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Let B be a finite set of pure binomials in the variables xi , and write IB for the ideal generated by these
binomials. We define a new measure of the complexity of the saturation of the ideal IB with respect to the
product of the xi , which we call the norm of B. We give a bound on the norm in terms of easily computed
invariants of B. We discuss statistical applications, both practical and theoretical.

1. Introduction 169
2. Examples 175
3. Computational experiments 178
4. Proof of the main results 180
Acknowledgements 186
References 186

1. Introduction

1.1. Background. Let A be a k×r matrix with integer entries, and let u ∈Nr be a vector with nonnegative
entries. The fibre containing u is defined as

F(u)= {v ∈ Nr
: Au = Av}. (1.1.1)

Understanding the structure of this fibre is important in a number of statistical tests. For example, the
vectors in Nr might represent tables of data, and the matrix A might output the row and column sums
of these tables, so the fibre consists of all tables with nonnegative entries and with the same row and
column sums as the starting table u. See [Diaconis and Sturmfels 1998] for more details and examples.
In particular, one often wants to generate samples from some probability distribution (often uniform or
hypergeometric) on the fibre. If the fibre is small it is feasible to simply enumerate all the elements of the
fibre. However, in practical applications the fibre is often far too large to enumerate, and the standard
approach is to perform a random walk in the fibre, generating samples via the Metropolis–Hastings
Markov chain Monte Carlo algorithm. In order to perform a random walk, we must upgrade the fibre into
a graph (whose vertices are the elements of the fibre). The requirements for the Metropolis–Hastings
algorithm are rather mild, the key condition is that the graph must be connected (since the random walk
will always remain within its starting connected component).

MSC2010: 13P25, 14M25.
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1.1.1. A random walk in the fibre. The most naive way to convert the fibre into a graph is to choose a
generating set B for the kernel K ⊆ Zr of A as a Z-module, and then form a (simple, undirected) graph
by putting an edge between distinct vertices v1 and v2 whenever v1 − v2 ∈ B or v2 − v1 ∈ B. We say
F(u) is connected by B if the resulting graph is connected. In Section 2 we will see several examples
of B that fail to connect F(u). The major innovation of Diaconis and Sturmfels [1998] was to give an
algorithm to construct a generating set B which connects every fibre of a given matrix A.

1.1.2. Saturated ideals and connected fibres. To describe their result, we need a little more notation. Given
b ∈ B, we write b = b+− b−, both summands having nonnegative entries. In the ring R = Z[x1, . . . , xr ]

we form the elements

xb+
:=

r∏
i=1

x
b+i
i , xb−

:=

r∏
i=1

x
b−i
i , (1.1.2)

and define an ideal IB = (xb+
− xb−

: b ∈ B)⊆ R. Then the key theorem is the following (where we use
[Sturmfels 1996, Lemma 12.2 p. 114] to interpret toric ideals as saturated ideals).

Theorem 1.1 [Diaconis and Sturmfels 1998]. Fix a k× r matrix A, and let B be a generating set for the
integral kernel of A. Suppose the ideal IB is saturated with respect to the element x1 · · · xr ∈ R. Then for
every u ∈ Nr , the fibre F(u) is connected by B.

If IB is saturated, B is often called a Markov basis (though we use the word “basis”, this should not be
interpreted as implying linear independence of the elements of B). The theorem then tells us that we can
generate samples according to our preferred distribution by following the naive random walk algorithm
above using the basis B.

On the other hand, suppose that we have a generating set B such that IB is not saturated. We can (at
least in principal) apply a standard saturation algorithm to IB to produce a saturated ideal, and moreover
the generating set produced will in fact consist of pure difference binomials (i.e. differences of monomials;
see Definition 4.1). Reversing the procedure (1.1.2) we can recover a new generating set B ′ for the kernel
K of A, and following the above theorem of Diaconis–Sturmfels, this generating set will connect all
fibres, enabling efficient sampling.

Thus, when it is possible to compute this saturation, the problem is essentially solved. However,
the standard algorithm for saturation involves r computations of Gröbner bases (where r is the number
of columns as above), and is at present only practical for relatively small examples. General purpose
algorithms (not taking advantage of the toric structure) are available in many packages (such as MAGMA
[Bosma et al. 1997] and Singular [Decker et al. 2019]), and also specialised implementations for the toric
case are available (CoCoa [Bigatti et al. 1999], 4ti2 [Hemmecke et al. 2001–]).

1.1.3. Connected fibres without saturation. The difficulty of computing the saturation motivated Aoki,
Hara and Takemura [Hara et al. 2012] to suggest an algorithm for generating samples without needing
to compute the saturation. They begin in the same way, with a generating set B = {b1, . . . , bn} for the
integral kernel, but instead of making moves consisting of addition or subtraction of a single element of
B, they instead generate n nonnegative integers ai from a Poisson distribution with some chosen mean λ,
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and n elements εi ∈ {+1,−1}, and their move consists of addition of
∑

i εi ai bi if the result lies in the
fibre, and staying put otherwise. Since the Poisson distribution generates every nonnegative integer with
nonzero probability it is immediate that the resulting fibre is connected; in fact, the graph on the fibre is a
complete graph, but with highly nonuniform probability of selecting moves from among edges.

They then perform a number of numerical experiments with various values of λ. In cases where it
was possible to compute the saturation, they show that for careful choice of λ their algorithm performs
comparably to that coming from a Markov basis, and they also illustrate that their algorithm can be applied
in cases where the saturation is too hard to compute (though they can of course provide no guarantee that
their algorithm is converging in reasonable time; it appears to do so, but this might be deceptive if the
fibre has some connected components that are very hard to hit — see Section 1.4).

There is some tension in the use of this algorithm when it comes to choosing the value of λ. If one
chooses λ very large then the algorithm takes a long time before it (appears to) converge. On the other hand,
a small value of λwill product more rapid apparent convergence, but there is a greater risk that one is simply
failing to see one or more connected components of the fibre in the time for which the algorithm is run.

1.2. Results.

1.2.1. A bound on the complexity of the saturation. In the light of the above discussion it is natural to try
to bound how large and complex the saturation of the ideal IB can get. To make this more precise, we
define the norm of the generating set B as follows.

Definition 1.2. Let B be set of n ≥ 1 vectors in Zr . We write IB for the ideal in R = Z[x1, . . . , xr ] as
defined in Section 1.1.2. The norm of B is the smallest integer N ≥ 1 such that there exists a finite
generating set G for the saturation of IB with respect to x1 · · · xr , with the properties that

(1) Every element of G is a pure difference binomial;

(2) Every g ∈ G can be written in the form

g =
N∑

i=1

εi mi (xb+i − xb−i ). (1.2.1)

where the εi ∈ {−1, 0, 1}, the mi are Laurent monomials, and the bi are elements of B.

The main result of this paper is the following explicit bound on the norm. In Sections 1.3.1–1.3.2 we
will show how this can be applied to give new algorithms for sampling from fibres without needing to
compute the saturation.

Theorem 1.3. Let B be set of n ≥ 1 vectors in Zr . Write β for the maximum of the absolute values of the
coefficients of elements of B. Then the norm of B is at most

nnβn−1. (1.2.2)

Our proof (see Section 4.1) is constructive; it gives an algorithm to determine a generating set G as in
the definition of the norm. We do not know whether this algorithm could be practical; it is a-priori less
efficient than procedures using Gröbner bases, but is highly parallelisable.
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The connection of the norm to fibre connectivity and Markov chains runs via the following result
(proven in Section 4.2).

Proposition 1.4. Let A be a k × r integer matrix, and B = {b1, . . . , bn} a basis of the kernel, with B
having norm N. Let u ∈Nr , and construct a graph with vertex set the fibre F(u), and where we draw an
edge from v1 to v2 if and only if v1− v2 can be written as an integer linear combination

v1− v2 =

n∑
i=1

ai bi

with
n∑

i=1
|ai | ≤ N. Then this graph is connected.

Remark 1.5. Given a k× r integral matrix A, note that it is easy to compute a basis B of the integral
kernel of A from the Smith normal form of A. Indeed, if S AT = D is the Smith normal form (so S and
T are invertible, and D diagonal with Di,i | Di+1,i+1), then let 1≤ j ≤ r be maximal such that D j, j 6= 0.
Then an integral basis of the kernel of A is given by T e j+1, . . . , T er , where ei is the i-th standard basis
vector in Zr .

Conversely, while B does not determine A, it does determine the fibres F(u), so the matrix A is not
really essential, but is very relevant to the statistical applications.

1.2.2. Comparison to other results in the literature. Needless to say, we are not the first to try to control
the complexity of the saturation of an ideal in a polynomial ring. Indeed, the standard method of computing
the saturation reduces to a Gröbner basis computation, whose efficient implementation has been the focus
of too much research to begin to list here. Specialising to the case of binomial ideals, the literature is still
much too large to give more than a quick glimpse of. There are general theoretical results on the structure
of fibre graphs; see, e.g., [Gross and Petrović 2013; Hemmecke and Windisch 2015; Windisch 2016;
2019]. There are also many results bounding the degree of the binomials appearing in the saturation [Haws
et al. 2014; Koyama et al. 2015; Sturmfels 1996, Chapter 13], and bounding the Markov complexity; this
is defined in [Santos and Sturmfels 2003], and studied in [Charalambous et al. 2014] and elsewhere.

However, we are not aware on bounds on the norm 1.2 in the literature. Indeed, from an algebraic
point of view it appears a rather unnatural invariant. The reason for studying it comes purely from the
application (via Proposition 1.4) to fibre connectivity and Markov bases. In the remainder of Section 1
we hope to justify it from this point of view, and perhaps motivate further research in this direction. An
unusual feature of our results is that we do not utilise Gröbner bases; this is not from dislike, but simply
because we could not see how to bound the norm from that perspective; we hope that others may have
more success.

1.3. Algorithms.

1.3.1. Bounded-AHT algorithms. Aoki, Hara and Takemura connect the fibre by allowing arbitrarily
large integer linear combinations of elements of the basis B. This is guaranteed to connect the fibre
(since it eventually hits every integer vector), but risks wasting time searching far away from the fibre.
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Proposition 1.4 shows that it actually suffices to take combinations with coefficients bounded by the norm
N of B; this allows us to improve the efficiency of their algorithm, by truncating the Poisson distribution at
N , spending less time exploring far from the fibre. A second algorithm they present (where the coefficients
of the bi are chosen from a multinomial distribution) can be enhanced in a similar way. An even simpler
variant is to choose uniformly at random at each step a vector of L∞-length bounded by the norm.1

We will refer to this class of algorithm as bounded-AHT algorithms, as they are characterised by the
distribution used to select random vectors being of bounded support. We will see in Section 2.1 that, when
a good bound on the norm is available, such an algorithm can be substantially faster than the conventional
AHT algorithm.

The bound on the norm coming from Theorem 1.3 is in general large, so using it for truncation will
not have a large impact on the runtime (though we hope that better bounds on the norm can be found in
the future). On the other hand, if a Markov basis can be computed one can obtain a very tight bound on
the norm, and our algorithm seems to converge substantially faster than that of Diaconis–Sturmfels, so it
is plausible that these bounded-AHT algorithms give the best performance in these cases also.

Another application might be to predicting good values of the constant λ in the AHT algorithm, or
giving heuristic bounds on the convergence time for a given value of λ. The norm N can be seen as the
maximum distance between connected components of the fibre, thus to have a reasonable chance of hitting
all components we should take a number of steps that is very large compared to 1/P(Poissonλ ≥ N ).

1.3.2. The stepping-out algorithm. In the naive algorithm of Section 1.1.1, one starts at a vector v ∈F(u),
and chooses at random an element b ∈ ±B, and considers the step v+ b. If v+ b is in F(u) then this is
returned as the next element of the Markov chain. If v+ b /∈ F(u), then the algorithm simply returns
v. However, if we have a bound on the norm then we can modify the algorithm so that the fibre will
always be connected; if v+ b /∈ F(u) then, rather than returning v, we choose another element b1 from
±B, and consider the vector v+ b+ b1. If v+ b+ b1 lies in F(u) we return v+ b+ b1 as the next step
in the Markov chain, otherwise we repeat, until we either hit F(u) again, or we have taken N consecutive
steps outside the fibre, in which case we return v again. Alternatively, this can be viewed as a weighted
random walk in a certain graph with vertex set F(u). To define this graph, we first define a graph FZ(u)
with vertex set {v ∈ Zr

: Au = Av} and with an edge between v1 and v2 whenever v1− v2 ∈ ±B. Then
we define a graph with vertex set F(u) by putting an edge between two vertices whenever they can
be connected by a path in FZ(u) of length at most N , and which does not intersect F(u) except at its
endpoints. Again, by Proposition 1.4 this new graph is guaranteed to be connected.

In the examples in Section 2.1, the best performance seems to be obtained by bounded-AHT algorithms.
However, we include the stepping-out algorithm because it is an example of a general technique where
one can choose any algorithm to efficiently explore the interior of the fibre, and then add some “small”
extra steps on the boundary to ensure that the resulting graph is connected.

1.3.3. Speed comparisons. In Section 2.1 we describe some numerical experiments to compare the
performance of the four algorithms:

1That is, with the maximum entry bounded by the norm.
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(1) the algorithm of Diaconis–Sturmfels using a Markov basis (DS),

(2) the algorithm of Aoki, Hara and Takemura (AHT);

(3) the bounded-AHT algorithm;

(4) the stepping-out algorithm.

The best results are obtained with the new bounded-AHT algorithm, and the worst with the DS algorithm.
In between, the AHT algorithm is faster than the stepping-out algorithm. But one should not extrapolate
too much from this small collection of examples.

More generally, with Theorem 1.3 and Proposition 1.4 in hand it is easy to propose new sampling
algorithms which guarantee to connect the fibre. The challenge is to design algorithms with reasonable
runtime, at least heuristically (rigorous runtime analysis seems hard but very interesting).

If the fibre F(u) is large with respect to the norm N then designing reasonably efficient algorithms is
not hard, since the runtime will be dominated by time spent in the “interior” of the fibre. On the other
hand, if the fibre is small compared to N then the runtime will be dominated by time spent around the
edge of the fibre looking for new connected components, and will depend sensitively on the norm (or
more precisely, on our bound on the norm).

1.4. Practical consequences.

(1) The norm bounds coming from Theorem 1.3 are in general rather large, so our new algorithms are
unlikely to work very using them. We hope that these bounds can be improved, but in the meantime
we note that one way to get a very good bound on the norm is simply to find a Markov basis. When
this is possible it is conventional to run the algorithm of Diaconis–Sturmfels, but in Section 2.1 we
illustrate that it may in fact be faster to obtain a norm bound form the Markov basis and then apply
the bounded-AHT algorithm.

(2) The AHT algorithm of Section 1.1.3 is proven to converge, and in practice the Markov chain is
often observed to settle down quite fast. Indeed, in practice it is the latter which will generally be
relied upon; people run algorithms until the chain appears to converge. However, there is a critical
problem here. Namely, we see in Section 2.2 examples where the chain will appear to converge
very rapidly, but this “apparent” limit will not be the true limit (the runtime required to achieve
true convergence may easily be arranged to exceed the lifespan of the solar system). We hope that
this kind of pathological behaviour will be very rare in practice, but at present this seems hard to
verify. Our aim in this paper is to get an idea of how long the algorithm should be run in order to
be reasonably confident that the “apparent limit” of the chain is in fact the true limit. We are not
completely successful in this, partly because our bound on the norm is rather large for practical use
(and probably not sharp), and also because passing from the bound in Theorem 1.3 to an estimate
on the convergence time needs substantial further work. We think it is interesting and useful to
investigate this further. In the meantime, we would encourage people using this type of algorithm to
let it run for as long as possible, even after the chain appears to have settled down, to maximise the
change of hitting new connected components.
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2. Examples

2.1. A very simple example. Consider the matrix

A =
[

0 1 2 3
3 2 1 0

]
.

An integral basis for the kernel of A is then given by B = {b, b′} where

b =


1
−2

1
0

 , b′ =


0
1
−2

1

 .
The fibre containing the vector [2 2 2 2]T is illustrated in Figure 1, where red arrows (pointing up and
to the right) correspond to addition of b, and blue arrows (pointing down and to the right) to addition
of b′. Evidently, this fibre is not connected, since the element [4 0 0 4]T is isolated. Thus if our chain
begins anywhere in the large component it will never hit the isolated vertex, and if it begins at the isolated
vertex it will remain there. This has practical consequences, since it is common to simply run such a
Markov chain until it appears (by eye) to have converged; in this example, convergence will be rapid, but
the resulting distribution will not be the expected one (see Section 1.4).

The approach of Diaconis–Sturmfels is to replace the basis B by a larger generating set which makes
the fibre connected. The ideal IB is generated by x1x3 − x2

2 and x2x4 − x2
3 , and its saturation can be

generated by these two polynomials together with the polynomial x1x4− x2x3, the latter corresponding to
the vector [1 −1 −1 1]T . Clearly one can step from [3 1 1 3]T to [4 0 0 4]T by addition of this new
vector, so the fibre is indeed connected by this new generating set for the integral kernel of A.

Our approach is to allow the chain to step briefly outside the fibre while it hunts for vectors with
nonnegative entries. As long as we allow two negative steps the fibre will become connected, as we can
step from [3 1 1 3]T to [4 0 0 4]T via [4 −1 2 3]T or [3 2 −1 4]T ; one sees easily that the norm
is 2. Let us compute the bound resulting from Theorem 1.3: we have β = 2 and n = 2, so our bound is 8.
Thus if we use the bound from the theorem we should allow 8 negative steps; it is clear that this will be
sufficient to connect the fibre, but also that this bound is not optimal.

Remark 2.1. This is an opportune moment to illustrate the necessity of allowing εi = 0 in Definition 1.2.
In the above example the norm is 2. However, there does not exist a generating set G for the saturation of
IB with respect to x1 · · · xr , with the properties that

(1) Every element of G is a pure difference binomial;

(2) Every g ∈ G can be written in the form

g =
2∑

i=1

εi mi (xb+i − xb−i ). (2.1.1)
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Figure 1. A (nonconnected) fibre.

where the εi ∈ {−1, 1}, the mi are Laurent monomials, and the bi are elements of B (this differs
from Definition 1.2 exactly by requiring εi ∈ {−1, 1}).

To see this, suppose that G is such a generating set. Since N = 2 and #G= 2, elementary considerations
yield that every element of G is of one of the following forms:

(1) pxb where p is a polynomial consisting of two monomials with coefficients in ±1;

(2) pxb′ where p is a polynomial consisting of two monomials with coefficients in ±1;

(3) m(x1x4− x2x4) where m is a monomial.

We know that xb lies in the ideal generated by G; translating into vectors, this means that b can be
written as a linear combination b = ab+ a′b′ with a, a′ integer vectors whose entries sum together to an
even number. This is evidently impossible.

2.2. Families where the fibres are arbitrarily badly connected. Consider the 1×3 matrix A= [1 1 1],
and write ei for the i-th standard basis vector in Z3. Let u = e2. Then the fibre F(u)= {e1, e2, e3}. For a
positive integer n, choose the basis

Bn =


 0

1
−1

 ,
 −1

n
1−n
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of the kernel of A. Then the fibre consists of two connected components, namely {e2, e3} and {e1}.
Moreover, to step between the connected components requires (n− 1) consecutive negative steps. Thus
for every positive integer M and every real number λ there exists an integer n such that the algorithm of
Aoki, Hara and Takemura presented in Section 1.1.3 applied to the above basis Bn will appear to converge
immediately, but will take M steps before the probability of hitting the other connected component rises
above any given positive threshold. This issue may be well-known, but this particular example appears to
be new.

This example is quite artificial, as the fibre is essentially simple, but we have made a poor choice of
generating set Bn . We can also construct a slightly less artificial example of the same phenomenon, by
generalising the example in Section 2.1. For an integer n ≥ 2, let

An =

[
1 2 · · · n−1 n
n n−1 · · · 2 1

]
,

and consider the basis of the integral kernel given by

Bn =





1
−2

1
0
0
...

0


,



0
1
−2

1
0
...

0


, · · · ,



0
0
...

1
−2

1




,

where we denote the elements of Bn by b2, . . . , bn−1 in the given order. Then the fibre of [2 · · · 2]T

contains the vector v = [n 0 · · · 0 n]T . This vector v is at least n−2 steps distant from any other point
in the fibre; more precisely, if c1, . . . , cr ∈ ±Bn are such that

v+

r∑
i=1

ci ∈ F(v),

then either r ≥ n − 2 or v+
∑r

i=1 ci = v (the bound n − 2 is in fact sharp). We leave the elementary
verification to the interested reader. Again we see that, though the algorithm of Section 1.1.3 (and variants)
may appear to converge rapidly, there are connected components which take an arbitrarily long time to hit.

2.3. The no-three-factor-interaction model. This model is described in detail (in particular, its statistical
interpretation) in [Aoki et al. 2012]. It depends on a choice of three positive integers I , J and K ; we will
often take I = J = K for simplicity. The matrix A is then an (I J + J K + K I )× I J K matrix, described
in a slightly complicated way. Define I dI to be the I × I identity matrix, and 1I to be a row vector of
length I with all entries equal to 1. Then

A =

I dI ⊗ I dJ ⊗ 1K

I dI ⊗ 1J ⊗ I dK

1I ⊗ I dJ ⊗ I dK

 ,
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where ⊗ represents the Kroneker product of matrices.
Hara et al. [2012] numerically tested their algorithm 1.1.3 on the no-three-factor-interaction model

in the cases I = J = K = 3, 5, and 10. In the case I = 3 the saturation can be computed by Gröbner
basis techniques, but seems presently out of reach I = 5, and worse for I = 10. In each case they
compute a basis for the integral kernel, then run numerical tests of their algorithm for several values of
the Poisson parameter λ, and also occasionally replacing the Poisson with a different distribution (we
are not completely clear on how they chose these parameters and distributions). In the case I = 3 they
compare their results to those obtained using a saturated basis, and observe that the Markov chains coming
from their algorithm converge similarly to those coming from a saturated basis (though for λ= 50 the
convergence is rather slow).

For I = 10 their algorithm does not converge well, but for I = 5 it appears to converge fairly rapidly.
As throughout this paper, the question we are interested in is whether this apparent convergence can
be trusted, or is it possible that there is some connected component of the fibre which their chain has
never hit? Of course, their algorithm will find every component with probability 1 if allowed to run for
unlimited time, but there is no a-priori reason to assume that the time required for this will be in any way
comparable to the time required for the chain to appear to settle down.

To try to get a handle on this, let us compute our upper bound on the number of negative steps required
to walk between components (the “distance between” connected components of the fibre). Using SAGE
we compute the smith normal form of the 75× 125 matrix A, obtaining an integral basis B with n = 64
elements. The largest absolute value of an entry in B is β=1. This leads to an upper bound on the norm by

N ′ = nnβn−1
= 6464

≈ 3.9× 10115. (2.3.1)

Now, in this example Aoki, Hara and Takemura replace the Poisson distribution with a geometric
distribution (for reasons which are unclear to us), and try parameters p= 0.1, 0.5. The proportion of steps
in their algorithm which will exceed N ′ in length is then so small that it is likely never to occur before
the sun runs cold. This means that if the bound N ′ were to be close to the true norm, then this algorithm
will in practice never converge to the correct solution. In practice, our bound on the norm is surely very
far from sharp, but we gave this example to illustrate the difficulty in guaranteeing convergence (despite
the fact that the algorithm might appear to the human eye to have converged).

3. Computational experiments

3.1. The very simple example. For the example in Section 2.1 we implemented four algorithms:

(1) The algorithm of [Diaconis and Sturmfels 1998] using the Markov basis described in Section 2.1
(we refer to this algorithm as DS);

(2) The algorithm of Aoki, Hara and Takemura described in Section 1.1.3 (referred to as AHT);

(3) The bounded-AHT algorithm described in Section 1.3.1, generating vectors uniformly at random of
L∞-length up to some integer at least the norm;

(4) The stepping-out algorithm of Section 1.3.2,
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so that we could compare their results. We considered the fibre containing the vector [10, 10, 10, 10]T

which has 211 elements, as this small example allowed us to run many simulations to get reasonably
accurate timings of the algorithms.

We use the Kolmogorov Smirnov statistic to decide how well a chain has converged. For a chain of
length n in the fibre F := F([10, 10, 10, 10]T ), a perfectly uniform distribution would sample each point
n/211 times. Given a function d : F→ Z with

∑
v∈F d(v)= n we define

KS(d)=max
v∈F
|d(v)−

n
211
|, (3.1.1)

so a larger value of KS(d) indicates that d is further from being uniform.
There are two subtleties to comparing the outputs of the algorithms:

(1) The AHT, bounded-AHT and stepping-out algorithms have parameters that can be tuned: the mean
of the Poisson distribution for AHT and the bound on the norm used in the latter two (even when the
norm is known, as in this example, it is not obvious that using it as the bound will yield the best
convergence). To work around this, we will tune the parameters of all three algorithms to try to get
the best performance out of each for our example.

(2) When comparing runtimes, counting the number of steps in the chain is not a very good measure.
Each step in AHT requires repeated sampling from a Poisson distribution, and steps in the stepping-
out algorithm can involve a number of substeps outside the fibre. Because of this, we will also
compare the actual runtimes, though this is then sensitive to implementation issues.

We produce a chain of n= 211, 000 samples, so that each site expects 1000 samples. Table 1 compares
the Kolmogorov Smirnov statistic and runtime for the four algorithms, making optimised choices of
parameters for the AHT, bounded-AHT and stepping-out algorithms. Table 2, left, shows how the
Kolmogorov Smirnov statistic and runtime for the bounded-AHT algorithm vary with the bound used,
and Table 2, right, shows the same for the stepping-out algorithm.

algorithm DS AHT bounded-AHT stepping-out

KS statistic (lower is better) 309 210.9 162.8 270.5
runtime (s) (lower is better) 174 161.7 98.3 156.1

optimised parameter - λ= 2 N = 3 N = 4

Table 1. Comparison of algorithms (averaged over 20 runs).

Norm bound 2 3 8

KS statistic 177.3 162.8 201.4
runtime (s) 98.8 98.3 96.0

Norm bound 2 4 8

KS statistic 360.8 270.5 305.0
runtime (s) 147.6 156.1 174.3

Table 2. Comparison of norm bounds for bounded-AHT (left) and stepping-out (right),
averaged over 20 runs.
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We make a number of comments on these results; all come with the serious caveat that this is only a
small, simple example.

(1) The improvement obtained by using the bounded-AHT algorithm in place of the original DS algorithm
is quite substantial; both the KS statistic and runtime are close to being halved. This suggests that the
bounded-AHT algorithm is worth investigating even in cases where a Markov basis can be computed.

(2) While bounded-AHT performs best with a norm bound N = 3, its performance with the bound of
N = 8 coming from Theorem 1.3 is still better than any of the other algorithms.

(3) The worst performance is achieved by the DS algorithm (using a Markov basis), perhaps somewhat
surprisingly. Even though this algorithm should explore the boundary of the fibre in a more efficient
way, it probably looses out by exploring the interior less efficiently.

3.2. The no-three-factor-interaction model. Here we took I = J = K = 5, as this beyond the range
where the saturation can currently be computed, and hence it is interesting to investigate other approaches
to sampling. We implemented the stepping-out algorithm described in Section 1.3.2 for this example.
Now, with the given norm bound of order 10115 it is clear that this algorithm will not work well. However,
we remain optimistic that bounds on the norm can be improved, so it seems interesting to investigate
how the runtime of the algorithm depends on the given bound. We do this in a very crude way; we
simply measure the proportion of steps in the algorithm which take place within the fibre (as opposed to
searching for new components outside the fibre). We interpret this as giving a very rough idea of how
much slower the algorithm of Section 1.3.2 will be compared to what could be done if one had a Markov
basis. The results were as follows.

(1) For a fixed fibre, when the norm bound is large compared to the diameter of the fibre, the runtime
seems to be very roughly linear in the given bound on the norm.

(2) For a fixed fibre, when the norm bound is small compared to the diameter of the fibre, the runtime
seems to be relatively insensitive to the size of the bound.

In other words, this might be interpreted as suggesting that the algorithm of Section 1.3.2 will work
reasonably well when the norm bound is not too large compared to the diameter of the fibre.

We did not implement the bounded-AHT algorithm here; for formal reasons it is clear that it must
perform slightly better than AHT, but the size of the norm bound also makes it clear that the difference
will be entirely imperceptible for any practical computation.

4. Proof of the main results

4.1. Proof of Theorem 1.3. Let B = {b1, . . . , bn} be a set of vectors in Zr . Following the notation of
(1.1.2), we write

f +i = xb+i , f −i = xb−i , fi = f +i − f −i
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in the ring R = Z[x1, . . . , xr ]. Then IB = ( f1, . . . , fn) ⊆ R, and our goal is to bound how far the
saturation

Satx1···xr IB = {a ∈ R : ∃m > 0 : a(x1 · · · xr )
m
∈ IB} (4.1.1)

can be from IB .

Definition 4.1. A monomial in R is an element of the form
∏r

i=1 xmi
i with mi ∈ Z≥0. A pure binomial

in R is an element of the form m1 −m2 where the mi are monomials. An ideal I ⊆ R is called pure
binomial if it admits a generating set consisting of pure binomials; evidently, IB is a pure binomial ideal.

Lemma 4.2 [Herzog et al. 2018, Proposition 3.18]. The saturation of IB with respect to x1 · · · xr is also
a pure binomial ideal.

Definition 4.3. Given pure binomials f = f +− f − and g= g+−g−, we define the subtraction polynomial
(again a pure binomial)

S( f, g)= g+ f + f −g = f +g+− f −g−.

If f , g ∈ IB then clearly S( f, g) lies in IB .
We make the unsurprising notational conventions that −−=+, +−=−+=− and ++=+; thus we

interpret f −− = f +, which is less usual, but makes for efficient and hopefully comprehensible notation
in what follows.

Definition 4.4. Let ε : {1, . . . , n} → {+,−}, and let t : {1, . . . , n} → N. Define

S(ε, t)=
n∏

i=1

( f ε(i)i )t (i)−

n∏
i=1

( f −ε(i)i )t (i) ∈ IB, (4.1.2)

(here we use our convention that −−=+ when we write f −ε(i)i ).

Lemma 4.5. Let P be a pure binomial in IB . Then there exist ε, t , and monomials m and n such that

n P = mS(ε, t).

Proof. For the purposes of the proof, we will simplify notation by assuming that for every bi ∈ B, the
element −bi also lies in B.

Let P ∈ IB be a pure binomial. Write P =
∑k

j=1 m j fi j , where the m j are monomials. We can and do
assume that k is chosen minimal, and we proceed by induction on k. The case k = 1 is trivial.

Up to harmless sign changes, there exists a j0 such that m j0 f +i j0
= P+. Reordering, we may assume

that j0 = 1, so

P −m1 fi1 =

k∑
j=2

m j fi j

is again a pure difference binomial. By the induction hypothesis there exist monomials m and n and
vectors ε, t with

m
k∑

j=2

m j fi j = nS(ε, t).
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Write S(ε, t)= S+− S−. Then

m P = nS+− nS−+m1 f +i1
−m1 f −i1

.

Since this is a binomial, up to signs we may assume without loss of generality that nS− = m1 f +i1
. We

can then write
f +i1

m P = n
(

f +i1
S+− f −i1

S−
)
= nS′

where S′ is an iterated subtraction binomial of the fi . �

Theorem 4.6. There exist a positive integer M , functions ε1, . . . , εM and t1, . . . , tM as in Definition 4.4,
and monomials m1, . . . ,mM ∈ R, such that

(1) for all 1≤ j ≤ M we have m j | S(ε j , t j );

(2)

Satx1···xr IB =

(
S(ε j , t j )

m j
: 1≤ j ≤ M

)
.

Proof. Combine Lemma 4.2 and Lemma 4.5. �

Given t : {1, . . . , n}→N we define the L1-length of t to be the sum of its values. To prove Theorem 1.3
it suffices to show that we can choose each of the vectors t j in Theorem 4.6 to have L1-length bounded
by N = nnβn−1, where β is the maximum of the absolute values of entries of vectors in B; compare
(1.2.2)). Given vectors ε of signs and t of natural numbers as in Definition 4.4, observe that the power of
x j dividing S(t, ε) is given by

min
( n∑

i=1

t (i) ordx j f ε(i)i ,

n∑
i=1

t (i) ordx j f −ε(i)i

)
; (4.1.3)

here ordx f denotes the largest power of x which divides f . We say the minimum in (4.1.3) is achieved
on the + side if

n∑
i=1

t (i) ordx j f ε(i)i ≤

n∑
i=1

t (i) ordx j f −ε(i)i ,

and we say the minimum in (4.1.3) is achieved on the − side if
n∑

i=1

t (i) ordx j f ε(i)i ≥

n∑
i=1

t (i) ordx j f −ε(i)i .

Definition 4.7. Given ε : {1, . . . , n} → {+,−} and δ : {1, . . . , r} → {+,−}, we define

Tε,δ = {t ∈ Nn
: ∀1≤ i ≤ r, the minimum in (4.1.3) is achieved on the δ(i) side}.

This set Tε,δ is a rational polyhedral cone in Nn , and for fixed ε we have⋃
δ

Tε,δ = Nn. (4.1.4)
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Given t ∈ Tε,δ, we write

ϕt =
S(ε, t)

r∏
j=1

x
∑n

i=1 t (i) ordx j f ε(i)δ(i)i
j

, (4.1.5)

which we write as a difference of monomials ϕt = ϕ
+
t −ϕ

−
t in the usual way. From the definition of Tε,δ

we see that ϕt ∈ R, i.e. all exponents of the xi are nonnegative.

Lemma 4.8. Fix ε and δ as above, and let t, t1, . . . , ta ∈ Tε,δ such that t = t1+ · · ·+ ta . Then

ϕt ∈ (ϕt1, . . . , ϕta )⊆ R.

Proof. Elementary manipulations yield

ϕt =

a∏
α=1

ϕ+tα −

a∏
α=1

ϕ−tα = S(· · · S(S(ϕt1, ϕt2)ϕt3) · · ·ϕta ). �

Theorem 4.9. For each ε and each δ, choose a generating set τε,δ for the cone Tε,δ. Then⋃
ε,δ

{ϕt : t ∈ τε,δ} (4.1.6)

is a generating set for Satx1···xr IB .

Proof. Let t ∈ Nn , then S(ε, t) ∈ IB , and ϕt ∈ R, hence by definition of the saturation we see that
ϕt ∈ Satx1···xr IB . Conversely, Theorem 4.6 tells us that the ϕt generate Satx1···xr IB as t ranges over Nn .
We must justify why it suffices to consider only t ranging over the set in (4.1.6). Fixing ε, we note that
every t ∈ Nr lies in some Tε,δ by (4.1.4), and then by Lemma 4.8 it suffices to range over elements of a
generating set for Tε,δ. �

Fixing ε and δ, it remains to show that Tε,δ can be generated by vectors of length bounded by
N = nnβn−1. First, we have an elementary lemma.

Lemma 4.10. Let v1, . . . , va ∈ Nn , and let C be the intersection of Nn with the rational cone spanned by
the vi . Then C is generated by

C ∩
{ a∑

i=1

λivi : λi ∈ [0, 1)
}
∪ {v1, . . . , va}.

Observe that the faces of Tε,δ are defined by the equations
n∑

i=1

t (i) ordx j f ε(i)i =

n∑
i=1

t (i) ordx j f −ε(i)i ; (4.1.7)

thus the extremal rays of Tε,δ are obtained by solving n− 1 equations of the form (4.1.7). Let β be the
maximum of the absolute values of the ordx j fi = bi, j as i and j vary. Observing that for any given i
and j at least one of ordx j f ε(i)i and ordx j f −ε(i)i is equal to zero, we can rearrange these equations to
the form

∑
i βi, j,ε t (i)= 0 with βi, j,ε an integer of absolute value not greater than β. By Siegel’s lemma,
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the L1-length of such a (nonzero) solution is then bounded above by (nβ)n−1. From Lemma 4.10, and
cutting into simplicial cones, we see that Tε,δ can be generated by vectors of length at most N = nnβn−1,
concluding the proof.

4.1.1. Detailed description of the Tε,δ . The Tε,δ for fixed ε and varying δ resemble the cones of a complete
polyhedral fan in Nn in the sense of [Fulton 1993]. More precisely, they form a collection of polyhedral
cones in Nn which cover Nn and such that the intersection of any two cones is a face of both. However,
they do not quite form a fan, for two reasons:

(1) it can happen that Tε,δ = Tε,δ′ for δ 6= δ′;

(2) the intersection of two Tε,δ does not necessarily occur among the Tε,δ.

However, by throwing away duplicate cones and appending the intersections of cones, one does obtain a
complete fan. The corresponding toric variety is then a toric blowup of affine space An .

In the example of Section 2.1 we have n = 2 and r = 4, and so the fans can readily be drawn for each ε.
We use this to illustrate the above comments in Table 3.

To explain this in more detail for the case ε = (+,+) (i.e. ε taking the constant value +), the fan is
obtained by subdividing N2 along the rays through (1, 2) and (2, 1). For each δ we describe in Table 4
the fan T(+,+),δ.

Our main work in this proof is to bound the lengths of generators for these cones. The general bound
we obtained is N = nnβn−1, which in this case yields N = 8. However, just from studying the last row of
Table 3 we see that we can take a generating set to be

(1, 0), (0, 1), (1, 2), (2, 1), (1, 1). (4.1.8)

In particular, we obtain a bound on the norm of 3. This is very close to sharp, as we saw in Section 2.1
that the norm is 2. This illustrates that a major source of nonsharpness in our bound is the application
of Siegel’s lemma below. It seems reasonable to hope that one can find better bounds on the norm by
studying Hilbert bases for the cones Tε,δ.

ε (+,+) (+,−) (−,+) (−,−)

rays generating fan (1,2), (2,1) - - (1,2), (2,1)

fan

generating set (0,1), (1,0), (1,0), (0,1) (1,0), (0,1) (0,1), (1,0),
for all cones (1,2), (2,1), (1,1) (1,2), (2,1), (1,1)

Table 3. The fans generated by the Tε,δ.
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δ(1)δ(2)δ(3)δ(4) cone

++++ {(0, 0)}
+++− {(0, 0)}
++−+ {(0, 0)}
++−− {(0, 0)}
+−++ {(0, 0)}
+−+− 〈(0, 1)〉
+−−+ {(0, 0)}
+−−− {(0, 0)}
−+++ {(0, 0)}
−++− 〈(1, 2), (2, 1)〉
−+−+ 〈(1, 0)〉
−+−− 〈(0, 1), (1, 2)〉
−−++ {(0, 0)}
−−+− 〈(1, 0), (2, 1)〉
−−−+ {(0, 0)}
−−−− {(0, 0)}

Table 4. The cones T(++),δ.

4.2. Proof of Proposition 1.4. Let G be a generating set for the saturation as in Definition 1.2. Each
g ∈ G is a pure difference binomial, say g = xc+

− xc− with c+, c− ∈ Nr , and can be written in the form

g =
N∑

i=1

εi mi f ji ,

with εi ∈ {1, 0,−1}, mi monomials, and f j as in Section 4.1. Writing c = c+ − c−, it suffices (by
Theorem 1.1) to show that c can be written as c =

∑n
i=1 ai bi with

∑n
i=1|ai | ≤ N .

We wish to prove this by induction on N , but this makes no sense as N is the norm. Instead we
rephrase things slightly so that induction makes sense, resulting in the following lemma.

Lemma 4.11. Let M be a positive integer, and suppose that the expression

M∑
i=1

εi mi f ji , (4.2.1)

is a pure binomial xc+
− xc− , where εi ∈ {1,−1}, and the mi are monomials. Then there exist integers

a1, . . . , an with
∑n

i=1|ai | ≤ M and c+− c− =
∑n

i=1 ai bi .

It is clear that the lemma (applied with M = N ) implies Proposition 1.4, so it only remains to verify the
lemma.

Proof. For a warmup we treat first the case M = 1. Then

xc+
− xc−

=±m(xb+j1 − xb−j1 )=±(xd+b+j1 − xd+b−j1 )
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where we write m = xd for some d ∈ Nr . Hence

c+− c− =±((d + b+j1)− (d + b−j1))=±b j1

as required.
We prove the general case by induction on M . First, up to changing some signs, observe that we can

reorder the terms in the expression (4.2.1) so that mM f +jM
= xc+ , hence we can assume that

∑M−1
i=1 εi mi f ji

is also a pure binomial, say
M−1∑
i=1

εi mi f ji = xc′+
− xc′− .

By our induction hypothesis we can write c′+− c′− =
∑n

i=1 a′i bi with
∑n

i=1|a
′

i | ≤ M − 1. Then

M−1∑
i=1

εi mi f ji = xc′+
− xc′−

= xc+
− xc−

− εM mM(x
b+jM − xb−jM ),

and we can (again changing some signs, without loss of generality) assume that εM = +1 and that
xc−
= mM xb+jM . Writing mM = xd , we see

• xc+
= xc′+ , so c+ = c′+;

• xc−
= xd+b+jM , so c− = d + b+jM

;

• xc′−
= mM xb−jM = xd+b−jM , so c′− = d + b−jM

.

Putting these together we see

c+− c− = c′+− c− = (c′+− c′−)+ (b+jM
− b−jM

)= (c′+− c′−)+ b jM ,

from which the result is immediate. �
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