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Key Points: Host blood transcriptomes are altered in tuberculosis, and further 

altered with diabetes co-morbidity. We have shown that there is similar resolution of 

transcriptomes through treatment, but with differing magnitude and kinetics in TB 

patients with or without diabetes.  
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Abstract 

Background 

People with diabetes are more likely to develop tuberculosis (TB) and to have poor TB 

treatment outcomes than those without. We previously showed that blood transcriptomes in 

people with TB-diabetes (TB-DM) co-morbidity have excessive inflammatory and reduced 

interferon responses at TB diagnosis. It is unknown whether this persists through treatment, 

potentially underlying adverse outcomes.  

Methods 

Pulmonary TB patients were recruited in South Africa, Indonesia and Romania, and 

classified as having TB-DM, TB with prediabetes, TB-related hyperglycaemia or 

uncomplicated TB, based on glycated haemoglobin (HbA1c) concentration at TB diagnosis 

and after 6 months of TB treatment. Gene expression in blood samples collected at 

diagnosis and at regular intervals throughout treatment was measured by unbiased RNA-

Seq and targeted Multiplex Ligation-dependent Probe Amplification.  

Results  

Gene expression was modulated by TB treatment in all groups but to different extents, such 

that differences remained in people with TB-DM relative to TB-only throughout, including 

genes involved in innate responses, anti-microbial immunity and the inflammasome. People 

with prediabetes or with TB-related hyperglycaemia had gene expression more similar to 

people with TB-DM than TB-only throughout treatment. The overall pattern of change was 

similar across clinical groups irrespective of glycaemic index, permitting models predictive of 

TB treatment to be developed. 

Conclusions 

The exacerbated transcriptome changes seen in TB-DM take longer to resolve during TB 

treatment, indicating that prolonged treatment or host-directed therapy may be needed to 
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improve TB treatment outcomes. Development of transcriptome-based biomarker signatures 

of TB-treatment response should include people with diabetes to be useful across 

populations.   
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Introduction 

Diabetes mellitus (DM) negatively impacts TB control by increasing the risk of 

Mycobacterium tuberculosis infection [1] and of progression to active TB disease three-fold 

[2, 3]. The growing prevalence of DM, particularly in countries with high TB burden, means 

DM now underlies around 15% of TB cases globally [4], accounting for 10% of TB deaths in 

HIV-negative people. Concomitant DM negatively impacts TB-treatment outcomes, with 

increased risk of delayed sputum conversion, relapse, treatment failure and death: relative 

risk for each poor outcome is ~2 to ~5 in meta-analyses [5, 6]. It is unknown whether 

extending standard TB treatment would improve outcome for TB-DM comorbid patients, or 

whether alternative treatment is required, such as host-directed therapy. 

Worldwide DM prevalence is ~463 million people, estimated to rise to 700 million by 2045 

[7]. The majority of people have type-2 DM, caused by a reduction in insulin’s ability to 

control target cell metabolism triggering an increase in insulin production, pancreatic 

damage through exhaustion, and impaired glucose tolerance. There is a spectrum from 

normal through to full DM via intermediate hyperglycaemia (IH). People with IH are more 

likely to develop DM in the future [8]. HbA1c concentration can indicate an individual’s 

position on this spectrum [8]. Infectious diseases, including TB, can cause temporary stress 

hyperglycaemia, which carries a higher risk of adverse events than longer-term pre-diabetes 

[9]. TB-induced stress hyperglycaemia also makes DM diagnosis difficult: some people with 

apparent newly-diagnosed DM at TB diagnosis no longer reach DM diagnostic criteria after 

TB treatment [10]. TB incidence and TB-DM treatment outcomes are worse in people with 

poorly controlled DM with higher HbA1c concentrations [11].  

People with TB-DM comorbidity have altered immunity compared to uncomplicated 

TB, with both innate and adaptive immune responses affected [12]. In plasma, various 

inflammatory cytokines such as IL-1β, IL-17A, IFNγ and TNFα are more elevated in TB-DM 

[13, 14] and TB-pre-diabetes [15] than in uncomplicated TB. People with TB-DM have more 

circulating Th1 and Th17 cells and fewer Tregs. In uncomplicated TB, peripheral immune 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 8, 2022. ; https://doi.org/10.1101/2022.02.07.22269422doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.07.22269422
http://creativecommons.org/licenses/by-nd/4.0/


7 

 

responses typically resolve to normal levels during successful TB treatment [14]. In contrast, 

the excessive inflammatory plasma cytokine responses in TB-DM are still evident after 

treatment completion [16], and dendritic cell, monocyte [17] and T cell differentiation [18] 

aberrations are still present at 2 months, although resolved by 6 months, indicating a 

delayed response to TB treatment in TB-DM patients.  

Transcriptomic technologies have delineated altered peripheral immunity in TB in 

multiple studies, revealing an enhanced circulating inflammatory and type 1 interferon 

response [19-22]. With successful TB treatment, the transcriptomic signature is rapidly 

downregulated, has largely diminished after two months of treatment and mostly disappears 

by 12 months [20, 22, 23], mirroring clinical resolution and chest X-ray improvement; 

however transcriptomes do not fully resolve with poor TB treatment outcome [24]. We 

recently showed [25] that DM comorbidity, as well as IH, significantly affects the TB 

diagnosis biosignature, causing an enhanced inflammatory but reduced interferon response. 

The impact of DM on transcriptomes through TB treatment has not been described. The aim 

of this study was to determine whether transcriptomic biosignatures resolve normally in TB-

DM, or whether changes during TB treatment are kinetically or qualitatively different to those 

in uncomplicated TB. 

  

Methods 

Patient recruitment and classification.  

Newly diagnosed  patients with bacteriologically confirmed pulmonary TB, with or 

without concomitant DM, were recruited in three locations: Bandung, Indonesia (UNPAD), 

Cape Town, South Africa (SUN) and Craiova, Romania (UMFCV), as part of the TANDEM 

project [26]. Exclusion criteria were multi-drug-resistant TB, HIV positivity, pregnancy, other 

serious co-morbidity or corticosteroid use. All participants gave written informed consent. 

The study was approved by LSHTM Observational Research Ethics Committee 

(6449/July2013), SUN Health Research Ethics Committee (N13/05/064/July2013), UNPAD 
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Health Research Ethics Committee (377/UN6.C2.1.2/ KEPK/PN/2012), and UMFCV 

Committee of Ethics and Academic and Scientific Deontology (94/September2013).  

All TB patients underwent first line TB treatment according to WHO guidelines. Most 

patients diagnosed with DM received local standard of care treatment, and medication taken 

was noted. A TB-DM subgroup within the Indonesian cohort had intensive HbA1c monitoring 

as part of a pragmatic randomised control trial, with DM medication changed accordingly 

[27]. Participants were classified by DM/glycaemia status at TB diagnosis and after 6 months 

TB treatment (Supplementary Table S1). The “TB-DM” group included patients with both 

pre-existing and newly diagnosed DM (Supplementary Table S2) Newly diagnosed TB-DM 

had laboratory HbA1c test ≥6.5% with confirmatory HbA1c test ≥6.5% or fasting blood 

glucose ≥7 mmol/L at TB diagnosis [26, 28] , followed by a further HbA1c test ≥6.5% after 6 

months of TB treatment. Patients whose HbA1c test results were ≥5.7% and <6.5% at both 

TB diagnosis and at 6 months were deemed to have pre-diabetes  (“TB-preDM”). Patients 

whose HbA1c result was ≥5.7% at TB diagnosis but below <5.7% at 6 months were deemed 

to have TB-related intermediate hyperglycaemia at TB diagnosis (“TBrel-IH”). All groups 

were evenly sex balanced, except for male predominance in TB-PreDM. Age ranges were 

similar across groups. In the Indonesian TB-DM group, there was a highly significant 

decrease in HbA1c through TB treatment, likely due to intensive DM follow-up 

(Supplementary Figure S1 & Supplementary Table S1); this was not evident in South Africa 

or Romania.   

Sample collection and RNA extraction 

Venous blood samples (2.5ml) were collected into PAXgene Blood RNA Tubes 

(PreAnalytiX) from TB patients prior to TB treatment initiation (W0) and at intervals through 

treatment (W2,4,8,16,26) up to 12 months post diagnosis (W52), and stored at -80oC prior to 

analysis. Total RNA was extracted using RNeasy spin columns (Qiagen) and quantified by 

Nanodrop (Agilent).  

Unbiased whole genome RNA-Seq 
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A detailed description of RNA-Seq analysis is given in Supplementary Methods. 

Samples were processed using the poly-A tail Bioscientific NEXTflex-Rapid-Directional 

mRNA-seq method and single-end sequenced. Longitudinal differential gene expression 

analyses were performed on normalised data using the MaSigPro (v1.62.0) [29] package in 

R. MaSigPro follows a two-step regression method to find genes with significant temporal 

expression changes and significant differences between groups. Modular analysis was 

performed on genes that were differentially expressed between clinical groups. 

Targeted gene expression profiling  

Targeted gene expression profiling was performed using dual-color Reverse-

Transcriptase Multiplex Ligation-dependent Probe Amplification (dcRT-MLPA) [30]: a 

detailed description is given in Supplementary Methods. Primers and half-probes were 

designed for 4 housekeeping genes and 144 selected key immune TB-related genes 

(Supplementary Table S3). Longitudinal differentially expressed genes (DEGs) within groups 

were identified using linear mixed models. Signatures with the best discriminatory capability 

were identified using logistic regression with lasso regularization (glmnet R package).  

 

Results 

Global longitudinal transcriptomes in TB-DM  

Gene expression was determined in venous blood by RNA-Seq in a subgroup of 

study participants from the four TB patient clinical groups (Supplementary Table S1; 

Supplementary Figure S1). The molecular degree of perturbation (MDP) of gene expression 

in individual samples from patients with TB-only or TB-DM over time was calculated relative 

to mean gene expression at diagnosis in TB-only (Figure 1). As expected, there were gene 

expression changes during TB treatment in the TB-only group, evident by week 2 and 

continuing throughout treatment. Global gene expression was perturbed in patients with TB-

DM relative to TB-only at TB diagnosis, and while there was some resolution through time, 
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the changes were reduced such that global gene expression in the TB-DM group remained 

different to the TB-only group at all time points (Figure 1).  

The MaSigPro analysis package identified 167 genes with significantly different 

changed expression between TB-DM and TB-only groups through TB treatment, in the 

combined dataset from South Africa, Indonesia and Romania. Hierarchical clustering of 

these genes based on similar expression patterns yielded 9 clusters (Figure 2; 

Supplementary Table S4). Clusters which were more highly expressed in TB-DM patients 

throughout treatment (clusters 1,2,4&8) were enriched for genes involved in the innate 

immune response, IL-4 signalling, protein dimerisation and neutrophil chemotaxis, 

determined using the DAVID Functional Annotation Tool [31] (Table 1). Cluster 6 exhibited 

divergence between TB and TB-DM patients only at week 8 of treatment: this cluster was 

enriched for genes involved in anti-viral and IFN signalling responses. Clusters more highly 

expressed in TB-only patients (clusters 5,7,9) were smaller and enriched for alternative 

splice variants and immunoglobulins.  

Aberrant longitudinal transcriptomes in TB patients with intermediate hyperglycaemia  

Previously [25] we showed gene expression in TBrel-IH is more similar to people with 

diagnosed DM than with TB-only at TB diagnosis. We repeated the MaSigPro analyses 

separately for South Africa and Indonesia, combining all those patients with raised glycaemic 

indices but not DM at TB diagnosis, to determine how transcriptomes changed through TB 

treatment in intermediate groups (Supplementary Figure S2). In South Africa, the analysis 

resulted in 1,179 transcripts separated into three hierarchical clusters, which changed 

through treatment differently across clinical groups (Supplementary Figure S2A; 

Supplementary Table S5), with the combined intermediate group behaving  more similarly to 

TB-DM. Similar results were obtained with the Indonesian cohort, with 2,354 transcripts 

across 4 hierarchical clusters behaving differently between clinical groups (Supplementary 

Figure S2B; Supplementary Table S6).  

A core list of 102 genes overlapped between MaSigPro analyses for the combined 

cohort from Romania, South Africa and Indonesia, and from the latter two populations 
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separately (Supplementary Figure S3; Supplementary Table S7). Gene ontology and 

pathway analyses of this core list using the g:profiler webtool revealed functional enrichment 

of genes involved in the immune response, response to biotic stimuli, and gene products 

localising to intracellular vesicles (Supplementary Figure S4). We hypothesised there would 

be differences between the TB-preDM and TBrel-IH groups, due to persistence or resolution 

of hyperglycaemia through TB treatment; however, both TB-preDM and TBrel-IH patients 

responded more similarly to TB-DM than to TB-only patients (Figure 3). Longitudinal mixed 

effects model analysis of mean expression within core gene list clusters showed highly 

significant changes across all four clinical groups throughout treatment, with differences 

between the groups in larger gene clusters (Supplementary Table S8). Importantly, there 

was no interaction between clinical group and time, showing there was resolution of 

expression in all groups through treatment, albeit from different starting points and at 

different rates.  

Modular analysis of differentially expressed genes (DEGs) 

DEGs identified in MaSigPro analyses were used in modular analyses to understand 

biological differences between clinical groups in South Africa and Indonesia (Supplementary 

Table 9 and 10 respectively). The most statistically significant modules were investigated 

further by calculating their modular activity in TB-DM relative to TB-only through time. The 

top module in both populations was immune activation, which was upregulated in TB-DM 

compared to TB-only throughout treatment. In both populations, different  modules fluctuated 

between TB-DM and TB, and behaved inversely to one another through treatment (Figure 

4). 

Impact of DM on TB treatment response using targeted gene expression profiling 

We performed targeted profiling of TB-relevant immune gene expression in an expanded 

cohort from South Africa with more intensive sampling, using dcRT-MLPA(Supplementary 

Table S11A). At baseline, the overall MDP was similar in all study groups compared to 

healthy controls (Supplementary Figure S5A); Partial Least Squares – Discriminant Analysis 

separated DM-only patients from other groups including healthy controls, suggesting distinct 
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genes are perturbed in DM-only (Supplementary Figure S5B; [25]). Gene expression was 

strongly correlated between TB-only and TB-DM, TB-preDM or TBrel-IH, but with some 

outlier genes which were affected by glycaemic status (Figure 5A). There were more DEGs 

relative to healthy controls in the TB-DM, TB-preDM and TBrel-IH groups than TB-only, at 

TB diagnosis and throughout treatment (Figure 5B). Normalisation of expression of genes 

such as GNLY and GBP1 occurred by 2 weeks in the TB-only group but was delayed in TB-

DM, TB-preDM and TBrel-IH. Results from targeted dcRT-MLPA analysis were thus in 

accordance with the global RNA-Seq analysis.  

Longitudinal MDP analysis in the South African and Indonesian cohorts indicated the 

magnitude of transcriptomic response to TB treatment was dependent on 

diabetes/glycaemia with TB-DM patients displaying the largest gene expression perturbation 

over time (Figure 6A, Supplementary Figure S6A). Gene expression changes through 

treatment, identified by Linear Mixed Models, showed some consistency across TB groups, 

with the South African cohort exhibiting downregulation of GBP5, GBP1, and IFITM3 (Figure 

6B) and the Indonesian cohort showing downregulation of GBP5 and IFITM3 and 

upregulation of GNLY (Supplementary Figure 6B) from diagnosis to 6 months. Importantly, 

the number of upregulated DEGs in response to TB treatment increased with glycaemic 

index in both cohorts (South Africa: TB-only:6 DEGs, TB-preDM:10 DEGs, TBrel-IH:12 

DEGs, TB-DM:14 DEGs; Indonesia: TB-only: 9 DEGs, TBrel-IH:13 DEGs, TB-DM:22 DEGs). 

Notably, no DEGs were detected between 6 and 12 months in the South African cohort, 

except for GBP5 (p < 1e-10) in patients with TBrel-IH (Supplementary Figure S7).   

Ingenuity Pathway Analysis showed the majority of treatment-response DEGs in TB-only 

and TB-preDM were Interferon-signaling genes (ISGs) (Figure 6C, Supplementary Figure 

S6C). In contrast, in TBrel-IH and TB-DM patients, although downregulation of ISGs through 

treatment was observed, the major change was upregulation of genes associated with 

adaptive immunity (T-cell subset markers, Th1-associated genes, Treg-associated genes, 

cytotoxicity markers). Overall, the dcRT-MLPA confirmed that although TB-associated gene 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 8, 2022. ; https://doi.org/10.1101/2022.02.07.22269422doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.07.22269422
http://creativecommons.org/licenses/by-nd/4.0/


13 

 

profiles show similar pattern and rate of change in TB patients and TB-DM, the magnitude is 

different.  

Identification of a signature for TB treatment-response  

As TB transcriptomic signatures were altered in people with DM or IH, we identified 

signatures with the highest classifying power to discriminate between patients at diagnosis 

and end of TB treatment irrespective of diabetes/glycaemia by pooling all TB patients, using 

logistic regression with lasso regularisation. Initially, signatures were developed in the South 

African and Indonesian cohorts separately (Table 2; Supplementary Table S12). The 

classifying capability of each signature against the training (AUC range: 0.73 – 1.0) and 

validation (AUC range: 0.69 – 0.92) cohorts for each clinical group was reasonably good 

(Figure 7A&B, Supplementary Figure 8A&B). To improve the classification performance and 

reduce cohort dependency, the datasets of both cohorts were pooled, and a combined two 

cohort 15-gene signature developed. This showed enhanced classification performance 

across the cohorts, with ROC analysis showing AUCs of 0.88 for TB-only, 0.96 for TBrel-IH 

and 0.85 for TB-DM, with excellent classification retained in individual cohorts (Figure 7C; 

Supplementary Figure 8C). The kinetic profiles of 6 representative genes are shown in 

Supplementary Figure S9.   

 

Discussion 

In this longitudinal analysis of blood transcriptomes, excessive gene expression 

perturbation previously described at TB diagnosis [13, 25] continued throughout six months 

of TB treatment in pulmonary TB patients with diabetes co-morbidity. However, qualitatively 

and kinetically similar changes occurred in patients with or without diabetes, suggesting 

prolonged TB treatment might be sufficient to restore normal transcriptomes. TB patients 

with either pre-diabetes or TB-related IH also exhibited greater magnitudes of gene 

expression perturbation throughout treatment, similar to patients with diagnosed diabetes. 

The overall consistency in change of gene expression through treatment, irrespective of 
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glycaemic index, enabled derivation of accurate predictive models of TB treatment response, 

which could be used effectively in populations with or without diabetes. 

Diabetes has a negative effect on TB treatment outcomes [5, 6], for unclear reasons. 

One explanation could be a qualitatively different immune response in diabetes, leaving 

people persistently susceptible to bacterial replication and disease reactivation. An 

alternative explanation is that excessive inflammation and immune activation at diagnosis in 

TB-DM means patients require longer or, more likely, different treatment to reach the same 

endpoint as people with uncomplicated TB, so that they are not left susceptible to TB 

recurrence. Our data support the latter model, as all gene clusters differentially expressed 

between clinical groups exhibited similar changes, but of different magnitude. Bronchial 

spread often persists beyond treatment initiation, with new or expanding cavities appearing 

on PET-CT scans 4 weeks into treatment in one-fifth of pulmonary TB patients [32]. 

Plausibly, increased ongoing bacterial spread in patients with diabetes co-morbidity causes 

persistent pro-inflammatory responses: the peripheral transcriptome correlates with lung 

inflammatory activity in TB patients [33]. Restoration of normal transcriptomes, and 

presumably improved lung resolution, could potentially also be achieved by co-

administration of host-directed therapy alongside standard treatment. Therapy which 

dampens pro-inflammatory responses, such as corticosteroids or matrix metalloproteinase 

inhibitors [34], would have added benefit by reducing lung damage, which often persists after 

microbiological cure [35]. Anti-hyperglycaemic therapy, such as metformin, leads to more 

balanced, less inflammatory responses to M.tuberculosis [36], and has been suggested as 

adjunctive therapy for TB, particularly in patients with diabetes [37]. Our transcriptomic data 

suggest that patients with either pre-diabetes or TB-related IH would also benefit from 

prolonged or adjunctive host-directed therapy, in alignment with observed worse TB 

treatment outcomes in people with transient hyperglycaemia [38].   

The ability to monitor TB treatment and predict outcome would be beneficial for 

clinical management. We show that transcriptomic models can be derived from host blood 
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which reflect TB treatment-response irrespective of glycaemia. The best models include 

genes involved in interferon signalling, known to be suppressed at TB diagnosis in TB-DM 

patients [25], which we found were enhanced mid-way through treatment but did eventually 

resolve by 6 months. People protected against TB development display balanced 

prostaglandin 2 and lipoxin expression in lungs, preventing TB disease progression following 

infection [39]. Drugs which target 5-lipoxygenase restrict lung pathology and reduce bacterial 

replication in murine models, by lowering the type 1 interferon response; the increases 

through treatment in the TB-DM cohort may relate to sustained infection and accompanying 

inflammation. In TB-DM patients the inflammation-related genes resolved more linearly 

through TB treatment, but remained elevated to the end of TB treatment, persisting until 12 

months post-diagnosis in the South African cohort. In future studies, it would be important to 

test whether prolonged treatment with standard therapy impacts blood transcriptomes 

beyond the 6 month time point. Increased doses of anti-TB drugs might also lead to better 

treatment outcomes in TB-DM.  In a companion paper (van Doorn et al, [40] unpublished), 

transcriptomic signatures indicative of treatment outcome have been derived that can be 

used in patients with either DM or IH. Together, these papers show that signatures related to 

poor TB outcome are distinct from the excessive and prolonged inflammation observed in 

TB-DM.   

These findings further illustrate how comorbidity with diabetes affects the host 

response to M.tuberculosis infection, and how a better understanding of these interactions 

could be exploited to reduce poor TB treatment outcomes associated with TB and diabetes 

comorbidity. 
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Table 1: Clusters of genes differentially expressed between TB-DM and TB-only 
patients in MaSigPro analysis of the combined RNA-Seq dataset from South Africa, 
Indonesia and Romania 

Cluster  Overall pattern 
 

Number of 
transcripts 

Gene Function Top Non-redundant 
Functions from 

DAVID# 

Protein 
Coding 

Processed 
Transcript 

Pseudo-
gene 

Regulatory 
RNAs* 

 

1 Higher in TB-DM 
throughout; 

decreasing with 
time 

27 19 0 2 6 Innate Immunity 
Antimicrobial 

RAGE receptor binding 

2 Higher in TB-DM 
throughout; 

decreasing with 
time 

50 28 5 4 13 IPAF inflammasome 
IL-4 signalling 

Transmembrane 
helices 

3 Lower in TB-DM 
throughout; 

decreasing with 
time 

6 6 0 0 0 Disulphide bond 
Inflammation/fibrosis 

4 Higher in TB-DM 
throughout; 

increasing with 
time 

17 11 3 0 3 Coiled coil 
Protein homo-
dimersiation 

5 Lower in TB-DM 
throughout; 

increasing with 
time 

9 8 1 0 0 Collagen-binding 
Alternative splicing 

phosphoprotein 

6 Higher in TB-DM 
at week 8, 

otherwise similar 

28 22 1 0 5 GTPase activity 
Anti-viral defence 

IFNγ signalling 
7 Lower in TB-DM 

throughout; 
rising end 
treatment 

10 4 1 0 5 Splice variant 

8 Higher in TB-DM 
throughout; 

decreasing with 
time 

16 13 2 0 1 Secreted 
Neutrophil chemotaxis 
Transmembrane helix 

9 Lower in TB-DM 
at week 8 and 24, 
otherwise similar 

4 3 0 0 1 Immunoglobulins 

 

#DAVID [31] analysis of GO terms  BP, MF, CC direct  UP-Keywords 
*Retained introns, Antisense, LncRNA, miRNA, nonsense-mediated decay, sense overlapping, sense 
intronic, snoRNA,  
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Table 2: Gene expression signature predicting month 6 versus diagnosis, obtained by 
pooling the study groups and cohorts (South Africa + Indonesia)  

Gene   Module  Coefficient  

Intercept     -14.99967  

BLR1  G protein-coupled receptors  0.07841  

CCL13  Chemokines  0.40415  

CCL4  Treg associated genes  0.66015  

CD19  Immune cell subset markers - B cells  0.2371  

CD3E  T cell subset markers  0.35071  

CD4  T cell subset markers  0.00263  

FCGR1A  IFN signaling genes  -0.48224  

FPR1  Myeloid-associated genes  -0.1725  

GBP5  IFN signaling genes  -0.16957  

IFIT5  IFN signaling genes  0.0172  

NLRP1  Inflammasome components  0.3498  

PTPRCv1  T cell subset markers  0.6625  

TAP1  IFN signaling genes  -0.51107  

TNF  Th1 associated genes  0.06539  

ZNF532  Transcriptional regulators/activators  0.06389 
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Figure legends 

 

Figure 1: Molecular Degree of Perturbation Plots representing change in global gene 

expression in blood relative to patients with TB-only at TB diagnosis. Gene expression 

was determined by RNA-Seq of whole venous blood from pulmonary TB patients from all 

three clinical locations with (TB-DM: n=34) or without (TB-only: n= 18) concomitant diabetes, 

at TB diagnosis and during TB treatment. The bars show the median and 1.5*inter-quartile 

range.  

 

Figure 2: MaSigPro analysis of change in gene expression through TB treatment in 

blood samples from patients in all 3 populations combined (South Africa, Indonesia 

and Romania). MaSigPro identified genes that behave similarly between patient groups 

using hierarchical clustering. Results are shown for log-transformed normalised count for the 

TB-only group or TB-DM. Bars show mean ± 1 SEM. Data were filtered to remove lowly 

abundant transcripts prior to analysis. 

 

Figure 3: Gene expression through treatment in TB patients with Pre-diabetes or TB-

related intermediate hyperglycaemia, relative to TB-DM and TB-only patients. The 

expression of genes in the Core 102 genelist (Supplementary Table S7) was summed for 

those genes within each MaSigPro gene cluster (Figure 2) for individual patients (log2 scale). 

Only MaSigPro clusters with > 3 genes in the core gene list are shown. Points show the 

mean ± SEM for each of the four clinical groups at each timepoint.  

 

Figure 4: Modular activity of the most significant modules in TB-DM relative to TB-

only in A) South Africa and B) Indonesia. Modular analysis was performed between TB-

DM and TB-only patients and the most statistically significant were chosen (p-value <0.05). 

Modular activity calculated by summing the expression of genes within a module and 

dividing by the number of genes within that module. 
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Figure 5. Gene expression profiles in TBrel-IH and TB-DM are not completely 

normalised to healthy control profiles at the end of TB treatment. A) Scatter plots 

representing Pearson correlations between expression of all genes in targeted dcRT-MLPA 

panel in TB patients relative to healthy controls (y-axes) versus the other study groups 

relative to healthy controls (x-axes), plotted as log2 FC. Red line corresponds to line of best 

fit and shaded bands indicate confidence intervals. Genes regulated log2 FC <-0.6 or > 0.6 

are annotated.  B) Differential Expression Analysis was performed on GAPDH-normalized 

log2-transformed targeted gene expression data of the South African cohort. Volcano plots 

representing DEGs at diagnosis and at different timepoints post TB treatment initiation of TB 

patients categorized based on their diabetes/glycaemia status compared to the healthy 

controls. The y-axis scales of all plots are harmonized per study group. P-values, -log10-

transformed for better visualization, are plotted against log2 FC. Genes with p <0.05 and log2 

FC <-0.6 or >0.6 were labelled as DEGs.  

 

Figure 6. TB treatment response in TB patients is dependent on diabetes/glycaemia 

status. MDP and Differential Expression Analyses were performed on GAPDH-normalized 

log2-transformed targeted gene expression data of the South African cohort. (A) MDP 

analyses of the different study groups showing the impact of TB treatment on the overall 

gene perturbation over time. Samples of patients at diagnosis were used as baseline 

controls. (B) Volcano plots representing DEGs regulated during TB treatment of TB patients 

categorized based on their diabetes/glycaemia status. The y-axis scales of all plots are 

harmonized per study group. P-values, -log10-transformed for better visualization, are plotted 

against log2 FC. Genes with p <0.05 and log2 FC <-0.6 or >0.6 were labelled as DEGs. (C) 

IPA interactive network analyses of DEGs regulated during TB treatment. The various 

shapes of the nodes represent the functional classes of the gene products. Gene modules 

are indicated by distinctive colours. 

  

Figure 7. Identification of common host biomarker signatures associated with TB 

treatment response irrespective of population heterogeneity and diabetes/glycaemia 

severity. South African, Indonesian, or pooled cohort transcriptomic datasets of TB patients 

independent of their diabetes/glycaemia status were used to train the models. Receiver 

Operating Characteristic (ROC) curves (Sensitivity plotted against 1-Specificity) and Area 

Under the Curve (AUC) with 95% Confidence Intervals (CI) show the classifying 

performance of the trained models. (A) The model trained on 70% of the South African 

dataset was tested in the remaining 30% of the South African dataset split into the different 
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TB study groups (left panel) and validated using the complete dataset of the Indonesian 

cohort split into the different TB study groups (right panel). (B) The model trained on 70% of 

the Indonesian dataset was tested in the remaining 30% of the Indonesian dataset split into 

the different TB study groups (left panel) and validated using the complete dataset of the 

South African cohort split into the different TB study groups (right panel). (C) The model 

trained on 70% of the pooled (South African and Indonesian) dataset was tested in the 

remaining 30% of the pooled dataset split into the different TB study groups that both 

cohorts have in common (left panel) and validated using the complete dataset of the South 

African cohort split into the different TB study groups (middle panel) or the complete dataset 

of the Indonesian cohort split into the different TB study groups (right panel). 
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