substitution”. Substitution plays a key
role in criticality discussions (Schrijvers et al., 2020) and is also re-
levant in the CE model. Whereas criticality assessments evaluate the
potential of replacing CRMs by non- (or less) critical materials or
technologies, CE approaches are interested in the impact of the sub-
stitute material or technology on reducing the overall inflow of non-
recoverable and non-biodegradable materials (Ellen McArthur
Foundation, 2013). In both approaches, unwanted side effects can
occur: from a criticality point of view, material substitution increases
demand for the substitute materials, potentially leading to shortages,
and from a CE point of view, additional/different waste might be
generated in the alternative process. There appears to be no intrinsic
contradiction between CE and criticality regarding the goal of material
flexibility/substitution.

The arguments sketched above show there is a potential to mitigate
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criticality through a move towards a more circular economy. This is
most obvious in the case of recycling, where both CE and criticality
discussions align. Less obvious considerations have to do with design
choices and the shorter loops of the CE model, where long-term plan-
ning, including logistics of materials and products — and possibly de-
cisions on trade-offs — will be crucial. A continued transformative
process will be required to provide both the societal basis and the
technical infrastructure for a sustainable future and to ensure a reliable
long-term supply of the raw materials needed by society.
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