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Abstract

Over the last two decades, around 300 quasars have been discovered at z 6, yet only one has been identified as
being strongly gravitationally lensed. We explore a new approach—enlarging the permitted spectral parameter
space, while introducing a new spatial geometry veto criterion—which is implemented via image-based deep
learning. We first apply this approach to a systematic search for reionization-era lensed quasars, using data from the
Dark Energy Survey, the Visible and Infrared Survey Telescope for Astronomy Hemisphere Survey, and the Wide-
field Infrared Survey Explorer. Our search method consists of two main parts: (i) the preselection of the candidates,
based on their spectral energy distributions (SEDs), using catalog-level photometry; and (ii) relative probability
calculations of the candidates being a lens or some contaminant, utilizing a convolutional neural network (CNN)
classification. The training data sets are constructed by painting deflected point-source lights over actual galaxy
images, to generate realistic galaxy–quasar lens models, optimized to find systems with small image separations,
i.e., Einstein radii of θE� 1″. Visual inspection is then performed for sources with CNN scores of Plens> 0.1,
which leads us to obtain 36 newly selected lens candidates, which are awaiting spectroscopic confirmation. These
findings show that automated SED modeling and deep learning pipelines, supported by modest human input, are a
promising route for detecting strong lenses from large catalogs, which can overcome the veto limitations of
primarily dropout-based SED selection approaches.

Unified Astronomy Thesaurus concepts: Active galactic nuclei (16); Active galaxies (17); Early universe (435);
High-redshift galaxies (734); Quasars (1319); Reionization (1383); Supermassive black holes (1663); Strong
gravitational lensing (1643); Gravitational lensing (670)

1. Introduction

Quasars are among the brightest sources in the universe,
powered by the accretion of matter onto supermassive black
holes (SMBHs). In the high-redshift frontier, these sources are
prime laboratories for understanding the formation, growth,
and structure of the first SMBHs and galaxies (Mignoli et al.
2020; Pacucci & Loeb 2022). The key results from the last two
decades of z 6 quasar surveys include the following: (i) the
number density of distant quasars places stringent constraints
on the processes necessary to seed and develop >109Me BHs
within the first billion years of cosmic history (Inayoshi et al.
2020); (ii) high-z quasars most commonly reside in massive
star-forming host galaxies, with a wide range of kinematics and
large-scale environments (Decarli et al. 2018; Neeleman et al.
2021; Meyer et al. 2022); and (iii) the hydrogen absorption in

the spectra of high-z quasars indicates a largely neutral
intergalactic medium (IGM) at z 7 (Bañados et al. 2018;
Yang et al. 2020; Wang et al. 2021) and an end of cosmic
reionization by z∼ 5.3 (Bosman et al. 2022).
Previous high-z quasar searches have mainly been focused

on the most luminous, massive, and active SMBHs, while those
fainter ones, with modest to low accretion or lower mass, have
been challenging to find (e.g., Fan et al. 2006; Willott et al.
2010; Mortlock et al. 2011; Venemans et al. 2015; Bañados
et al. 2016; Mazzucchelli et al. 2017; Pons et al. 2019; Reed
et al. 2019; Wang et al. 2019; Yang et al. 2019b; Bañados et al.
2021; Wenzl et al. 2021; Andika 2022). This is due to
selections having to filter out rare quasars from the more
frequent galaxies and stars, hence having to focus on the
brightest population first. Another reason is that many wide-sky
surveys in the prior years have been too shallow, so one is
automatically restricted to studying the brightest population.
Some efforts have been made toward deeper wide-sky surveys
(e.g., Matsuoka et al. 2018a; Pipien et al. 2018), because
exploring the fainter, currently mostly hidden, and lower-mass
population of high-z quasars will provide information about
the quasar luminosity function, impacting our understanding
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of quasar contributions to the universe’s reionization (Madau
2017; Matsuoka et al. 2018b, 2022). In addition, these SMBHs
might not yet be close to finishing with their mass growth, as
the most luminous z 6 quasars are, allowing for the study of
more “typical” SMBH growth scenarios than in the brightest
quasars (Volonteri 2012; Izumi et al. 2021; Habouzit et al.
2022). Unfortunately, the spectroscopy for measuring intrinsi-
cally fainter quasar (M1450>−25) SMBH masses with high
accuracy is extremely challenging and time-consuming, even
with 8 m class telescopes (Onoue et al. 2019, 2021).

Despite such situations being rare, some high-z quasars can
be strongly gravitationally lensed. Such systems are one of the
best alternatives for probing quasars with intrinsically lower
mass and luminosity. They also enable us to investigate quasar
host galaxies in unprecedented detail, thanks to the flux
magnification and, very importantly, the increased effective
spatial resolution, by factors of 2–10 (e.g., Stacey et al. 2018;
Yang et al. 2019a; Yue et al. 2021). In addition, lensed quasars
are excellent targets for constraining the dark matter profiles of
the foreground deflectors (e.g., Gilman et al. 2020; Hsueh et al.
2020), determining the Hubble constant based on the time-
delay cosmography (e.g., Suyu et al. 2017; Millon et al. 2020),
and estimating the quasar accretion disk sizes (e.g., Chan et al.
2021).
Because of the large lensing optical depths attained at z 6,

it has been predicted for decades that between ∼1% and up to
one-third of high-z quasars should be strongly lensed, although
the actual level still remains unknown (e.g., Wyithe &
Loeb 2002; Oguri & Marshall 2010; Pacucci & Loeb 2019;
Yue et al. 2022a). Depending on the models, we anticipate that
the number of lensed quasars to be discovered in an optimal
data set should range from around three (lensed fraction ∼1%;
Yue et al. 2022a) to greater than 10 (lensed fraction >4%;
Pacucci & Loeb 2019). However, only one such lensed quasar
has been found so far, J0439+1634, at z = 6.51 (Fan et al.
2019), aside from the approximately 300 unlensed quasars that
are currently known. A leading cause of this dramatic tension is
the commonly used “dropout” technique for selecting high-z
quasar candidates, which requires any viable candidates to have
a large abrupt drop in flux in bluer optical bandpasses, to
remove lower-z contaminants. Until now, this has prevented
galaxy–quasar lens systems from being selected as quasar
candidates, due to the deflector galaxy’s optical flux contrib-
ution, as a reexamination of previous selection techniques has
shown (Andika et al. 2020). Several studies have attempted to
look for signs of strong gravitational lensing among the known
z 6 quasars, finding no evidence thus far (e.g., Davies et al.
2020; Connor et al. 2021; Pacucci et al. 2022). Therefore,
developing a more advanced selection technique to reveal those
hidden populations of lenses is crucial.

In this work, we propose a novel approach to searching for
z 6 galaxy–quasar lenses, which expands the selection space
that has been missed by previous quasar surveys, by combining
spectral energy distribution (SED) modeling with the convolu-
tional neural network (CNN) classifications. Using multiband
optical images that are complemented with IR photometric
data, we validate our selection pipeline and provide new high-
probability lensed quasar candidates. The structure of this paper
is as follows. We begin in Section 2 by describing the data
acquisition and preselection of the candidates through photo-
metric color cuts and SED modeling. Section 3 then presents
the details of the lens finding using the CNN, including the data

sets used for training and assessing the networks. After that, the
classification results and the lensed quasar candidates are
discussed in Section 4. Finally, we close with a summary and
our conclusions in Section 5.
In every section of this paper, we use the ΛCDM cosmology,

where ΩΛ= 0.685, Ωm= 0.315, and H0= 67.4 km s−1 Mpc−1

(Planck Collaboration et al. 2020). Also, all of the reported
magnitudes are in the AB system.

2. Data and Candidate Preselection

Our lensed quasar search consists of two parts: (1) the
preselection of the candidates based on their spectral color,
using multiband photometric data; and (2) the calculation of the
relative probabilities (of the candidates being a lensed quasar or
contaminant), based on a CNN classification.
Discovering lensed quasar candidates by utilizing photo-

metric data requires knowledge of their spectral color—i.e., the
addition of foreground galaxy and background quasar lights.
Here, the training data sets and spectral templates will be
generated, which will be optimized to find systems with small
image separations, i.e., Einstein radii of θE� 1″. We aim to
improve the purity of the candidates by limiting the selection to
sources that we know are more likely to be lenses based on
catalog-level photometry. This method provides one way of
efficiently separating the candidates from most of the
contaminants, while minimizing the computational resources
required. The details of the first part of our search are described
in the following section.

2.1. Photometric Catalog

In this work, we use the Dark Energy Survey (DES) Data
Release 2 (Abbott et al. 2021) as the primary catalog. This
survey is based on optical imaging collected using the Dark
Energy Camera (DECam; Honscheid & DePoy 2008; Flaugher
et al. 2015) on the Blanco 4 m telescope at the Cerro Tololo
Inter-American Observatory, Chile. DES covers ∼5000 deg2 of
the southern Galactic cap in five bands, with a median point-
spread function (PSF) FWHM of g, r, i, z, Y = 1 11, 0 95,
0 88, 0 83, and 0 90, respectively. The median coadded
catalog depth is gDES= 24.7, rDES= 24.4, iDES= 23.8,
zDES= 23.1, and YDES= 21.7 mag for a 1 95 diameter aperture
and a signal-to-noise ratio (S/N) of 10. By default, we use the
aperture-based magnitude (MAG_AUTO), where the aperture
size varies depending on the extent of each source, as reported
in the main table of DES. As an additional note, DES tile
images have a pixel scale of 0 263 and a fixed zeropoint of
30 mag.
We then complement our primary data with near-IR and

mid-IR (MIR) photometry from the Visible and Infrared
Survey Telescope for Astronomy Hemisphere Survey (VHS)
Data Release 5 (McMahon et al. 2013, 2021) and the Wide-
field Infrared Survey Explorer (unWISE version; Wright et al.
2010; Schlafly et al. 2019) catalogs, respectively, using a 2″
crossmatching radius. The VHS Petrosian J-magnitude
(Jpmag) and unWISE photometric bands (W1 and W2) are
extremely useful for distinguishing between high-z quasars,
low-z galaxies, and MLT dwarfs (e.g., Andika et al.
2020, 2022). This complementary data is also an effective
way of removing spurious sources, such as diffraction spikes or
moving objects, which are often found in one survey, but not in
the others. Finally, we correct all of the photometric
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measurements from Galactic reddening by making use of the
dust map from Bayestar1912 (Schlafly et al. 2019),
following the Fitzpatrick (1999) extinction relation. As a side
note, we crossmatch our main catalog with a list of MLT
dwarfs, employing a 2″ crossmatching radius (Best et al. 2018;
Carnero Rosell et al. 2019) and quasars (Flesch 2021) to keep
track of the known objects.

2.2. Simulating the Colors of Quasars

We proceed to model the target sources by generating 900
mock quasars. Here, we distribute them in redshifts of
5.6� z� 7.2 and rest-frame 1450Å absolute magnitudes of
−30�M1450�−20, following the quasar luminosity function
from Matsuoka et al. (2018b), in the form of:

M z,

10

10 10
. 1

k z

M M M M

1450
6

0.4 1 0.4 1qso 1450 qso 1450

*
* *

( )

( )
( )

( )( ) ( )( )

F

=
F

+a b

-

+ - + -

We adopt faint- and bright-end slopes of αqso=−1.23 and
βqso=−2.73, a redshift evolution term of k=−0.7, a break
magnitude of M∗=−24.90, and normalization of Φ∗= 10.9
(Matsuoka et al. 2018b).

We then produce the aforementioned quasar spectra,
following the Yang et al. (2016) prescription, implemented
with the SIMQSO13 simulation code (McGreer et al. 2013).
SIMQSO is designed to produce synthetic quasar spectra that
match ∼60,000 Sloan Digital Sky Survey (SDSS; York et al.
2000; Eisenstein et al. 2011; Dawson et al. 2013, 2016; Blanton
et al. 2017) quasars at 2.2< z< 3.5. The code also assumes
that the quasar SEDs do not evolve significantly with redshift
(Shen et al. 2019). However, we note that z 6 quasars
frequently exhibit high-ionization broad lines with more
dramatic velocity shifts than other z 5 quasars of similar
luminosity (e.g., Mazzucchelli et al. 2017; Meyer et al. 2019;
Schindler et al. 2020). Nonetheless, a large number of low-z
SDSS quasars still provide a good reference for building a
high-z quasar composite spectrum.

The primary component of our quasar spectral model is
continuum emission constructed with a power-law function
with four breaks. In the rest wavelength range of 1100–5700Å,
the corresponding continuum slope αν follows a Gaussian
distribution with a mean of μ(αν)=−1.5. Meanwhile, for the
wavelength ranges of 5700–10850Å, 10850–22300Å, and
> 22300Å, we change the slopes to μ(αν)=−0.48, −1.74,
and −1.17, respectively. We use a dispersion value of
σ(αν)= 0.3 for each of the aforementioned slopes, following
Yang et al. (2016).

Next, we add a series of UV-to-optical Fe emissions to the
spectral model, based on the Vestergaard & Wilkes (2001),
Tsuzuki et al. (2006), and Boroson & Green (1992) templates
for rest-frame wavelengths of < 2200Å, 2200–3500Å,
and 3500–7500Å, respectively. After that, the emission lines
from the broad- and narrow-line regions are appended to the
model, following the equivalent widths and FWHM line
distributions of SDSS quasars. Furthermore, the IGM absorp-
tion by the Lyα forest is also implemented in the simulated
spectra (Songaila & Cowie 2010; Worseck & Prochaska 2011).
On top of this, we add the Lyα damping wing model, following

the Miralda-Escudé (1998) formalism, assuming a fixed value
of 3 Mpc for the proximity zone size and a randomly drawn
neutral hydrogen fraction value in the range of 0%–10% (e.g.,
Euclid Collaboration et al. 2019; Eilers et al. 2020; Andika
et al. 2022). Finally, internal reddening was applied to each
mock quasar spectrum, using the Calzetti et al. (2000) dust
model, with a randomly chosen E(B− V ) value in the range of
−0.02 to 0.14. We should note that the negative reddening
values are to account for quasar models with bluer continua
than encompassed by the original templates. After this, the
photometry is calculated from the simulated spectra, and the
corresponding uncertainties are derived from the observed
magnitude and error relations taken from each survey
(e.g., Yang et al. 2016).

2.3. Modeling the Spectra of Deflector Galaxies

To obtain the deflectors for the lens modeling, we first search
for a sample of spectroscopically confirmed galaxies using the
SDSS Data Release 17 (Abdurro’uf et al. 2022) catalog, via the
CasJobs14 webpage. We retrieve all sources classified as
“GALAXY” by the SDSS pipeline and limit our search to those
having reliable velocity dispersion measurements σv with less
than 30% error, which is one important parameter for
calculating the lensing effect later. Moreover, we only select
the galaxies with redshifts of 0.3< z< 2.0, considering that the
majority of the lensing optical depth for z 6 sources comes
from z 1.5 early-type lens galaxies. (Wyithe et al. 2011;
Mason et al. 2015; Pacucci & Loeb 2019; Yue et al. 2022a).
After this, we crossmatch these sources to the DES, VHS, and
unWISE catalogs, with a searching radius of 1″, to obtain their
corresponding optical/IR magnitudes, when available. In the
end, we obtain a sample of 109,808 galaxies and query their
images accordingly via the DESaccess15 webpage.
As the next step of our method, we need to obtain the spectra

of the deflectors that will later be used for constructing the
mock galaxy–quasar lens SEDs. Based on the multiband
photometric information of the aforementioned galaxies, we
proceed to model their spectra using the Bagpipes16 code
(Carnall et al. 2018). Several priors on the associated physical
parameters need to be supplied to Bagpipes. In this case, we
first parameterize the star formation histories (SFHs) of the
galaxies using a double-power-law function:

SFR t
t t

, 2
1

gal gal⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

( ) ( )
t t

µ +
a b- -

where the falling (αgal) and rising (βgal) slopes range between
0.01 and 1000 in logarithmic space (Carnall et al. 2019). We
then vary the peak times of star formation (τ) between 0 Gyr
and the universe’s age at the observed redshifts. Next, the prior
on the SFH normalization is varied in the range of Mformed=
10–1015M*/Me, where M* is the stellar mass. Also, we vary
the galaxy metallicity in the range of Z/Ze= 0.0–2.5, where
Ze= 0.02 is solar metallicity.
Following Carnall et al. (2019), we add the Charlot & Fall

(2000) dust attenuation model, in the form of Aλ∝ λ− n. Here,
we impose a Gaussian prior on the slope of the attenuation
curve n, with a mean and standard deviation of 0.3 and 1.5,

12 http://argonaut.skymaps.info/
13 https://github.com/imcgreer/simqso

14 http://skyserver.sdss.org/CasJobs/default.aspx
15 https://des.ncsa.illinois.edu/desaccess/
16 https://bagpipes.readthedocs.io/en/latest/
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respectively. The attenuation in the V-band AV is set to range
from 0 to 8. In addition to this, we utilize a constant value for
the maximum lifetime of stellar birth clouds, of tBC= 0.01 Gyr,
and for the ratio of attenuation between stellar birth clouds and
the wider interstellar medium, of ò= 2. It should be noted that
the priors on the galaxy photometric redshifts are set to match
the ones derived from SDSS-based spectroscopy, with slight
variation (i.e., Δz=± 0.015). Finally, using the σv information
from the SDSS catalog, we convolve the spectral model with a
Gaussian kernel in velocity space. As a result, we produce a
sample of SEDs of galaxies ranging from UV to IR
wavelengths, and their associated photometry. An example of
a lens galaxy fitted with the Bagpipes code is presented in
Figure 1.

2.4. Constructing the Synthetic Spectra of Galaxy–Quasar Lens
Systems

Finding lensed quasar candidates using catalog-level photo-
metry requires knowledge of the shape of their SEDs—i.e., the
addition of foreground galaxy and background quasar emis-
sions. Here, we combine the simulated quasars and galaxies
described in the previous sections to produce the mock lensed
quasar spectra.

To describe the mass profile of the lenses, we assume a
singular isothermal sphere (SIS; Schneider 2015) model. The
Einstein radius can be inferred from the 1D stellar velocity
dispersion σv in the potential of the mass distribution, using the
formula

c

D

D
4 , 3v

E

2

2
ds

s
( )q p

s
=

where the speed of light is c, while Dds and Ds are the angular
diameter distances between the deflector and the source and the
observer and the source, respectively.

It is important to note that galaxy mass distributions in nature
are not perfectly symmetric. The symmetry-breaking is often
caused by the ellipticity of the mass distribution or external
shear forces—e.g., the tidal gravitational fields of adjacent
galaxies. Thus, this will alter the SIS lens characteristics, and
might produce more than two images. However, we refrain
from using a more complex lens model, like the singular
isothermal ellipsoid (SIE; Barkana 1998) model, which usually
requires accurate measurements of deflector axis ratios and
position angles. Nevertheless, SIS appears to reproduce lens
systems quite well, and the typical image separation remains in
the same order of magnitude as predicted by the SIE model
(Schneider 2015). For details of the SIS lens calculation, we
refer the reader to Appendix A.
We then produce the mock lensed quasar spectra by pairing

each simulated galaxy with a randomly chosen quasar model
created beforehand. Assuming that β is the true angular
position of the source, the quasar is randomly placed in a
specified region behind the lens, within 0 01� β� 1 5. After
this, the source image is projected onto the lens plane, where
the deflection angle and magnification are calculated based on
the corresponding lens configuration. We accept the mock lens
if it contains a strong lensing effect, with a magnification factor
of μ� 2 within θE� 1″, and the lensed quasar flux has >5σ
detection in the DES Y band. Our choice of the β and θE ranges
is motivated by Pacucci & Loeb (2019), who predict that a
significant fraction of quasars at z 6 are strongly gravitation-
ally lensed, with small image separations—i.e., Δθ= 2θE� 1″.
We show in Figure 2 the distributions of the lens galaxy

redshifts, velocity dispersions, Einstein radii, and i-band
magnitudes used for the simulation. In terms of redshift, the
number of galaxies peaks at z≈ 0.5. Then, for the i-band
magnitudes, we see an increase in the deflector numbers up to
iDES≈ 19.5, before a rapid decrease toward the faint end.
Hence, our training data set is skewed toward brighter, more

Figure 1. Example of a lens galaxy fitted with the Bagpipes code. Upper panel: the DES, VHS, and unWISE photometric data points (blue circles), the posterior of
the best-fit SED model (orange line), and synthesized photometry from the posterior SED (orange circles) are shown in the figure. Lower panel: the posterior
distribution of the derived star formation rate, mass-weighted age, stellar mass, and specific star formation rate, based on the SED fitting result. The 16th, 50th, and
84th percentiles are marked with the vertical dashed lines. For detailed explanations of how to calculate these quantities, we refer the reader to Carnall et al. (2018).
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massive lens galaxies. This phenomenon is primarily caused by
how SDSS selects target galaxies for its spectroscopic surveys,
following the criteria established by Dawson et al. (2013) and
Prakash et al. (2016), to study the universe’s large-scale
structure. Most of the target galaxies are luminous early-type
galaxies at z< 1, which are excellent probes for constraining
the baryon acoustic oscillation signal and, subsequently, the
universe’s expansion rate (e.g., Woodfinden et al. 2022; Zhao
et al. 2022). Note that the faint limits for galaxies chosen for
spectroscopic observations are i = 19.9 for SDSS III, extending
to i = 21.8 for SDSS IV (Prakash et al. 2016).

Finally, of the initial 109,808 foreground galaxies and 900
background quasars, we obtain 20,823 surviving lens config-
urations that meet our criteria. Naturally, the lensed quasar
spectra can be obtained simply by adding the fluxes of the
foreground galaxy and the magnified background quasar, as
presented for one example in Figure 3. However, in some
cases, the lens galaxy could reside far away from the quasar
image, resulting in two close-by objects, so that the photometry
extracted from the quasar image only has partial coverage of
the lens galaxy flux. To take this into account, we produce
more SED templates, by arbitrarily scaling the lens galaxy flux
contribution in the range of 10%–100%, before adding it to the
magnified quasar flux.

2.5. Lensed Quasar Search via SED Modeling

As the next step in our lensed quasar search methodology,
we select sources detected in the DES Y band that have
counterparts in the VHS J band and the unWISE W1 band,
within a searching radius of 2″. Note that there are some cases
where the magnitude values of the other bluer DES bands—i.e.,
g, r, i, and z—are not available, or the sources are simply not
detected in those bands, i.e., with S/Ns< 3. In this case, we
replace the catalog magnitudes with their associated 3σ upper
limits, where we infer these limits based on the measured flux
uncertainties reported in the DES table. We then apply the
following flag and color cuts:

g r i z YDES _ , , , , 0, 4( ) ( )=IMAFLAGS ISO
g r i z YDES , , , , 4, 5( ) ( )<FLAGS

YS N 5, 6DES ( ) ( )
z Y 0.5, 7DES DES ( )- >

Y J0.6 1.0, 8DES VHS ( )- < - <
Y0.5 W1 2.5. 9DES ( )- < - <

Equations (4) and 5 are the primary flags for selecting well-
behaved objects—i.e., there are no problems in the source
extraction process, with missing pixels, etc.—from the DES

photometry catalog (Abbott et al. 2021). These criteria also
ensure that our targets will have catalog entries in all DES
bands. On the other hand, the criteria in Equations (6)–(9) are
determined empirically, based on the photometric features of
the mock lenses created in Section 2.4.
As seen in Figure 4, there is a substantial overlap between

the lenses and contaminants in the color space where
zDES− YDES� 0.5. Thus, we choose to limit our color cut to
zDES− YDES> 0.5, which consequently focuses our search on
the lens systems where the background quasars are located, at
z = 6.6–7.2. More details of the quasar selection function in
our lensed quasar search criteria can be found in Appendix B.
To quantify our selection completeness, we start by applying a
zDES− YDES> 0.5 color cut to the remaining 20,823 simulated
lenses produced in the previous section. As a result, only 3657
of them pass this criterion. We then use this number of
remaining mock lenses as the basis for estimating our selection
completeness in recovering lens systems having quasars at
z = 6.6–7.2. Further cuts are made by applying the criteria in
Equations (6)–(9), which results in 3650 surviving mock
lenses, equivalent to around 99% completeness. This choice
also rejects a substantial fraction (70%) of the contaminants
—i.e., low-z galaxies and MLT dwarfs. Therefore, these are the
candidates on which we will conduct SED modeling for further
selection.

Figure 2. Distributions of the lens galaxy redshifts zgal, velocity dispersions σv, Einstein radii θE, and DES i-band magnitudes iDES. These parameters are used for
generating the mock lenses.

Figure 3. Example of a simulated galaxy–quasar lens spectrum (gray line) and
the associated synthetic photometry (red circles). The unlensed background
quasar’s emission (orange line) is magnified by a factor of μ, before being
added to the foreground galaxy’s emission (blue line), to produce the lensed
quasar spectrum.
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The next part of our preselection method involves SED
modeling, using four different spectral templates: (i) the lensed
quasars derived from the previously created mock lenses; (ii)
the elliptical galaxies at z� 3; (iii) the MLT dwarfs; and (iv)
the z� 4 unlensed quasars. It is crucial to note that templates
(ii)–(iv) are empirically derived from observations and
described in detail in Appendix C. The main goal of this
SED modeling is to calculate the probability of each target
being a lens or a contaminant, as well as its associated
photometric redshift. The SED modeling is implemented using
the EAZY photometric redshift code (Brammer et al. 2008).
Here, EAZY will step through a grid of spectral templates, fit
them to the photometry of the candidates, and try to find the
best SED templates. We choose as solutions the best models
with the smallest reduced chi-square ( red

2c ), which can be
calculated for each template i as

f
N

data model

data
1 , 10i

n

N
n n i

n
red,
2

1

2

⎜ ⎟
⎛
⎝

⎞
⎠

( )
( )

( ) ( )åc
s

=
-

-
=

where the number of photometric data points and degrees of
freedom are denoted with N and (N− 1), respectively.

The sources with a high probability of being lensed quasars
are chosen based on the calculated red

2c of the lens ( red,L
2c ),

galaxy ( red,G
2c ), MLT dwarf ( red,D

2c ), and quasar ( red,Q
2c )

templates, along with their associated ratios. In addition to
this, we also use the estimated quasar photometric redshift zqso
to search specifically for z 6 unlensed quasars. Hence, the
following criteria are employed to find high-z lensed and
unlensed quasar candidates:

0.2 and 0.2, 11red,L
2

red,D
2

red,L
2

red,G
2

( )
c

c

c

c
< <

z

or

6.0 and 0.3. 12qso
red,Q
2

red,D
2

( )
c

c
> <

Here, the values in Equation (11) are derived by fitting the
simulated photometric data of the mock lenses created in
Section 2.4, which are empirically optimized to maximize the
purity and completeness of our lensed quasar selection. On the
other hand, the criteria in Equation (12) are inferred empirically,
by modeling the SEDs of known MLT dwarfs and z 6 quasars
in the DES catalog (Carnero Rosell et al. 2019; Flesch 2021).
Finally, applying the SED fitting to the previously surviving
mock lenses yields 3650 remaining objects, corresponding to a
completeness of around 99% for selecting z = 6.6–7.2 lensed
quasars. An example of a lens candidate selected using our SED
modeling is presented in Figure 5, and a summary of our
selection steps is reported in Table 1.

3. Lens Finding Using a CNN

The second part of our lensed quasar search method is based
on the supervised neural network classification, which requires
realistic training data as inputs. CNNs have been shown to be
highly effective in pattern recognition tasks, such as detecting
gravitational lenses in large data sets (e.g., Metcalf et al. 2019;
Huang et al. 2020; Bom et al. 2022; Gentile et al. 2022; Wilde
et al. 2022). The architecture of the CNN usually depends on
the problem that needs to be solved. Typically, it consists of
images as data inputs, which are then processed by a series of
convolutional, pooling, fully connected, and output layers.
Here, we present a CNN classifier that is trained to recognize
lensed quasars against other nonlensed sources, and the
following section will explain the details of our simulation.

3.1. Mock Lens Image Construction

Since only one galaxy–quasar lens system has been found at
z 6 (Fan et al. 2019), we need to mock up additional lens
images. To do this, we adopt a data-driven approach to
construct the training data set, which is outlined as follows.
First, we create images of mock lenses based on the deflector
galaxies, simulated quasars, and lens configurations used in
Section 2.4. Then, through the lens equation whose parameters
have been defined, we paint lensed point-source lights over the
actual galaxy images, to construct realistic galaxy–quasar lens
models. In this case, the lensing effect and the ray-tracing
simulation are generated according to the PyAutoLens17

lensing code (Nightingale et al. 2021). The resulting deflected
quasar lights are then convolved with a Gaussian PSF model at
the location of the lens and coadded with the original DES
galaxy images. As a reminder, we accept the mock image if it
contains a strong lensing case with a configuration of
0 01� β� 1 5 and μ� 2, within θE� 1″. To better illustrate
this, we present examples of mock color images that have been
created by combining the izY-band data in Figure 6, and we
show the employed simulation workflow in Figure 7.

3.2. Training the Neural Networks

We categorize the input data for training the CNN classifier
into four classes: (i) the galaxy–quasar lenses created in the
previous section; (ii) the DES galaxies that are not selected in
the lensing simulation; (iii) a sample of MLT dwarfs, randomly
drawn from the Carnero Rosell et al. (2019) catalog; and (iv) a
sample of spectroscopically confirmed quasars at z∼ 1.5–7.0,

Figure 4. Color diagram of YDES − JVHS vs. zDES − YDES. The colors of mock
quasars (black circles), low-z early-type galaxies (orange circles), simulated
lenses (red circles), and a sample of MLT dwarfs (blue circles; Best et al. 2018;
Carnero Rosell et al. 2019) are shown in the figure. Our preselection color cut
is marked by the dashed black box, which focuses on finding lensed quasars at
z = 6.6–7.2. Note that the seemingly unnatural rectangular shape of the MLT
dwarf distribution to the right of the plot is caused by the color cut criteria used
by Carnero Rosell et al. (2019), to avoid the quasar color locus.

17 https://pyautolens.readthedocs.io/en/latest/
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from the Flesch (2021) database. Classes (i) and (ii) each
contain 10,000 sources, while classes (iii) and (iv) each consist
of 8000 objects. Hence, 36,000 sources in total are used for the
CNN inputs.

Figure 5. The SED modeling result for a lensed quasar candidate. The upper panel shows the source’s observed photometry (red circles with error bars) fitted with
three different templates. The best-fit lens spectral template is shown by the blue line, while the synthesized photometry is denoted by the blue circles. On the other
hand, the best-fit models using the MLT dwarf and unlensed low-z galaxy templates are represented by the yellow and magenta colors. We show the photometric
redshift probability density functions in the lower right panel, which are derived from fitting the data to unlensed high-z quasar (cyan line) and low-z galaxy (magenta
line) templates. DES cutouts, with a size of 16 8 × 16 8, are presented in the lower left panels, starting from the left.

Table 1
Summary of the z  6 Lensed and Unlensed Quasar Candidate Selection

Employed in This Work

Step Selection Simulateda Candidatesb

1 Initial flag criteriac 20,823 8,274,747
and S/N(YDES) � 5

2 zDES − YDES > 0.5 3657 775,369
3 YDES − JVHS < 1.0 3657 735,110
4 YDES − JVHS > − 0.6 3657 687,506
5 YDES − W1 < 2.5 3657 685,285
6 YDES − W1 > − 0.5 3650 662,314
7 SED modeling 3650 24,723

8 CNN classification L 448
9 Visual inspection L 36

Notes. The zDES − YDES color cut limits the search to focusing on lens systems
where the background quasars are located at z = 6.6–7.2.
a The number of selected mock lenses.
b The number of real (lensed) quasar candidates selected from the DES, VHS,
and unWISE catalogs.
c See the criteria in Equations (4)–(5).

Figure 6. Examples of the negative (galaxies and other point sources) and
positive mock lenses in the training data set. The cutouts are created based on
12 6 × 12 6 DES izY images, and stretched following the Lupton et al.
(2004) arcsinh stretch algorithm, to enhance the contrast and improve the
visual appearance. The true labels and predicted probabilities of each source
are indicated in each panel.
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The images for the training inputs are based on grizY bands
of DES cutouts, having a size of 48× 48 pixels—i.e.,
equivalent to angular sizes of 12 6× 12 6. These images are
then min–max normalized, so the fluxes range between 0 and 1.
Note that the relative fluxes between bandpasses are conserved,
so the spectral colors of the corresponding sources are
preserved. After this, we apply data augmentation to the
images through random ± π/2 rotations, 4 pixel translations,
and horizontal or vertical flips. This technique subsequently
increases the amount of training data, while enhancing the
likelihood that the network will correctly classify multiple
orientations of the same image.

Inspired by classical CNN architectures (e.g., LeCun et al.
1989; Sultana et al. 2019), we start building the network with
three convolutional layers, followed by one fully connected
layer of 128 neurons (see Figure 8). The convolutional layers
each have a stride of 1× 1, the “same” padding, and a kernel
size of 3× 3×C, with C= 32, 64, and 64 for the first, second,
and third layers, respectively. For each convolutional layer, we
also add a max pooling layer with of size 2× 2, a stride of
2× 2, and the same padding. The dropout regularizations are
utilized on both the convolutional (drop rate = 0.2) and fully
connected layers (drop rate = 0.5). We also add L2-norm
regularization, with a weight decay of 10−4. The learning rate

Figure 7. The workflow for simulating lensed quasar images. The cutouts are created based on 12 6 × 12 6 DES images. The upper left panel shows the actual
galaxy, which we use as a lens. The quasar, which acts as a background source, is simulated as a point-source light convolved with a Gaussian PSF, and shown in the
lower left panel. The lower middle panel shows the deflected source’s light, which is calculated based on the corresponding lens configuration. Finally, we paint the
simulated arcs over an actual galaxy image, as shown in the upper right panel. The lens parameters (i.e., β and θE in arcseconds) and the DES photometry are given
below each panel. In this work, we create mock images for all DES filters—i.e., the grizY bands.

Figure 8. The architecture of the CNN used in this work. The inputs consist of DES grizY images, each with a size of 48 × 48 pixels. The first part of our network
contains three sequences of convolutional, max pooling, and dropout layers. The kernel sizes and dropout rates are indicated in the figure. Following this, the data cube
will be flattened and will pass through a sequence of fully connected and dropout layers, before it reaches the output layer. The softmax function in the output layer
will produce four probabilities for image classification, i.e., Plens, Pgalaxy, Pdwarf, and Pquasar.
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is set to 10−3 initially, while the weight and bias of each neuron
are generated randomly and then updated throughout the
training. The rectified linear unit functions are employed
everywhere, except for the final layer, which utilizes the
softmax activation. After passing through all of the convolu-
tional layers, the data cube is flattened and processed by the
fully connected layer to obtain the four outputs—i.e., the
probabilities of a candidate being a lensed quasar, a galaxy, an
MLT dwarf, and a normal quasar. All the training processes
and the CNN modeling are implemented using the Tensor-
Flow18 deep learning framework (Abadi et al. 2016;
Developers 2022).

The specific CNN architecture mentioned above was chosen
after we employed the Hyperband algorithm to optimize the
model hyperparameters (Li et al. 2018). To rapidly search for a
model with high performance, the Hyperband tuner applies
early stopping and the adaptive resource allocation method,
utilizing a tournament bracket approach, similar to what is used
in a sports competition. In principle, the algorithm trains
several CNN architectures with randomly sampled configura-
tions over a few cycles. In other words, we explored various
models with different numbers of convolutional layers, kernel
sizes, and dense units. We also tested the effects of different
learning rates, in the range of 10−2

–10−4, dropout rates of
0.1–0.5, convolutional filter numbers of 16–256, and L2-norm
weight decays of 10−1

–10−5 on the performance of our CNN
models. Ultimately, only the top half of best-performing
models is carried forward to the next round, until the best-
performing model is obtained. When compared to Bayesian
optimization, random search, or grid search, this strategy
maximizes the number of evaluated CNN configurations, and
results in more effective resource consumption.

To assess network performance, we divide the images into
three data sets: training (60% of the data), validation (20%),
and testing (20%). Those data sets are further divided into
random batches, with sizes of 256. Here, we use sparse
categorical crossentropy19 as the loss function. For each
iteration, the networks predict the outputs for one batch
(forward propagation), then continue the loops through all the
batches from the training data set, to complete one epoch. The
information about the current batch loss is then propagated
back, to update the weights and biases of the neurons, which is
performed by following a stochastic gradient descent algorithm
to minimize the loss (i.e., the Adam optimizer; Kingma &
Ba 2014). This optimization is performed for each epoch,
initially for all of the training data set batches. The average loss
for the whole training data set is then obtained. After this, the
procedures are repeated for the validation data set, but without
parameter updates to the neurons. In this way, the average loss
for the validation data set is retrieved. By comparing the
training and validation losses, we can check whether the model
optimization is improved or whether overfitting happens. Note
that overfitting occurs when a network fails to capture the
features in the training data set and generalizes them for unseen
data. Therefore, we randomly reorder our training data after
each epoch, to improve generalization and produce networks
with optimum accuracy. In the end, we can determine the
optimum number of training cycles by locating the epoch with
the lowest average validation loss over numerous runs.

3.3. Evaluation of the Classifier Performance

For each image tensor that is fed to our CNN model, the
classifier will provide probability scores of it being a lensed
quasar, a galaxy, an MLT dwarf, and a normal quasar—i.e., Plens,
Pgalaxy, Pdwarf, and Pquasar. The predicted class is then assigned by
choosing which of the classes has the highest probability score. A
value of Plens= 1 means that there is a high chance that the
classified image contains a lensed quasar. In contrast, Plens= 0
means that the image is not a lensed quasar and is more similar to
other contaminants. Note that the softmax activation function that
we use in the last layer of our CNN model would produce
Plens+ Pgalaxy+ Pdwarf+ Pquasar= 1, by construction. In the end,
our CNN training process converged after 82 epochs, obtaining
96.1% (96.7%) accuracy for the evaluation using the training
(validation) data set, along with a loss value of 0.145 (0.131).
From a classical standpoint, the high accuracy attained in the

training data set might have been caused by overfitting. Thus,
we compare the accuracy–loss learning curves that were
calculated by evaluating the CNN predictions on the training
and validation data sets (see Figure 9). After decreasing for
several epochs, the training and validation loss values stabilize
and follow the same pattern. The lack of any overfitting signals
—i.e., the training loss continues to decrease, but, in contrast,
the validation loss begins to increase, after many epochs—
makes us confident that our CNN classifier is capable of
learning and generalizing.
Another method for assessing the overall performance of the

trained model is to use the receiver operating characteristic
(ROC) curve and to calculate its corresponding area under the
curve (AUC). In principle, this shows how well a binary
classifier differentiates between two classes when the decision
threshold is changed. Thus, we first define the positives (P) as
the lenses and the negatives (N) as the nonlenses or
contaminants. True positives (TP) are cases where the model
correctly predicts the lenses, while true negatives (TN) occur
when the nonlenses are correctly identified. On the other hand,
false positives (FP) are where the classifier incorrectly predicts
contaminants as lenses. In addition, we also define false
negatives (FN), as cases where the model incorrectly rejects
lenses. The ROC curve presents the false-positive rate (FPR)
against the true-positive rate (TPR) for the validation data set,

Figure 9. Curves of accuracy (upper panel) and loss (lower panel) as a function
of training epoch. These metrics are calculated by evaluating the CNN classifier
on the training and validation data sets, which are then shown by the blue and
orange lines, respectively.

18 https://www.tensorflow.org/
19 https://www.tensorflow.org/api_docs/python/tf/keras/losses/
SparseCategoricalCrossentropy
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where
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P
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N
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FP TN
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+

We then construct the ROC curve by progressively raising the
probability threshold from 0 to 1. A perfect classifier will result
in AUC = 1, while a classifier that only forecasts randomly will
have AUC = 0.5. It is important to note that because we have
four classes for categorizing the candidates—i.e., a multilabel
classification—we need to binarize our CNN output using the
“one versus all” methodology. Accordingly, we produce four
ROC curves and present them in Figure 10, consisting of: (i)
lensed quasars against galaxies and other point-source
contaminants, shown by the solid blue line; (ii) galaxies
against lens systems and other contaminants, shown by the
dashed magenta line; (iii) MLT dwarfs against other sources,
shown by the dashed yellow line; and (iv) quasars against
lenses, galaxies, and others, shown by the dashed cyan line.
Note that we created these ROC curves based on the CNN
classifier evaluation of the previously unseen test data set,
which resulted in high AUC values, indicating excellent
performance.

Based on the ROC curves, we use the geometric mean or
G-mean20 metric to seek a balance between the TPR and FPR.
The highest G-mean score indicates the best threshold of Plens

that maximizes TPR while minimizing FPR. In this case, we
obtain a recommended threshold of Plens> 0.13, which
produces FPR = 0.01 and TPR = 0.96. However, we then
decide to relax this probability threshold, instead using
Plens> 0.1 to classify the candidates as lenses, which results
in FPR = 0.02 and TPR = 0.96. This choice is made to
increase the final number of lensed quasar candidates, by
accommodating candidates with lower lens probabilities.

Below the aforementioned Plens threshold, the number of
candidates will grow exponentially, while their quality
deteriorates, making visual examination more time-consuming
and less effective. Without a reference sample of z 6 lensed
quasars, it is impossible to determine the perfect threshold. In
terms of the trade-off between completeness and purity, we
need to find a balance where the number of candidates is
manageable for follow-up observations.
As supplementary information, we performed an additional

evaluation using an independent data set. This test data set was
assembled based on the list of known z 3 lensed quasars
taken from the Gravitationally Lensed Quasar Database21

(Inada et al. 2012; Agnello et al. 2015, 2018; Lemon et al.
2018, 2019, 2020; Spiniello et al. 2018; Jaelani et al. 2021). Of
the 220 lenses in the database, 34 of the known lenses have
DES images. Combined with the contaminants generated in
Section 3.2, we tested our CNN classifier on this new data set
and successfully recovered 27 lenses—i.e., equivalent to a
completeness of 79% and a purity of 11%. We refer the reader
to Appendix D for more details on the resulting distribution of
probability scores. Compared to the evaluation against the
mock lenses, the performance of our CNN model decreases
when it is tested against unseen real lens systems. This
decreased performance might have been caused by the
uniqueness of some of the strong lenses that were not covered
by our simulation. In particular, some of the FNs in the test data
set might have contained lensed arcs that were too faint to be
identified, compact lenses, multiple distortions caused by
substructures, or other things. Nonetheless, our CNN classifier
can generalize and achieve a sufficiently high accuracy for our
purpose. We should emphasize that the point of our CNN-
based classification is to conduct a preselection before we go
into the visual inspection process, not to assemble a final
sample that is quantitatively pure or complete.

4. Results and Discussion

We visually inspected 448 sources—selected by our color
cut, SED modeling, and the CNN classifier—which resulted in
36 high-fidelity lens candidates, plus six unlensed quasar
candidates, which are awaiting spectroscopic confirmation.
More details of this selection step will be presented in the
following paragraphs. Based on the evaluation of the test data
set in Figure 10, our CNN classifier seems to have am FPR as
low as 2% for detecting lensed quasars at z = 6.6–7.2.
But how many high-z lensed quasars are we actually

expecting to find? The current observed lensed fraction among
z∼ 6 quasars (≈0.2%; Yue et al. 2022a, 2022b) is substantially
smaller compared to previous theoretical estimations (4%;
Wyithe & Loeb 2002; Pacucci & Loeb 2019). A recent study
by Yue et al. (2022a) has argued that this tension may be
caused by unaccounted-for biases that have not been well
investigated. Many prior investigations, in particular, have
relied on early measurements of quasar luminosity functions
and deflector velocity dispersion functions. By adopting recent
estimates, Yue et al. (2022a) suggested that the lensed fraction
among z∼ 6 quasars was ∼0.4%–0.8% for a survey depth of
zDES= 22 mag. Consequently, depending on the assumptions,
we expect the number of lensed quasars in an optimal final data
set to range from ∼2 (lensed fraction ≈0.6% of approximately
300 known quasars; Yue et al. 2022a) and to more than 10

Figure 10. ROC curves and the associated AUC value. The curve for
classifying lensed quasars is presented by the solid blue line. On the other hand,
the curves for predicting galaxies, MLT dwarfs, and quasars are shown by the
dashed magenta, yellow, and cyan lines, respectively. The FPR and TPR values
for the adopted Plens thresholds are also shown by the red circle.

20 The definition is G-mean = TPR 1 FPR( )´ - . 21 https://research.ast.cam.ac.uk/lensedquasars/
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Table 2
List of the z  6 Lensed and Unlensed Quasar Candidates Discovered in This Work

ID Name gDES rDES iDES zDES YDES JVHS W1 red, Q
2c red, G

2c red, L
2c red, D

2c zqso zgal Plens Grade

262 J056.71853–27.63183 23.78 ± 0.16 22.46 ± 0.07 21.64 ± 0.05 20.86 ± 0.05 20.34 ± 0.10 20.12 ± 0.19 19.42 ± 0.04 37.40 4.57 0.48 13.90 6.83 0.67 0.29 A1

346 J036.96123–50.21938 >25.11 23.83 ± 0.16 22.78 ± 0.10 21.69 ± 0.08 21.06 ± 0.17 20.60 ± 0.34 20.03 ± 0.05 11.32 2.82 0.18 4.17 6.84 0.58 0.15 A1

408 J040.71110–51.68291 23.14 ± 0.09 22.08 ± 0.05 21.17 ± 0.04 20.57 ± 0.04 20.06 ± 0.09 19.86 ± 0.17 19.10 ± 0.02 63.09 4.69 0.67 33.55 6.90 0.78 0.28 A1

1537 J064.46980–55.90677 24.44 ± 0.20 23.38 ± 0.09 22.57 ± 0.08 21.85 ± 0.08 21.13 ± 0.14 21.27 ± 0.33 21.05 ± 0.10 21.19 4.05 0.27 2.40 6.90 0.62 0.15 A1
2441 J030.16139–23.27101 24.35 ± 0.23 23.02 ± 0.09 22.13 ± 0.07 21.17 ± 0.05 20.63 ± 0.09 20.27 ± 0.20 19.54 ± 0.04 34.77 9.12 1.32 13.76 6.84 0.52 0.12 A1

3391 J092.60966–35.90861 23.90 ± 0.34 22.61 ± 0.13 21.45 ± 0.07 20.83 ± 0.07 20.20 ± 0.11 20.07 ± 0.24 19.60 ± 0.04 14.82 3.69 0.34 14.10 7.09 0.79 0.19 A1

4580 J041.48368–43.88192 24.70 ± 0.19 23.41 ± 0.08 22.87 ± 0.08 21.98 ± 0.06 21.31 ± 0.12 20.98 ± 0.25 20.33 ± 0.07 28.60 3.63 0.48 4.56 6.80 0.62 0.23 A1

6253 J322.05036–45.50413 24.23 ± 0.18 23.02 ± 0.08 21.69 ± 0.04 20.96 ± 0.04 20.42 ± 0.07 20.43 ± 0.40 19.83 ± 0.05 37.81 6.00 0.81 7.75 6.90 0.85 0.17 A1
6514 J028.58579–52.33668 25.23 ± 0.32 23.81 ± 0.12 22.93 ± 0.10 22.11 ± 0.10 21.52 ± 0.18 21.27 ± 0.27 20.45 ± 0.07 13.41 1.57 0.20 3.05 6.81 0.58 0.22 A1

7267 J025.08084–06.38508 23.21 ± 0.11 22.89 ± 0.11 22.02 ± 0.07 21.22 ± 0.07 20.72 ± 0.14 20.60 ± 0.23 20.09 ± 0.07 41.18 3.08 0.49 6.12 7.00 0.92 0.26 A1

8189 J068.45382–33.48967 >24.91 23.93 ± 0.17 22.83 ± 0.12 21.82 ± 0.08 21.13 ± 0.14 20.99 ± 0.29 20.11 ± 0.06 13.84 1.26 0.09 3.94 6.84 0.65 0.21 A1
8805 J085.89481–57.30598 24.19 ± 0.18 22.65 ± 0.05 22.10 ± 0.05 21.49 ± 0.05 20.97 ± 0.11 20.37 ± 0.21 20.85 ± 0.08 40.17 2.25 0.38 2.96 7.10 0.44 0.40 A1

10119 J345.07684–58.84036 22.97 ± 0.08 22.45 ± 0.07 21.58 ± 0.05 20.79 ± 0.06 20.15 ± 0.09 20.35 ± 0.34 19.92 ± 0.06 50.77 6.58 0.53 4.16 6.95 0.78 0.90 A1

10501 J036.23405–40.28176 24.26 ± 0.26 22.03 ± 0.04 20.98 ± 0.03 20.24 ± 0.03 19.72 ± 0.07 19.07 ± 0.11 18.81 ± 0.02 54.27 25.21 3.94 48.14 6.80 0.55 0.97 A1

11107 J042.68174–06.34957 24.66 ± 0.33 23.12 ± 0.11 22.43 ± 0.09 21.56 ± 0.09 20.91 ± 0.19 20.72 ± 0.22 19.79 ± 0.05 20.99 2.42 0.39 5.36 7.06 0.53 0.32 A1
11972 J079.81120–25.37072 24.94 ± 0.24 23.81 ± 0.11 23.24 ± 0.10 22.16 ± 0.08 21.18 ± 0.10 21.18 ± 0.32 20.44 ± 0.09 30.62 6.09 0.41 4.53 7.07 0.62 0.12 A1

13878 J061.07527–33.99544 24.03 ± 0.17 22.92 ± 0.08 22.25 ± 0.08 21.27 ± 0.06 20.52 ± 0.11 20.60 ± 0.26 20.08 ± 0.06 24.12 5.07 0.38 6.91 6.98 0.60 0.25 A1

14097 J008.37130 + 01.30827 22.31 ± 0.08 21.13 ± 0.04 20.34 ± 0.03 19.45 ± 0.02 18.56 ± 0.04 18.98 ± 0.12 18.49 ± 0.02 153.40 52.81 4.23 28.67 6.90 0.61 1.00 A1

15233 J025.04989–19.22226 24.28 ± 0.22 23.16 ± 0.10 22.25 ± 0.07 21.60 ± 0.09 21.04 ± 0.14 21.07 ± 0.31 20.22 ± 0.08 13.85 1.41 0.15 9.05 6.90 0.78 0.11 A1
15256 J026.51434–18.52573 24.79 ± 0.23 23.65 ± 0.11 22.59 ± 0.07 21.81 ± 0.06 21.29 ± 0.15 21.03 ± 0.33 20.75 ± 0.13 18.11 2.52 0.14 1.80 6.90 0.74 0.20 A1

16151 J022.21211–22.07667 24.54 ± 0.23 23.23 ± 0.08 22.48 ± 0.08 21.89 ± 0.09 21.24 ± 0.16 21.23 ± 0.26 20.56 ± 0.11 16.43 1.26 0.15 6.72 7.10 0.61 0.23 A1

16632 J003.79587–43.48657 24.92 ± 0.35 23.11 ± 0.09 21.80 ± 0.04 21.00 ± 0.04 20.28 ± 0.05 20.20 ± 0.24 19.34 ± 0.03 42.46 8.95 1.26 16.23 7.06 0.74 0.21 A1

16649 J004.69657–43.67283 24.53 ± 0.22 23.83 ± 0.15 22.98 ± 0.12 21.76 ± 0.08 21.22 ± 0.13 20.84 ± 0.23 20.27 ± 0.07 17.12 3.05 0.37 3.24 6.78 0.79 0.20 A1
17194 J067.87033–20.39097 24.00 ± 0.22 22.51 ± 0.08 21.88 ± 0.07 21.38 ± 0.09 20.78 ± 0.17 20.36 ± 0.18 20.23 ± 0.07 20.23 1.25 0.24 8.40 7.04 0.34 0.13 A1

17195 J067.92180–21.13860 23.22 ± 0.13 21.78 ± 0.05 21.03 ± 0.04 20.10 ± 0.03 19.29 ± 0.05 19.60 ± 0.21 18.88 ± 0.02 76.95 23.61 1.30 24.89 7.05 0.67 0.63 A1

18165 J089.11616–24.83778 23.45 ± 0.15 22.08 ± 0.05 21.31 ± 0.05 20.61 ± 0.05 20.07 ± 0.09 19.85 ± 0.20 19.24 ± 0.03 37.01 3.57 0.41 18.86 7.02 0.60 0.46 A1
19214 J331.94605–62.27649 22.95 ± 0.08 21.89 ± 0.04 21.26 ± 0.04 20.72 ± 0.04 20.21 ± 0.09 20.07 ± 0.22 19.48 ± 0.04 80.55 3.56 0.44 21.17 6.77 0.64 0.61 A1

19768 J307.41039–47.88890 23.72 ± 0.14 22.54 ± 0.07 21.52 ± 0.05 20.72 ± 0.04 20.10 ± 0.07 20.62 ± 0.44 19.20 ± 0.03 43.66 7.24 1.36 18.36 6.81 0.64 0.48 A1

20095 J064.20989–24.94700 23.82 ± 0.14 22.65 ± 0.06 21.85 ± 0.05 20.83 ± 0.04 20.27 ± 0.08 20.22 ± 0.20 19.30 ± 0.03 63.35 7.18 1.09 11.12 6.92 0.61 0.63 A1

20712 J013.01069–00.00320 >24.94 23.07 ± 0.09 22.37 ± 0.08 21.80 ± 0.10 20.35 ± 0.08 20.68 ± 0.21 20.38 ± 0.10 25.31 13.21 2.64 14.90 7.19 0.44 0.33 A1
21672 J332.80833–43.52889 >25.33 24.30 ± 0.19 23.33 ± 0.13 22.42 ± 0.13 21.40 ± 0.15 21.42 ± 0.30 21.31 ± 0.18 10.17 3.65 0.35 1.78 6.87 0.69 0.24 A1

21837 J059.49147–51.51484 23.83 ± 0.13 23.15 ± 0.09 22.33 ± 0.08 21.65 ± 0.09 20.91 ± 0.15 21.05 ± 0.28 20.15 ± 0.05 23.37 2.57 0.48 11.33 6.85 0.89 0.17 A1

23684 J060.23733–21.39838 23.96 ± 0.16 22.88 ± 0.07 22.21 ± 0.07 21.23 ± 0.06 20.47 ± 0.10 20.65 ± 0.26 19.82 ± 0.05 44.95 6.79 1.07 10.04 6.81 0.52 0.11 A1

23839 J041.09428–01.94383 24.03 ± 0.16 22.65 ± 0.06 21.77 ± 0.05 21.14 ± 0.05 20.50 ± 0.10 20.71 ± 0.33 20.31 ± 0.09 39.75 4.41 0.48 5.00 6.83 0.64 0.53 A1
24021 J044.34665–45.28386 24.45 ± 0.31 22.78 ± 0.09 21.68 ± 0.06 20.78 ± 0.05 19.94 ± 0.07 20.24 ± 0.31 19.04 ± 0.02 45.89 6.05 1.10 18.41 6.98 0.67 0.67 A1

24140 J084.70004–19.84469 25.07 ± 0.33 23.54 ± 0.10 22.71 ± 0.08 21.73 ± 0.06 21.18 ± 0.14 21.00 ± 0.32 20.71 ± 0.11 20.06 4.84 0.13 1.27 6.72 0.56 0.12 A1

5145 J051.27758–18.82994 >25.47 >25.17 >24.48 22.76 ± 0.17 21.48 ± 0.21 21.03 ± 0.25 21.05 ± 0.15 0.21 6.20 0.66 1.40 6.81 1.48 0.01 A2
9128 J358.77772–49.96887 >24.85 >24.43 >23.88 21.22 ± 0.07 20.23 ± 0.07 20.21 ± 0.23 20.41 ± 0.09 1.24 33.94 2.51 12.07 6.73 0.92 0.02 A2

11215 J080.61260–42.70559 >25.47 >25.22 >24.53 21.91 ± 0.06 21.09 ± 0.11 20.96 ± 0.28 20.10 ± 0.05 0.88 16.38 2.26 3.46 6.81 1.48 0.00 A2

14364 J002.72340–59.61451 >25.81 >25.56 >24.78 22.76 ± 0.11 22.15 ± 0.20 21.61 ± 0.35 21.07 ± 0.12 0.10 7.98 1.19 0.64 6.72 0.86 0.03 A2

16566 J070.86138–20.09059 >25.38 >25.09 >24.45 21.37 ± 0.05 20.65 ± 0.08 20.13 ± 0.21 19.75 ± 0.05 0.46 32.69 3.07 4.87 6.72 1.15 0.20 A2
20453 J080.68560–33.47577 >24.86 >24.55 >24.01 22.16 ± 0.12 21.21 ± 0.16 21.43 ± 0.43 20.39 ± 0.07 0.87 4.96 0.21 3.24 6.80 0.76 0.01 A2

Note. Column (1): a unique identifier for each candidate. Column (2): source name. Columns (3)–(7): DES grizY-band magnitudes and associated 1σ uncertainties. Column (8): VHS J-band magnitude. Column (9): unWISE W1-band magnitude.
Columns (10)–(13): reduced chi-square values for the quasar (Q), galaxy (G), lens (L), and MLT dwarf (D) template models. Columns (14)–(15): photometric redshift estimates of the background and foreground sources, based on the best-fit SED
fitting template. Column (16): CNN classification score. Column (17): grade after visual inspection. The reported magnitudes are in the AB system, corrected for Galactic reddening, by making use of the dust map from Schlafly et al. (2019) and
following the Fitzpatrick (1999) extinction relation. If the sources are not detected—i.e., S/N <3—in certain bands, we replace the catalog magnitudes with their associated 3σ upper limits, where we infer these limits based on the measured flux
uncertainties reported in the DES table. Lens candidates are marked with the “A1” grade, while unlensed quasar candidates are marked “A2.” To name the sources, we adopt the “JRRR.rrrrr+DD.ddddd” convention, where “RRR.rrrrr” and “+DD.
ddddd” are the R.A. and decl. in decimal degrees (J2000), respectively.
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(lensed fraction >4%; Pacucci & Loeb 2019). However, we
should also take into account previous spectroscopic cam-
paigns, which indicate that the success rate of quasar
identification at z 6 is around 20%–30% (Bañados et al.
2016; Wang et al. 2019; Andika et al. 2020). We expect this
efficiency to improve as we find more high-z quasars and our
training data sets expand in size. Nonetheless, our combined
SED fitting and CNN classification method is a promising way
of preselecting high-z lens candidates and saving a lot of time
before the human inspection process needs to be carried out.

Previous high-z quasar searches have so far only found a
single lens. The cause of this discrepancy is rather obvious in
hindsight. Most candidate selection approaches have applied
additional magnitude cuts or full “dropout” criteria at all
bandpasses bluer than the Lyα line (e.g., Mazzucchelli et al.
2017; Reed et al. 2019; Wang et al. 2019; Andika et al. 2020).
This decision is understandable, since the emission of z 6
quasars at wavelengths blueward of Lyα is strongly absorbed
by the intervening IGM, creating a strong break in the spectrum
and becoming a primary identifier for candidate preselection. In
other words, for lensed quasars at these redshifts, we do not
expect any significant flux to come from the DES g or r bands.
However, this is not the case for lens galaxies at redshifts
typically between 0.5< z< 2, which could contribute sig-
nificant emission at λobs 8000Å.

So, to include potential lens systems, we had to remove such
dropout criteria. Instead, to recap, we used the selection process
described above, which hinges on downselecting candidates by
using spatial information that carries the typical signatures of
lens systems or the lack thereof. From the approximately 8
million sources that exist in the combined DES, VHS, and
unWISE catalogs, 662,314 of them passed our flag, S/N, and
color criteria. Applying the SED modeling to the previously
color-selected lens candidates then yielded 24,723 remaining
sources—avoiding discrimination against the flux contributions
from the potential lens galaxies. After this, the CNN classifier
then reduced the number of candidates to only 448 sources,
using image color and geometry information. Finally, visual
inspection was performed on the images to discard spurious
sources, such as moving objects, hot pixels, CCD artifacts, etc.
A summary of all the selection steps that we used can be
viewed in Table 1. Also, the list of the candidates is reported in
Table 2, while the corresponding composite color images and
the distributions of the lens candidate properties are shown in
Figure 11 and Figure 12, respectively.

Testing our approach against previous quasar candidate
selection methods confirms the broadened selection space. If
we were to impose an additional cut of S/N(gDES, rDES)< 5,
or, effectively, the dropout criteria (e.g., Bañados et al. 2016;
Reed et al. 2019; Yang et al. 2019b), then none of the mock
lenses created in Section 2.4 would survive. In other words, this
cut would result in us missing all of the lens systems containing
bright galaxies as deflectors.

The crossover point with previous quasar selections only
comes when the deflecting galaxies are faint and, consequently,
less massive. These systems make compact lenses with small
Einstein radii and therefore have small image separations.
Subsequently, these sources are likely to have a light
dominated by the quasar emission, with a slightly extended
shape—at least in ground-based imaging data. And because the
images of the deflector galaxy and the lensed quasar are
blended, we anticipate that neither a PSF nor a normal Sérsic

profile will offer a sufficient picture of their morphology (e.g.,
Fan et al. 2019; Yue et al. 2022b), so using the morphological
information is difficult. When they are below some lensing
mass, they will be picked up by conventional selection methods
(e.g., Pons et al. 2019; Reed et al. 2019; Andika et al. 2020)
and our SED-based selection (see Section 2.5), although their
lensing natures would be challenging to prove. Of course,
running this diagnostic with space-based, higher-resolution
imaging data would allow for the applicable parameter space to
be increased substantially.
While the approach described above seems to produce

sensible candidate samples, we see room for improvement.
Currently, the rate of FP-classified morphologies is not zero.
However, trained astronomers can quickly dismiss the vast
majority of previously unaccounted-for contaminants in this
candidate list. In principle, the FPs in our list are sources that
we see as being highly unlikely to be lenses or that have no
visible signs of strong gravitational lensing features, as
displayed in Figure 13. They span a wide range of apparent
morphologies—for example, irregular sources or spiral arms
that mimic lensing arcs. Note that sources with highly irregular
shapes that do not belong to either class in the training data set
will receive unpredictable CNN scores. We also note point-
source lights located near bright stars with strong diffraction
spikes or in regions with unreliable photometric data, due to the
presence of CCD artifacts, whose colors mimic lens system
SEDs, as presented in Figure 14. Moreover, in some cases, we
find that sources with low surface brightness in the DES Y band
do not give sufficient information to clearly identify the lensing
features. We conclude that further research into deeper and
more sophisticated CNN models may be worthwhile. The same
is true for the expansion of the simulation input: moving
beyond the SIS model and adding the external shear
perturbation might create subtle differences in relation to the
currently more simple models. In any case, the fact that we
have managed to expand the search parameter space by
avoiding a dropout criterion, while keeping the rejection rate
high, shows that the approach works in principle. We will now
start to follow up on these high-probability candidates, to test
their quasar and lensing natures, using our upcoming observa-
tions with the Focal Reducer and Low Dispersion Spectro-
graph 2 instrument mounted on the Very Large Telescope at
the European Southern Observatory (110.243U.002; PI: I.T.
Andika).

5. Summary and Conclusion

In this work, we exploit DES, VHS, and unWISE data and
perform a systematic search for z 6 lensed quasars. Our
method consists of two primary steps. First, we preselect the
candidates based on their spectral color, using catalog-level
multiband photometry, reducing the number of sources from
≈8 million to just 662,314. Second, we calculate the relative
probabilities of the candidates being a lens or contaminant,
using a CNN-based classification, resulting in 448 surviving
candidates. Note that the construction of the training data set
for the CNN input is achieved by painting deflected point-
source lights over actual DES galaxy images. This way, we can
create strong-lens simulations realistically and focus on finding
systems that have small image separations—i.e., Einstein radii
of θE� 1″. After visually inspecting the sources with a CNN
score of Plens> 0.1, we obtain 36 newly discovered lens
candidates awaiting spectroscopic confirmation. In addition to
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this, we also find six new unlensed quasar candidates. These
results show that automated SED modeling and CNN pipelines,
supported by modest human input, are promising for detecting
strong lenses from large databases.

The strategy described in this work is easily adaptable to
searching for lens systems at various redshifts, and is very well
suited to next-generation surveys such as Euclid (Laureijs et al.
2011; Euclid Collaboration et al. 2022)—providing high-

Figure 11. Color images of the candidates found in this paper. The first six rows from the top show the lens candidates, while the last rows in the bottom present the
unlensed quasar candidates. The cutouts are created based on 12 6 × 12 6 DES izY images. Arcsinh stretch image normalization, following the Lupton et al. (2004)
approach, is applied to enhance contrast and improve visual appearance. The object identifiers are shown at the top of each panel. In addition, we list the CNN-based
classification scores (Plens) at the bottom of each cutout.
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resolution imaging data over a large part of the extragalactic
sky—and the Rubin Observatory Legacy Survey of Space and
Time (Ivezić et al. 2019), with its very deep photometric
multiband data. In principle, adjustments to the filter profiles,
the seeing distribution, and the image resolution, in order to
match the target surveys, will be required to achieve good
results. Future searches will also benefit from extending the
diversity of the SEDs and morphologies for the sources and
lenses in the training data set. Using more realistic galaxy mass
profiles, like SIE, may also potentially improve the classifier
performance. Moreover, experimenting with other network
models, like EfficientNet and ResNet, might produce better
results compared to the currently used classical CNN
architecture (e.g., Cañameras et al. 2020; Rojas et al. 2022).
These free parameters may become more constrained when
additional lenses are uncovered. Realizing the scientific
potential of our catalog of lensed quasar candidates will
require spectroscopic observations, for measuring the lens and

source redshifts, as well as higher-resolution imaging, to
perform lens modeling.
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Figure 12. Distributions of the lens candidate CNN scores Plens, source redshifts zqso, deflector redshifts zgal, and DES Y-band magnitudes YDES. The zqso and zgal
parameters are inferred based on the best-fit templates from our SED modeling.

Figure 13. Examples of FP sources, whose colors mimic lensed quasar SEDs,
as selected by our CNN classifier. Starting from the top row, we show cases
where the sources are located near bright stars with strong diffraction spikes,
moving objects, and regions with unreliable photometric data, due to the
presence of CCD artifacts, as well as some candidates with less convincing
strong lensing features. The cutouts are produced based on 12 6 × 12 6 DES
izY images and colorized following the Lupton et al. (2004) method. The
predicted probabilities of each source are indicated in each image.
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Facilities: Blanco (DECam), ESO:VISTA (VIRCAM),
Sloan (eBOSS/BOSS), WISE.

Software: Astropy (Astropy Collaboration et al. 2013, 2018),
Bagpipes (Carnall et al. 2018), CosmoCalc (Wright 2006),
EAZY (Brammer et al. 2008), Matplotlib (Caswell et al. 2019),
NumPy (Harris et al. 2020), Pandas (Reback et al. 2021),
Photutils (Bradley et al. 2021), PyAutoLens (Nightingale
et al. 2021), SIMQSO (McGreer et al. 2013), SciPy (Virtanen
et al. 2020).

Appendix A
SIS Lens Equation

SIS is a simple analytical formula for modeling the massive
galaxy mass profiles that produce strong lenses (e.g., Treu 2010,
and references therein). The SIS profile can be expressed as

. A1E ∣ ∣
( )b q q

q
q

= -

Here, we define θE as the Einstein radius, β as the true angular
position of the source, and θ as the observed position of the
source on the sphere relative to the center of the lens (for
reference, see Figure 2.31 of Schneider 2015). If |β|< θE, two
solutions of the lens equation exist, meaning that it will
produce two images at angular positions of

, . A21 E 2 E ( )q b q q b q= + = -

The separation of those two images does not depend on the
position of the source and can be calculated using

2 . A31 2 E ( )q q q qD = - =

On the other hand, for |β|> θE, only one image of the source
will exist, being located at θ1. Finally, the magnification (μ) can
be determined using the formula

. A4
E

∣ ∣
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q

q q
=
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Appendix B
Quasar Selection Function

As mentioned in Section 2.2, the parent population of
quasars in our simulation follows the luminosity function of
Matsuoka et al. (2018b). They are distributed in absolute
magnitudes of −30�M1450�− 20 and redshifts of 5.6�
z� 7.2. Note that without strong lensings, the data that we use
can only detect quasars brighter than M1450≈− 24.5. On the
other hand, the lensing effect could push this limit into a fainter
regime, which depends on the magnification factor.
We show in Section 2.5 that our selection criteria truncate

the search, to focus on lens systems where the background
quasars are positioned at z = 6.6–7.2. To see this in more
detail, we first describe our selection function (or

Figure 14. Example of an SED modeling result for an FP candidate. In this case, the source is located near a bright object with strong diffraction spikes or a CCD
artifact, but it still produces colors that mimic lensed quasar colors. The upper panel displays the source’s photometric data points (the red circles with error bars) fitted
with three distinct templates. The best-fit lens spectral template is shown by the blue line, while the synthesized photometry is represented by the blue circles. On the
other hand, the best-fit models using the MLT dwarf and unlensed low-z galaxy templates are denoted by the yellow and magenta colors. We indicate the photometric
redshift probability density functions in the lower right panel, which are inferred by fitting the data to unlensed high-z quasar (cyan line) and low-z galaxy (magenta
line) templates. DES cutouts, with a size of 16 8 × 16 8, are shown in the lower panels, starting from the left.
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completeness) as the fraction of mock quasars with given
M1450, z, and intrinsic SEDs that are recovered by our selection
criteria. The results are presented in Figure 15. Intrinsically
faint quasars can only be detected if they are boosted by lensing
with large magnification factors, and these are relatively
infrequent. Hence, at a given redshift, our completeness rate
drops, as the quasars have intrinsically lower luminosity.

Appendix C
Additional Spectral Templates for the Contaminants

To separate the candidates from contaminants, we implement
the SED fitting method described in Andika et al. (2020). The
main idea is that we want to know which spectral classes best
fit the observed SEDs of the candidates among the four
templates—i.e., lensed quasars, unlensed low-z galaxies, MLT
dwarfs, or unlensed high-z quasars.

The spectral template for MLT dwarfs is taken from the
SpeX Prism Library22 (Burgasser 2014). In total, there are 360
templates that reflect stars with spectral classes of M5–M9, L0–
L9, and T0–T8 in the wavelength range 0.625–2.55 μm. We
then extrapolate these templates into the MIR regime to cover
the unWISE bands—i.e., W1 (3.4 μm) and W2 (4.6 μm)—
following the method presented by Andika et al. (2020).

Next, we add empirical quasar spectra, taken from three
sources. The first is found in Selsing et al. (2016), who
constructed a composite spectrum based on the sample of Very
Large Telescope/X-shooter observations of luminous 1< z< 2
quasars obtained from SDSS. The second is found in Jensen
et al. (2016), which is based on 58,656 spectra of 2.1< z< 3.5
Baryon Oscillation Spectroscopic Survey (BOSS) quasars,

binned by luminosity, spectral index, and redshift. Lastly, the
third composite spectrum is taken from Harris et al. (2016),
which was made by averaging 102,150 BOSS quasar spectra at
2.1< z< 3.5. Note that the composites from Harris et al.
(2016) and Jensen et al. (2016) only contain spectra with a rest-
frame wavelength up to ∼3000Å. To extend these further, to
redder wavelengths, we stitch these templates to the Selsing
et al. (2016) composite spectrum, starting from 2650Å. After
this, we apply the dust reddening using values of E
(B− V )=− 0.02 to 0.14, following the Calzetti et al. (2000)
extinction law. We further create a grid of spectra, with a
redshift range of 4.0� z� 8.0, with Δz= 0.003.
In addition, to ensure that our candidates do not mimic low-z

unlensed elliptical galaxies, we utilize the Brown et al. (2014)
galaxy spectral atlas. This database contains 129 templates
derived from nearby z 0.05 galaxies of various types (e.g.,
elliptical, spiral, starbursts, etc.) We then add the reddening
effect from dust, using Calzetti et al. (2000) model, with A
(V )= 0 to 1. A grid of SED models is then constructed by
distributing the templates across redshifts of 0.0� z� 3.0, with
Δz= 0.005. Note that on top of the SED models of quasars and
galaxies, we add the attenuation caused by H I in the IGM,
using the formula from Inoue et al. (2014).

Appendix D
Test on Known Lensed Quasars

We present here a sample of discovered z 3 lensed quasars,
taken from the Gravitationally Lensed Quasar Database (Inada
et al. 2012; Agnello et al. 2015, 2018; Lemon et al.
2018, 2019, 2020; Spiniello et al. 2018; Jaelani et al. 2021),
which we use for an additional independent test. The assembly
of the training data for our CNN classifier is similar to that
explained in Sections 2.2–2.4. However, this time, we extend
the redshift of the background quasars to 1.5� z� 7.2 and the
luminosities to −30�M1450�−20, and distribute the new
900 quasars uniformly over the M1450–z space.
To estimate the completeness and purity of our classifier, we

first combine the known lensed quasars mentioned above with
a sample of contaminants—i.e., galaxies, stars, and nonlensed
quasars—where the nonlenses are assumed to outnumber the
lens population by a factor of a few thousand. By using this test
data set, our CNN classifier successfully recovered 27 known
lenses from the 34 sources available in the DES data,
equivalent to a TPR (or completeness) of 79%, with an FPR
of 1%. We also find that our model has a purity of 11% in
finding the lens candidates. The calculated lens probabilities,
compared to the image separations and redshifts, are shown in
Figure 16. We also show their images and lens probability
scores (Plens) in Figure 17.

Figure 15. The quasar selection function that we employ in our work. The
probability represents the proportion of mock quasars in each (M1450, z) bin that
can be recovered by our classifier.

22 http://pono.ucsd.edu/~adam/browndwarfs/spexprism/library.html
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Figure 16. Calculated lens probabilities for a sample of known lensed quasars compared to their separations and background quasar redshifts. The data are shown as
blue dots, while the probability threshold for classifying sources as lens systems is denoted by the red dashed line.
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