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ABSTRACT

Context. Membership studies characterising open clusters (OCs) with Gaia data – most of them using Gaia Data Release 2 (DR2) –
have so far been limited at the faint end to magnitude G = 18 due to astrometric uncertainties.
Aims. Our goal is to extend current OC membership lists with faint members and to characterise the low-mass end. These low-mass
members are important for many applications, in particular for ground-based spectroscopic surveys.
Methods. We use a deep neural network architecture to learn the distribution of highly reliable OC member stars around known
clusters. We then use the trained network to estimate new OC members based on their similarities in a high dimensional space, their
five-dimensional astrometry, and information from the three photometric bands.
Results. Due to the improved astrometric precision of Gaia Data Release 3 (DR3) with respect to DR2, we are able to homogeneously
detect new faint member stars (G > 18) for the known OC population.
Conclusions. Our methodology can provide extended membership lists for OCs down to the limiting magnitude of Gaia, which will
enable further studies to characterise the OC population; such as estimation of their masses and dynamics. These extended membership
lists are also ideal target lists for forthcoming ground-based spectroscopic surveys.

Key words. methods: data analysis – open clusters and associations: general – catalogs

1. Introduction

The study of open clusters (OCs) has evolved rapidly in par-
allel with the different data releases of the Gaia mission
(Gaia Collaboration 2016). A major step forward was the Gaia
Data Release 2 (DR2; Gaia Collaboration 2018), where the
OC census was homogeneously studied for the first time, tak-
ing advantage of the precise sky positions, parallaxes, proper
motions, and photometry in three different bands for more
than 1 billion sources and the all-sky nature of Gaia. Using
these data, Cantat-Gaudin et al. (2018) were able to charac-
terise over 1000 OCs in our Galaxy, providing accurate member-
ship lists and mean astrometric parameters for them, and these
authors classified some objects present in pre-Gaia catalogues
(Dias et al. 2002; Kharchenko et al. 2013) as asterisms. More-
over, the number of known OCs has increased with the discov-
ery of hundreds of new objects, which only became detectable
thanks to Gaia. Assisted by novel machine-learning techniques
and a Big Data environment, Castro-Ginard et al. (2018) sys-
tematically analysed the Galactic disc, searching for new OCs
based on the clustering of stars in the five-dimensional astro-
metric space, and confirmed the candidates they found as real
objects with Gaia photometry (Castro-Ginard et al. 2019, 2020,
2022). Further studies contributed new objects to the OC pop-
? Membership lists are only available at the CDS via anonymous

ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://
cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/675/A68

ulation, and the OC catalogue currently consists of around
2500 objects (Sim et al. 2019; Liu & Pang 2019; Ferreira et al.
2020; Hunt & Reffert 2021; Dias et al. 2021). For this OC cata-
logue, Cantat-Gaudin et al. (2020) were able to estimate astro-
physical parameters such as age, distance and extinction for
most of the objects, which enabled dynamical studies of this
population (Tarricq et al. 2021), and the relation of the younger
OCs with the spiral arms (Castro-Ginard et al. 2021), providing
a more complete view of the structure and evolution of our Milky
Way (see also similar works on the OC catalogue Dias et al.
2021; Monteiro et al. 2021).

Most of the previous studies involving large volumes of data
rely on unsupervised learning techniques, mostly based on the
clustering of stars, and have been limited to the bright end of
the Gaia photometry, meaning stars with G ≤ 17 or 18 mag.
Due to the increasing errors at fainter magnitudes, the compact-
ness of the cluster is blurred and therefore the existing method-
ologies are less efficient in finding real OC members. This can
be overcome by the inclusion of supervised learning techniques
able to learn the distribution of member stars around known
OCs and find new members based on their similarities in a
high-dimensional space. This family of methods has already
been applied to characterise stellar streams (Balbinot et al. 2011)
and detect new ones (Malhan & Ibata 2018; Mateu et al. 2018),
demonstrating the power of this tool in finding this kind of object
(their elongated structure and wider range in parallax make them
harder to study than OCs).
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Finding members to magnitudes fainter than G = 18 mag
is important for full characterisation of the OC population. The
identification of low-mass members for OCs has many applica-
tions, such as in testing initial mass functions and mass segre-
gation effects, investigating the limits between stars and planets,
and investigating the white dwarf population of these clusters.
Having membership lists for the whole Gaia magnitude regime
is also important for spectroscopic Gaia follow-up surveys.
These forthcoming surveys, particularly WEAVE (Dalton et al.
2012) and 4MOST (de Jong et al. 2012), are ground-based
multi-object spectrographs that can observe around 1000 and
2400 objects simultaneously in fields of view of 2 and 4 square
degrees, respectively. The target lists for both surveys are fully
based on Gaia data and will complement Gaia with radial veloc-
ities and astrophysical parameters derived from spectroscopy for
stars fainter than GRVS ∼ 16 mag, which is the Gaia spectrograph
magnitude limit.

The present work takes advantage of the more precise
astrometry and photometry of Gaia Early Data Release 3
(EDR3) and Data Release 3 (DR3; Gaia Collaboration 2021,
2023, respectively) with respect to DR2 in order to complement
existing OC membership lists for bright magnitudes (G ≤ 18)
and find new members at the faint end. This paper is organ-
ised as follows. In Sect. 2 we show the steps for constructing
a set of members, non-members, and candidates for each clus-
ter. In Sect. 3 we describe how we build a training and valida-
tion dataset with the members and non-members, how we train
the neural network, and how we apply the model to determine
the membership probability of candidate members. To assess the
performance of our method, in Sect. 4 we compare the OC mem-
bership lists we obtain with independently determined mem-
bership lists from Tarricq et al. (2022). Finally, we present our
conclusions in Sect. 5.

2. Data

We make use of Gaia DR3 (Gaia Collaboration 2023) data to
train our neural network to identify OC members. This data
release contains astrometric (sky position, proper motion and
parallax) and photometric (magnitudes in Gaia’s G, GBP, and
GRP bands) properties of more than 1.4 billion sources, which
were first published in the previous data release: Gaia EDR3
(Gaia Collaboration 2021).

2.1. Cone searches

For each OC we wish to study, we perform a cone search on
Gaia DR3 data to obtain data for sources in the sky vicinity of
the OC. The cone search is centred on the mean sky position
of the OC members, for which we use the values reported by
Cantat-Gaudin et al. (2020) and Castro-Ginard et al. (2022). To
determine the angular size of the cone search, we use an angular
radius that corresponds to a projected physical radius of 50 pc
at the location of the OC. This choice is based on the observa-
tion that OC cores are often surrounded by a halo or corona of
comoving stars (Meingast et al. 2021; Tarricq et al. 2022), which
we want to include in our query. In addition, we only use sources
with proper motions µα∗ , µδ and parallax $ for which√(

µα∗ − µα∗,CG
)2

+
(
µδ − µδ,CG

)2
≤ 10

√
σ2
µα∗ ,CG

+ σ2
µδ,CG

2
, (1)

and

|$ −$CG| ≤ 10σ$CG , (2)

where µα∗,CG, µδ,CG, and $CG are the mean values for
proper motions and parallax of the members reported by
Cantat-Gaudin et al. (2020) and σµα∗ ,CG , σµδ,CG , and σµδ,CG are
their standard deviations. The purpose of these cuts is to include
both the most probable members and informative non-members
in the cone search, as well as to minimise the computational load
of the data processing.

2.2. Members

We use Gaia DR2 based membership lists assembled by
Cantat-Gaudin et al. (2020) to select the members that will be
included in the training dataset. Most of these lists were col-
lected from previous work by Cantat-Gaudin & Anders (2020)
and Castro-Ginard et al. (2018, 2019, 2020) and some are
the result of applying the clustering algorithm UPMASK
(Krone-Martins & Moitinho 2014) on OCs found by Liu & Pang
(2019). For most OCs, these members only constitute the core
of the cluster. We retrieve Gaia DR3 measurements for these
members by cross-matching their source identities with the cor-
responding cone search. For the training dataset, we only include
members with a membership probability of p = 1.0, which min-
imises the expected number of false positives among the mem-
bers. The use of multiple OCs ensures a sufficient amount of
members in the training dataset (see Sect. 3.2 for the construc-
tion of the training set).

2.3. Candidate selection

The sources in the cone search are then labelled as either can-
didates or non-members based on similarities to members of the
corresponding OC in the dimensions of (i) proper motion, (ii)
parallax, and (iii) magnitude and colour. For the proper motions,
we consider as candidates the stars that satisfy√(

µα∗ − µα∗,c

3σµα∗ + ∆µ

)2

+

(
µδ − µδ,c

3σµδ + ∆µ

)2

< 1, (3)

where µα∗ and µδ are the proper motions of the star, σµα∗ and
σµδ are the uncertainties in the proper motions of the star, and
µα∗,c and µδ,c are the means of the proper motions of the OC
members resulting from the procedure described in Sect. 2.2.
The ∆µ is the maximum allowed separation in proper motion
between candidates with negligible errors and the cluster mean.
Conversely, ∆µ determines the minimum deviation for a source
to be labelled a non-member. The value of ∆µ is different for each
OC and depends on the sources we label as (training) members
(Sect. 2.2). How we determine the value of ∆µ is described in
Sect. 2.4. The numerators in the fractions of Eq. (3) express a
difference between the proper motion of a star and that of the
mean of the cluster, whereas the denominators express a maxi-
mum deviation that candidates are allowed to have. Similarly, in
parallax space, candidates must satisfy∣∣∣∣∣ $ −$c

3σ$ + ∆$

∣∣∣∣∣ < 1, (4)

with $ being the parallax of the star, σ$ its uncertainty, $c the
mean parallax of the members, and ∆$ the maximum separation
in parallax space. Finally, we select stars as candidates if they are
close to the best-fit theoretical isochrone (Cantat-Gaudin et al.
2020) of the OC,√(

C −Cic

3σC + ∆C

)2

+

(
G −Gic

3σG + ∆G

)2

< 1, (5)
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Fig. 1. Distribution of members (blue), candidates (orange), and non-
members (grey) for NGC 2527 in sky position (top left), proper motion
(bottom left), parallax (top right), and the CMD (bottom right). The blue
line in the CMD constitutes the isochrone that corresponds to the age of
NGC 2527 as provided by Cantat-Gaudin et al. (2020). The dashed red
lines indicate a ‘zero-uncertainty boundary’, outside of which sources
with negligible errors are not selected as candidates. Candidates that lay
outside these boundaries therefore have significant uncertainties.

where C = G − GRP and G are the colour and G magnitude of
the star, σC and σG are their uncertainties (derived with the tool
provided by Gaia DPAC1 to reproduce DR3 magnitude uncer-
tainties), ∆C and ∆G are the maximum separations, and Cic and
Gic are the colour and magnitude of the isochrone point closest
to the star. We use G −GRP as the colour as Gaia’s GBP band is
known to overestimate the flux for faint sources, which causes
the stellar distribution of an OC in the colour–magnitude dia-
gram (CMD) to diverge from the isochrone (Riello et al. 2021).

Candidates must then satisfy all three conditions, such that
they have both astrometric and photometric properties that are
similar to those of the members. Figure 1 shows the distribu-
tion of candidates selected using these conditions for the cluster
NGC 2527.

The isochrones used for the CMD condition are obtained
through the Padova web interface2, which computes the stel-
lar evolutionary tracks with the PARSEC 1.2S and COL-
IBRI S37 models of Bressan et al. (2012), Chen et al. (2015),
Pastorelli et al. (2020), and Marigo et al. (2017). To construct a
compatible isochrone for each OC, we used cluster ages, dis-
tances, and extinctions reported by Cantat-Gaudin et al. (2020)
and adopted solar metallicity. We correct the Gaia magnitudes
of the isochrone points for the cluster distance and interstel-
lar extinction. To calculate the extinction for the G and GRP
passband, we use a precomputed extinction model provided by
the dustapprox Python package (Fouesneau et al. 2022), which
calculates the Gaia band extinction for a given extinction A0 at
wavelength λ = 550 nm.

1 https://www.cosmos.esa.int/web/gaia/
dr3-software-tools
2 http://stev.oapd.inaf.it/cmd

2.4. Maximum separation

As OCs are extended objects, the distribution of the members in
the astrometric and photometric dimensions also depends on the
morphology of the OC. To account for this feature in the candi-
date selection, we approximate the distribution in each dimen-
sion with a boundary, which we parameterise with a maximum
separation ∆. The maximum separation ∆ defines the maximum
deviation from the cluster mean or isochrone that a source with
zero uncertainties is allowed to have in order to be labelled as a
candidate. In other words, it defines the boundary between can-
didates and non-members for sources with negligible uncertain-
ties. This boundary is indicated by the red dashed line in Fig. 1.

For the proper motion, we use

∆µ =

√
(3σµα∗ ,m + 3σµα∗ ,c )2 + (3σµδ,m + 3σµδ,c )2, (6)

where σµα∗ ,m and σµδ,m are the standard deviation of the OC mem-
bers in each proper motion component, while σµα∗ ,c and σµδ,c
are the uncertainties of the weighted mean of the cluster proper
motion components,

σµi,c =
1√∑

j 1/σµi, j

, (7)

where σµi, j is the error in the ith proper motion component of
the jth member. For most OCs, the uncertainty in the cluster
means is 10–100 times smaller than the standard deviation of the
members, but for OCs with a small number of members which
have relatively large errors, the uncertainty in the cluster means
is significant.

For the parallax, we take into account the expected asymme-
try in the parallax distribution; we do this primarily for nearby
OCs, because of the inverse relation between parallax and dis-
tance. We therefore use a different value for ∆$ depending on
whether the parallax of a source is greater or smaller than the
cluster parallax,

∆$ =

{
∆+
$ if $ < $c

∆−$ if $ ≥ $c
, (8)

where

∆±$ =

∣∣∣∣∣∣∣$c −
1000 pc

1000 pc
$c
± Rmax

∣∣∣∣∣∣∣ + 3σ$c + 3σ$0 . (9)

The first term in Eq. (9) is the difference between the cluster
parallax and the parallax of a hypothetical source that lies Rmax
closer or farther away from the OC. We use

Rmax = Rmax,90 + 15 pc, (10)

where R90 is the smallest projected radius to enclose 90% of
the members in sky position. The additional 15 pc serves the
purpose of a lower boundary for small OCs, while also taking
into account that the training members generally only constitute
the core of the cluster. The second term in Eq. (9), parallel to
the definition of ∆µi , contains the uncertainty of the weighted
mean parallax of the cluster. The third term contains an estimate
of the uncertainty in the parallax zero-point $0, where we use
σ$0 = 0.015 mas (Lindegren et al. 2021), which is significant
for distant OCs. We offset the parallaxes in our cone search with
zero points as a function of magnitude, colour, and ecliptic lati-
tude according to the recipe provided by Lindegren et al. (2021).
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Finally, for the colour and magnitude, we use

∆C = ∆C,90 + 0.1 (11)

and

∆G = ∆G,90 + 0.8, (12)

where we define ∆C,90 and ∆G,90 such that at least 90% of our
training members would pass the isochrone candidate condition
(Eq. (5)) when ∆C ≥ ∆C,90 and ∆G ≥ ∆G,90. We additionally
use the constraint ∆G,90/∆C,90 = 8 to obtain a single solution for
each OC. This value approximately reflects the ratio between the
ranges in colour and magnitude of sources in the CMD. By only
letting 90% of the members pass the isochrone candidate con-
dition, we generally prevent ∆C and ∆G from being skewed by
training members that do not follow the isochrone, such as blue
stragglers. In contrast, the constant values added in Eqs. (11)
and (12) prevent the condition from being too restrictive. Their
values effectively account for the effects of common phenom-
ena such as binarity, stellar variability, and differential redden-
ing, which cause individual cluster members to deviate from the
isochrone. They also generally mitigate errors in the estimated
age and assumed metallicity of the isochrone.

3. Method

In order to identify additional members of OCs, we make use
of the Deep Sets (DS) neural network architecture developed by
Zaheer et al. (2017). This architecture was designed to operate
on sets, meaning unordered lists of objects, and therefore has
the characteristic feature of returning the same output for every
permutation of a given input. In our implementation of the DS
architecture, we use this feature to perform the following classi-
fication task: given (i) a set of stars labelled as members of the
same OC (support set) and (ii) an unlabelled candidate member
for that OC, return a binary label, member or non-member, for
the candidate. We train the neural network to determine when
a candidate star is sufficiently similar to the member stars in
the support set in order to be classified as a member. The OC
members with p = 1.0 obtained by Cantat-Gaudin et al. (2020)
constitute the member stars used for the support set. We use
the same neural network architecture as Oladosu et al. (2020),
who successfully applied the DS architecture to the analogous
task of finding new members of stellar streams. These latter
authors found that the DS architecture outperforms random for-
est baselines when trained and tested on synthetic data, that
is, a synthetic stellar stream inserted in a real field of stars
extracted from Gaia data, even when the random forest model
is optimised for a subset of the members of the test stream
in question. Compared to models that are trained on one spe-
cific stream, the DS architecture has the potential advantage
of being able to learn higher-level member properties, which
are shared among streams. Another advantage with respect to
the random forest model is that there is no need for negative
examples (non-members) when applying the model to a new
stream. However, when applied to one of the few actual stel-
lar streams with reliable members, the fine-tuned random forest
model did better than the DS architecture trained on synthetic
streams, although a DS architecture optimised for the real stream
performed best. Oladosu et al. (2020) propose the difference in
synthetic and real data as a possible explanation. In the case
of OCs, thanks to recent contributions to OC membership lists
(Cantat-Gaudin & Anders 2020), which include reliable mem-
bership lists for hundreds of OCs, we can avoid the use of syn-
thetic examples. In addition, the members of an OC generally

follow a positional and proper motion distribution that is, for the
majority of OCs, approximately spherically symmetric, which
is easier to learn than the elongated structure followed by the
stars in a stellar stream. In parallax space in particular, in which
sources have relatively large uncertainties, the roughly similar
distances of OC members pose less of a challenge than the gra-
dient in distances of a stellar stream.

We include diagrams of the model components in
Appendix A. For a more detailed description of the neural net-
work architecture, we refer to Zaheer et al. (2017).

3.1. Features

We attribute sources with a number of features on which the
DS model has to base its membership predictions. For a fea-
ture to be effective, the (expected) distributions of members and
non-members need to differ significantly in the feature space,
as this enables the DS model to consistently differentiate the two
classes. We use five source features, which relate to the sky posi-
tion, proper motion, parallax, colour, and magnitude of a source,
and three cluster features, namely mean parallax, age, and line-
of-sight extinction, which are the same for each source associ-
ated with a given OC. For the age and line-of-sight extinction,
we use the values reported by Cantat-Gaudin et al. (2020). Our
calculations of the source features are described in the following
sections.

3.1.1. Sky position separation

We use the projected radius fR between a source and the cluster
centre,

fR = D · θ, (13)

where D is the distance to the OC with respect to us and θ is the
angular separation between the source and the cluster centre,

θ = cos−1 [sin(δ) sin(δc) − cos(δ) cos(δc) cos(α − αc)], (14)

with α and δ being the right ascension and declination of the
source and αc and δc the right ascension and declination of the
cluster centre.

3.1.2. Proper motion separation

We use a ‘proper motion separation’:

fµ =

√(
µα∗ − µα∗,c

)2
+

(
µδ − µδ,c

)2, (15)

which is a measure of the deviation of a a source from the mean
proper motion of the OC.

3.1.3. Parallax separation

Similar to the proper motion feature, we have

f$ = $ −$c, (16)

for a deviation measure in parallax space.

3.1.4. Isochrone vector

The fourth and fifth features are the two components of a vector
that represents a source’s smallest separation from the isochrone:

fC = C −Cic,

fG = G −Gic,

A68, page 4 of 10
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where [Cic,Gic] is the point on the isochrone for which

dic =

√(
fC
∆C

)2

+

(
fG
∆G

)2

(17)

is minimised.

3.2. Training and validation sets

A training set and a validation set are created from the members
and non-members associated with 243 OCs. These OCs meet the
following criteria: they (i) have their age, distance, extinction,
and at least 80 members with p = 1.0 available in the catalogue
provided by Cantat-Gaudin et al. (2020), (ii) are not used to test
the model (see Sect. 4), (iii) have a Galactic longitude that devi-
ates by more than 60 degrees from the Galactic centre, and (iv)
have a parallax of less than 4 mas. Conditions (iii) and (iv) are
designed to exclude OCs with computationally expensive cone
searches. The validation set, which includes 30% of these OCs,
is used to monitor the performance of the model on unseen data
during training. The remaining 70% are contained in the training
set and the performance of the model on this set determines the
optimisation of the model parameters during the training pro-
cess. By training on the members and non-members of many
different OCs, the model is able to learn the general distribution
of OC members, making it capable of finding new members even
for OCs it has not been trained on.

Instances of both sets are created as follows: each member
and non-member is first attributed with a number of training
features (see Sect. 3.1), which are designed to contain the rel-
evant information of a source such that the model can make an
accurate membership prediction. Next, we pair the member or
non-member we want the model to classify with a support set
consisting of a random set of members (excluding the source to
be classified if it is also a member) of fixed size and from the
same OC as the source to be classified. We then combine the
source to be classified and the support set into a single tensor,
which will be the input for the DS model. This tensor is created
by concatenating the training features of the source to be classi-
fied with the training features of each member in the support set,
resulting in a Ns×2M matrix where Ns is the number of members
in the support set and M is the number of training features per
source. An instance of the training or validation set is then the
pair of this input tensor and the binary label indicating whether
the source to be classified is a member or non-member.

In order to augment the number of positive examples in our
datasets, we create two instances with each member to be classi-
fied for the training or validation set, depending on which set the
corresponding OC is in. Both instances will contain the same
member to be classified, but a different random support set to
prevent duplicity of the training and validation instances. From
the set of non-members of each OC, we take five times the num-
ber of included members to be classified (i.e. ten times the num-
ber of unique members to classify) for that OC, which ensures a
fixed ratio between members and non-members. The amount of
non-members resulting from our candidate-selection process is
generally much larger than the number of members for a given
OC, and therefore in most cases all of the non-members to be
classified in the training and validation set are unique. In the
case where the number of non-members we want to include for
a given OC is larger than the number of unique non-members
for that OC, we pad the difference with randomly selected non-
members of that OC.

3.3. Training process

To optimise the model parameters, we use the cross-entropy loss
function

Lcross = −
∑

i

∑
j

pi j log(qi j), (18)

where pi j and qi j are, respectively, the true probability and pre-
dicted probability of a source being classified as class i and class
j (member or non-member). The true probability corresponds
to the label of the source to be classified and is therefore either
0 or 1. In order to mitigate overfitting, we apply two types of
regularisation during training. We use L2 regularisation, giving
a total loss function

L = Lcross + γ
∑

i

w2
i , (19)

where wi are the trainable parameters and γ determines the
strength of the regularisation. In addition, we scale the gradi-
ents of the trainable parameters used in the optimisation pro-
cess such that their norm does not exceed a certain value.
We use PyTorch’s implementation of the ADAM optimiser
(Kingma & Ba 2014) to minimise the loss function. To assess the
performance of the model, we keep track of the F1-score, which
is the harmonic mean of the recall and precision (see the caption
of Fig. 2 for their definition). The F1-score is considered a suit-
able metric for data with a large class imbalance when the major-
ity class is labelled as negative, which are the non-members in
our case (Chicco & Jurman 2020). When the F1-score has not
improved for 20 consecutive epochs, we stop the training pro-
cess and use the model parameters that produced the maximum
F1-score for the final model. Figure 2 shows the evolution of the
loss and a number of metrics for the training and validation set.

3.4. Membership probability

We calculate a membership probability for each candidate
member by applying the DS model on multiple samples of the
candidate. For each sample, we recalculate the proper motion,
parallax, magnitude, and colour of the candidate by sampling
from a multi-variate normal distribution defined by the candi-
date’s uncertainties and the available correlations for these prop-
erties in the Gaia data. With the sampled properties, we calculate
the new training feature values of the sample. We also supply a
different random support set for each sample. The membership
probability is then defined as the fraction of samples for which
the DS model identifies the candidate as a member. We use a
sample size of 100 to cover both the variance in the feature val-
ues and the support set members.

4. Results

The Python code and instructions for using the method are pub-
licly available at the gaia_oc_amd repository on GitHub3. The
generated membership lists are available at the CDS.

To demonstrate the effectiveness of our method, we tested the
DS model on 167 OCs that (i) were provided with a membership
list by Tarricq et al. (2022; hereafter T22), (ii) have their age,
distance, extinction, and at least 20 members with p = 1.0 avail-
able in the catalogue provided by Cantat-Gaudin et al. (2020),

3 Available at https://github.com/MGJvanGroeningen/gaia_
oc_amd
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Fig. 2. Performance of the DS model during training. The top figure
shows the evolution of the loss function (Eq. (19)) for the training and
validation set. The bottom figure shows the evolution of a number of
classification metrics based on the number of true positives T P, true
negatives T N, false positives FP, and false negatives FN, including:
precision = T P

T P+FP , recall = T P
T P+FN , selectivity = T N

T N+FP , accuracy =
T P+T N

T P+T N+FP+FN , balanced accuracy (average of recall and selectivity), and
F1-score (harmonic mean of recall and precision). After 165 epochs, the
model has reached its maximum validation F1-score.

(iii) are not in the training or validation set, and (iv) have a
Galactic longitude that deviates by more than 30 degrees from
the Galactic centre to lighten the computational load. We com-
pare the members we obtain to the members obtained by T22.
These latter authors used the Hierarchical Density-Based Spatial
Clustering of Applications with Noise (HDBSCAN) clustering
algorithm Campello et al. (2013) – which is considered a state-
of-the-art method for determining OC members (Hunt & Reffert
2021) – to establish their membership lists. Tarricq et al. (2022)
ran HDBSCAN on Gaia EDR3 parallax and proper motion
dimensions ($, µα∗ , µδ) and applied no additional selection cri-
teria in sky position dimensions as they focused on studying the
halos of OCs. We note that our method uses the same parallax
and proper motion data as T22, but uses sky position and photo-
metric data as well.

We also considered comparing with membership lists from
Dias et al. (2021), as they assembled membership lists from var-
ious sources and a significant fraction of these also include
G > 18 members. However, almost all their OCs with
G > 18 members do not have a membership list available in
Cantat-Gaudin et al. (2020). As such, a systematic comparison

13756 5865129286

Tarricq+22
this study

(p 0.1)

798 1364919534

Tarricq+22
this study

(p 0.5, fR < 20 pc, G < 18)

Membership comparison

Fig. 3. Venn diagrams comparing the combined membership lists of
the 167 test OCs from T22 and this study. The top figure compares the
members with a membership probability of p ≥ 0.1, while the bottom
figure compares the members with a membership probability of p ≥ 0.5,
a projected radius of less than 20 pc, and a G-magnitude of brighter than
18. The members that only occur in T22 are labelled in red, those that
only occur in this study are in green, and the overlapping members are
labelled in orange.

in which only members from Cantat-Gaudin et al. (2020) are
used for the support set is not viable.

In Fig. 3, we present two Venn diagrams that show the over-
lap between the members from T22 and the members in this
study. The top figure in Fig. 3 includes all members with a mem-
bership probability of p ≥ 0.1 and shows that we generally find
the majority of the T22 members and also a significant number
of additional members. In the most extreme cases, over 90% of
the members we obtain for a single cluster are not in the corre-
sponding T22 membership list. In the subsequent sections, we
discuss the origins of the differences in the membership lists.

In Fig. 4, we compare the member distributions in sky posi-
tion, proper motion, parallax, and the CMD of four OCs: NGC
2099, NGC 752, NGC 2682, and IC 4756. These plots serve
as examples of the member distributions we obtain, and will be
used as a reference to highlight some of the trends we observe
when comparing the membership lists. They also show that the
additional members fainter than G = 18 generally conform to
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Fig. 4. Distributions of p ≥ 0.1 members of NGC 2099, NGC 752, NGC 2682, and IC 4756 found in this study (blue) and by T22 (orange) in
(from left to right) sky position, parallax, proper motion, and CMD.

the distribution of the T22 members in each dimension, which
supports the credibility of their membership status.

4.1. Projected radius and G-magnitude

As our method and that used by T22 determine OC member-
ship in a different way, the discrepancy between the membership
lists is to be expected to some degree. However, many mem-
bers are excluded from either list for trivial reasons. For exam-
ple, in contrast to our candidates, T22 a priori excluded sources
with G > 18 from their membership list. On the other hand, our
method ascribes lower membership probabilities to sources with
large projected radii, while the T22 membership probability does

not depend on the sky position. If we analyse the members from
T22 that we missed, that is, the members from T22 that we either
select as non-members or ascribe a membership probability of
p < 0.1, which together make up 32% of the total number of
T22 members, we find that 73% of these were selected as candi-
dates, but that the average projected radius of these candidates is
38.3 pc with a standard deviation of 3.1 pc. Sources beyond this
radius are typically given very low membership probabilities as
the training members from Cantat-Gaudin et al. (2020) usually
do not extend far beyond the core of the cluster. A clear example
of this can be seen in the sky position plot of NGC 2099 in Fig. 4,
where the outskirts are only populated by T22 members. In
order to show the significance of these differences, we present a
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similar comparison in the bottom plot of Fig. 3 where we only
consider sources with G < 18 and with projected radii of less
than 20 pc. As the high-probability sources are more relevant for
comparison than the low-probability sources, we also consider
only sources with a membership probability of p ≥ 0.5 for this
plot. After these cuts, a total of 33 184 (38%) members in our
study and 20 332 (47%) T22 members remain. This comparison
shows that we find nearly all of the probable (p ≥ 0.5) T22 mem-
bers within a 20 pc radius. For 61 OCs, we find 100% of these
T22 members. We can also see that the fraction of new members
is generally lower, as a large proportion of all p ≥ 0.1 members
we obtain are G > 18 members, which are excluded from the
bottom Venn diagram. The median fraction of p ≥ 0.1 members
we obtain with G > 18 is 43.5%. For nearby OCs, which have
more faint sources with high probabilities due to smaller astro-
metric uncertainties, the fraction of members we obtain with
G > 18 and p ≥ 0.1 can be as large as 70%–80%.

4.2. Parallax, proper motion, and RUWE

The remaining differences between our results and those of T22
are primarily the result of the different treatments of the paral-
lax and proper-motion dimensions between our study and theirs,
which are data used by both methods. If we consider only the
sources used for the bottom plot in Fig. 3, that is, sources with
p ≥ 0.5, fr < 20 pc, and G < 18, we obtain median parallax and
proper motion features f$ = −0.003+0.067

−0.076 and fµ = 0.20+0.30
−0.13 for

our members, where the bounds indicate the 15th and 85th per-
centiles, while the same statistics for the selected T22 members
are f$ = −0.002+0.047

−0.052 and fµ = 0.16+0.41
−0.09. Therefore, our method

is, on average, effectively less ‘strict’ in the parallax and proper
motion dimension. An aspect of our approach that could be rel-
evant here is our inclusion of sources with a renormalised unit
weight error (RUWE) of greater than 1.4, which are excluded
in the T22 study. We find that, of our sources that have p ≥ 0.1,
G < 18 and are not among the T22 members, 26% have a RUWE
of above 1.4. However, the effect of these sources on the afore-
mentioned distributions of f$ and fµ is very small.

In contrast with the general trend of broader distributions in
f$ and fµ for our members, some OCs have T22 member dis-
tributions that are much more extended. For example, the OCs
UPK 303, COIN-Gaia 30, ASCC 58, NGC 1901, and COIN-
Gaia 13 have a much broader distribution of T22 members in
proper motion compared to the training members, resulting in
many of the T22 members being selected as non-members by
our method. In Fig. 4, NGC 752 is another example of this.
The statistics of all T22 members not selected as candidates
also show the relative strictness of our proper motion condi-
tion. Of these missing T22 members, 67% failed to meet the
proper motion condition. By comparison, only 27% failed to
meet the parallax condition and only 20% failed to meet the
isochrone condition. Clear examples of T22 members excluded
by the parallax condition can be seen in the parallax plot of clus-
ter IC 4756 in Fig. 4 and examples for T22 members excluded by
the isochrone condition can be seen for the clusters NGC 2682
and NGC 2099.

5. Summary and conclusions

We developed a methodology to find new OC members in Gaia
DR3 for the population of known OCs. This methodology is
based on a deep neural network architecture, which is able to
learn the distribution of highly reliable OC members in a high-
dimensional space, meaning five-dimensional astrometry and

photometry, and retrieve new members based on the similari-
ties in these parameters. To train our method, we take advan-
tage of the high-quality OC catalogue built using Gaia DR2
(Cantat-Gaudin et al. 2020) and EDR3 (Castro-Ginard et al.
2022), which contains around 2500 OCs with membership lists,
mean astrometric parameters, and astrophysical information.

The method presented here is available as an open-source
Python tool at the gaia_oc_amd repository on GitHub. This
python package has built-in functions to go through all the steps
described in the previous sections, from querying OC mem-
bers and their mean parameters, generating the different cone
searches in the Gaia archive and creating the member, non-
member, and candidates datasets, to training the model and using
it to find new OC members. Documentation and a step-by-step
tutorial in the form of a Python notebook are included within the
package. The generated membership lists are also made avail-
able through the CDS.

When comparing our results with independent membership
determinations for a subset of the OC catalogue (Tarricq et al.
2022), we are able to retrieve 100% of their members within
20 pc of the cluster centre while adding some new members at
bright magnitudes (G ≤ 18). More importantly, we are able to
extend membership lists to fainter magnitudes – down to the
Gaia magnitude limit – in a homogeneous way for the first time
on the whole OC catalogue. The distribution of the members we
obtain in this magnitude domain conforms to that of the mem-
bers from Tarricq et al. (2022) in both the astrometric and pho-
tometric dimensions, which provides good evidence for their
reliability. Extending the membership list beyond G = 18 is
needed for forthcoming spectroscopic surveys such as WEAVE
and 4MOST, whose input target lists are based entirely on Gaia,
and in their low-resolution modes, they can observe sources
fainter than G = 18 mag. These surveys will complement Gaia
with radial velocities for stars with GRVS ∼ 16 and chemi-
cal abundances for all the observed stars. In the context of the
present work, this will allow us to further refine OC member-
ship lists and retrain our method for a more accurate membership
determination.

Having more complete membership lists for the OCs also
enables further scientific applications. So far, Gaia has redefined
the OC census, providing a better characterisation of their astro-
metric properties, the addition of hundreds of new objects to the
catalogue, and the estimation of some astrophysical properties
that only depend on the shape of the OC isochrone in the CMD.
However, further improvements to the OC catalogue, such as the
estimation of masses or the dynamical evolution of OCs (and
their members) through the Galactic disc, rely on a complete
description of the OC in the whole Gaia magnitude range and
the distribution of its member stars in the CMD, also accounting
for possible selection effects on these stars (Cantat-Gaudin et al.
2023).
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Appendix A: Model architecture

Linear layer

Mean over set
dimension 

Linear layer (no bias)

-

[N, din]

[N, din]

[1, din]

[1, dout]

[N, dout]

Fig. A.1. Diagram containing the operations in the PEL. The variables
in parentheses indicate the dimensions of the tensors between opera-
tions. The batch dimension is left out for clarity. In the linear layer on
the right track, the biases are set to zero.

A diagram of the complete DS model is given in Fig. A.2. The
first part of the model consists of a permutation equivariant layer
(PEL) and an exponential linear unit (ELU) (Clevert et al. 2015)
activation function, which is repeated five4 times.

In the PEL, expanded into its components in Fig. A.1, the
input follows two parallel tracks. In Fig. A.1, the track on the
left contains one linear layer, which performs the operation

x′ = Wnx + bn (A.1)

on its input vector x, with dimensionality din, and returns a new
vector x′, with dimensionality dout. The weight matrix Wn and
bias vector bn of linear layer n constitute trainable parameters
of the model, which are to be optimised during the training pro-
cess. In the right track, the mean over the set dimension is taken
first, followed by another linear layer. Finally, the output from
the right track is subtracted from the output of the left track. We
note that, as the input to the first PEL consists of the training
features, the mean features of the support set members are part
of the result from the first ‘mean over set dimension’. The mem-
bership prediction is therefore partly based on the mean features
of the members in the support set. The term ‘permutation equiv-
ariant’ refers to the feature of the PEL whereby a permutation
(of the set dimension) of the input gives the same result as the
same permutation on the output, that is,

PEL(permutation(X)) = permutation(PEL(X)). (A.2)

After the PEL blocks, taking the mean over the set dimen-
sion guarantees the invariance of the output with respect to a
permutation of the model input, fulfilling the precondition for
a model operating on sets. This is followed by a dropout layer,
which randomly sets elements of the input tensor to zero dur-
ing training, with a 50% probability for each element. This

4 In the original model from Zaheer et al. (2017), this block is repeated
only three times. This is the only difference compared to the version
from Oladosu et al. (2020) and thus compared to our model as well.

Permutation equivariant
layer 

ELU

5x

Mean over set
dimension 

Dropout (p=0.5) 

Linear layer 

ELU

Dropout (p=0.5) 

Linear layer 

[Ns, 2M] 

[Ns, dh] 

[dh] 

[dh] 

[2] 

Softmax

Fig. A.2. Diagram of the complete DS model. Details of the PEL are
given in Fig. A.1. The variables and values in the brackets indicate the
dimensions of the tensors between operations and the batch dimension
is left out for clarity. The symbol Ns refers to the size of the support set,
M to the number of training features, and dh to the hidden dimension of
the network.

prevents over-reliance on certain features of the input, which
helps prevent overfitting to the training data (Hinton et al. 2012).
The final linear layer transforms its input, which is a vector with
a hidden dimension dh, to a 2D vector, corresponding to the two
classes: member and non-member. The softmax layer then con-
verts values in the 2D vector to values that sum to 1 and can
thus be interpreted as a probability for each class. Finally, the
class with the highest probability is attributed to the candidate
member included in the model input.

A68, page 10 of 10


	Introduction
	Data
	Cone searches
	Members
	Candidate selection
	Maximum separation

	Method
	Features
	Sky position separation
	Proper motion separation
	Parallax separation
	Isochrone vector

	Training and validation sets
	Training process
	Membership probability

	Results
	Projected radius and G-magnitude
	Parallax, proper motion, and RUWE

	Summary and conclusions
	References
	Model architecture

