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Abstract

We study the extremes of branching random walks under the assumption that the underlying Galton–
atson tree has infinite progeny mean. It is assumed that the displacements are either regularly varying

r they have lighter tails. In the regularly varying case, it is shown that the point process sequence of
ormalized extremes converges to a Poisson random measure. We study the asymptotics of the scaled
osition of the rightmost particle in the nth generation when the tail of the displacement behaves like
xp(−K (x)), where either K is a regularly varying function of index r > 0, or K has an exponential
rowth. We identify the exact scaling of the maxima in all cases and show the existence of a non-trivial
imit when r > 1.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

MSC: primary 60J80; 05C81; secondary 60G70
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1. Introduction

Branching random walk is a very important model in the context of statistical physics
nd probability. The basic model is very simple and intuitive. It starts with a particle at the
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origin. The particle splits into a random number of particles following a specified progeny
distribution and each new particle makes a random displacement on R. The new particles form
he first generation. Each particle in the first generation splits into a random number of particles
ccording to the same law and independently of the past as well as of the other particles in
he same generation. Each new particle makes a random displacement from the position of its
arent following the same displacement distribution, independently from other particles. The
ew particles form the second generation. This mechanism goes on. This resulting system is
alled a branching random walk (BRW).

It is clear that the particles in the system described above naturally form a rooted Galton–
atson tree if we forget about their positions. The progeny distribution of this branching

rocess will be denoted by {pk}k≥0, with pk := P(Z1 = k), where Zn denotes the number
f individuals at generation n ≥ 0 with Z0 ≡ 1. This Galton–Watson tree will be denoted by
= (V, E), where V is the set of vertices of the tree and E is the collection of edges. The

ollection of particles or vertices at the nth generation will be denoted by Dn .
We identify each edge ev of the Galton–Watson tree with its vertex v away from the root; we

hen assign a real-valued random variable Xev , the displacement of the corresponding particle.
ur model implies that conditioned on the Galton–Watson tree T, {Xe : e ∈ E} is a collection
f i.i.d. random variables. Because of the underlying tree structure, for each vertex v, there is
unique geodesic path connecting it to the root. We shall denote the collection of all edges on

his path by Iv . It is easy to see that the position of the particle corresponding to the vertex v
is given for v ∈ V by

Sv :=
∑
e∈Iv

Xe.

The collection {Sv : v ∈ V } is called the Branching Random Walk (BRW) induced by the tree
T = (V, E) and the displacements {Xe : e ∈ E}. The main focus of the study of BRW is
the study of the asymptotic behaviour of {Sv : v ∈ Dn} when n tends to ∞, or the behaviour
of functions such as the maximum displacement, Mn := maxv∈Dn Sv; the range of the
displacements Rn := (maxv∈Dn Sv − minv∈Dn Sv); order statistics or different gap statistics,
etc.

Literature review:
The earliest works on branching random walks include [11,27,30]. This model and its

extreme value theory have now become very important because of their connections to various
probabilistic models (e.g., Gaussian free fields, conformal loop ensembles, multiplicative
cascades, tree polymers, etc.); see [1,2,14,21,28]. Extremes of the branching random walk
with heavy-tailed displacement has been studied by [6,7,9,10,22,23,25,35]. The point process
of displacements of a branching random walk with finite progeny mean is described through
a Cox-cluster process, rather implicitly in case of light-tailed displacements [33] and more
explicitly in the heavy tailed set-up [9]. The limiting point process seems to have an universal
stability structure, as was predicted by [15]. For a detailed discussion of such stability
properties, we refer the readers to [8,34,42] and also refer to the exposition by [41] for a
detailed background on the topic. Infinite mean branching processes and branching random
walks (with infinite progeny mean) are intimately tied up with many scale free networks and
hence important in study of random graphs. See for example the recent work of [20,31,43–45]
which explore the relationship of infinite mean branching process with various graph properties.
The branching random walks considered in these random graph models live on Zd .
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The main focus of this paper will be on the analysis of the behaviour of the BRW when the
rogeny distribution has infinite mean, i.e., E(Z1) = ∞. We would like to point out here the

conditions in [2] under which the weak limit for the left-most position was computed. Although
the conditions allowed for the progeny distribution to have infinite mean, they will fail to hold
whenever the progeny variables have infinite mean and are independent from the tree structure,
the foundational assumption of our analysis in this paper. In the branching process literature,
the asymptotic behaviour of the number of particles in the nth generation under infinite mean

as first studied in [17,40]. The conditions in [40] were later improved by [18,26,39]. In this
rticle we shall follow throughout the sufficient conditions mentioned in [18]. It was shown
n [18] that if the progeny distribution has a moment index (cf. Remark 2.2) α ∈ (0, 1), then

αn log Zn
a.s
−→ W, (1.1)

where W is a non-negative random variable, and almost surely positive on the event of survival
of the tree. In other words, in the infinite mean set-up, the generation size explodes in a double-
exponential manner if the tree survives. As a consequence we establish that in this case the
Galton–Watson tree, up to the nth generation, has most of its particles in the last generation,
i.e., the total progeny up to the (n−1)th generation is negligible when compared to the number
of particles at the nth generation (see Lemma 2.4). This presence of a huge number of particles
in the last generation, shows that most pairs of particles in the last generation have very few
common ancestors and therefore the dependence between their displacements is very low.
Consequently, it is expected that the behaviour of {Sv : v ∈ Dn} will be close to the behaviour
of Zn many independent realizations of the displacement random variable. These heuristics will
provide the correct results when displacements are heavy tailed but not when the displacements
are light tailed. We shall see that in the case of distributions with tails decaying at infinity at
a rate faster than the exponential distribution, contributions from other generations, and hence
the appropriately scaled maxima converge to a non-trivial constant.

Main contributions:
In Section 3 we shall restrict our attention to the situation where the displacement distribu-

tion has a regularly varying right tail with index −β, i.e., if F is the displacement distribution
function, then

lim
x→∞

1− F(t x)
1− F(x)

= t−β, ∀ t > 0, (1.2)

for some β > 0. We denote the class of regularly varying functions with index −β by RV−β .
To analyse the asymptotic behaviour of the nth generation, as n becomes large, we shall take
he approach of point process theory. We shall scale the positions of the particles with non-
egative displacement in the nth generation by Cn := F←(1− 1

Zn
). Throughout this paper, F←

will denote the (left-continuous) inverse of F , defined as F←(y) := inf {s : F(s) ≥ y}, for all
y ∈ [0, 1]. Choice of this random scaling is inspired by the deterministic scaling used in [10].
n Theorem 3.2, we show that the point process converges to a Poisson random measure with
ntensity measure τ+β , where τ+β ([x,∞)) = x−β , for all x > 0. This shows there is no clustering
n the limit under the above scaling and the dependency structure gets camouflaged by the size
f the last generation. An important consequence comes from Corollary 3.4. We show that the
aximum displacement Mn grows doubly exponentially conditioned on the survival of the tree,

hat is

αn log Mn
P
→

W
. (1.3)
β
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Here
P
−→ corresponds to convergence in probability. One can, in fact show almost sure

convergence of the first k order statistics in the log scale to the same limit, see Theorem 3.5.
As announced, both tail indices come into play in these asymptotics. The point process result
stated in Theorem 3.2 can be used also to get various other order statistics of the displacement
random variables. The proof of the point process convergence relies on the one large jump
principle which we use to show that the point process based on the scaled positions in the nth

eneration is close (in an appropriate metric) to the point process based on the displacements
n the last generation (see Lemma 2.4) .

In Section 4 we consider the case when the right tail is no-longer regularly varying. We
ssume that tail of the displacement distribution is asymptotically like exp(−K (x)) where K (x)
s regularly varying with index r ∈ (0,∞). Important examples of such distribution include
aussian, exponential and Weibull random variables. Under some additional conditions on the

eft tail we show in Theorem 4.2 that almost surely the following asymptotics is true:

lim
n→∞

Mn

L(log Zn)
=

{
(1− α

1
r−1 )

1
r −1, if r > 1,

1, if 0 < r ≤ 1.
, (1.4)

here L = K← is the left-continuous inverse of K . We would like to point out the change
n behaviour of the maximum when r > 1. When r ≤ 1, it still happens that the resulting
ontribution comes from the last generation of the branching process but when r > 1, there
re non-negligible contributions from all the generations. Although this does not change the
ate of growth for the maximum displacement, the effect is apparent in the limiting constant.

In Section 5 we consider the case when the right tail decays much faster than those
onsidered in Section 4. In particular, we assume that 1−F(x) = exp(−K (x)) where L := K←

s slowly varying at ∞. Under some additional technical conditions on the growth rate of L ,
e show in Theorem 5.2 that almost surely the following asymptotics hold true:

lim
n→∞

Mn∑n
k=1 L(α−k)

= 1. (1.5)

Unlike the previous cases, here each generation contributes equally to the right-most displace-
ment in the last generation and the resulting maximum position Mn has magnitude of strictly
higher order than L(log Zn), the magnitude of the largest displacement in the last generation.
See Section 5 for a detailed explanation of the phenomenon.

It is noteworthy that the results for the displacement in the Gumbel domain of attraction are
not uniform, contrary to the i.i.d. case. Here, we observe different normalizations according to
the tail, whereas for n i.i.d. observations, it always hold that Mn/L(log n) converges to 1 in
probability, and almost surely under a very mild restriction, see [19, Theorem 5.4.5].

The speed of a branching random walk can be defined in many ways. The cloud speed,
burst speed and sustainable speed are some of the possibilities. We refer to [36] for definition
and detailed discussions on these topics. The equivalence of these three notions of speed
was established by [11,27,30] under assumptions of finite progeny mean and finiteness of
the moment generating function. The later condition was removed by [25] where the tail
of displacement random variables were assumed to follow a semi-exponential distribution,
which changed the rate of growth of the maxima. The definitions of the speeds was modified
accordingly. In Section 6, we define properly scaled versions of cloud, burst and sustainable
speeds under Assumptions 3.1, 4.1 and 5.1. We then establish the equivalence of these three
notions of speeds in each of those cases.
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We would now like to point out an aspect which differentiates the nature of the main results
n Section 3, Section 4 and Section 5. In Section 3, Corollary 3.4 provides us with an weak limit
f properly scaled Mn (as stated in (3.7)). This can be watered down to a version concerned with
n-probability limit for log Mn after proper scaling, see (3.8). Since the limit in (3.8) is non-
egenerate, it can be viewed also as a weak limit. A similar phenomenon occurs in Theorem 4.2
here we state an almost sure limit for properly scaled version of Mn in (4.3), which again

can be interpreted as an weak limit due to non-degeneracy of the limit. In both of these cases
we take another logarithm and compute a degenerate almost sure limit which we refer to as
the cloud speed. In contrast to these, Theorem 5.2 immediately gives us a degenerate almost
sure limit. In certain spirit, therefore, Theorem 5.2 provides us with the cloud speed when F
satisfies Assumption 5.1. We do not get any weak limit here, although the proof technique is
very similar to the one employed to prove Theorem 4.2.

Notation

We use the notation Xn
a.s.
∼ an to indicate that Xn/an → 1 almost surely. We also use

he notion that an grows at least exponentially to mean lim infn→∞ n−1 log an > 0. Similarly
sequence an grows at least double-exponentially when lim infn→∞ n−1 log log an > 0. For

ny real number x , we shall denote its non-negative part by x+. Most of our results will be
conditioned on the survival of the Galton–Watson tree”. In places where it is obvious we
kip this phrase. Given the tree, we will denote Dn to be the particles in the nth generation.
v will denote the edge that connects particle or node v to p(v) where p(v) will refer to the
arent/immediate ancestor of the particle v. Also C(v) will denote the set of all children of
he particle v. Throughout the paper, the notations

a.s.
−→,

P
−→ and

D
−→ will stand for almost

ure convergence, convergence in probability and weak convergence respectively. The notation
(A) will denote the indicator function for the event A. Binomial(n, p) and Poisson(λ) will
enote Binomial and Poisson distributions respectively with corresponding parameters. We also
ntroduce the notation G(δ) to denote the distribution function of ⌊Z δ⌋ where Z ∼ G, for any
istribution function G supported on non-negative integers.

. Infinite progeny mean branching process

We shall first recall the main result of [18] on the asymptotic properties of the Galton–
atson tree under the assumption that the progeny mean is infinite. Throughout this paper, G
ill denote the distribution function of Z1, the non-negative integer valued branching progeny

nd Ḡ = 1− G will denote its survival function.

ssumption 2.1 (Assumption on the Branching Random Variable). There exists a function
: R+→ R+ and a constant α ∈ (0, 1) such that,

D1) γ is non-increasing.
D2) x ↦→ xγ (x) is non-decreasing.
D3)

∫
∞

0 γ (eex
) dx <∞.

D4) ∃ x0 > 0, such that

x−γ (x)
≤ xαḠ(x) ≤ xγ (x), ∀ x ≥ x .
0
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Remark 2.2. It is easily seen that α is the moment index of G, i.e. E[Z p
1 ] < ∞ for all

p < α and E[Z p
1 ] = ∞ for all p > α. Distribution functions with Pareto tails of the form

x−α satisfy Assumption 2.1. More generally, if Ḡ(x) = x−αL(x) with L slowly varying
nd either (log L(x))/ log(x) or −(log L(x))/ log(x) satisfying (D1)–(D4), then G satisfies
ssumption 2.1. However, regular variation of Ḡ is not implied by Assumption 2.1. It is also

asily seen that if two distributions G1, G2 are tail equivalent (in the sense that there exist
nite, positive constants C1 and C2 such that C1Ḡ1(x) ≤ Ḡ2(x) ≤ C2Ḡ1(x) for large x) and
ne satisfies the conditions in Assumption 2.1, then so does the other one.

We now quote the main result of [18].

heorem 2.3 (Theorem 1, [18]). Under Assumption 2.1, there exists a non degenerate,
on-negative random variable W such that

αn log(Zn + 1)
a.s.
−→ W. (2.1)

oreover, P(W = 0) = q where q is the probability of extinction of the Galton–Watson tree.

The convergence Eq. (2.1) shows that conditioning on the survival of the tree is equivalent
o conditioning on the event W > 0, that is, the events {T survives} and {W > 0} differ by an
vent of probability zero.

A consequence of Theorem 2.3 which will be used to prove our results is the following
emma which tells that almost all the mass of the tree is concentrated in the last generation.
o be more precise, total mass of the tree before the last generation is comparable to the mass
f the last generation only in the log-scale.

emma 2.4. Assume the progeny distribution satisfies Assumption 2.1. Then for any s > 0,
onditionally on survival ot T,

1
log Zn

log

(
n−1∑
i=0

Z s
i

)
a.s.
−→ sα .

Proof. Take ω ∈ (W > 0) ∩ (αn log(Zn + 1)→ W ). Then we have αn log(Zn(ω))→ W (ω).
Choose ε > 0 and get n0 ∈ N such that

exp(α−n(1− ε)W (ω)) ≤ Zn(ω) ≤ exp(α−n(1+ ε)W (ω)), ∀ n ≥ n0. (2.2)

Now, for all n > n0, using (2.2) we have

1
log Zn(ω)

log
n−1∑
i=n0

Z s
i (ω) ≤

1
log Zn(ω)

log
n−1∑
i=n0

exp(α−i (1+ ε)sW (ω))

≤
1

log Zn(ω)
log

[
n exp(α−(n−1)(1+ ε)sW (ω))

]
≤

log n + α−(n−1)(1+ ε)sW (ω)
α−n(1− ε)W (ω)

−→ sα
1+ ε
1− ε

, (2.3)

here the last line is true since W (w) > 0. Noting that Zn(ω) −→ ∞ and then taking ε ↓ 0,
e conclude that

lim sup
n−→∞

1
log Z (ω)

log
n−1∑

Z s
i (ω) ≤ sα .
n i=0
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An exactly similar argument shows the lower bound. This completes the proof. □

Both Theorem 2.3 and Lemma 2.4 consider the homogeneous branching process, i.e. a
branching process with identical progeny distribution over the generations. Indeed, in this
article we shall restrict our attention to homogeneous branching processes only. But the
techniques we shall apply to prove the main results in Section 5 will require some results
analogous to Theorem 2.3, but in the context of a special kind of inhomogeneous branching
trees. We shall explain the premise and state the result below while deferring the proof to the
Appendix.

Consider the inhomogeneous branching process starting with one particle at the 0th gen-
eration and where the particles of the nth generation, for any n ≥ 0, produce i.i.d. number

f off-springs, having distribution function Gn , independent of previous generations as well
s the particles in the same generation. We assume the following assumption on the progeny
equence {Gn : n ≥ 0}.

Assumption 2.5. There exists x0 ∈ (0,∞) and a sequence of positive real numbers
{αn : n ≥ 0} in (0, 1), bounded away from 0 and 1, such that for some γ : R+ ↦→ R+ satisfying
D1), (D2) and (D3), we have the following.

x−γ (x)
≤ xαn Ḡn(x) ≤ xγ (x), ∀ x ≥ x0, ∀ n ≥ 0.

heorem 2.6. Let Zn denote the size of the nth generation for the inhomogeneous branching
rocess with progeny sequence {Gn : n ≥ 0} satisfying Assumption 2.5. Then there exists an
vent E with P(E) > 0 and a positive random variable W ∗ such that⎛⎝n−1∏

j=0

α j

⎞⎠ log(Zn + 1)
a.s.
−→ W ∗, on E .

Remark 2.7. Theorem 2.3 is clearly a special case of Theorem 2.6 for the choice of the
sequence Gn = G and αn = α for all n ≥ 0. We want to emphasize the fact that the
proof of Theorem 2.6 uses Theorem 2.3 and hence does not provide an independent proof
of Theorem 2.3.

Remark 2.8. The proof of Theorem 2.6 uses Lemma 4.5, which will be proved in the
Appendix. We would like to point out here that Lemma 4.5 will also be instrumental in proving

the main result in Section 4, namely Theorem 4.2.

3. BRW with regularly varying displacements

In this section we shall describe the extremes of the branching random walk when the
displacement variables associated with the edges are i.i.d. with regularly varying tail. In this
case, one can derive the exact asymptotics of the point process of rescaled positions and show
that the behaviour is similar to an i.i.d. set-up. When the progeny distribution has finite mean
and satisfies the Kesten–Stigum condition the point process behaviour was described in [9].
The extremes in such a set-up (with finite mean) with more general conditions were derived
in [23]. We now extend the above results to infinite mean progeny distribution.

Assumption 3.1. Given the tree T = (V, E) we assume
126
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(R1) the displacement random variables {Xe}e∈E are i.i.d. with distribution F .
R2) 1− F ∈ RV−β , for some β > 0.

(R3) there exists υ ∈ (αβ,∞) such that xυF(−x) = O(1) as x →∞.

Recall that F← is the left-continuous inverse of F . Let us now define the random scaling

Cn := F←
(

1−
1
Zn

)
=

(
1

1− F

)←
(Zn) . (3.1)

et us consider the set E := (0,∞], with the usual topology (obtained by the one-point
ncompactification of [0,∞]). Keeping in mind the notation for the BRW defined in Section 1,

we define,

N+n :=
∑
v∈Dn

δC−1
n S+v
=

∑
v∈Dn

δC−1
n (

∑
e∈Iv Xe)+ , ∀ n ≥ 1.

We consider point processes as random elements in the space Mp(E) of all Radon point
easures on a locally compact and separable metric space E (for this section E = (0,∞]).
ere Mp(E) is endowed with the vague convergence; for further details on point processes,

see [29,37,38]. The following result describes the asymptotic behaviour of the point process
N+n . In this paper, P RM(µ), for a measure µ on R, will refer to the Poisson random measure
on R with mean measure µ; see [37, Section 3.3] for a detailed exposition on Poisson random
measures.

Theorem 3.2. Under Assumptions 2.1 and 3.1 we have

N+n
D
−→ P RM(τ+β ), conditioned on survival,

where τ+β is the unique measure on (0,∞] such that τ+β ((x,∞]) = x−β .

Theorem 3.2 describes the asymptotics for the point process generated by the non-negative
parts of the scaled positions of particles in the nth generation. Indeed, this result will be
enough regarding our analysis of asymptotic behaviour for the displacement of the right-most
particle. Nevertheless, an asymptotics for the point process generated by scaled positions of the
particles can be derived under a stronger condition than (R3), known in literature as tail-balance
condition, which in effect dictates that the left tail for the distribution F should decay at least
as fast as the right tail. In contrast, note that (R3) allows the left tail of F to be slightly heavier
than its right tail.

Theorem 3.3. Let Assumptions 2.1 and 3.1 holds true. Moreover, assume that

lim
x→∞

P(X > x)
P(|X | > x)

= 1− lim
x→∞

P(X < −x)
P(|X | > x)

= p ∈ (0, 1],

where X ∼ F. Under these assumptions, we have

Nn :=
∑
v∈Dn

δC−1
n Sv

D
−→ P RM(τβ), conditioned on survival,

where τβ is the unique measure on [−∞,∞] such that τβ((x,∞]) = x−β and τβ([−∞,−x)) =
(1− p)x−β/p, for any x > 0.

We shall omit the proof of Theorem 3.3 since it follows exactly the same arguments used
in the proof of Theorem 3.2. The above result verifies Brunet and Derrida [15] conjectures
127
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in this setup with the limiting extremal point process being a Poisson random measure with
no clustering. The reason behind this cluster-breaking phenomenon is that the extremes are
governed by the last generation displacements thanks to regular variation and Lemma 2.4,
which will be the key ingredient in the proof.

Proof of Theorem 3.2. The proof will consist of two steps. Let us first define

Ñ+n :=
∑
v∈Dn

δC−1
n X+ev

, ∀ n ≥ 1,

where ev denotes the edge that connects particle or node v to its parent, for v ∈ Dn, n ≥ 1.
In the first step, we will prove that

Ñ+n
D
−→ P RM(τ+β ) , (3.2)

conditionally on survival. Let dv be a metric which induces the topology of vague convergence.
Next we shall demonstrate that the point processes N+n and Ñ+n are asymptotically close, i.e.,

dv(Ñ+n , N+n )
P
−→ 0 , (3.3)

onditionally on survival. Theorem 3.2 then follows by applying [12, Theorem 4.1]. □

roof of (3.2). Consider {X i }i≥1
i.i.d.
∼ F , independent of T. We define bn = F←(1 − 1/n).

hus Cn = bZn and

Ñ+n =
∑
v∈Dn

δC−1
n X+ev

d
=

Zn∑
j=1

δC−1
n X+j

=

Zn∑
j=1

δb−1
Zn

X+j

y [37, Proposition 3.21] we have
n∑

i=1

δb−1
n X+i

D
−→ P RM(τ+β ), as n→∞.

e also have Zn
a.s.
−→ ∞, conditioned on survival with {Z i }i≥1 being independent to {X i }i≥1.

herefore,

Ñ+n
d
=

Zn∑
j=1

δb−1
Zn

X+j

D
−→ P RM(τβ), as n→∞, conditioned on survival. □

roof of (3.3). Here 1(·) denotes the indicator variable for the event inside the parenthesis
nd A denotes the event that T survives. Fix Lipschitz continuous function g ∈ C+K (E) with
upp(g) ⊆ (δ,∞]. It is enough to show that for any ε > 0,

P
[
|N+n (g)− Ñ+n (g)| ≥ ε

⏐⏐⏐A] −→ 0.

efine Un =
∑n−1

k=1
∑

v∈Dk
1{C−1

n |Xev | > n−2
}. On the event {Un = 0}, all the displacements

ccurred until the (n − 1)th generation are of absolute size at most Cn/n2. Therefore, for any
∈ Dn , we have

|C−1
n S+v − C−1

n X+ev | ≤
∑

C−1
n |Xe| ≤

∑
n−2
= (n − 1)n−2 < 1/n.
e∈Iv :e ̸=ev e∈Iv :e ̸=ev
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Two situations can arise on {Un = 0}: if C−1
n X+ev ≤ δ/2, and n is large enough such that

/2 > 1/n, then C−1
n S+v < δ, and therefore g(C−1

n S+v ) = g(C−1
n X+ev ) = 0. Otherwise, using

he Lipschitz continuity of g, we can say that |g(C−1
n S+v )− g(C−1

n X+ev )| ≤ M/n, for Lipschitz
onstant M ∈ (0,∞). Combining these two bounds we conclude that, on {Un = 0}, for large
nough n,

|N+n (g)− Ñ+n (g)| ≤
∑
v∈Dn

|g(C−1
n S+v )− g(C−1

n X+ev )| ≤
M
n

∑
v∈Dn

1
{
C−1

n X+ev > δ/2
}

=
M
n

Ñ+n ((δ/2,∞]) .

ence, for any ε > 0, and large enough n,

P
[
|N+n (g)− Ñ+n (g)| ≥ ε

⏐⏐⏐A] ≤ P
[

M
n

Ñ+n ((δ/2,∞]) ≥ ε
⏐⏐⏐A]+ P

(
Un ≥ 1

⏐⏐⏐A) . (3.4)

y (3.2), {Ñ+n ((δ/2,∞])}n≥1 is a tight family since the set (δ/2,∞] is relatively compact in
. This implies that the first term on the right hand side converges to 0. We now prove that the
econd term in the right of (3.4) tends to 0. For any e ∈ E , conditioned on T, 1{C−1

n |Xe| > n−2
}

s a Bernoulli random variable with parameter pn ≤ F̄(n−2Cn)+ F(−n−2Cn). Hence,

P [Un ≥ 1 | T] ≤ E [Un | T] = pn

n−1∑
k=1

Zk .

y Assumption (R2) and applying [37, Proposition 0.8(i),(v)] on the non-decreasing function
/F̄ ∈ RVβ , we have log F←(1 − 1/x) = (1/β + o(1)) log x , as x → ∞. Therefore, on
W > 0), log Cn = log F←(1 − 1/Zn) = (1/β + op(1)) log Zn , which implies Cn/n2

→ ∞.
pplying again [37, Proposition 0.8(i)] on the function F̄ ∈ RV−β , we obtain log F̄(n−2Cn) =
−β + op(1)) log(n−2Cn), on (W > 0). Combining the above mentioned asymptotics we get,
n W > 0,

log

(
F̄(n−2Cn)

n−1∑
k=1

Zk

)
= −(β + op(1)) log Cn + 2(β + op(1)) log n + log

n−1∑
k=1

Zk

= −(1+ op(1)) log Zn + 2(β + op(1)) log n + log
n−1∑
k=1

Zk

= −(1+ op(1)) log Zn + 2(β + op(1)) log n

+ (α + op(1)) log Zn →−∞ (3.5)

s log Zn grows exponentially on (W > 0) and α < 1. In the last line, we have used Lemma 2.4
ith s = 1. Similarly, applying (R3), we get the following almost surely on W > 0.

log

(
F(−n−2Cn)

n−1∑
k=1

Zk

)
≤ −υ log Cn + 2υ log n + O(1)+ log

n−1∑
k=1

Zk

= −(υ/β + op(1)) log Zn + 2υ log n + (α + op(1)) log Zn →−∞ . (3.6)

ombining (3.5) and (3.6), we conclude the proof. □

Some corollaries can easily be derived from Theorem 3.2 about the asymptotic behaviour

f the ordered statistic of the displacement of the particles in the nth generation as n→∞.
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Corollary 3.4. Fix k ≥ 1. Let, M (k)
n be the kth maximum value in the set {Sv : v ∈ Dn}. Then

nder assumptions of Theorem 3.2, we have

P(C−1
n M (k)

n ≤ x)→ exp(−x−β)
[k−1∑

j=0

1
j !

x−β j
]

(3.7)

s n→∞ conditioned on the survival of the tree. Moreover,

αn log M (k)
n

P
−→

W
β
, conditioned on survival. (3.8)

roof. For any x > 0 and k ≥ 1 we have from Theorem 3.2

P(N+n ((x,∞]) ≤ k − 1|T survives)→ P(Poisson(x−β) ≤ k − 1).

lso, observe that (N+n ((x,∞]) ≤ k − 1) = (C−1
n M (k)

n ≤ x) and

P(Poi(x−β) ≤ k − 1) = exp(−x−β)
[k−1∑

j=0

1
j !

x−β j
]
= H (x)

or some distribution function H which gives mass on (0,∞). Therefore,

C−1
n M (k)

n
D
−→ H, conditioned on survival . (3.9)

his proves the first part of the result. On taking logarithms on both sides of (3.9) and
ultiplying by αn we have

αn log M (k)
n − α

n log Cn
P
−→ 0. (3.10)

nder Assumption (R2), (1/(1− F))← ∈ RV1/β . Using [37, Proposition 0.8], we have,

αn log Cn

αn log Zn
=

log Cn

log Zn
=

log [(1/(1− F))←(Zn)]
log Zn

a.s.
−→

1
β
, conditioned on survival.

inally using Theorem 2.3 we have

αn log Cn
a.s.
−→ β−1W,

onditioned on survival. Using (3.10) we have the desired result. □

Corollary 3.4 says that the rightmost particles of the BRW go away from the origin in a
ouble-exponential speed in this set-up. Such double-exponential growth was also observed
nly for the rightmost particle in a related setup by [45]. Indeed we can improve the
onvergence in (3.7) to almost sure convergence as demonstrated by Theorem 3.5. We want to
mphasize the fact that this result is independent of Theorem 3.2, in the sense that its proof
oes not use the assertion made in the statement of Theorem 3.2. Indeed, Theorem 3.2 can only
ield convergence in probability for the random variable sequence αn log M (k)

n as demonstrated
n Corollary 3.4.

heorem 3.5. For any k ∈ N, under the assumptions of Theorem 3.2, conditionally on the
urvival of the Galton–Watson tree T,

lim αn log M (k)
= β−1W, almost surely.
n→∞ n
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Proof of Theorem 3.5. We shall first prove the lower bound. Let u∗n,k ∈ Dn denotes the vertex
uch that Xeu∗n,k

is the kth largest of the collection
{

Xev : v ∈ Dn
}
. Independence of the tree

structure T and the displacement variables guarantee that conditioned on T, the random vertex
p(u∗n,k) is an uniformly chosen random element from Dn−1 and hence Sp(u∗n,k ) | T ∼ F∗(n−1)

here F∗l denotes the l-fold convolution of F . Fix any ε > 0 and β1 > β. On the event
W > 4ε), We have the following for large enough n.

logP
(
αn log Xeu∗n,k

≤ β−1
1 (W − 2ε)

⏐⏐⏐T)
≤ log

{(
Zn

Zn − k + 1

) [
F
(
exp

(
β−1

1 (W − 2ε)α−n))]Zn−k+1
}

≤ k log Zn + (Zn − k + 1) log
[
1− F̄

(
exp

(
β−1

1 (W − 2ε)α−n))]
≤ k log Zn − (Zn − k + 1)F̄

(
exp

(
β−1

1 (W − 2ε)α−n))
≤ k log Zn − C1(Zn − k + 1) exp

(
−(W − 2ε)α−n) , (3.11)

or some (non-random) constant C1 > 0. We have used Potter’s bound [37, Proposition 0.8(ii)]
n (3.11). By Theorem 2.3, we have, conditionally on survival of the tree,

αn log
[
C1(Zn − k + 1) exp

(
−(W − 2ε)α−n)

− k log Zn
] a.s.
−→ 2ε,

nd hence

P
(
αn log Xeu∗n,k

≤ β−1
1 (W − 2ε)

⏐⏐⏐T) ≤ exp
(
− exp

(
εα−n)) ,

or all n ≥ N1(ε), where N1(ε) is finite almost surely. On the other hand, for large enough n,

P
(
αn log(S−p(u∗n,k ) + 1) > β−1

1 ε
⏐⏐T) ≤ F∗(n−1) (

− exp(β−1
1 εα−n)+ 1

)
≤ nF

(
− exp(β−1

1 εα−n)/(n − 1)+ 1/(n − 1)
)

≤ C2n
(
exp(β−1

1 εα−n)/(n − 1)− 1/(n − 1)
)−γ

≤ C3n1+γ exp(−γβ−1
1 εα−n),

here C2,C3 are non-random finite constants. Applying First Borel–Cantelli Lemma and taking
1 ↓ β, we can conclude lim infn→∞ α

n log Su∗n,k
= lim infn→∞ α

n log(Sp(u∗n,k ) + Xeu∗n,k
) ≥

−1(W − ε) almost surely on the event (W > 4ε). Recalling that the event (W > 0) and
he event of survival of the tree are same almost surely, we take ε ↓ 0 and conclude that
im infn→∞ α

n log Su∗n,k
≥ β−1W , almost surely on (W > 0). The lower bound now follows

rom the observation that

M (k)
n ≥

k
min
j=1

Su∗n, j
, ∀ n ≥ 1.

It is enough to prove the upper bound for k = 1. Observe that for fixed β2 ∈ (0, β) and
> 0, by Potter’s bound [37, Proposition 0.8(ii)], we have for some finite constant C4 and n

arge enough,

P
(
αn log M (1)

n ≥ β
−1
2 (W + 2ε)

⏐⏐⏐T) ≤ ∑
v∈Dn

P
(

Sv ≥ exp
(
β−1

2 (W + 2ε)α−n) ⏐⏐⏐T)
≤ ZnnF

(
1

exp
(
β−1

2 (W + 2ε)α−n))

n
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≤ C4 Znnβ2+1 exp
(
−α−n(W + 2ε)

)
.

y Theorem 2.3, we have, conditionally on survival of the tree,

αn log
[
C2 Znnβ2+1 exp

(
−α−n(W + 2ε)

)] a.s.
−→ −2ε,

nd hence

P
(
αn log M (1)

n ≥ β
−1
2 (W + 2ε)

⏐⏐⏐T) ≤ exp
(
−εα−n) ,

or all n ≥ N2(ε), where N2(ε) is finite almost surely. Applying First Borel–Cantelli Lemma
and taking β2 ↑ β, we conclude the proof. □

4. BRW with rapidly varying tails

Assumption 4.1. F is a distribution function on R with the following properties.

F1) F(x) < 1, ∀ x ∈ R, and K := − log(1 − F) is regularly varying at ∞ with index
r ∈ (0,∞).

F2) For some M ∈ (0,∞) and η > 0, F(−t) ≤ M(log |t |)−2−η, for t large enough.

Examples of distributions satisfying (F1) include the Weibull distributions with K (x) = cxr

nd the Gaussian distribution with K (x) ∼ x2/2. Assumption (F1) is very close to implying
hat F is in the domain of attraction for the maximum of the Gumbel distribution, but some
dditional condition on K is needed to ensure that property; see e.g. [16] for examples and
ounterexamples.

Let L be the left-continuous inverse of K , that is

L(u) = inf{x : K (x) > u} , u ∈ (0, 1). (4.1)

hen F←(x) = L(− log(1− x)), for all 0 < x < 1 and L is regularly varying at∞ with index
/r ; cf. [37, Proposition 0.8(v)]. By the regular variation of L and Theorem 2.3, it is not hard
o see the following formula (cf. [37, Proposition 0.8]), that for all a > 0,

lim
n→∞

L(a log Zn)
L(α−n)

= a1/r W 1/r , almost surely conditioned on survival. (4.2)

e now state our main result.

heorem 4.2. Let Assumptions 2.1 and 4.1 hold. Then, almost surely conditioned on survival,

lim
n→∞

Mn

L(log Zn)
=

{
(1− α

1
r−1 )

1
r −1, if r > 1,

1, if 0 < r ≤ 1.,

As an immediate corollary of Theorem 4.2 and (4.2), we obtain that almost surely
onditioned on survival,

lim
n→∞

Mn

L(α−n)
= [(1− α

1
r−1 )

1
r −1
+ ∨ 1]W

1
r , (4.3)

here x+ denotes the non-negative part of x .

omments and examples. The case r < 1 contains subexponential distributions in the
omain of attraction (for the maximum) of the Gumbel law. The heuristic properties of such
istributions is the “single large jump principle”, which means that the sum of a finite number
132
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of i.i.d. random variables having a subexponential distribution is large when exactly one of the
summands is large. Given this principle and the double exponential growths of the population,
it is expected that the maximum Mn will be large only if one displacement of the last generation
s large. Thus Theorem 4.2 confirms the intuition in the case r < 1. This is similar to the case
f regularly varying displacements considered in Theorem 3.2. However, we could not obtain
he convergence of the point process of exceedance in the present case, and we do not know if
he same result (as in the case of regularly varying displacements) can be expected. The case
= 1 contains distributions which are subexponential (take for instance K (x) = x(log x)−β

ith β > 0, [24, cf. Example 1.4.3 (b)]), and distributions which are not subexponential such
s the exponential distribution. However, we obtain the same result as in the subexponential
ase.

The case r > 1 is more intriguing. It contains distributions which are also in the domain of
ttraction of the Gumbel law, but are not subexponential. Heuristically, this implies that a sum
f i.i.d. random variables with such a distribution is large when many or all terms contribute
ignificantly to the sum. However, the double exponential growth of the population implies
hat the displacements of the older generation contribute less. The form of the limit hints at
xponential smoothing. More precisely, if K (x) ∼ cxr , it can be shown, using results on the
ail of the sum of i.i.d. random variables with such distribution, see e.g. [4, Theorem 1.1] or [3,
heorem 4.1], that the approximate asymptotic behaviour of Mn is the same as the behaviour
f

max
1≤ j≤Zn

n∑
i=1

α
n−i

r X ( j)
i

here X ( j)
i are i.i.d. and independent of Zn . For Gaussian displacements which corresponds to

K (x) ∼ x2/2, we have L(x) ∼
√

2x and Theorem 4.2 reads

lim
n→∞

Mn√
log Zn

=

√
2

1− α
, almost surely conditionally on survival,

nd (4.3) becomes

lim
n→∞

αn/2 Mn =

√
2W

1− α
, almost surely conditionally on survival.

We now turn to the proof of Theorem 4.2, for which we will need the following lemma
whose proof is in the Appendix.

Lemma 4.3. Suppose that we have a filtration {Fn : n ≥ 0} on the probability space
Ω ,F ,P) and an Fn-adapted non-negative integer-valued process {ζn : n ≥ 0} such that
im infn→∞ n−1 log ζn > 0, almost surely. Further assume that for all n ≥ 1, there exists a
ollection of random variables,

{
Gn,i : i ≤ ζn

}
satisfying the following two conditions.

(1) The collection
{
Gn,i : i ≤ ζn

}
is Fn+1-measurable.

(2) Conditioned on Fn ,
{
Gn,i : i ≤ ζn

}
is a collection of i.i.d. variables with distribution

function F satisfying F(x) < 1 for all x and K (L(x)) ∼ x as x → ∞, where
K = − log(1− F) and L is the left-continuous inverse of K . Also assume that

lim lim
L(t x)

= 1.

t→1 x→∞ L(x)
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Fix a sequence {ψn}n≥1 in (0, 1), bounded away from 1 and let ln be another F-adapted non-
egative integer valued process such that log ln

a.s.
∼ (1 − ψn) log ζn and ψn log ζn

a.s.
→ ∞, as

→∞. Let G i :ζn be the i th largest element in
{
Gn,1, . . . ,Gn,ζn

}
. Then,

Gln :ζn

L(ψn log ζn)
a.s.
−→ 1, as n→∞.

The assertion is also true if we take ln = ψn = 1 for all n ≥ 1.

emark 4.4. If F satisfies (F1) then the assumptions on F , stated in Lemma 4.3, holds true.
y [13, Theorem 1.5.12], we have K (L(x)) ∼ x as x → ∞, whereas L(t x)/L(x) → t1/r as

x →∞, since L is regularly varying with index 1/r .

For i.i.d. regularly varying random variables (i.e. when Gn = G for all n), the next result is
stronger version of the law of iterated logarithm; see e.g. [46]. Since Assumption 2.5 does not

mply regular variation and we deal with triangular arrays with random row sizes, we provide
proof based on estimates of the Laplace transform of the distributions Gn due to [18] in the

Appendix.

emma 4.5. Fix a sequence of distribution functions {Gn : n ≥ 0} satisfying Assumption 2.5
ith moment index sequence {αn : n ≥ 0}. Suppose that we have a filtration {Fn : n ≥ 0} on

he probability space (Ω ,F ,P) and an Fn-adapted positive integer-valued process {ζn : n ≥ 0}
uch that lim infn→∞ n−1 log log ζn > 0, almost surely. Assume that for all n ≥ 0, there exists
collection of random variables,

{
Ln,i : i ≤ ζn

}
satisfying the following two conditions.

(1) The collection
{

Ln,i : i ≤ ζn
}

is Fn+1-measurable.
(2) Conditioned on Fn ,

{
Ln,i : i ≤ ζn

}
is a collection of i.i.d. variables having distribution

function Gn .

hen we can find a positive integer valued finite random variable N such that

0 <
∏

n≥N+1

αn log
∑ζn

i=1 Ln,i

log ζn
<∞, almost surely .

onsequently,

αn log
∑ζn

i=1 Ln,i

log ζn

a.s.
−→ 1, as n→∞.

We now have all the necessary ingredients for the proof of Theorem 4.2. We shall split the
proof into a lower and an upper bound.

Proof of Theorem 4.2, lower bound. The idea to obtain a lower bound is to truncate the
tree at the kth generation from the last one. We obtain a bound for the displacements up to
the generation n − k of the form ϑk L(log Zn) with ϑk → 0 as k → ∞. The most delicate
part of the proof is then to choose subsets of vertices from each of the remaining generations
such that all the vertices in those subsets are among the ones having largest displacements
from their parents in their respective generations but still having a path from the (n − k)th
generation through these subsets to the last generation. The first criterion forces us to choose
the subsets as small as possible while the second one requires the subsets to be large. As a
trade-off between them we get our required lower bound.
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To be more precise, fix an integer k ≥ 1 and δ0, . . . , δk ∈ (0, 1). We define recursively
a finite sequence of subsets of vertices from the tree. Set Bn,n−k = Dn−k . Let An,n−k be the
et of vertices in Dn−k whose displacements from their parents are among the largest ⌊Z1−δk

n−k ⌋

many of those in Bn,n−k . For i = 1, . . . , k; let Bn,n−k+i be the set of children of the vertices in
An,n−k+i−1 and let An,n−k+i be the set of vertices in Bn,n−k+i whose displacements from their
arents are among the largest ⌊|Bn,n−k+i |

1−δk−i ⌋ many of those in Bn,n−k+i . We always break
he ties uniformly at random whenever some of the displacements are equal.

Our construction has been done in such a way that on the event (|An,n| > 0), there exists at
east one ray of vertices starting from An,n−k and going through An,n−k+i for all 0 ≤ i ≤ k. Let
∗

n−k be one such vertex in An,n−k generating such a ray. Then the following crucial observation
ill be pivotal in proving our lower bound.

Mn1
(
|An,n | > 0

)
≥ 1

(
|An,n | > 0

)
max
v∈An,n

Sv ≥ 1
(
|An,n | > 0

) [
Sp(v∗n−k ) +

k∑
i=0

min
v∈An,n−k+i

Xev

]
. (4.4)

he lower bound will then follow after establishing appropriate lower bounds for the two terms
ithin bracket in the right hand side of (4.4). All the almost sure statements, which appear in

he following proof, are assumed to be conditioned on the survival of the tree.
We start by obtaining a lower bound to the first term in the right hand side of (4.4). We

mploy an argument similar to the one used in the proof of lower bound in Theorem 3.5. Notice
hat if we condition on {Z i : i ≥ 1}, independence of progeny and displacement variables
uarantee that p(v∗n−k), the parent of the vertex v∗n−k , is a uniform random element from Dn−k−1
fter conditioning and hence Sp(v∗n−k ) has distribution F∗(n−k−1), where F∗l denotes the l-fold
onvolution of F . Fix an arbitrary ε > 0 and observe that for large enough n,

P
(

L(α−n)−1Sp(v∗n−k ) ≤ −ε

⏐⏐⏐ {Zi }i≥1

)
= F∗(n−k−1)(−εL(α−n))

≤ (n − k − 1)F(−εL(α−n)/(n − k − 1)) (4.5)
≤ nF(−εL(α−n)/n)

≤ Mn(log ε + log L(α−n)− log n)−2−η
≤ M1n−1−η,

(4.6)

or some finite positive constant M1, depending on ε, α, r and M . The inequality (4.5) follows
rom a simple application of union bound, whereas the inequalities in (4.6) follow from
ssumption (F2) and the fact that log L(α−n) ∼ − n

r logα; see [37, Proposition 0.8(i)]. Since
the final expression is summable and ε is arbitrary, an application of the first Borel–Cantelli

emma implies that lim infn→∞ L(α−n)−1Sp(v∗n−k ) ≥ 0, almost surely.
As a first step to get a lower bound on the second term in the right hand side of (4.4), we

make the following two claims.

(1) lim infn→∞ α
n log |An,n−k+i |, lim infn→∞ α

n log |Bn,n−k+i | > 0, almost surely, for all
0 ≤ i ≤ k.

(2) log |An,n−k+i |
a.s.
∼ α−1(1− δk−i ) log |An,n−k+i−1|, for all 1 ≤ i ≤ k.

he first claim, in particular, implies that |An,n|
a.s.
−→∞, leading to the following simplification

f (4.4).

lim inf
n→∞

L(α−n)−1 Mn ≥ lim inf
n→∞

L(α−n)−1

[
Sp(v∗n−k ) +

k∑
min

v∈An,n−k+i
Xev

]
. (4.7)
i=0
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The proof of the claims will be carried out by an induction on i . Note that,

αn log |An,n−k |
a.s.
∼ αn(1−δk) log |Bn,n−k | = α

n(1−δk) log Zn−k
a.s.
∼ αk(1−δk)W > 0. (4.8)

This establishes the first claim for i = 0. The vertices in An,n−k produce i.i.d. numbers
off-springs (independent of their current positions) having distribution G and their sum
(i.e., the total number of children) is |Bn,n−k+1|; thus Lemma 4.5 gives log |Bn,n−k+1|

a.s.
∼

(1/α) log |An,n−k |. Here we have applied Lemma 4.5 with Fn being the σ -algebra which
contains all the information (tree structure and displacement) of the tree upto generation (n−k),
ζn = |An,n−k | and Gn ≡ G. The validity of the two conditions needed to apply Lemma 4.5 is
guaranteed by (4.8) and the independence of displacements in one generation of the tree from
the information of previous generations. Finally, the identity |An,n−k+1| = ⌊|Bn,n−k+1|

1−δk−1⌋

yields that log |An,n−k+1|
a.s.
∼ α−1(1 − δk−1) log |An,n−k |. This proves the induction hypothesis

for the base case i = 1. The proof of the veracity of the induction hypothesis for i = l + 1
assuming it is true for i = l goes exactly along the same lines.

Using the claim established just above, we can conclude that

αn log |An,n−k+i | → αk−i W
i∏

j=0

(1− δk− j ) , (4.9)

almost surely, for all 0 ≤ i ≤ k. In particular, |An,n−k+i | and hence |Bn,n−k+i | grows
oubly-exponentially almost surely.

Now observe that by construction minv∈An,n−k+i Xev is the ⌊|Bn,n−k+i |
1−δk−i ⌋th largest

lement in the collection
{

Xev : v ∈ Bn,n−k+i
}
. Also notice that conditioned on the information

f the tree upto generation (n−k+i), the collection
{

Xev : v ∈ Bn,n−k+i
}

is just an i.i.d. sample
rom distribution function F . Hence, using Lemma 4.3 and the fact that |Bn,n−k+i | grows
oubly-exponentially almost surely, we obtain the following for 0 ≤ i ≤ k.

lim inf
n−→∞

minv∈An,n−k+i Xev

L(δk−i log |Bn,n−k+i |)
≥ 1 , almost surely.

Here we have applied Lemma 4.3 with Fn being the σ -algebra which contains all the
information (tree structure and displacement) of the tree upto generation (n − k + i), ζn =

Bn,n−k+i | and ψn ≡ δk−i . Again using the fact |An,n−k+i | = ⌊|Bn,n−k+i |
1−δk−i ⌋ and regularly

ariation of L , we obtain for 0 ≤ i ≤ k the following.

lim inf
n−→∞

minv∈An,n−k+i Xev

L(log |An,n−k+i |)
≥

(
δk−i

1− δk−i

)1/r

, almost surely. (4.10)

By (4.9), (2.1) and the regular variation of L and the Uniform Convergence Theorem for
regularly varying functions, we have

lim
n→∞

L(log |An,n−k+i |)
L(α−n)

=

⎛⎝αk−i
i∏

j=0

(1− δk− j )W

⎞⎠1/r

. (4.11)

he limits (4.10) and (4.11) yield, for i = 0, . . . , k,

lim inf
n→∞

minv∈An,n−k+i Xev

L(α−n)
≥

⎛⎝αk−i δk−i

1− δk−i

i∏
(1− δk− j )W

⎞⎠1/r

.

j=0
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Combining all the previous limit estimates for the terms in right hand side of (4.7) and using
4.2), we obtain

lim inf
n−→∞

Mn

L(log Zn)
≥

k∑
i=0

⎛⎝αk−i δk−i

1− δk−i

i∏
j=0

(1− δk− j )

⎞⎠1/r

.

Maximizing over the right hand side we conclude that

lim inf
n−→∞

Mn

L(log Zn)
≥ fk := sup

⎧⎪⎨⎪⎩
k∑

i=0

⎛⎝αk−i δk−i

1− δk−i

i∏
j=0

(1− δk− j )

⎞⎠1/r ⏐⏐⏐ δ0, . . . , δk ∈ (0, 1)

⎫⎪⎬⎪⎭ .
In order to compute fk , we define, for k ≥ 1 and δ0, . . . , δk ∈ (0, 1),

hk(δ0, . . . , δk−1) :=
k∑

i=0

⎛⎝αk−i δk−i

1− δk−i

i∏
j=0

(1− δk− j )

⎞⎠1/r

=

k∑
i=0

⎛⎝αiδi

k∏
q=i+1

(1− δq )

⎞⎠1/r

,

fk = sup {hk(δ0, . . . , δk) : δ0, . . . , δk ∈ (0, 1)}

Taking δ0 ↑ 1 and δi ↓ 0 for i ≥ 1 yields fk ≥ 1. Furthermore,

hk(δ0, . . . , δk) =
(
αkδk

)1/r
+ (1− δk)1/r hk−1(δ0, . . . , δk−1),

and hence we have for all k ≥ 1,

fk = sup
{
αk/rδ

1/r
k + (1− δk)1/r hk−1(δ0, . . . , δk−1) : δ0, . . . , δk ∈ (0, 1)

}
= sup

{
αk/rδ

1/r
k + (1− δk)1/r fk−1 : δk ∈ (0, 1)

}
=

⎧⎨⎩
(
αk/(r−1)

+ f r/(r−1)
k−1

)1−1/r
, if r > 1,

max
{
αk/r , fk−1

}
, if 0 < r ≤ 1.

For r > 1, opening the recursion we get f r/(r−1)
k = f r/(r−1)

0 +
∑k

i=1 α
i/(r−1). Having observed

hat f0 = sup
{
δ

1/r
0 : δ0 ∈ (0, 1)

}
= 1, we conclude

f r/(r−1)
k =

{∑k
i=0 α

i/(r−1), if r > 1,
1, if 0 < r ≤ 1..

Letting k tend to ∞, we therefore conclude that almost surely,

lim inf
n−→∞

Mn

L(log Zn)
≥

{
(1− α1/(r−1))

1
r −1, if r > 1,

1, if 0 < r ≤ 1.

= (1− α1/(r−1))
1
r −1
+ ∨ 1.

This proves the lower bound. □

We now proceed to prove the upper bound. We first establish a preliminary non sharp upper
bound which will be used to obtain the sharp one. This preliminary bound is basically obtained
by summing over maximum displacement from the parent in each generation.
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Lemma 4.6. Under the assumptions of Theorem 4.2, there exists an almost surely finite
andom variable A such that

lim sup
n→∞

Mn

L(log Zn)
≤

AW 1/r

1− α1/r
, almost surely. (4.12)

roof. Introduce the notation

M̃Zi := max
v∈Di

Xev .

ote that Mn ≤
∑n

i=1 M̃Zi . Since K (L(x)) ≥ x , for all x , we get

P
[

M̃Zi > L((1+ ε) log Z i )
⏐⏐⏐T] = 1− (F ◦ L((1+ ε) log Z i ))Zi

= 1− (1− exp(−K ◦ L((1+ ε) log Z i )))Zi

≤ 1− (1− exp(−(1+ ε) log Z i ))Zi

= 1−
(
1− Z−1−ε

i

)Zi
≤ Z−εi .

Since the last expression is summable, we have by Borel–Cantelli Lemma, almost surely
conditioned on survival,

Mn ≤

n∑
i=1

M̃Zi ≤

n∑
i=1

L((1+ ε) log Z i )+
∞∑

i=1

(
M̃Zi ∨ 0

)
1
(
M̃Zi > L((1+ ε) log Z i )

)
,

(4.13)

where the second expression in the right hand side of (4.13) is finite almost surely. By (4.2),
there exists a random finite number A such that L((1 + ε) log Z i ) ≤ AL(α−i ) for all i ≥ 1,
almost surely. Therefore, almost surely conditionally on survival,

lim sup
n→∞

Mn

L(α−n)
≤ lim sup

n→∞

1
L(α−n)

n∑
i=1

L((1+ ε) log Z i )

≤ A lim sup
n→∞

1
L(α−n)

n∑
i=1

L(α−i ) =
A

1− α1/r
,

here the last assertion follows from Lemma A.4. By Theorem 2.3 and (4.2), this proves
4.12). □

Before diving into the main part of the proof for the upper bound, let us try to explain
n a few words how does the proof work. We first fix some k ≥ 1 and cut the tree at
eneration (n − k). We use the preliminary bound obtained from (4.12) for the displacements

until generation (n−k). The upper bound on the displacements occurred in the last k generations
s then obtained from Lemma 4.7, which gives an upper bound to the maximum position in
he last generation of a BRW, started with (possibly random) exponentially growing number
f vertices but grown only upto a finite number of generations. Combining them together and
aking k tend to infinity will finish our proof.

emma 4.7. Fix k ≥ 1. Consider a probability space (Ω ,F ,P) and a filtration {Hk : k ∈ Z}.
tart with an Hn-adapted sequence of random positive integers {σn}n≥1 satisfying

−1
im infn→∞ n log log σn > 0, almost surely. Consider the following dynamics. Start with σn
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particles in 0th generation (possibly scattered randomly over the real line) Then grow a BRW,
n , up to k generations with progeny distribution G satisfying Assumption 2.1 and displacement

distribution F satisfying Assumption (F1). Let Vn,q denotes the set of vertices in qth generation
of Bn . Assume the following conditions.

(1) Hn+q contains all the information (cardinality and position of its constituents particles
on the real line) of the random set Vn,q , for all 0 ≤ q ≤ k, and n ≥ 1.

(2) Fix m ≥ 2. Conditionally on Hm−1, Vn,m−n is a BRW generation step for progeny G
and displacement F from Vn,m−n−1, ∀max(m − k, 1) ≤ n ≤ m − 1. Further, these BRW
generation steps are conditionally independent of each other conditional on Hm−1.

et Sn,v,q denotes the displacement of the particle v ∈ Vn,t from its ancestor in generation q,
≤ q ≤ t ≤ k, for the BRW Bn . Then we have the following asymptotic behaviour almost

urely.

lim sup
n−→∞

maxv∈Vn,k Sn,v,0

L(log σn)
≤ α̃k :=

⎧⎨⎩
(∑k

i=1 α
−i/(r−1)

)1−1/r
, if r > 1,

α−k/r , if r ∈ (0, 1].
(4.14)

Remark 4.8. In the statement of Lemma 4.7 and its proof, the statement “Conditional on
G, S1 is a BRW generation step for progeny G and displacement F from S” means that
the σ -algebra G contains all the information (the size and the position of its constituent
particles) for the (random) set S and S1 is the first generation of a BRW with progeny G and
displacement F having S as the 0th generation, conditional on G. Conditional independence
of two or more BRW generation steps will refer to conditional independence of progeny sizes
and displacements induced in those steps.

To explain briefly how the proof of Lemma 4.7 works, we partition the first generation Vn,1
according to their displacements from their parents and recursively use similar partitioning
technique on the sets of children of each partition block of the first generation. We continue
with this recursive partitioning until the last generation. We then provide an upper bound to the
total displacement incurred on a path travelling from the initial to last generation by the sum of
maximum displacements of each partition block in which its constituent edges lie. Maximizing
over such paths followed by optimizing over suitable partitions yield our required upper bound.

Proof of Lemma 4.7. We shall prove (4.14) by induction on k. As usual, Xe will denote the
isplacement associated with the edge e and ev denotes the edge connecting the particle v to
ts parent p(v). Note that the sequence {̃αk} satisfies the recursion

α̃k+1 =

{
α−1/r (̃αr/(r−1)

k + 1)(r−1)/r , r > 1 ,
α−1/r α̃k, 0 < r ≤ 1 .

(4.15)

e start by proving the case k = 1. Since |Vn,1| is the sum of σn many i.i.d. vari-
bles having distribution G, Lemma 4.5 yields log |Vn,1|

a.s.
∼ (1/α) log σn , in particular

im infn→∞ n−1 log log |Vn,1| > 0, almost surely. Here we have applied Lemma 4.5 with
n = Hn, ζn = σn,Gn ≡ G. Using independence of progeny and displacements, we have
y Lemma 4.3 (applied with ζn = |Vn,1|, ln = ψn = 1) that maxv∈Vn,1 Xev

a.s
∼ L(log |Vn,1|).

ombining these two equivalences and using regular variation of L , we get

max Sn,v,0 = max Xev
a.s
∼ α−1/r L(log σn) = α̃1L(log σn),
v∈Vn,1 v∈Vn,1
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proving the claim for k = 1.
Suppose the claim holds true for k = 1, . . . ,m, for some m ≥ 1. We proceed to prove the

hypothesis for m+1. We will classify the particles according to the size of the first step. Fix a
partition Π = {1 = δ0 > δ1 > · · · > δl = 0} of [0, 1] and write ∥Π ∥r := maxl

i=1 |δ
1/r
i − δ

1/r
i−1|.

Consider a partition of Vn,1 as follows. Let v(i) be the particle in Vn,1 with i th largest
displacement from its parent among the particles in Vn,1. The subset An,i is then defined
to be consisting of all those particles v( j) with ⌊|Vn,1|

1−δi−1⌋ ≤ j < ⌊|Vn,1|
1−δi ⌋, for all

= 1, . . . , l. Keep v(|Vn,1|) in the subset An,l . Clearly,
{

An,i
}

1≤i≤l forms a partition of Vn,1.

Notice that |An,i |
a.s.
∼ ⌊|Vn,1|

1−δi ⌋ − ⌊|Vn,1|
1−δi−1⌋ grows double-exponentially almost surely,

since log |Vn,1|
a.s.
∼ (1/α) log σn . Let Vn,m+1,i be the set of particles in the (m + 1)th generation

with first generation ancestor in the subset An,i . Fixing our attention only to the subtree
generated by elements in An,i , we notice this particular subtree to be of height m and satisfies
the conditions of Lemma 4.7 (with σn = |An,i |). Therefore, by the induction hypothesis, we
have the following for all 1 ≤ i ≤ l.

lim sup
n→∞

maxv∈Vn,m+1,i Sn,v,1

L(log |An,i |)
≤ α̃m .

Observe that log |An,i |
a.s.
∼ log⌊|Vn,1|

1−δi ⌋
a.s.
∼ ((1 − δi )/α) log σn . Combining this with the

previous bound, we conclude that

lim sup
n→∞

maxv∈Vn,m+1,i Sn,v,1

L (log σn)
≤

(
1− δi

α

)1/r

α̃m .

By our construction, maxu∈An,i Sn,u,0 = maxu∈An,i Xeu is the ⌊|Vn,1|
1−δi−1⌋th largest among

he collection
{

Xev : v ∈ Vn,1
}
. Having almost sure exponential growth of |Vn,1|, we obtain

y Lemma 4.3, maxu∈An,i Sn,u,0
a.s.
∼ L

(
δi−1 log |Vn,1|

) a.s.
∼ (δi−1/α)1/r L (log σn). Combining the

revious two estimates, observing that

max
v∈Vn,m+1,i

Sn,v,0 ≤ max
v∈Vn,m+1,i

Sn,v,1 + max
u∈An,i

Sn,u,0,

nd taking minimum over the partitions Π , we obtain that almost surely,

lim sup
n→∞

maxv∈Vn,m+1 Sn,v,0

L (log σn)
≤ α−1/r inf

Π

{
l

max
i=1

[
(1− δi )1/r α̃m + δ

1/r
i−1

]}
≤ α−1/r inf

Π

{
l

max
i=1

[
(1− δi )1/r α̃m + δ

1/r
i

]
+ ∥Π ∥r

}
≤ α−1/r

{
sup

s∈[0,1]
{(1− s)1/r α̃m + s1/r

} + inf
Π
∥Π ∥r

}
= α−1/r sup

s∈[0,1]
{(1− s)1/r α̃m + s1/r

}.

olving the optimization and using (4.15) completes the proof of the lemma. □

roof of Theorem 4.2, upper bound. In the proof, all almost sure statement are to be
nderstood as almost surely on (W > 0). Fix any k ≥ 1. Consider the tree only from generation
n − k). This is a BRW, started with |Dn−k | vertices and grown up to k generations, with
rogeny distribution G and displacement distribution F satisfying Assumption (F1). Since
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lim infn→∞ n−1 log log |Dn−k | = − logα > 0 almost surely, using Lemma 4.7, we obtain the
ollowing upper bound.

lim sup
n−→∞

maxv∈Dn Sv,n−k

L (log |Dn−k |)
≤ α̃k, almost surely,

where Sv,n−k denotes the displacement of the vertex v ∈ Dn from its ancestor in generation
(n − k). Here we have applied Lemma 4.7 with σn = |Dn−k |, Vn,q = Dn−k+q for 0 ≤ q ≤ k
and Hn being the σ -algebra generated by the information of the process upto generation n−k.
Since log |Dn−k | = log Zn−k

a.s.
∼ αk log Zn , we have

lim sup
n−→∞

maxv∈Dn Sv,n−k

L (log Zn)
≤ αk/r α̃k =

(
k−1∑
t=0

αt/(r−1)

)1−1/r

∨ 1 .

n the other hand, using (4.12), we get

lim sup
n−→∞

Mn−k

L (log Zn−k)
≤

A2W 1/r

1− α1/r
, almost surely.

Combining the above two estimates with the observation that Mn ≤ Mn−k + maxv∈Dn Sv,n−k ,
e get, almost surely,

lim sup
n−→∞

Mn

L (log Zn)
≤

αk/r

1− α1/r
A2W 1/r

+

⎡⎣(k−1∑
t=0

αt/(r−1)

)1−1/r

∨ 1

⎤⎦ .

etting k tend to ∞ concludes the proof. □

. BRW with very rapidly varying tails

This section is devoted to the analysis of the situation when the right tail of the displacement
istribution function F decays more rapidly than those which satisfy Assumption 4.1. In
articular, it considers the cases where the function L , as defined in (4.1), is slowly varying at

. An example will be L(x) = log x for all x > 0, i.e. F(x) = 1− exp(−ex ), for all x ∈ R.
We have observed in Theorems 3.2 and 4.2 that, if F satisfies Assumption 3.1 or As-

sumption 4.1 with r ∈ (0, 1], only the last generation effectively contributes in determining
the right-most position in the nth generation, whereas if F satisfies Assumption 4.1 with
∈ (1,∞), then previous generations also contribute albeit with a geometrically decaying

weight. In both cases though, the right-most position in the nth generation is asymptotically
f the same order as the largest displacement incurred in the nth generation. In sharp contrast
o these, the case which we shall analyse in this section demonstrates a situation where the
ight tail of F is so small that each generation contributes equally in determining the right-
ost position in the last generation. In particular, we expect Mn to be O

(∑n
k=1 L(log Zk)

)
,

since L(log Zn) is the asymptotic order of the largest displacement in the nth generation. If we
assume that the right-tail of F decays sufficiently fast, this is indeed the situation as stated in
Theorem 5.2. Also in this situation, Mn ≫ L(log Zn), a stark difference from those in previous
sections.

We would, though, like to point out that there are some examples of F which lie the twilight
zone between those satisfying Assumptions 4.1 and 5.1. It may be interesting to try to think of
what happens in those cases, but we will not further concern ourselves regarding that matter
in this paper.
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Assumption 5.1. F is a distribution function on R with the following properties. Recall that
L is the left-continuous inverse of K = − log(1− F).

(L1) F(x) < 1, ∀ x ∈ R, and L is slowly varying at ∞ with K (L(x)) ∼ x , as x →∞.
(L2) There exists η0 ∈ (0, 1 − α) such that for any η ∈ (0, η0), there exists a sequence of

non-negative real numbers {κn(η)}n≥1 satisfying the following conditions.

lim
η↓0

lim inf
n→∞

L
(
α−ne−κn (η)

)
L (α−n)

≥ 1, and
∑
n≥1

e−κn (η) <∞, ∀ η ∈ (0, η0).

heorem 5.2. Let Assumptions 2.1 and 5.1 hold. Then almost surely conditional on survival
f the tree, we have

lim
n→∞

Mn∑n
k=1 L(α−k)

= 1.

Theorem 5.2 confirms the intuition described above. Heuristically, this means that the
maximum is achieved by a path such that at each generation, the displacement is essentially
the maximum of the displacements of that generation.

Before diving into the proof of Theorem 5.2, let us first make some sense of the complicated
and apparently artificial conditions presented in Assumption 5.1. It is evident from (L1) that L
s non-decreasing, slowly varying at ∞ with L(∞) = ∞. We shall now explore some simpler
ssumptions on L which guarantees (L2). In the process, we shall explore some examples of
isplacement distribution F which satisfies these conditions.

orollary 5.3. Assume that L satisfies (L1) and further suppose that there exists a > 1 such
hat x ↦→ L(ax ) is regularly varying at ∞ with index γ ≥ 0. Then L satisfies Assumption 5.1
nd we have

lim
n→∞

Mn

nL(α−n)
=

1
γ + 1

, almost surely on survival.

Proof. We shall start by establishing the fact that x ↦→ L(bx ) is regularly varying at ∞ with
ndex γ , for any b > 1. Fix t > 0. Then

lim
x→∞

L(bt x )
L(bx )

= lim
x→∞

L
(
at x log b/ log a

)
L
(
ax log b/ log a

) = tγ ,

stablishing our claim. To establish (L2), we make the choice κn(η) = −n log(1 − η) for all
≥ 1 and 0 < η < η0 = 1 − α. Summability of the sequence

{
e−κn (η)

}
n≥1 is obvious. Using

egularly varying property of x ↦→ L(α−x ), we obtain

lim
n→∞

L
(
α−ne−κn (η)

)
L (α−n)

= lim
n→∞

L
(
en(log(1−η)−logα)

)
L
(
e−n logα

) =

(
logα − log(1− η)

logα

)γ
,

and hence

lim lim
L
(
α−ne−κn (η)

)
= 1.
η↓0 n→∞ L (α−n)
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These prove that L satisfies Assumption 5.1 and hence we can apply Theorem 5.2. All we have
o show now is the fact that

n∑
k=1

L(α−k) ∼ (γ + 1)−1nL(α−n), as n→∞. (5.1)

n order to do so, we first apply monotonicity of L to conclude that

(γ + 1)−1nL(α−n) ∼
∫ n

0
L(α−x ) dx ≤

n∑
k=1

L(α−k)

≤

∫ n+1

0
L(α−x ) dx ∼ (γ + 1)−1(n + 1)L(α−n−1), (5.2)

here the first and the last asymptotics in (5.2) follows from Karamata’s Theorem (see [37,
heorem 0.6]) and the fact that x ↦→ L(α−x ) is regularly varying with index γ ≥ 0.
his regularly varying property, along with monotonicity, also implies that nL(α−n) ∼ (n +
)L(α−n−1) and thus (5.1) is established. □

xample 5.4. The condition on L assumed in Corollary 5.3 is satisfied for all the distribution
unctions F for which K = − log(1− F), for large enough x , has the form K (x) = exp(cxβ),
or some c, β > 0 or K (x) = exp(c1ec2x ), for some c1, c2 > 0. In the first case, L(x) =
log(x)/c)1/β and hence satisfies Corollary 5.3 with γ = 1/β. In the second set of examples,
learly γ = 0.

The next set of examples of L , that we shall consider, will allow for L to be increasing in
much slower rate than required by Corollary 5.3.

orollary 5.5. Suppose that L satisfies (L1) and there exists {κn : n ≥ 1}, positive real
umbers, such that

L(α−ne−κn ) ∼ L(α−n), as n→∞, and
∑
n≥1

exp(−κn) <∞. (5.3)

hen L satisfies Assumption 5.1 and therefore the conclusion of Theorem 5.2 holds true.

roof. The statement is immediate from Theorem 5.2 if we take κn(η) = κn , for all n ≥ 1
nd η ∈ (0, 1− α). □

The L in Assumption (L1) is a slowly varying function and for such a function we have
Karamata’s representation theorem (see [13, Section 1.3] for more details on Karamata

epresentation). We now impose some conditions on this representations that allows us to
erify Assumption 5.1.

orollary 5.6. Suppose that L satisfies (L1) and the following is a Karamata Representation
f L for some a > 0.

L(x) = c(x) exp
(∫ x

a

ε(t)
t

dt
)
, ∀ x > a,

here c, ε : R+ ↦→ R+ and limx→∞ c(x) = c ∈ (0,∞), limt→∞ ε(t) = 0. Further assume that
(t) log log t = o(1), as t →∞. Then L satisfies Assumption 5.1 and therefore the conclusion
f Theorem 5.2 holds true.
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Proof. We shall show that L satisfies the conditions required to apply Corollary 5.5 for the
hoice κn = 2 log n. Clearly,

∑
n≥1 exp(−κn) <∞. Setting

υn :=
(
log logα−n) sup

t∈[α−ne−κn ,α−n]
ε(t) = o(1),

e note that for large enough n,

L(α−ne−κn )
L(α−n)

=
c(α−ne−κn )

c(α−n)
exp

(
−

∫ α−n

α−ne−κn

ε(t)
t

dt

)

≥
c(α−ne−κn )

c(α−n)
exp

(
−

υn

log logα−n
log

α−n

α−ne−κn

)
=

c(α−ne−κn )
c(α−n)

exp
(
−

2υn log n
log n + log logα−1

)
,

and hence L(α−ne−κn ) ∼ L(α−n). This concludes the proof. □

Corollary 5.7. Suppose that L satisfies (L1) and of the form L(x) = exp(h(log x)+ o(1)) as
x →∞ where h is differentiable for all x > x0 and satisfies limx→∞ h′(x) log x = 0. Then L
satisfies Assumption 5.1 and therefore the conclusion of Theorem 5.2 holds true. A sufficient
condition implying limx→∞ h′(x) log x = 0 is that h is regularly varying with index ρ ∈ [0, 1)
with h′ being ultimately monotone.

Proof. Assuming without loss of generality that L(x0) > 0, we have a Karamata Representa-
ion of L as follows.

L(x) = c(x) exp (h(log x)− h(x0)) = c(x) exp
(∫ log x

x0

h′(t) dt
)

= c(x) exp
(∫ x

exp(x0)

h′(log u)
u

du
)

here c(x) → eh(x0) as x → ∞. Application of Corollary 5.6, along with the condition that
h′(x) log x = o(1), implies the first assertion.

If h is regularly varying with index ρ ∈ [0, 1) and h′ is ultimately monotone, we can
pply Monotone Density Theorem [13, Theorem 1.7.2] to guarantee that h′(x) ∼ ρxρ−1l(x)
s x →∞, for some slowly varying function l. Clearly,

h′(x) log x =
x1−ρh′(x)

l(x)
l(x) log x

x1−ρ → 0, as x →∞,

since x ↦→ l(x) log x is also slowly varying and ρ < 1. This proves the second assertion. □

xample 5.8. A class of distribution functions F for which the criteria stated in Corollary 5.7
olds is as follows. We take K (x) = eg(log x), where g is regularly varying with index β > 1,
ith monotone derivative g′ which is then regularly varying with index β − 1 > 0. Then

L(x) = eh(log x) with h = g←, the inverse of g, regularly varying with index 1/β. It is easy to
ee that members of this class do not satisfy the conditions stated in Corollary 5.3, but satisfy
he conditions stated in Corollary 5.7. Moreover, following similar arguments as presented
hile establishing (5.2), we can show that in this case,

n∑
L(α−k) ∼

∫ n
L(α−t ) dt =

∫ n
eh(t log(1/α)) dt =

1
log(1/α)

∫ h(n log(1/α))
g′(u)eu du
k=1 0 0 h(0)

144



S. Ray, R.S. Hazra, P. Roy et al. Stochastic Processes and their Applications 160 (2023) 120–160

T
1

F

i
a
r
g

P

l

a
f

∼
1

log(1/α)
g′ (h(n log(1/α))) eh(n log(1/α))

∼ log−1/β (1/α)g′(h(n))L(α−n).

he last asymptotic equivalence is due to the fact that g′ ◦ h is regularly varying with index
− 1/β. Therefore, almost surely on (W > 0),

lim
n→∞

Mn

g′(g←(n))L(α−n)
=

1
log1/β(1/α)

.

or instance, taking g(x) = cxβ with β > 1 and setting τ = (log(1/α)/c)1/β yields

lim
n→∞

Mn

n1−1/β exp(τn1/β)
=
β

τ
, almost surely on (W > 0).

Before delving into the details, we briefly describe the strategy we are going to adopt
to prove Theorem 5.2. The upper bound to the maximum is quite straight-forward, as the
right-most position is always bounded above by the sum of the maximum displacements over
generations. In order to establish the lower bound, we extract a subtree with nth generation
being denoted An which consists of those particles whose displacements from their parents are
approximately among the largest O

(
|Bn|

1−δn
)

many, where Bn is the set of children of An−1

n the original tree. Choosing the sequence {δn} to be converging to 0 at an appropriate speed
s dictated by (L2), we can in effect guarantee the existence of an infinite ray, starting from the
oot, along which displacements from the parents are among the largest in the corresponding
enerations. This obviously gives a matching lower bound.

roof of upper bound in Theorem 5.2. Fix ε > 0. Note that Mn ≤
∑n

i=1 M̃Zi , where
M̃Zi = maxv∈Di Xev , as was defined in the proof of Lemma 4.6. We get the following for all
arge enough n almost surely.

P
[

M̃Zi > L((1+ ε) log Z i )
⏐⏐⏐T] = 1− (F ◦ L((1+ ε) log Z i ))Zi

= 1− (1− exp(−K ◦ L((1+ ε) log Z i )))Zi

≤ 1− (1− exp(−(1+ ε) log Z i ))Zi

= 1−
(
1− Z−1−ε

i

)Zi
≤ Z−εi .

Since the last expression is summable, we have by Borel–Cantelli Lemma, almost surely
conditioned on survival,

Mn ≤

n∑
i=1

M̃Zi ≤

n∑
i=1

L((1+ ε) log Z i )+
∞∑

i=1

(
M̃Zi ∨ 0

)
1
(
M̃Zi > L((1+ ε) log Z i )

)
,

(5.4)

where the second expression in the right hand side of (5.4) is finite almost surely. Since the
last expression is summable, we have by Borel–Cantelli Lemma,

lim sup
n→∞

Mn∑n
k=1 L(α−k)

≤ lim sup
n→∞

∑n
k=1 L((1+ ε) log Zk)∑n

k=1 L(α−k)
≤ lim sup

n→∞

L((1+ ε) log Zn)
L(α−n)

= 1,

lmost surely on (W > 0). The last limit follows from slowly varying property of L and the
act that (1+ ε)αn log Z → (1+ ε)W , almost surely. □
n
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Proof of lower bound in Theorem 5.2. Fix η ∈ (0, η0), such that L(α− j exp(−κ j (η)))→∞,
s j → ∞. Indeed, the first condition in (L2) and the fact that L(∞) = ∞ guarantee
hat the previously mentioned property holds true for all small enough η. Set c(η) =

n≥1 exp(−κn(η)) <∞. Fix υ ∈ (0, 1− α). Define the following sequences.

γn(η) := 1−
1

2c(η)

n∑
k=1

exp (−κk(η)) , δn(η) :=
υ(γn−1(η)− γn(η))

γn−1(η)
, ∀ n ≥ 1,

ith γ0(η) := 1. By construction, δn(η) ∈ (0, υ), γn(η) =
∏n

k=1

(
1− υ−1δk(η)

)
∈ [1/2, 1] and

ence

eκn (η)δn(η)
n−1∏
k=1

(1− δk(η)) > eκn (η)δn(η)
n−1∏
k=1

(
1− υ−1δk(η)

)
= eκn (η)υ (γn−1(η)− γn(η)) =

υ

2c(η)
> 0, ∀ n ≥ 1. (5.5)

ecursively define the following sets of vertices. Set B0,η = A0,η := D0, which contains only
he root. For any j ≥ 1, set B j,η to be the set children of the vertices in A j−1,η. Recall the
otation C(v) which denotes the set of children for any particle v. Define A j,η to be the those
articles in B j,η whose displacement from their parents are among the maximum |A j,η| many
f those in B j,η; break the ties uniformly at random if needed. Here

|A j,η| :=
∑

v∈A j−1,η

⌊|C(v)|1−δ j (η)
⌋.

t is immediately observed that the sequence
{
|A j,η| : j≥0

}
has the same law as

{
Z∗j,η : j≥0

}
,

here Z∗j,η is the size of the j th generation of the inhomogeneous branching process, started
rom one particle, and where the particles in nth generation produces i.i.d. many off-springs
independent of the structure of the tree until that generation) having distribution G(1−δn+1(η)),
s defined at the end of Section 1. Since δ j (η) ∈ (0, υ) for υ < 1− α, we apply Theorem 2.6
nd Lemma A.1 to obtain the following.

P

⎡⎣ lim
n→∞

⎛⎝ n∏
j=1

α

1− δ j (η)

⎞⎠ log |An,η| = W ∗ > 0

⎤⎦ =: q(η) > 0.

et Eη denote the event in the above equation. In particular, almost surely on Eη,

lim inf
n→∞

n−1 log log |An,η| ≥ lim inf
n→∞

1
n

n∑
k=1

log
(

1− δ j (η)
α

)
≥ log

(
1− υ
α

)
> 0.

standard application of Lemma 4.5 then implies that log |B j,η|
a.s.
∼ α−1 log |A j−1,η| as

j →∞, on Eη. Here we have applied Lemma 4.5 with F j being the σ -algebra containing all
he information (tree structure and displacement of the particles) upto generation j , ζ j = |A j,η|

nd G j = G for all j ≥ 0. In particular, |B j,η| also grows double-exponentially almost
urely on Eη. Another similar application of Lemmas 4.5 and A.1 guarantees that log |A j,η|

a.s.
∼

1−δ j (η))α−1 log |A j−1,η| as j →∞, on Eη. Here we have applied Lemma 4.5 with the same
hoice of F j and ζ j as earlier but with G j = G(1−δ j+1(η)), for all j ≥ 0. Combining these two,
e have log |A |

a.s.
∼ (1− δ (η)) log |B | as j →∞, on E .
j,η j j,η η

146



S. Ray, R.S. Hazra, P. Roy et al. Stochastic Processes and their Applications 160 (2023) 120–160

w
w

T
T
L

b
l

a

Assumption (L1) guarantees that L satisfies the assumptions required to apply Lemma 4.3.
Since, on the event Eη, |B j,η| grows double-exponentially almost surely, we can employ
Lemma 4.3 to yield the following.

minv∈A j,η Xev

L(δ j (η) log |B j,η|)
a.s.
−→ 1, on Eη. (5.6)

The application of Lemma 4.3 is valid indeed, since on the event Eη,

δ j (η) log |B j,η|
a.s.
∼

δ j (η)
1− δ j (η)

log |A j,η|

a.s.
∼

δ j (η)
1− δ j (η)

W ∗α− j
j∏

i=1

(1− δi (η)) ≥ W ∗α− j e−κ j (η) υ

2c(η)
→∞,

here the last line follows from the fact that L(α− j e−κ j (η)) → ∞ and K (x) < ∞ for all x
ith K (∞) = ∞.
By the slowly varying property of L , we also have for large enough j ,

L(δ j (η) log |B j,η|)
a.s.
∼ L

(
δ j (η)

1− δ j (η)
log |A j,η|

)
a.s.
∼ L

⎛⎝ W ∗δ j (η)
1− δ j (η)

j∏
k=1

1− δk(η)
α

⎞⎠
≥ L

(
α− j W ∗

υe−κ j (η)

2c(η)

)
a.s.
∼ L

(
α− j e−κ j (η)

)
,

(5.7)

on Eη. Here we have used the definition of Eη, monotonicity of L and (5.5) to obtain the
inequality above. Therefore,

lim inf
j→∞

minv∈A j,η Xev

L(α− j e−κ j (η))
≥ 1, almost surely on Eη. (5.8)

By construction,

Mn1(|An,η| > 0) ≥ 1(|An,η| > 0) max
v∈An,η

Sv ≥ 1(|An,η| > 0)
n∑

j=1

min
v∈A j,η

Xev .

he logic behind the above inequality is same as the one used in the proof of lower bound in
heorem 4.2. Since, |An,η| converges to infinity almost surely on Eη, we can apply (5.8) and
emma A.5 to conclude that

lim inf
n→∞

Mn∑n
j=1 L(α− j )

≥ lim inf
n→∞

L
(
α−ne−κn (η)

)
L (α−n)

=: ϕ(η), almost surely on Eη.

Set cn :=
∑n

j=1 L(α− j ), for all n ≥ 1. Monotonicity, slowly varying property of L and
Lemma A.5 implies that cn ∼ cn−k , as n→∞, for any k ∈ N. Fix any k ≥ 1 and let Sv,n,n−k

e the displacement of particle v ∈ Dn from its ancestor in generation k. For any u ∈ Dk ,
et Du,n,n−k be the particles in Dn with u as an ancestor. Our previous analysis shows that,

conditioned on Dk , there exists independent events
{

Eη,u : u ∈ Dk
}
, having same probability

s Eη, such that

lim inf
n→∞

c−1
n Mu,n,n−k = lim inf

n→∞
c−1

n−k Mu,n,n−k

:= lim inf c−1
n−k max Sv,n,n−k ≥ ϕ(η), a.s. on Eη,u .
n→∞ v∈Du,n,n−k
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Since, Mn = maxu∈Dk

(
Su + Mu,n,n−k

)
, we can argue that

P
(

lim inf
n→∞

c−1
n Mn < ϕ(η)

⏐⏐T) = lim
k→∞

P
(

lim inf
n→∞

c−1
n Mn < ϕ(η)

⏐⏐ {D j
}

1≤ j≤k

)
= lim

k→∞
P

⎛⎝⋂
u∈Dk

Ec
η,u

⏐⏐ {D j
}

1≤ j≤k

⎞⎠
= lim

k→∞
(1− q(η))Zk

= 1(T extincts ) = 1(W = 0).

Therefore, almost surely on the event (W > 0), we have lim infn→∞ c−1
n Mn ≥ ϕ(η). Taking

↓ 0 and using the first condition in (L2), yields lim infn→∞ c−1
n Mn ≥ 1. Since we have

already proved that the corresponding limsup is less than or equal to 1, this concludes the
proof. □

6. Speed of BRW with infinite progeny mean

There exists different ways to define a speed for the BRW. In [5,32,36], three notions of
speed were introduced; namely Cloud speed, Burst speed and Sustainable speed. In order to

efine them, we introduce the following notations. Rays of the tree T are formally defined as
nfinite paths starting from the root which do not backstep. We denote the rays of the tree T
y R and the set of all rays by ∂T. The aforementioned three notions are defined as follows.

Cloud speed : scloud := lim sup
n→∞

max
v:|v|=n

Sv
|v|
= lim sup

n→∞

Mn

n
; (6.1)

Burst speed : sburst := sup
R∈∂T

lim sup
v∈R

Sv
|v|
, Sustainable speed : ssust := sup

R∈∂T
lim inf
v∈R

Sv
|v|
.

(6.2)

Here |v| denotes the distance of the vertex v from the root, i.e., the generation to which v
belongs. We refer to [36] for a detailed exposition on these concepts. By Kolmogorov 0 − 1
law the speeds are almost surely constant when the displacements are i.i.d, though they might
be different from each other. The following relation holds trivially,

scloud ≥ sburst ≥ ssust. (6.3)

It is a well-known fact that for BRW the notions of cloud speed, burst speed and sustainable
speed coincide, established by [11,27,30]. This statement was proved under the assumptions
that the progeny variables have finite mean and the displacement variables have finite moment
generating function. The later condition was removed by [25] for displacement variables with
semi-exponential tails, accommodating the changing rate of growth in the definition of the
speeds. Since the rate of growth for the maximum displacement are drastically different from
one another for the cases we considered in Section 3, Section 4 and Section 5; we need to
properly modify our definition of speeds in those cases. In all these cases our target is to
choose a correct rate of growth to get almost surely constant finite and non-zero speed, which
is same for all three notions. The following three results serve this purpose. In (6.4)–(6.6), the
three terms correspond to cloud speed, burst speed and sustainable speed, respectively, for the
corresponding cases. They are also trivially in non-increasing order similar to (6.3).
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Proposition 6.1. Under Assumptions 2.1 and 3.1, the following holds almost surely conditional
n the survival of the tree.

lim sup
n→∞

max
v:|v|=n

log log Sv
|v|

= sup
R∈∂T

lim sup
v∈R

log log Sv
|v|

= sup
R∈∂T

lim inf
v∈R

log log Sv
|v|

= − logα.

(6.4)

Proposition 6.2. Under Assumptions 2.1 and 4.1, the following holds almost surely conditional
on the survival of the tree.

lim sup
n→∞

max
v:|v|=n

log Sv
|v|
= sup

R∈∂T
lim sup
v∈R

log Sv
|v|
= sup

R∈∂T
lim inf
v∈R

log Sv
|v|
= −

1
r

logα. (6.5)

roposition 6.3. Under Assumptions 2.1 and 5.1, the following holds almost surely conditional
n the survival of the tree.

lim sup
n→∞

max
v:|v|=n

Sv∑|v|
k=1 L(α−k)

= sup
R∈∂T

lim sup
v∈R

Sv∑|v|
k=1 L(α−k)

= sup
R∈∂T

lim inf
v∈R

Sv∑|v|
k=1 L(α−k)

= 1. (6.6)

Note that for heavy tailed displacements, the speed is of linear order in log–log scale;
hereas for rapidly decaying displacements satisfying Assumption 4.1, the speed is of linear
rder in log-scale. For very rapidly decaying displacements, the speed depends on the nature
f the function L . As for example, under Corollary 5.3 the speed is of some polynomial order.

The proofs of these three results are very similar in flavour. The upper bound on the
orresponding notion of the cloud speed follows from the asymptotics of the maximum
isplacement, investigated in the previous sections; whereas lower bound on the sustainable
peed follows from constructing a ray along which most of the displacements are very large.
his construction is very similar to what we did in the proof of lower bound in Theorem 5.2.

roof of Proposition 6.1. Taking logarithm on both sides of the main assertion of Theorem 3.5,
e obtain n−1 log log Mn

a.s.
−→ − logα. It is therefore enough to show that

sup
R∈∂T

lim inf
v∈R

log log Sv
|v|

≥ − logα.

Fix δ ∈ (0, 1 − α) and recursively define the following sets of vertices. Set B0 = A0 := D0,
which contains only the root. For any j ≥ 1, set B j to be the set children of the vertices in
A j−1. Define A j to be the those particles in B j whose displacement from their parents are
among the maximum |A j | many of those in B j ; break the ties uniformly at random if needed.
Here

|A j | :=
∑

v∈A j−1

⌊|C(v)|1−δ⌋.

It is immediately observed that the sequence
{
|A j | : j ≥ 0

}
has the same law as

{
Z̃ j : j ≥ 0

}
,

where Z̃ j is the size of the j th generation of the homogeneous branching process, started
from one particle, and where the particles in nth generation produces i.i.d. many off-springs
(independent of the structure of the tree until that generation) having distribution G , as
(1−δ)
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defined at the end of Section 1. We apply Theorem 2.3 to obtain the following.

P
[

lim
n→∞

(
α

1− δ

)n

log |An| = W̃ > 0
]
=: q̃ > 0.

et Ẽ denote the event in the above equation. A standard application of Lemma 4.5 implies
hat log |B j |

a.s.
∼ α−1 log |A j−1|

a.s.
∼ (1 − δ)−1 log |A j | as j → ∞, on Ẽ . We can then employ

Lemma A.3 to yield the following.

min
v∈A j

log Xev
a.s.
∼ δβ−1 log |B j |

a.s.
∼ δ(1− δ)−1β−1 log |A j |

a.s.
∼ δβ−1(1− δ) j−1α− j W̃ , as j →∞, on Ẽ . (6.7)

Now take any infinite ray R∗ whose vertices lie in the sets A j s. This is possible on the event
Ẽ by construction and hence on this event,

∗

lim inf
v∈R

log log Sv
|v|

≥
∗

lim inf
v∈R

1
|v|

log log
|v|∑

k=1

min
u∈Ak

Xeu

≥
∗

lim inf
v∈R

1
|v|

log log min
u∈A|v|

Xeu =
(1− δ)
α

Therefore,

P
[

sup
R∈∂T

lim inf
v∈R

log log Sv
|v|

≥ log
1− δ
α

⏐⏐T survives
]
≥ P(Ẽ | T survives)

=
q̃

P(T survives)
> 0.

Since, conditioned on T, the event inside the left-most term above lies in the tail σ -algebra
generated by the i.i.d. displacement variables, we can invoke Kolmogorov 0−1 law to conclude
hat almost surely conditioned on survival of the tree T,

sup
R∈∂T

lim inf
v∈R

log log Sv
|v|

≥ log
1− δ
α

.

aking δ ↓ 0, we complete the proof. □

roof of Proposition 6.2. Taking logarithm on both sides on (4.3) and using the fact that
og L(α−n) ∼ (−n/r ) logα as n → ∞, a fact which follows from the regular variation of L ,
e can conclude the upper bound :

lim sup
n→∞

log Mn

n
= −

1
r

logα, almost surely on survival of the tree .

For the lower bound on burst speed, we use the same construction as in the proof of
Proposition 6.1. (6.7) here changes to the following asymptotics by virtue of Lemma 4.3.

min
v∈A j

Xev
a.s.
∼ L(δ log |B j |)

a.s.
∼

(
δ

1− δ

)1/r

W̃ 1/r L((1− δ) jα− j ), on Ẽ, (6.8)

here we used the fact that L is regularly varying at∞ with index 1/r . Lemmas A.4 and A.5
an now be applied to obtain the following.

n∑
min
v∈A j

Xev
a.s.
∼

n∑(
δ

1− δ

)1/r

W̃ 1/r L((1− δ) jα− j )

j=1 j=1
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∼

(
δ

1− δ

)1/r

W̃ 1/r L((1− δ)nα−n)
1− α1/r (1− δ)−1/r

, on Ẽ,

ence as |v| → ∞ via R∗, we have

log Sv
|v|
≥

1
|v|

log
|v|∑

k=1

min
u∈Ak

Xeu

a.s.
∼

1
|v|

log L((1− δ)|v|α−|v|)

∼
1
r

log
(
(1− δ)|v|α−|v|

)
|v|

=
1
r

log
(

1− δ
α

)
.

We can now finish th proof by the same argument as used in Proposition 6.1. □

Proof of Proposition 6.3. This proof basically is a corollary of Theorem 5.2 as all the work
had already been done there. The upper bound on the cloud speed follows directly from the
assertion of Theorem 5.2. Continuing with the notation introduced during its proof, note that
for any ray R∗ in the subtree formed by the subsets

{
A j,η : j ≥ 0

}
, we have the following

almost surely on Eη.

∗

lim inf
v∈R

Sv∑|v|
k=1 L(α−k)

≥
∗

lim inf
v∈R

∑|v|
k=1 minu∈Ak,η Xeu∑|v|

k=1 L(α−k)

≥ lim inf
k→∞

minu∈Ak,η Xeu

L(α−k)
≥ lim inf

k→∞

L(α−ke−κk (η))
L(α−k)

= ϕ(η).

he rest of the proof follows by arguments similar to those applied in the proof of Proposi-
ion 6.1 and then taking η ↓ 0. □
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Appendix

In the Appendix we provide proofs for Lemma 4.5, Theorem 2.6 and Lemma 4.3. We
did not employ Theorem 2.6 and Lemma 4.5 in its full generality, rather for a particularly
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engineered choice of the progeny sequence. Consider the progeny distribution G of the original
omogeneous tree, satisfying Assumption 2.1 with moment index α ∈ (0, 1). We applied
heorem 2.6 with Gn = G(ψn ) where {ψn : n ≥ 0} is a sequence in [0, 1], bounded away from

0. The validity of such choice is justified by Lemma A.1, which is stated and proved here.
First we prove Lemma 4.5 which was used in the proof of Theorem 4.2.

Proof of Lemma 4.5. Define αmax := supn≥0 αn < 1. By Assumption 2.5 and [18, Lemma 1],
here exists positive constants 0 < c1, c2 <∞ and λ0 ∈ (0, 1) such that for all λ ∈ (0, λ0) the

following holds.

c1λ
αn+γ (1/λ)

≤ 1−Ψn(λ) ≤ c2λ
αn−γ (1/λ), ∀ n ≥ 0, (A.1)

where Ψn is the Laplace transform of the distribution function Gn and γ is some function
satisfying (D1), (D2) and (D3).

The assumption (D3) and monotonicity of γ guarantees that∑
n≥1

γ
(

ec3ec4n
)
≤

∫
∞

0
γ
(

ec3ec4x
)

dx =
1
c4

∫
∞

log c3

γ (eex
) dx <∞, (A.2)

or any c3, c4 > 0. By our assumption ζ := lim infn→∞ n−1 log log ζn > 0, almost surely and
ence (A.2), applied for c3 = (α−1

max − 1) and c4 = ζ/2, implies that∑
n≥0

γ
(
ζn

(α−1
−1)
)
<∞, almost surely.

Set εn = α−2
n max

(
4γ
(
ζn

(α−1
max−1)

)
, (n + 1)−2

)
and υn = εnα

2
n/4, for all n ≥ 0. These

choices, along with the fact that αn is bounded away from 0, guarantee that almost surely,∑
n≥1 αnεn < ∞ and for all large enough n, υn/αn − εnυn < υn/αn + εnυn < εnαn/2. By

construction, υn ≥ γ
(
ζn

(α−1
max−1)

)
for all n and hence, using monotonicity of γ , we obtain the

following almost surely for all large n.

γ
(
ζ (α−1

n +εn )
n

)
≤ γ

(
ζ (α−1

n −εn )
n

)
≤ γ

(
ζn

(α−1
max−1)

)
≤ υn,

where we have used the observation that εn → 0 almost surely. The fact that (α−1
n −

εn) log ζn
a.s.
−→∞ guarantee that ζ−α

−1
n −εn

n , ζ
−α−1

n +εn
n < λ0, for all large enough n almost surely.

Combining this observation with (A.1) yields the following. Almost surely, for all large enough
n,

c1

(
ζ−α

−1
n +εn

n

)αn+υn
≤ 1−Ψn

(
ζ−α

−1
n +εn

n

)
, 1−Ψn

(
ζ−α

−1
n −εn

n

)
≤ c2

(
ζ−α

−1
n −εn

n

)αn−υn
.

(A.3)

With this preliminary set-up, we claim that, almost surely for all large enough n,

(
α−1

n − εn
)

log ζn ≤ log
ζn∑

i=1

Ln,i ≤
(
α−1

n + εn
)

log ζn. (A.4)

Before proving the claim, let us first see how this claim helps us to achieve our target.
Denote by E the intersection of (ζ > 1) and the event in (A.4). Clearly, (A.4) implies
n n
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N := sup
{
n ≥ 0 : 1En = 0

}
<∞, almost surely. Therefore,∑

n≥N+1

⏐⏐⏐⏐αn
log

∑ζn
i=1 Ln,i

log ζn
− 1

⏐⏐⏐⏐ ≤ ∑
n≥N+1

αnεn <∞,

lmost surely. A standard analysis fact now yields that

0 <
∏

n≥N+1

(
αn

log
∑ζn

i=1 Ln,i

log ζn

)
<∞, almost surely.

Let us now proceed to prove the lower bound in (A.4). The following series of inequalities
hold true for large enough n, almost surely.

P

[
log

ζn∑
i=1

Ln,i ≤
(
α−1

n − εn
)

log ζn

⏐⏐⏐⏐Fn

]
= P

[
exp

(
−ζ−α

−1
n +εn

n

ζn∑
i=1

Ln,i

)
≥ 1/e

⏐⏐⏐⏐Fn

]

≤ e
(
Ψn

(
ζ−α

−1
n +εn

n

))ζn
≤ exp

(
1+ ζn log

(
1− c1ζ

(−α−1
n +εn )(αn+υn )

n

))
≤ exp

(
1+ ζn log

(
1− c1ζ

−1+εnαn/2
n

))
≤ exp

(
1− c1ζ

εnαn/2
n

)
, (A.5)

where the penultimate inequality follows from the fact that εnαn/2 > υn/αn − εnυn and the
last one from the bound − log(1− x) ≥ x . Observe that, almost surely,

lim inf
n→∞

n−1 log ζ εnαn/2
n =

1
2

lim inf
n→∞

n−1ϵnαn log ζn

≥
1

2 infn≥0 αn
lim inf

n→∞

1
n(n + 1)2 log ζn = ∞, (A.6)

and hence the last expression in (A.5) is summable almost surely. Applying Levy’s extension
of Borel–Cantelli Lemma we conclude the proof of the lower bound.

To prove the upper bound in (A.4), we establish similar kind of inequalities which hold
almost surely for large enough n.

P

[
log

ζn∑
i=1

Ln,i ≥
(
α−1

n + ε
)

log ζn

⏐⏐⏐⏐Fn

]

= P

[
1− exp

(
−ζ−α

−1
n −εn

n

ζn∑
i=1

Ln,i

)
≥ 1− 1/e

⏐⏐⏐⏐Fn

]

≤ (1− 1/e)−1
[

1−
(
Ψn

(
ζ−α

−1
n −εn

n

))ζn]
≤ (1− 1/e)−1

[
1−

(
1− c2

(
ζ−α

−1
n −εn

n

)αn−υn
)ζn]

≤ (1− 1/e)−1
[
1−

(
1− c2ζ

−1−εnαn/2
n

)ζn] (A.7)

≤ (1− 1/e)−1c2ζ
−εnαn/2
n , (A.8)

where (A.7) is implied by the fact that υn/αn + εnυn < εnαn/2, and (A.8) uses the estimate
1− 1− x κ

≤ κx for all x ∈ (0, 1] and κ > 0. Almost sure summability of the expression in
( )
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(A.8) follows from (A.6). Applying Levy’s extension of Borel–Cantelli Lemma we conclude
the proof of the upper bound. □

emma A.1. Let G be a distribution function, supported on non-negative real line but not
ecessarily on the set of non-negative integers, satisfying (D1) to (D4) with moment index
∈ (0, 1). Fix δ0 ∈ (0, 1]. Then there exists γ1 : R+ → R+, satisfying (D1), (D2) and (D3),

uch that for some x1 > 1 and for any x ≥ x1, we have

x−γ1(x)
≤ xα/δ(1− G(δ)(x)) ≤ xγ1(x), ∀ δ ∈ [δ0, 1].

Recall that G(δ) is the distribution function of ⌊Z δ⌋ where Z ∼ G In particular, G(δ0) also
atisfies Assumption 2.1 with moment index α/δ0, provided δ0 > α.

roof of Lemma A.1. We have, by assumption, γ : R+ → R+, satisfying (D1), (D2) and
D3), such that

x−γ (x)
≤ xα(1− G(x)) ≤ xγ (x), ∀ x ≥ x0,

or some x0 ∈ (1,∞). Fix δ ∈ [δ0, 1]. For any x ≥ x0 > 1, we have x1/δ > x1/δ
0 ≥ x0 and

herefore can write the following.

1− G(δ)(x) = P
(
⌊Z δ⌋ > x

)
≤ P

(
Z > x1/δ)

= 1− G(x1/δ)

≤ x−α/δxγ (x1/δ )/δ
≤ x−α/δxγ (x)/δ, (A.9)

here the last inequality follows from non-monotonicity of γ and the fact that δ ≤ 1.
onotonicity of γ also implies that

1 > η := inf
δ∈[δ0,1]

inf
x≥1

((x + 1)/x)−α/δ−γ (x)/δ
≥ inf

δ∈[δ0,1]
inf
x≥1

((x + 1)/x)−α/δ−γ (1)/δ

= 2−α/δ0−γ (1)/δ0 > 0,

nd hence for all x ≥ x0,

1− G(δ)(x) = P
(
⌊Z δ⌋ > x

)
≥ P

(
Z δ > x + 1

)
= 1− G((x + 1)1/δ)

≥ (x + 1)−α/δ(x + 1)−γ ((x+1)1/δ )/δ

≥ (x + 1)−α/δx−γ (x)/δ, (A.10)

≥ ηx−α/δx−γ (x)/δ, (A.11)

here (A.10) uses monotonicity of the map y ↦→ yγ (y). Combining (A.9) and (A.11), we can
rite the following for any x ≥ x0 and δ ∈ [δ0, 1].

x−γ (x)/δ0η ≤ xα/δ
(
1− G(δ)(x)

)
≤ xγ (x)/δ

≤ xγ (x)/δ0η−1. (A.12)

efining γ1 : (0,∞)→ (0,∞) to be

γ1(x) :=

⎧⎨⎩
γ (x)
δ0
−

log η
log x

, if x ≥ x0,

γ1(x0), if x < x0,

it follows immediately that for all x ≥ x0 and δ ∈ [δ0, 1],

x−α/δ−γ1(x)
≤ 1− G (x) ≤ x−α/δ+γ1(x).
(δ)

154



S. Ray, R.S. Hazra, P. Roy et al. Stochastic Processes and their Applications 160 (2023) 120–160

T

a

L

β

γ

L
i

T

It is now enough to show that (D1), (D2) and (D3) are also satisfied if we replace γ by γ1.
he monotonicity of γ implies that γ1 is also non-increasing. On the other hand, for x ≥ x0,

xγ1(x)
= η−1xγ (x)/δ0 which guarantees that x ↦→ xγ1(x) is non-decreasing. Furthermore,∫
∞

log log x0

γ1(eex
) dx =

1
δ0

∫
∞

log log x0

γ (eex
) dx − log η

∫
∞

log log x0

exp(−x) dx <∞,

s
∫
∞

0 γ (eex
) dx <∞. Therefore,

∫
∞

0 γ1(eex
) dx <∞ and this proves the lemma. □

emma A.2. Let {Gn : n ≥ 0} satisfies Assumption 2.5. Then for any β ∈
(
supn≥0 αn, 1

)
,

there exists Gmax , a distribution function supported on the set of non-negative integers, such
that Gmax satisfies Assumption 2.1 with moment index β and Gmax ≥ Gn , pointwise, for all
n ≥ 0.

Proof. Let αmax := supn≥0 αn < 1 and fix β ∈ (α, 1). Get x1 large enough such that
> αmax + γ (x), for all x ≥ x1. This is possible since γ satisfies (D1) and (D3); and hence

(x) ↓ 0 as x ↑ ∞. Set x̃ = x0 ∨ x1 ∨ 1 and define

G∗(x) :=

{
supn≥0 Gn(x), if x < x̃,
1− x−β, if x ≥ x̃ .

Clearly, G∗(0) = 0 and G∗(∞) = 1. Right continuity of G∗ on [x̃,∞) is obvious whereas on
(−∞, x̃) it is guaranteed by the fact that Gn is supported on the set of integers for all n ≥ 0.
Moreover,

G∗(x̃−) ≤ sup
n≥0

Gn(x̃) ≤ sup
n≥0

(
1− x̃−αn−γ (x̃)

)
≤ 1− x̃−αmax−γ (x̃)

≤ 1− x̃−β = G∗(x̃),

implying that G∗ is indeed a distribution function, supported on the non-negative real line. It
is obvious from the definition that G∗ satisfies (D4) with moment index β. Finally, for any
x ≥ x̃ ,

1− G∗(x) = x−β ≤ x−αn−γ (x)
≤ 1− Gn(x),

guaranteeing that G∗ ≥ Gn for all n ≥ 0, pointwise. Let Gmax be the distribution function
of ⌊Z⌋ where Z ∼ G∗. Gmax is clearly supported on the set of non-negative integers;
Gmax ≥ G∗ ≥ Gn for all n ≥ 0 and Lemma A.1 guarantees that Gmax satisfies Assumption 2.1
with moment index β. This completes the proof. □

Proof of Theorem 2.6. Assumption 2.5 guarantees that αn ≤ αmax < 1, for all n ≥ 0. By
emma A.2, it is possible to get hold of a distribution function Gmax , supported on non-negative

ntegers, that satisfies Assumption 2.1 with moment index β ∈ (αmax , 1) and Gmax ≥ Gn ,
pointwise, for all n ≥ 0. Therefore, we can get a coupling measure νn on Z2 such that

(Z1,1, Z1,2) ∼ νn ⇒ Z1,1 ∼ Gmax , Z1,2 ∼ Gn, Z1,1 ≤ Z1,2 almost surely .

Consider the following triangular array of pairs of random variables
{
(Zn,i,1, Zn,i,2) : n ≥ 0,

i ≥ 1} where (Zn,i,1, Zn,i,2) ∼ νn , independent of every other pair in this array. Define,

Z0, j := 1, ; Zn, j :=

Zn−1, j∑
i=1

Zn−1,i, j , ∀ n ≥ 1, j = 1, 2.

he following observations are immediate from the construction.
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(1)
{

Zn,1 : n ≥ 0
}

is the generation sizes of a homogeneous branching tree with progeny
distribution Gmax , starting with one particle in 0th generation. Since Gmax satisfies
Assumption 2.1 with moment index β, we can apply Theorem 2.3 to conclude that
there exists a non-negative non-degenerate random variable W1 such that n−1 log log Zn,1

converges almost surely to − logβ > 0, on the event (W1 > 0). Note that P(W1 > 0) >
0.

(2) The sequence
{

Zn,2 : n ≥ 0
}

is the generation sizes of an in-homogeneous branching
process with progeny distribution for the particles in the nth generation being Gn . In
other words,

{
Zn,2 : n ≥ 0

} d
= {Zn : n ≥ 0}, as defined in the statement of Theorem 2.6

and hence it is enough to prove the assertion of the theorem for
{

Zn,2 : n ≥ 0
}
.

(3) (Zn,i,1, Zn,i,2) ∼ νn ⇒ Zn,i,1 ≤ Zn,i,2, ∀ i, n ⇒ Zn,1 ≤ Zn,2, ∀ n ≥ 0. Therefore,

lim inf
n→∞

1
n

log log Zn,2 ≥ lim inf
n→∞

1
n

log log Zn,1 = − logβ > 0, on (W1 > 0).

We can now apply Lemma 4.5 with Fn being the σ -algebra generated by the collection
of random variables

{
Zk,i,1, Zk,i,2 : 0 ≤ k ≤ n − 1

}
with ζn = Zn,2 and Ln,i = Zn,i,2, for

all n ≥ 0. We conclude that there exists a non-negative integer valued random variable N ,
satisfying P(N = ∞,W1 > 0) = 0, such that the following occurs(

n∏
m=N+1

αm

)
log Zn+1,2(ω) = log Z N+1,2(ω)

n∏
m=N+1

(
αm log Zm+1,2(ω)

log Zm,2(ω)

)
−→ W2(ω) ∈ (0,∞), as n→∞,

or almost all ω ∈ (W1 > 0). Here W2 is some positive almost surely finite random variable.
his implies our final assertion after we take E := (W1 > 0) and define W ∗ as follows.

W ∗(ω) =

{
W2(ω)

∏N (ω)
m=0 αm, if N (ω) <∞,W1(ω) > 0,

1, otherwise .
□

roof of Lemma 4.3. Consider the case of ψn being bounded away from 1. Fix any positive
< ε < 1, small enough. Let us first prove the lower bound of the limit.

P
[
Gln :ζn ≤ L ((1− ε)ψn log ζn)

⏐⏐⏐Fn

]
≤ P

[
ζn∑

i=1

1
(
Gn,i ≥ L ((1− ε)ψn log ζn)

)
≤ ln

⏐⏐⏐⏐Fn

]
= P

[
Binomial (ζn, pn) ≤ ln

⏐⏐⏐Fn

]
here pn := F̄ (L ((1− ε)ψn log ζn)) = exp (−K ◦ L ((1− ε)ψn log ζn)). By assumption on

F , we have K (L(x)) ∼ x as x →∞. Therefore, almost surely, for large enough n, we can say
xp (−(1− ε/2)ψn log ζn) ≤ pn ≤ exp (−(1− 2ε)ψn log ζn), and hence ln ≤ ζ

1−ψn (1−ε/4)
n ≤

ζ
1−ψn (1−ε/2)
n ≤ ζn pn ≤ ζ

1−ψn (1−2ε)
n . Using Chebyshev’s Inequality, we now obtain the following

almost surely for all large enough n.

P
[
Gln :ζn ≤ L ((1− ε)ψn log ζn)

⏐⏐⏐Fn

]
≤
ζn pn(1− pn)
(ζn pn − ln)2

≤
ζ

1−ψn (1−2ε)
n(

ζ
1−ψn (1−ε/2)
n − ζ

1−ψn (1−ε/4)
n

)2 ≤ 4ζ−1+ψn (1+ε)
n .
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The fact that almost surely ζψn
n = eψn log ζn →∞ was crucial in deriving the last inequality in

he above line. The last term being summable almost surely (since lim infn→∞ n−1 log ζn > 0)
or small enough ε, we use Levy’s extension of Borel–Cantelli Lemma to conclude that for
mall enough ε,

lim inf
n→∞

Gln :ζn

L ((1− ε)ψn log ζn)
≥ 1, almost surely . (A.13)

Since ψn log ζn ∼ log ln →∞, almost surely, we have

lim
ε↓0

lim
n→∞

L (ψn log ζn)

L ((1− ε)ψn log ζn)
= 1, almost surely . (A.14)

ere we have made use of the assumption that limt→1 limx→∞ L(t x)/L(x) = 1. Combining
(A.13) and (A.14), we conclude this case after taking ε ↓ 0. Similarly for the upper bound, we
have the following,

P
[
Gln :ζn ≥ L ((1+ ε)ψn log ζn)

⏐⏐⏐Fn

]
≤ P

[
ζn∑

i=1

1
(
Gn,i ≥ L ((1+ ε)ψn log ζn)

)
≥ ln

⏐⏐⏐Fn

]
= P

[
Binomial (ζn, qn) ≥ ln

⏐⏐⏐Fn

]
,

where qn := F̄ (L ((1+ ε)ψn log ζn)) = exp (−K ◦ L ((1+ ε)ψn log ζn)). Therefore, almost
surely, for large enough n, we can say exp (−(1+ 2ε)ψn log ζn) ≤ qn ≤ exp (−(1+ ε/2)ψn

log ζn), and hence ln ≥ ζ
1−ψn (1+ε/4)
n ≥ ζ

1−ψn (1+ε/2)
n ≥ ζnqn . Using Chebyshev’s Inequality

again, we obtain the following almost surely for all large enough n.

P
[
Gln :ζn ≥ L ((1+ ε)ψn log ζn)

⏐⏐⏐Fn

]
≤
ζnqn(1− qn)
(ln − ζnqn)2

≤
ζ

1−ψn (1+ε/2)
n(

ζ
1−ψn (1+ε/4)
n − ζ

1−ψn (1+ε/2)
n

)2 ≤ 4ζ−1+ψn
n .

The last term being summable almost surely, we use arguments similar to what were used for
lower bound and complete the proof for the upper bound.

For ln ≡ ψn ≡ 1, we observe that, for any κ ∈ (0, 1), we have Gln :ζn ≥ G
⌊ζ 1−κ

n ⌋:ζn
, for all

large enough n, almost surely. Hence,

lim inf
n→∞

Gln :ζn

L (log ζn)
≥ lim inf

n→∞

G
⌊ζ 1−κ

n ⌋:ζn

L (log ζn)
= lim inf

n→∞

L(κ log ζn)
L(log ζn)

, almost surely.

he lower bound then follows from taking κ ↑ 1. On the other hand, for any ε > 0,

P
[
G1:ζn ≥ L ((1+ ε) log ζn)

⏐⏐⏐Fn

]
≤ P

[
ζn∑

i=1

1
(
Gn,i ≥ L ((1+ ε) log ζn)

)
≥ 1

⏐⏐⏐Fn

]
≤ ζn F̄ (L ((1+ ε) log ζn))

= ζn exp (−K ◦ L ((1+ ε) log ζn)) ≤ ζ
−ε/2
n ,

for large enough n, almost surely. The rest of the argument follows similarly as the previous
one. □
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f

P

R
i

W

0

f
n

Lemma A.3. Consider the same set-up as in Lemma 4.3, but assume that the distribution
unction F satisfies Assumption 3.1. Then,

log Gln :ζn

ψn log ζn

a.s.
−→

1
β
, as n→∞.

roof of Lemma A.3. Note that, conditioned on Fn , the random variable log Gn,i have
distribution function given by F̃(x) = P(log Gn,1 ≤ x) = F(ex ), for all x . In light of

emark 4.4, it is enough to prove that K̃ := − log(1 − F̃) is regularly varying at ∞ with
ndex r = 1 and L̃(x) ∼ β−1x as x →∞, where L̃ is the left-continuous inverse of K̃ .

Since 1 − F is regularly varying at ∞ with index −β < 0, we can apply [37, Proposition
0.8(i)] to conclude that log(1− F(x)) ∼ −β log x , as x →∞. Therefore, for any t > 0,

K̃ (t x)
K̃ (x)

=
− log(1− F(et x ))
− log(1− F(ex ))

∼
βt x
βx
∼ t, as x →∞,

and hence K̃ is regularly varying at ∞ with index 1. On the other hand,

K̃ (x) = − log(1− F(ex )) ∼ βx, as x →∞.

As mentioned in Remark 4.4, we have K̃ (L̃(x)) ∼ x as x →∞; hence x ∼ K̃ (L̃(x)) ∼ β L̃(x).
This completes the proof. □

Lemma A.4. If h is regularly varying at ∞ with index ρ > 0 and a ∈ (0, 1), then

lim
n→∞

1
h (a−n)

n∑
i=1

h
(
a−i)
=

1
1− aρ

.

Proof. For each fixed m, we have, by regular variation

lim
n→∞

1
h (a−n)

n∑
i=n−m

h
(
a−i)
= lim

n→∞

1
h (a−n)

n∑
i=n−m

h
(
an−i a−n)

= lim
n→∞

1
h (a−n)

m∑
i=0

h
(
ai a−n)

=

m∑
i=0

aiρ .

The last sum tends to (1− aρ)−1 as m tends to infinity, thus the lemma will be proved if we
check that

lim
m→∞

lim
n→∞

1
h (a−n)

n−m∑
i=1

h
(
a−i)
= 0. (A.15)

e have h(x) = ℓ(x)xρ with ℓ being a slowly varying function. Using [37, Theorem 0.6], for
x > 0, ℓ(x) = c(x) exp

(∫ x
1 t−1ξ (t) dt

)
, where limx→∞ c(x) = c ∈ (0,∞) and limx→∞ ξ (x) =

. Hence, for every ε > 0, for large enough x < y,

xεℓ(x)
yεℓ(y)

=
c(x)
c(y)

exp
(
−

∫ y

x
t−1(ξ (t)+ ε) dt

)
≤

c(x)
c(y)
≤ Λ,

or some finite constant Λ. Thus, we can find finite constant Aε ≥ 1 such that for large enough
,

sup
aε(i−n)ℓ

(
ai−n

)
−εn −n

≤ sup
xεℓ(x)
−εn −n

≤
sup1≤x≤Aε xεℓ(x)

−εn −n
+ Λ.
1≤i≤n a ℓ (a ) 1≤x≤a−n a ℓ (a ) a ℓ (a )
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a

P

R

Thus, for ε ∈ (0, ρ) and large n,

sup
1≤i≤n

aε(i−n)ℓ
(
ai−n

)
a−εnℓ (a−n)

≤ 2Λ,

nd

1
h (a−n)

n−m∑
i=1

h
(
a−i)
=

n−1∑
i=m

h
(
a−nai

)
h (a−n)

=

n−1∑
i=m

a(ρ−ε)i aε(i−n)ℓ
(
ai−n

)
a−εnℓ (a−n)

≤ 2Λ
∞∑

i=m

a(ρ−ε)i
=

2Λam(ρ−ε)

1− aρ−ε
.

Taking n,m →∞, (A.15) follows. □

Lemma A.5. Take two sequence {an}n≥1 and {bn}n≥1 of real numbers such that
∑n

k=1 bk ↑ ∞.
Then

lim inf
n→∞

an ≤ lim inf
n→∞

∑n
i=1 ai bi∑n

i=1 bi
≤ lim sup

n→∞

∑n
i=1 ai bi∑n

i=1 bi
≤ lim sup

n→∞
an.

roof. The proof is a straightforward analysis exercise. □
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