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Abstract

The Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) on board Mars Express has been
sampling the topside ionosphere of Mars since mid-2005. The analysis of the main reflection (nadir) of the
ionosphere through the ionograms provided by the MARSIS instrument is typically performed manually due to the
high noise level in the lower frequencies. This task, which involves pattern recognition, turns out to be unfeasible
for the >2 million ionograms available at the European Planetary Science Archive. In the present contribution, we
propose a modular architecture based on serverless computing (a paradigm that stands on the cloud) for optimal
processing of these ionograms. In particular, we apply serverless computing to detect oblique echoes in the
ionosphere, which are nonnadir reflections produced when MARSIS is sounding regions above or nearby crustal
magnetic fields, where the ionosphere loses the spherical symmetry. Oblique echoes are typically observed at
similar frequencies to the nadir reflections but at different times delays, sometimes even overlaying the nadir
reflection. Oblique echoes are difficult to analyze with the standard technique due to their nonconstant and highly
variable appearance, but they harbor essential information on the state of the ionosphere over magnetized regions.
In this work we compare the proposed serverless architecture with two local alternatives while processing a
representative data subset and finally provide a study by means of cost and performance.

Unified Astronomy Thesaurus concepts: Mars (1007); Planetary ionospheres (2185)

1. Introduction

The Mars Advanced Radar for Subsurface and Ionosphere
Sounding (MARSIS) on board Mars Express has been sounding
the subsurface, surface, and ionosphere of Mars since mid-2005
(Orosei et al. 2015). The radar has two different operational
modes, one dedicated to sound the surface and below with
two simultaneous frequencies to choose between 1.8, 3, 4, and
5 MHz, and another one called Active Ionospheric Sounding
(AIS) where the radar transmits a sweep of 250 frequencies
between 0.1 and 5.5 MHz (Gurnett et al. 2005). In this mode,
the ionosphere is sounded from the spacecraft location to the
maximum ionization region, and the observations are recorded
in the form of ionograms, which are plots of the echo reflections
of each frequency plotted in the form of time of flight of
the signal versus its frequency. These ionograms contain a large
amount of information regarding the ionosphere, such as the
main trace of the ionosphere formed after the different
frequencies are reflected in the ionosphere when the carrier
frequency is equal to the plasma frequency. This is a nadir
reflection from which the topside electron density profile from
the spacecraft altitude until the region of maximum ionization
(typical at ∼130 km at the subsolar point; Sánchez-Cano et al.
2013) can be obtained. In addition, the local plasma electron
density and magnetic field (magnitude) surrounding the space-
craft (Gurnett et al. 2008; Andrews et al. 2013) can also be

obtained, as well as the surface reflection for frequencies larger
than the plasma frequency and, sometimes, oblique echoes that
come from nonnadir reflections (Andrews et al. 2014). These
oblique echoes are produced when MARSIS-AIS sounds
regions above or nearby crustal magnetic fields, where the
ionosphere loses the spherical symmetry. These regions are
mainly found in the southern hemisphere of Mars (Langlais
et al. 2019), where the ionosphere is locally lifted breaking the
general spherical symmetry. Oblique echoes are not always
found in all ionograms, and when they are, they are typically
associated with vertical crustal magnetic fields (Andrews et al.
2014). Despite many studies, it is still not clear whether these
reflections are produced by high-density regions or by
ionospheric upwelling (Němec et al. 2015; Fallows et al.
2019). However, they provide a unique view of the
nonuniformity of the ionosphere and of the role of the crustal
fields lifting or depressing plasma within local regions of the
ionosphere. Their systematic study, therefore, has the potential
to provide the best characterization of the lifetime of these
ionospheric structures and their variability with local time and
seasons.
MARSIS-AIS constitutes a rich and large data set for

ionospheric studies that have revolutionized our knowledge of
Mars’ ionosphere in the 18 yr of continuous observations as it
was the first instrument to systematically sample the topside
ionosphere of Mars at all latitudes, longitudes, and local times.
A summary of the main discoveries of this instrument can be
found at Orosei et al. (2015). However, despite the large
amount of ionospheric parameters that can be retrieved, some
of them are easier to obtain than others. For example, a

The Astronomical Journal, 166:19 (11pp), 2023 July https://doi.org/10.3847/1538-3881/acd18d
© 2023. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0001-9299-5292
https://orcid.org/0000-0001-9299-5292
https://orcid.org/0000-0001-9299-5292
https://orcid.org/0000-0002-6241-8141
https://orcid.org/0000-0002-6241-8141
https://orcid.org/0000-0002-6241-8141
https://orcid.org/0000-0003-0277-3253
https://orcid.org/0000-0003-0277-3253
https://orcid.org/0000-0003-0277-3253
https://orcid.org/0000-0001-9723-8100
https://orcid.org/0000-0001-9723-8100
https://orcid.org/0000-0001-9723-8100
https://orcid.org/0000-0002-8893-219X
https://orcid.org/0000-0002-8893-219X
https://orcid.org/0000-0002-8893-219X
https://orcid.org/0000-0003-4054-1197
https://orcid.org/0000-0003-4054-1197
https://orcid.org/0000-0003-4054-1197
https://orcid.org/0000-0001-7673-9061
https://orcid.org/0000-0001-7673-9061
https://orcid.org/0000-0001-7673-9061
mailto:jlvazquez@fdi.ucm.es
http://astrothesaurus.org/uat/1007
http://astrothesaurus.org/uat/2185
https://doi.org/10.3847/1538-3881/acd18d
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/acd18d&domain=pdf&date_stamp=2023-06-16
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/acd18d&domain=pdf&date_stamp=2023-06-16
http://creativecommons.org/licenses/by/4.0/


parameter than can be easily retrieved with an algorithm is the
peak density of the ionosphere (critical frequency; Withers
et al. 2015), which is the last reflection in the main ionospheric
trace. However, the analysis of the main trace of the ionosphere
(main reflection) is typically done manually. This is because,
although an automatic detection is possible for frequencies
above ∼1.5 MHz, the lower frequencies are affected by a
myriad of noise issues, including antenna optimization issues,
and significant overlaying of different signatures, such as local
plasma harmonics and electron cyclotron echoes near the
spacecraft. For this reason, MARSIS-AIS ionograms are
typically processed manually (Sánchez-Cano et al. 2012).
Another example are the surface reflection echoes that can be
easily identified and retrieved via analysis of the power signal
reflection at the higher frequencies on the AIS ionograms
(Němec et al. 2015), or their nonreflections that indicate the
level of absorption present in the lower ionosphere (i.e., radio
blackouts; Sánchez-Cano et al. 2019; Lester et al. 2022). Since
the radar deployment in mid-2005, MARSIS has been in
operation for more than 20,000 orbits. This is, therefore, a huge
data set with a lot of scientific possibilities, for which
alternative methods to the standard method could be very
powerful.

In this study, we explore the possibility of using cloud
computing in the form of serverless computing with MARSIS-
AIS in order to estimate the feasibility of this technique for
planetary science. This technique offers a large variety of
advances, such as a quick computing process time, and quick
identification of signatures in large data sets.

Cloud computing platforms, and especially IaaS (Infrastruc-
ture as a Service) clouds, have been used for years to deploy
different kinds of scientific applications and scientific work-
flows (Malawski et al. 2012; Panneerselvam & Subbara-
man 2018; Ahmad et al. 2021; Rajasekar & Palanichamy
2021). The IaaS cloud model enables the on-demand provision
of processing, storage, networks, and other fundamental
computing resources on a pay-per-use basis, offering the
flexibility to scale IT resources up and down on demand. This
model allows individual users and organizations to avoid the
cost and complexity of purchasing, managing, and maintaining
physical servers and data center infrastructures.

One of the main challenges when deploying a scientific
workflow on an IaaS cloud, such as the one addressed in this
paper, is to optimize the workflow scheduling, which can be
divided into two different subproblems (Rodriguez &
Buyya 2017): resource provisioning and task allocation.
Resource provisioning consists of selecting and instantiating
the cloud resources that will be used to run the workflow tasks
(e.g., virtual machines or containers, storage, interconnection
networks), trying to select the types of resources that are best
suited to different tasks, and trying to optimize the amount of
resources deployed to reduce the cost of the infrastructure. Task
allocation consists of mapping each task onto the best-suited
resource, trying to maximize the resource utilization and/or
reduce the task execution time and the total make-span. This is
an NP-complete problem, and many different heuristics and
metaheuristics has been proposed to solve it (Houssein et al.
2021; Belgacem & Beghdad Bey 2022).

More recently, a new cloud computing service model has
been delivered, the serverless model (Castro et al. 2019; Jonas
et al. 2019), which aims to abstract infrastructure management
from final users and application developers. In this model, the

provider is responsible for allocating, deploying, and scaling
the resources required to meet the needs of the userʼs
applications. This model is very useful for the deployment
and execution of scientific workflows as resource provisioning
and tasks scheduling issues are the responsibility of the
provider, while developers only have to worry about providing
the application source code in the form of atomic
functions (Vazquez-Poletti & Llorente 2018), and they are
billed only for the time the code is running.
In this paper we propose a modular architecture based on

serverless computing for optimal processing of MARSIS-AIS
ionograms. In order to evaluate the feasibility of this method,
we have selected oblique echoes as the key signatures to be
detected. This is mainly because these features are not always
present in the ionograms and when they are, they appear in
multiple complex forms. Oblique echoes are typically observed
at similar frequencies to the nadir reflections but at different
times delays, sometimes even overlaying the nadir reflection.
They are difficult to analyze with the standard technique due to
their nonconstant and highly variable appearance but they
harbor essential information on the state of the ionosphere over
magnetized regions. Therefore, they are considered are a good
type of signature with large scientific potential that can be
easily detected with cloud computing. Although in this study
we use serverless cloud computing for MARSIS-AIS oblique
echoes, we note that this technique can be applied to identify
other signatures in the images, such as the main trace of the
ionospheric reflection, or the surface of the planet, or even be
applied to other data sets.
We will demonstrate that the proposed serverless-based

architecture will significantly reduce the processing time
compared to other classic server-based solutions, with a
reduced infrastructure cost.

2. MARSIS-AIS Data Set

We use the MARSIS-AIS data set in this work to analyze two
years of ionograms focusing on the detection of oblique echoes.
For that, we use the summary plots (i.e., images) that can be found
on the European Space Agency (ESA) Planetary Science Archive
(PSA) rather than the actual data files. The main reason to use the
summary plots are that the actual data are stored in complex
binary files that need some preprocessing before using them for
scientific purposes, and these browse images are easier to manage,
have less data volume, and so, are ideal for the cloud computing
technique. All images are in .PNG format and were processed by
University of Iowa (US) until 2019 December and by University
of Leicester (UK) since then. All of them have the same color bar
scale measuring the power return of the signal in V2m−2 Hz−1. In
total, there are >2 million ionograms publicly available at the
PSA. We choose a subset of data from 2013 and 2014 to run our
experiment. This comprises 441,919 images, which correspond to
120 GB in size.
In order to use cloud computing over the MARSIS-AIS

ionogram images, we need to define the main feature that we
would like to identify. In this study, we use the ionograms
images already present in the BROWSER folders in the ESA
PSA. Figure 1 shows an example of the images used in this
work, where the main features are highlighted. In particular, we
use data on the dayside of Mars where a clear reflection from
the ionosphere is observed. In Figure 1, the main ionospheric
reflection is seen between frequencies 2 and 3.5 MHz and time
delays of 1.4 and 1.8 ms. In addition, other features are present,
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such as the local harmonics of plasma from which the local
electron density around the spacecraft can be retrieved (vertical
lines at frequencies lower than ∼1.5 MHz); electron cyclotron
echoes from which the magnitude of the magnetic field
surrounding the spacecraft can be obtained (horizontal lines
at frequencies lower than ∼1 MHz); the surface reflection
(straight line at frequencies higher than 4.5 MHz); and the
oblique echoes (curve reflection between frequencies ∼1.2 and
∼2.6 MHz and time delays of 2 and 3 ms). In order to study the
feasibility of cloud computing on this data set, we use the
oblique reflections as a case study.

3. Computational Solution

3.1. Cloud Computing and Serverless for Data Science

Serverless computing is a cloud computing model that
abstracts the underlying infrastructure, operating system, and
server management from developers. In a serverless environ-
ment, the application logic is commonly implemented as a set
of stateless functions that are triggered by events (e.g., API
calls, message queues or scheduled tasks), and are executed by
containerized or microVM based run time environments.

The main benefit of the serverless model (Baldini et al. 2017;
Eivy & Weinman 2017) is that developers can focus solely on
writing code and deploying their applications, without worry-
ing about the infrastructure or scaling requirements. The cloud

provider takes care of the heavy lifting of server management,
capacity planning, and scaling, allowing developers to build
and deploy applications more quickly and efficiently. In
addition, serverless computing reduces the cost of computing
by charging only for the resources consumed during the
execution of the function.
Platforms implementing this serverless model are categorized

as Function as a Service (FaaS). FaaS platforms enables
developers to upload their code to the cloud provider, define the
trigger that will activate it, and specify the resources required to
run the function. When a trigger occurs, the cloud provider
automatically spins up the required resources, runs the code, and
then releases the resources when the function has completed
execution.
Some examples of commercial FaaS platforms are Amazon

AWS Lambda,6 Google Cloud Functions,7 and Microsoft
Azure Functions.8 There are also some open source serverless
initiatives, such as Apache OpenWhisk9 (Quevedo et al. 2019),
OpenLambda10 (Hendrickson et al. 2016), and Knative.11

Figure 1. Examples of MARSIS-AIS ionograms with different visible features, such as oblique echoes, local plasma harmonics, Mars surface lines, and cyclotron
echoes. In the bottom right and top right ionograms shown, the main trace and oblique echo are superimposed.

6 https://aws.amazon.com/lambda
7 https://cloud.google.com/functions
8 https://azure.microsoft.com/services/functions
9 https://openwhisk.apache.org
10 https://github.com/open-lambda/open-lambda
11 https://knative.dev
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Serverless computing or FaaS platforms are suitable for the
deployment and execution of scientific workloads (John et al.
2019; Burkat et al. 2021; Eismann et al. 2020; Malawski et al.
2020) for two main reasons. On the first hand, serverless
computing has revealed itself as a valuable paradigm for
complex high-throughput applications environments that
demand optimal resource provision (Raman et al. 1998). This
is because dynamic load peaks can be effectively attended via
automatic resource management. With serverless, the cloud
provider automatically handles the scaling of resources based
on the needs of the application. This can lead to improved
performance and availability for the end user. On the second
hand, serverless platforms offer the possibility of function
chaining (Daw et al. 2020; Balla et al. 2021; Sabbioni et al.
2021), where the completion of a function can trigger the
invocation of another function. This allows for the creation of
complex workflows by linking together multiple simple
functions. For example, each task in the workflow can be
implemented by a different function, and when a task is
completed, its output is placed in an intermediate storage that
triggers the execution of the next function. In this work, we
propose the use of this serverless function chaining scenario to
deploy our scientific application in an efficient way.

In particular, we have focused on Amazon Web Services
(AWS), one of the leading public cloud providers, which
pioneered the provision of serverless computing services. Its
FaaS Lambda12 has been used in our paper because it allows an
easy code execution without managing infrastructure elements
while defining events that trigger the functions (Villamizar
et al. 2016).

AWS Lambda operates by executing each of its functions
within a dedicated container, created when the function is first
created. These containers are then executed on a multitenant
cluster of machines managed by AWS. To ensure that each
function is allocated the necessary resources, each container is
allocated the required RAM and CPU capacity before
execution. When a function completes, the RAM allocation is
multiplied by the function’s run time, and customers are
charged accordingly based on the allocated memory and run
time. AWS Lambda allows many instances of the same or
different functions to run concurrently, making it possible to
deploy highly scalable applications. To implement function
chaining in AWS Lambda, developers can use a variety of
methods, including AWS Step Functions, AWS EventBridge,
or the Simple Storage System (S3), among others. The
scientific workflow implemented in this work is based on S3
buckets that are configured to trigger a lambda function when
new objects are added or updated, so that a sequence of lambda
functions are executed, with each function processing the data
in a specific way before passing it on to the next function in the
workflow.

The total function running time in AWS Lambda comprises
the execution of the code itself and the initialization performed
by Lambda (Fouladi et al. 2017). The code is executed inside a
container that is deployed to this end. This container will be
reused if the function is triggered again in the next 15 minutes,
reducing the initialization time (Vazquez-Poletti & Llorente
2018).

3.2. Serverless Architecture

In order to understand the proposed architecture, its building
blocks are explained in depth:

1. S3 buckets are a type of cloud storage system with some
special characteristics. In particular, we take advantage of
the triggering produced by new files appearing in the
bucket. This way, each new MARSIS ionogram uploaded
to S3 will force the execution of an operation we have
previously defined on it. Multiple triggerings will
produce multiple executions that will run in parallel.

2. A lambda function is a cloud computing component that
allows to execute a certain code (different languages are
supported13) in a set of given conditions (execution
deadline and maximum memory). As it can be deduced
from the previous S3 explanation, lambda functions are
invoked through defined triggers. The main advantage is
its high level of parallelism, allowing up to 1000
instances of the same function to be executed at the
same time. In our study, we conducted tests on the
architecture with a limit of 1000 parallelization functions;
however, it is worth noting that a significantly higher
number of simultaneous executions can be requested on-
demand through Amazon Web Services (AWS).

There are different programming languages for developing
lambda functions. In the present work, Python was chosen for
its versatility when performing mathematical calculations and
working with advanced color patterns. We have been using
both 3.8 and 3.9 run times because not all lambda layers work
with the same version.
Additionally, lambda developers do not interact with any

operating system. However, the function execution takes place
on a container running Amazon Linux.
The proposed architecture is decomposed in several chained

lambda functions that will use S3 as swap memory, as the
output files of a function will trigger one or more other
functions. These functions and buckets are organized in
modules, as it can be seen in Figure 2.
The first module (COMMON PRE-PROCESSING) is common

to all MARSIS input files, and it prepares the data to be
processed by the following modules.
The next classification module (CUSTOM MEASURE MOD-

ULE) launches simultaneously the initial functions of different
detection modules and on the same input data. In this work we
have focused on the GREEN DETECTION function, which
moves the process to the module for anomaly in the green
spectrum detection, and finally to the module for the oblique
echoes detection. Returning to the CUSTOM MEASURE
MODULE, the first function of additional detection algorithms
besides the oblique echoes one would be placed here.
The final result of the proposed architecture are the

ionograms classified in different folders on an S3 bucket,
according to what has been detected on them.

3.2.1. Common Preprocessing Module

MARSIS ionograms are uploaded to the S3_INIT input
bucket. Each file upload triggers the INIT_MODULE_MARS
function, which classifies the ionogram according to the latitude,
longitude, and solar zenith angle. This process is aided by a

12 https://aws.amazon.com/es/lambda/ 13 https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
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custom layer named Tesseract that parses the previous
mentioned parameters directly from the image (as they are written
on it).

Once the images are classified, their white borders are
removed. This way each image is properly centered and
deposited in the S3_CROP bucket (see the example shown in
Figure 3). This action triggers the next modules.

As explained before, in this contribution we have focused on
the measured module (CUSTOM MEASURE MODULE).

3.2.2. Custom Measure Module

Upon detecting a new file in the S3_CROP bucket, different
functions are simultaneously triggered (GREEN DETECTION,
BLUE DETECTION, HARMONICS DETECTION). The
present work covers the GREEN DETECTION function, which
removes the blue spectrum in the ionogram. This procedure
isolates its green zones using color masks converts the color

space of the image from the RGB color space to the HSV color
space using the cv2.inRange function; this range falls
between 60° and 120° on the HSV color space. This function
returns a binary mask where pixels that fall within the specified
range of colors are set to white, while the rest are set to black.
Then the cv2.bitwise_and function applies the mask to

the original image, resulting in a new one where only the pixels
that fall within the specified color range are visible, resulting in
a cleaner version that is stored in the S3_NO_BLUES bucket
(see the example shown in Figure 4). This triggers the GREEN
PATH MODULE.

3.2.3. Green Path Module

This module is the most complex in the architecture, because
it involves several functions to prepare the ionogram for
oblique echoe detection.

Figure 2. Serverless modular distributed architecture for anomalies detection in MARSIS ionograms. This architecture has two common modules: PRE-
PROCESSING and MEASURE (from where the specific oblique echo detection modules are called).

Figure 3. Original ionogram (left) and cropped image where the color area is isolated (right).
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The first function of this module is MARSIS_AREAS, which
works with a dictionary that provides possible detection
locations within the image. This way the ionogram is cropped
depending on the frequency or area where potential anomalies
should arise. For the specific case of detecting oblique echoes,
we perform an image cropping in the frequency range of
2.5–5.5 MHz to isolate the areas where these phenomena may
occur. This technique is commonly used in ultrasound imaging
to enhance the visibility of oblique structures and improve
diagnostic accuracy. By selectively removing unwanted noise
and artifacts from the image, the cropped frequency range can
provide a clearer and more detailed representation of the
targeted area of interest. The result is stored in the S3_AREAS
bucket (see the example shown in Figure 5), which triggers the
BINARY_AND_NOT function.

Finally, the resulting image is written to a file at a given path
using OpenCV’s imwrite function. The resulting image is
then saved to an S3 container.

In this particular case, the purpose of this image processing
is to isolate the green areas of the image and filter out the blue
color values. This is intended to identify the anomalies, which
may appear in green.

The process then focuses in identifying the relative position
of the objects in the figure. This is accomplished by the
BINARY_AND_NOT function, which produces a binary image
with black background and white objects, followed by a color
invertion (white background and black objects) and file upload
to S3_BINARY.
The next function triggered is MARSIS_AIS_RESIZED,

which isolates the image according to the 800× 600 px
standard adopted by ESA in this public database. The function
rescales the image, leaving the detection area in the middle.
This prevents each loose pixel from being treated as a separate
object from the whole image. The result is loaded to
S3_RESIZED (see the example shown in Figure 6), triggering
the MARSIS_NO_NOISE function.
This function removes the abovementioned loose pixels by

detecting their proximity with lines. It uses OpenCV’s imread
function at the beginning and then converts the color space of
the image from RGB to grayscale using the cvtColor
function.
Then it applies a binary threshold to the grayscale image

using OpenCV’s threshold function. This creates a binary
image where pixels with intensity values greater than 127 are

Figure 4. Cropped ionogram from the previous step (left) and result of processing with no blues using the GREEN DETECTION function (right).

Figure 5. Green ionogram (left) and result cropped according to the parameters passed to the MARSIS_AREAS function (right).
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set to 255 (white), and pixels with intensity values less than or
equal to 127 are set to 0 (black).

Next, the function finds contours in the binary image using
OpenCV’s findContours function. The contours are
retrieved using the RETR_TREE mode, which retrieves all
the hierarchical contours, and the CHAIN_APPROX_SIMPLE
method, which compresses horizontal, vertical, and diagonal
segments and leaves only their end points.

Then, a mask with the same shape as the original image is
created using NumPy’s zeros function. The code then loops
through the contours and checks if they have no child contours
and if their area is less than 70. If these conditions are met, the
contour is drawn on the mask with a white color.

Finally, OpenCV’s bitwise_not function is used to
invert the colors of the original image using the mask. The
resulting image is then written to a file at a given path using
OpenCV’s imwrite function. The resulting image is then
saved to an S3 container.

In this particular case, the purpose of this image processing
is to detect and isolate small objects in the image that have an
area less than 70 pixels. The detected objects are then
converted to a mask and used to remove those objects from
the original image. The result of this last function is stored in
the S3_NOT_NOISE bucket, triggering the ECHO DETEC-
TION MODULE.

3.2.4. Echo Detection Module

The primary objective of this module is to identify the
number of objects and their relative position. At least two of
these objects arranged in parallel are needed for detecting
oblique echoes, as it will be explained later.

The process starts with the NUMER_OBJECT function, which
counts the objects in the image. It first reads the ionogram and
converts it to grayscale using the cv2.cvtColor() function.
Then, it applies a threshold to the grayscale image using the cv2.
threshold() function, with a minimum threshold value of
225, a maximum threshold value of 255, and an inverted binary
threshold type (cv2.THRESH_BINARY_INV).

Next, it creates a 2× 2 kernel using np.ones() function
and performs dilation on the thresholded image using the cv2.

dilate() function with the created kernel and 10 iterations.
The resulting image is used to find contours using cv2.
findContours() function with an external retrieval mode
(cv2.RETR_EXTERNAL) and simple approximation method
(cv2.CHAIN_APPROX_SIMPLE).
As said before, oblique echo detection needs at least two

objects: an original and a replica underneath. When these (or
more) are detected by the architecture, the image is loaded into
the TMP bucket, which triggers the ECHO_DETECTION
function. This function takes the relative positions of the
objects into account and, if the detection is positive, it stores
the original image along with the detection proof (see the
example shown in Figure 7) in the final bucket (TO_EDGE).

4. Experiments and Results

The chosen MARSIS ionogram data set (AIS mode) for our
experiments corresponds to 2013 and 2014. This data set
contains 441,919 ionograms and is 120 GB in size.

4.1. Experimental Environment

We have considered three different computing platforms to
run our experiments:

1. Computer_1: an Intel Core i9 10980XE (18 cores, 36
threads) computer with 64 GB RAM and SSD (M2) hard
disks. Its estimated price is €3500.

2. Computer_2: an Intel Core i7 vPro i7-10875H (8 cores,
16 threads) computer with 64 GB RAM and SSD (M2)
hard disks. Its estimated price is €3250.

3. Serverless: the AWS Lambda system described in this
contribution with a 128MB memory limit.

In order to compare these three platforms, the code of the
serverless architecture shown in Figure 2 has been adapted to
run locally in Computer_1 and Computer_2. During the initial
experiments we considered the following:

1. An execution deadline of 1 hr was established for all
experiments, so local resources were not busy for too
long. Due to the low time variations in the same

Figure 6. Full processing, original cropped ionogram (left) with binary mode (middle), and resized image using ESA 800 × 600 px standard (right). As it can be seen
in the binary mode image, the loose pixels have been removed, producing shapes without gaps. In the image, in a red box, the red areas that disappear with the
OpenCV operation have been marked. It is done to avoid detecting several objects through those “holes.”
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execution, this deadline was considered enough for result
extrapolation.

2. Due to the restrictions imposed by the Tesseract custom
layer each execution will have to take place in a separate
environment and assigned to an available processor core.

The reason for the last consideration is that text recognition
may not be accurate, especially when the image quality is poor.
Therefore, it is crucial to optimize the image before using this
layer to enhance the recognition accuracy.

Using the Tesseract in a Python function requires an
additional compiled layer. Unfortunately, the size limit of the
lambda function layers is 250MB, which can be a problem
when more layers are added. This limitation prevents the
inclusion of other required dependencies and resources in the
same function, which can impact the overall performance
(Section 3.2.1).

4.2. Platform Comparison

The serverless solution processed the entire data set in 20
minutes, Computer_1 managed to process 4320 (0.009%) and
Computer_2 1440 ionograms (0.003%). With this in mind,
Table 1 shows the execution time for the data set on each
considered platform.

At this point it is important to indicate that using the
Tesseract in Python has been deemed as a complex under-
taking, particularly when attempting local execution. Despite
the creation of scripts aiming to automate the process, manual
execution remains a necessity. Throughout the testing phase,
maintaining consistent code has been a priority in order to
ensure accurate comparisons.

Parallelization on a desktop environment presents its own set
of challenges, as it would need a distinct code base from that
utilized in AWS Lambda. Moreover, threading in Python is a
notoriously intricate and error-prone endeavor. While alter-
native solutions may be achievable through the employment of
various tools in the C programming language, the advantages
of cloud-based parallelization would be undeniable.

By leveraging the power of cloud computing, the achieved
parallelization far surpasses what would be possible using all
available threads on a local machine. As a result, the decision
has been made to compare the same unmodified code in both
environments, avoiding the falsification of outcomes and

ensuring a fair comparison between the two distinct
implementations.

4.3. Serverless Architecture Experimental Results

The main advantage of the AWS Lambda approach is its
extreme parallelization capability, which clearly exceeds those
of the local resources that were used during the experiments.
This added to its autoscaling mechanisms result in the
performance and cost numbers shown below.
Data for each function’s performance have been gathered

through the Amazon CloudWatch tool.14 These data include
execution times and costs. Table 2 shows the average execution
times for each AWS Lambda function depicted in Figure 2.
Considering that AWS limits the simultaneous execution of

lambda functions to 1000, we have estimated 3.9 s as the
average execution time for each batch of 1000 ionograms.
The AWS Lambda cost is determined by the memory used

by functions (128MB in the proposed architecture), the
maximum execution time per function (5 s in the proposed

Figure 7. Original ionogram with an oblique echo (left) and its final detection proof, produced by the ECHO DETECTION MODULE (right).

Table 1
Process Time for the Entire Data Set (441, 919 Ionograms) on each Platform

Platform Processing Time

Serverless 20 minutes
Computer_1 4 days, 6 hr, 18 minutes
Computer_2 12 days, 18 hr, 53 minutes

Table 2
Average Execution Times for each AWS Lambda Function when Processing

1000 Ionograms

Lambda Function Time (ms per 1000 ionograms)

INIT_MODULE_MARS 482.33
GREEN DETECTION 454.59
MARSIS_AREAS 499.94
BINARY_AND_NOT 353.31
MARSIS_AIS_RESIZED 542.21
MARSIS_NO_NOISE 1.377
NUMBER_OBJECT 810.24
ECHO_DETECTION 767.17

14 https://aws.amazon.com/cloudwatch/
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architecture), and the number of function calls. This results in
an average of $0.000000084 per processed GB.

On the other hand, the S3 cost is subject to the stored data
size. However, the proposed solution does not store inter-
mediate data (just input and final output files). We would like
to highlight that we are generating data in each intermediate S3
bucket. However, we have implemented a mechanism in each
lambda function to delete all intermediate files once they have
been processed. Therefore, no intermediate data are stored in
the system as they are deleted automatically. This limits the S3
cost to $0.00000023. This way, the total cost of processing the
441,919 ionograms is $0.00001.

In order to provide a fair and accurate comparison, tests were
conducted using exactly the same Python code in both local
and lambda environments. The code was set up locally without
a lambda handler, meaning that it does not have a trigger like in
AWS, but the internal code is the same. While it is possible to
use threads and different cores within Python, the code was not
modified for parallelization in lambda in order to avoid
falsifying results. Even with this limitation, the number of
threads and cores available on a local computer still cannot
match the parallelization resources available in lambda.

The results obtained were based solely on the times required
to execute exactly the same code, with no modifications for
parallelization using threads or cores. This approach allowed
for a fair comparison of the performance of local computing
resources versus the parallelization capabilities of lambda.

Overall, the results clearly demonstrated the benefits of
lambda’s extreme parallelization capabilities. Despite the fact
that the same code was used in both environments, the lambda
environment consistently outperformed local resources. This
underscores the power and scalability of lambda for organiza-
tions that need to process large amounts of data quickly and
efficiently.

The final cost for the anomaly-detection classifier in the
Mars atmosphere includes hosting in S3, but without cold

storage, as intermediate images are deleted in each step of the
process because they are not longer needed. As a result, the
overall cost for processing 120 GB of data is reduced while the
architecture’s efficiency is maximized.

4.4. Validation of the Proposed Serverless Architecture

To perform statistical analysis on a large data set of
approximately 400,000 images of the Mars atmosphere, a
random sampling of 120 images (0.03%) was taken. The
sampling process was designed to be representative and
unbiased, with random selection of different ranges of zenith
angle, latitude, longitude, and dates. This ensured that the
sample was diverse and representative of the overall data set.
After this random selection process, each of the 120 sampled

images was manually verified to ensure accuracy and validity.
This verification process involved analyzing each image for
any anomalies or irregularities, and cross-referencing the
results with the statistical analysis of the larger data set.
These are the results:

1. The number of oblique echoes was 90, with the rest being
false positives.

2. These 30 false positives correspond mainly (20 iono-
grams) to cyclotron echoes, which have a similar pattern
(see Figures 8 and 9).

While a false-detection rate of 25% may seem high, the
technique used to generate an initial data set is still extremely
valuable because no oblique echoes were undetected. By using
automated processes to detect anomalies in the Martian
atmosphere, we are able to generate an initial data set quickly
and efficiently without the need for manual inspection of every
image.
This initial data set can then be used to train the first

machine-learning model for detecting this type of anomalies,
with the understanding that the initial model will have a higher

Figure 8. Cyclotron detection with similar oblique echo pattern. This pattern was observed in 16.66% of the detections from the chosen data set.
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false-detection rate due to the limitations of the initial data set.
However, this can still be improved over time by incorporating
feedback from manual inspections and incorporating additional
data to the refining process.

Eventually, with the help of the distributed architecture and
trained machine-learning models, we can expect to achieve an
extremely efficient classification model with a much lower
false-positive detection rate.

5. Conclusions and Future Work

In the present contribution we have proposed a serverless
computing architecture to process the ionograms produced by
the MARSIS instrument on board the Mars Express mission. In
particular, this work has focused on the automatic detection of
a particular anomaly (oblique echoes), a process which
traditionally has to be performed manually, so it can be used
in other instruments.

The resulting platform implemented on AWS Lambda
provided much better performance results in comparison with
local infrastructure solutions and at a very low cost. In 20
minutes the entire experiment data set was processed by the
proposed architecture and only paying for those resources that
were used ($0.00001). On the other hand, the local solutions
could not complete even 0.01% of it, and their cost does not
support the pay-as-you-go model. This makes the proposed
architecture a valuable solution for researchers that need a fast,
cheap, and reliable anomaly-detection mechanism for the
MARSIS ionograms.

Being extremely modular (as it can be seen in Figure 2),
mechanisms for detecting additional anomalies can be
implemented as AWS Lambda functions and easily integrated
in the proposed architecture. This way, all available detection
mechanisms can be invoked in parallel once a new ionogram
appears in the S3 input bucket.

The computational solution described here was developed
specifically for MARSIS data; however similar solutions can be
applied to data from other instruments. The approach we
present clearly demonstrates that serverless computing can
provide significant benefits for processing planetary science
data sets.

The current architecture can be improved by reducing the
usage of S3 buckets and incorporating temporary folders
connected to other lambda functions.

Additionally, the architecture can be further optimized by
eliminating the final detection step and incorporating a
machine-learning model in SageMaker that is triggered by a
lambda function. However, this requires the initial data set to
be generated and the model to be trained beforehand. Once the
model is uploaded to SageMaker, it can be triggered by a
lambda function for anomaly detection.
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