
Efficient Implementation of LIMDDs for Quantum
Circuit Simulation
Vinkhuijzen, L.T.; Grurl, T.; Hillmich, S.; Brand, S.O.; Wille, R.;
Laarman, A.W.; ... ; Schilling, C.

Citation
Vinkhuijzen, L. T., Grurl, T., Hillmich, S., Brand, S. O., Wille, R., &
Laarman, A. W. (2023). Efficient Implementation of LIMDDs
for Quantum Circuit Simulation. Lecture Notes In Computer
Science, 3-21. doi:10.1007/978-3-031-32157-3_1

Version: Publisher's Version

License: Licensed under Article 25fa Copyright
Act/Law (Amendment Taverne)

Downloaded from: https://hdl.handle.net/1887/3715346

Note: To cite this publication please use the final published version
(if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3715346

Efficient Implementation of LIMDDs
for Quantum Circuit Simulation

Lieuwe Vinkhuijzen1(B) , Thomas Grurl2,3 , Stefan Hillmich3 ,
Sebastiaan Brand1 , Robert Wille4,5 , and Alfons Laarman1

1 Leiden University, Leiden, The Netherlands
l.t.vinkhuijzen@liacs.leidenuniv.nl

2 Secure Information Systems, University of Applied Sciences Upper Austria,
Wels, Austria

3 Institute for Integrated Circuits, Johannes Kepler University Linz, Linz, Austria
4 Chair for Design Automation, Technical University of Munich, Munich, Germany

5 Software Competence Center Hagenberg Gmbh (SCCH),
Hagenberg Im Mühlkreis, Austria

Abstract. Realizing the promised advantage of quantum computers
over classical computers requires both physical devices and correspond-
ing methods for the design, verification and analysis of quantum circuits.
In this regard, decision diagrams have proven themselves to be an indis-
pensable tool due to their capability to represent both quantum states
and unitaries (circuits) compactly. Nonetheless, recent results show that
decision diagrams can grow to exponential size even for the ubiquitous
stabilizer states, which are generated by Clifford circuits. Since Clifford
circuits can be efficiently simulated classically, this is surprising. More-
over, since Clifford circuits play a crucial role in many quantum com-
puting applications, from networking, to error correction, this limitation
forms a major obstacle for using decision diagrams for the design, ver-
ification and analysis of quantum circuits. The recently proposed Local
Invertible Map Decision Diagram (LIMDD) solves this problem by com-
bining the strengths of decision diagrams and the stabilizer formalism
that enables efficient simulation of Clifford circuits. However, LIMDDs
have only been introduced on paper thus far and have not been imple-
mented yet—preventing an investigation of their practical capabilities
through experiments. In this work, we present the first implementation
of LIMDDs for quantum circuit simulation. A case study confirms the
improved performance in both worlds for the Quantum Fourier Trans-
form applied to a stabilizer state. The resulting package is available under
a free license at https://github.com/cda-tum/ddsim/tree/limdd.

1 Introduction

Quantum computing is a new and drastically different computing paradigm
promising to solve certain problems that are intractable for classical computers.
Examples of such problems include unstructured search [1–3], integer factoriza-
tion [4] and quantum chemistry [5]. This computational power is harnessed by
using quantum mechanical effects such as superposition, where the system can be
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Caltais and C. Schilling (Eds.): SPIN 2023, LNCS 13872, pp. 3–21, 2023.
https://doi.org/10.1007/978-3-031-32157-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32157-3_1&domain=pdf
http://orcid.org/0000-0002-8199-0901
http://orcid.org/0000-0002-9278-488X
http://orcid.org/0000-0003-1089-3263
http://orcid.org/0000-0002-7666-2794
http://orcid.org/0000-0002-4993-7860
http://orcid.org/0000-0002-2433-4174
https://github.com/cda-tum/ddsim/tree/limdd
https://doi.org/10.1007/978-3-031-32157-3_1

4 L. Vinkhuijzen et al.

in a linear combination of multiple states, and entanglement, where operations on
one part of the system can affect other parts as well. In the near term, quantum
computers classified as Noisy Intermediate-Scale Quantum (NISQ) devices are
expected to both deliver empirical evidence of quantum advantage over classical
computers as well as solve practical problems. However, the ability to build large
quantum computers is not by itself sufficient if there are no means of harness-
ing their power: we also need tools for the design of quantum circuits, i.e., for
simulation, compilation, and verification. The classical simulation of quantum
computers in particular has been used in service of the verification of quantum
algorithms [6–8], and is a way to quantify “the elusive boundary at which a
quantum advantage may materialize” [9].

A major challenge in the classical design of quantum systems is that the
memory requirements grow exponentially in the number of qubits. Contrary
to the classical world, where representing a system state with m classical bits
requires only a linear amount of memory, the state of an n-qubit quantum system
is described by a vector of 2n complex numbers. Current estimates indicate that
at least hundreds of qubits are required to perform useful tasks on a quantum
computer [10]. However, even current super-computing clusters can only handle
systems with between 50 and 60 qubits represented as vectors [11]. Therefore,
dedicated data structures and design methods which can tackle the exponential
complexity of quantum computing need to be developed.

Given that merely representing a quantum state may require an exponential
amount of memory with respect to the number of qubits, it comes as no surprise
that conducting quantum circuit simulation, for example, is a hard problem. Even
more dauntingly, verification of quantum circuits at its heart considers quantum
operations and therefore has 2n × 2n complexity when implemented naively. For-
tunately, due to the characteristics of quantum computing, quantum circuit sim-
ulation can help to verify the equivalence of two circuits to a very high degree of
confidence, despite the infinite number of possible input states. More precisely,
providing an appropriate quantum state as input to the circuits under considera-
tion and checking equivalence of the resulting states will provide a counterexam-
ple for non-equivalent circuits with a high probability [7]. Selecting basis states as
input, i.e., states without superposition or entanglement, does not always suffice
for this purpose, but random stabilizer states, introduced next, have been shown to
do the trick [6]. This makes quantum circuit simulation a key component of design
automation for quantum computing and hence the subject of the current paper.

Stabilizer states are ubiquitous in quantum computing. They are computed
by so-called Clifford circuits, a subset of the universal quantum computing gate
set [12,13]. For example, stabilizer states include the Bell state and GHZ state.
Further, Clifford circuits play an essential role in error correction [14,15], entan-
glement distillation [16] and are used in one-way quantum computing [17]. Any
n-qubit stabilizer state can be represented using memory in the order of O(n2)
and the non-universal fragment of Clifford circuits can be simulated efficiently
by manipulating this representation [12,13]. In fact, stabilizer states capture
the essential symmetries of all universal quantum computing states, which is
why they also play a key role in the reduction from verification to simulation

Efficient Implementation of LIMDDs for Quantum Circuit Simulation 5

explained above. For these reasons, it can be argued that any practically efficient
classical simulation of (universal) quantum computing should also support Clif-
ford circuits and the stabilizer states they generate. The current work removes
this limitation from existing (universal) simulation approaches based on decision
diagrams.

Decision Diagrams (DDs) are a tried-and-tested data structure in the world
of classical design automation [18–22]. They have also shown promising results
in quantum design automation [23–28]. Decision diagrams exploit redundancies
in the state vector and operations matrix to enable a compact representation
in many cases. Unfortunately, a state-of-the art quantum simulation method
called Quantum Multi-valued Decision Diagram (QMDD) [29] does not efficiently
represent stabilizer states [27], which poses a serious bottleneck to their adoption,
as explained above, but also observed in practice [6]. The recently proposed Local
Invertible Map Decision Diagram (LIMDD, [27]) addresses this shortcoming.
LIMDDs efficiently represent stabilizer states, they simulate Clifford circuits
in polynomial time and can efficiently apply many Clifford gates also to non-
stabilizer states. However, LIMDDs lack an implementation to demonstrate that
their asymptotic advantage also translates to practical use cases.

In this paper, we present an implementation of LIMDDs for universal simula-
tion of quantum circuits (and thus design automation) based on the QMDD pack-
age [26,28]. We adapt techniques that are tried and tested in the implementa-
tions of both classical and quantum decision diagram packages, and enrich them
with special considerations to efficiently handle Local Invertible Maps (LIMs).
For the first time, this leads to an implementation that realizes LIMDDs, and
also demonstrates the potential of LIMDDs. In particular, we show their use
for verification through circuit equivalence checking for a case study on the
Quantum Fourier Transform (QFT, [30,31]). The results confirm that the more
complex LIMDD-based simulator surpasses a state-of-the-art decision-diagram-
based simulator for larger instances. The resulting implementation is available
at https://github.com/cda-tum/ddsim/tree/limdd under the MIT license.

The remainder of this paper is structured as follows. Section 2 briefly reviews
the necessary background on quantum computing and classical quantum circuit
simulation. In Sect. 3, we briefly review existing decision diagrams for quan-
tum computing and motivate the need for an efficient LIMDD implementation.
Section 4 details the techniques used to enable efficient construction and manipu-
lation of LIMDDs. In Sect. 5, we provide an experimental evaluation showcasing
the performance of the proposed implementation. Finally, Sect. 6 concludes the
paper.

2 Background

To keep this work self-contained, this section provides the necessary background
on quantum computing as well as classical quantum circuit simulation.

https://github.com/cda-tum/ddsim/tree/limdd

6 L. Vinkhuijzen et al.

2.1 Quantum States and Operations

The basic unit of information in quantum computing is the quantum bit or
qubit [30]. A single-qubit quantum state |ψ〉 can be described by its amplitude
vector |ψ〉 = α0 · |0〉 + α1 · |1〉 with complex amplitudes α0, α1 ∈ C. Here,
|0〉 = [10], |1〉 = [01] denote the two basis states and are analogous to the basis
states 0 and 1 in classical computing, in the sense that a classical register con-
taining one bit can be either in state 0 or 1. An amplitude vector must meet
the normalization constraint |α0|2 + |α1|2 = 1. If both amplitudes α0 and α1

are non-zero, the state is in superposition. For a state |φ〉, we write 〈φ| = |φ〉†

to denote its conjugate transpose. Two quantum states |φ〉 , |ψ〉 are considered
equal if the absolute value of their in-product equals one, i.e., | 〈φ| · |ψ〉 | = 1, also
written as | 〈φ|ψ〉 | = 1. We say that |φ〉 , |ψ〉 are approximately the same state
if | 〈φ|ψ〉 | ≈ 1. When measuring a state, the probability that a given basis state
is the outcome is the squared magnitude of the amplitude of that basis state,
i.e., for the state α0 · |0〉 + α1 · |1〉, the probability of measuring the zero state
is |α0|2. Therefore, in a physical quantum computer, the individual amplitudes
are fundamentally non-observable and information about the quantum state can
only be extracted through destructive measurement, i.e., after measurement,
superposition is destroyed.

A quantum register may consist of multiple qubits. A register |φ〉 consisting of
n qubits has 2n basis states |i〉 with i ∈ {0, 1}n, each with a corresponding ampli-
tude αi, i.e., |φ〉 =

∑
i αi |i〉. Here a basis state |i〉 with i a bit string b1b2 . . . bn

is formed from the single qubit basis vectors above using tensor products
|b1〉⊗|b2〉⊗· · ·⊗|bn〉, written shortly as |b1〉 |b2〉 . . . |bn〉 = |b1b2 . . . bn〉 = |i〉. Here
the tensor product of a k×� matrix A = (aij)ij and an n×m matrices B = (bij)ij

is the kn × �m matrix C = (aijbxj)ijxy. Alternatively, |φ〉 can be understood as
the pseudo-Boolean function f : {0, 1}n → C, defined as f(i) = 〈i|φ〉 = αi. The
normalization constraint is generalized to

∑
0≤i<2n |αi|2 = 1. A quantum state

|φ〉 is entangled if it cannot be written as a tensor product of single qubit states,
i.e., |φ〉 = |φ1〉 ⊗ · · · ⊗ |φn〉.
Example 1. Consider the quantum state 1/

√
2 · (|00〉+ |11〉), commonly known as

the Bell state [30]. As a vector, it would be written as 1/
√
2 · [1 0 0 1]T. If this

state is measured, we have equal probabilities of obtaining as outcome one of the
basis states |00〉 and |11〉, and zero probability of seeing the states |01〉 and |10〉.

In addition to superposition, this quantum state shows entanglement. Mea-
suring a value for one qubit of the Bell state would immediately fix the value of
the other qubit corresponding to the measurement outcome, e.g., after measuring
q1 = |0〉 (or q1 = |1〉) we immediately know that q0 = |0〉 (or q0 = |1〉).

Quantum states are manipulated through quantum gates. A quantum gate is
any linear operator mapping quantum states to quantum states, i.e., a unitary
matrix U ∈ C

2n×2n , where n is the number of qubits. A quantum algorithm con-
sists of a series of gates applied sequentially, e.g., U = Um · · · U1 is an algorithm
consisting of m gates, which first applies U1, then U2, up to Um. Thus, U denotes
the unitary matrix corresponding to applying all the gates. If a quantum state |φ〉

Efficient Implementation of LIMDDs for Quantum Circuit Simulation 7

serves as input to U , then the output is the quantum state U · |φ〉. We say that
a quantum algorithm U1, . . . , Um is equivalent to another quantum algorithm
V1, . . . , V� iff they effect the same unitary matrix, i.e., if Um · · · U1 = V� · · · V1.

Example 2. Three examples of common quantum gates are the single-qubit
phase-shift operation S, the single-qubit Hadamard operation H, and the two-
qubit controlled-NOT operation CNOT (here shown with control on the first
qubit, target on the second qubit).

S =
[
1 0
0 i

]

H =
1√
2

[
1 1
1 −1

]

CNOT =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥
⎥
⎦

The state from Example 1 can be created by starting the |00〉 basis state and
then applying a Hadamard operation on the first qubit, followed by a controlled-
NOT. Using the tensor product for parallel composition of gates as usual [30],
this can be written as CNOT × (H ⊗ I) × |00〉 = |11〉. Figure 1 shows another
example of a 3-qubit quantum circuit built from these three gates generalized to
multiple qubits. The circuit is to be read from left to right, so that the Hadamard
gate is the first gate, applied to qubit q2. The • denotes the control qubit of a
CNOT gate; the ⊕ denotes its target qubit.

|q2

|q1

|q0

H

S

X

Fig. 1. A quantum circuit on three qubits, q2–q0.

An important, though non-universal, subset of quantum circuits are Clifford
circuits [14], which consist only of the Clifford gates S, H and CNOT. Clifford
circuits are ubiquitous in quantum computing because they represent the sym-
metries that occur in all quantum states albeit they cannot generate arbitrary
transformations (hence they are non-universal). As a consequence, they play an
essential role in error correction [14,15], entanglement distillation [16] and are
used in one-way quantum computing [17]. Clifford circuits are intimately related
to the Pauli gate set:

I =
[
1 0
0 1

]

X =
[
0 1
1 0

]

Y =
[
0 −i
i 0

]

Z =
[
1 0
0 −1

]

Example 3. The circuit shown in Fig. 1 is a Clifford circuit, since it only consists
of Clifford operations and gates that can be built from Clifford operations. The
Pauli gates can be built from Clifford gates, namely as Z = S2 and X = H ×
Z × H, and Y = iXZ; thus, Pauli gates are Clifford gates.

8 L. Vinkhuijzen et al.

2.2 Classical Quantum Circuit Simulation

The classical simulation of a quantum circuit is the process of simulating a
quantum circuit on a classical binary computer. It is an important task in the
context of quantifying the capability of physical quantum computers and in the
development of quantum algorithms.

Circuit simulation can be conducted in a straightforward fashion by repeated
matrix-vector multiplication. The simulation starts with an initial state and
applies the quantum gates one after the other. Each quantum operation is rep-
resented by a unitary matrix Ut of dimension 2n ×2n and each quantum state by
a unit vector |φt〉 of dimension 2n. The evolution of a state at time step t is then
given by |φt+1〉 = Ut+1 |φt〉 (with |φ0〉 commonly being the vector representing
the all-zero state, |φ0〉 = |0 . . . 0〉).

Clifford circuits can be efficiently simulated on a classical computer [13],
which is surprising given their importance, but not a contradiction given their
non-universality. Starting from the all-zero state |0n〉, Clifford circuits only yield
so-called stabilizer states. An n-qubit stabilizer state |φ〉 can be uniquely specified
by the set of Pauli operators G = ±P1 ⊗ · · · ⊗ Pn with Pi ∈ { I,X, Y, Z } that
stabilize it, i.e., which satisfy G |φ〉 = |φ〉. This set forms an abelian group,
and can always be described succinctly by a set of n generators G1, . . . , Gn ∈
±{ I,X, Y, Z }n. We can thus think of this generator set as an n × n matrix
of local Pauli operators, where each row (a generator) also has an additional
plus or minus sign as shown in Example 4. This characterization is the key to
efficiently classical simulation of stabilizer states [12] since the Clifford gates can
be applied directly to the generator set describing the state.

Example 4. The three-qubit Clifford circuit in Fig. 1 can be simulated for time
steps t = 0, 1, 2 using explicit vector representation as follows.

|φ0〉 = |000〉 apply H on q2 →
|φ1〉 =

1√
2

|000〉 +
1√
2

|001〉 apply CNOT on control q1 and target q2 →

|φ2〉 =
1√
2

|000〉 +
1√
2

|011〉 (which is |0〉 ⊗ Bell state)

Alternatively,wemay represent each |φt〉 as a generator setG(φt) = {G1, G2, G3}.

G(φ0) = {Z I I , IZ I , I IZ } apply H on q2 →
G(φ1) = {Z I I , IZ I , I IX } apply CNOT on control q1 and target q2 →
G(φ2) = {Z I I , IZZ, IXX }

We call the generator set representing a stabilizer state a stabilizer tableau.
The stabilizer formalism stipulates how the tableau should be modified for differ-
ent Clifford gates [12,13] as exemplified in Example 4. It forms a non-universal,
but classically tractable region of quantum computing, whereas decision dia-
grams considered in this work target universal quantum computing. Nonetheless,
Clifford circuits and stabilizer states are important in many domains, as dis-
cussed in the introduction.

Efficient Implementation of LIMDDs for Quantum Circuit Simulation 9

2.3 Verification of Quantum Circuits

A popular similarity metric for comparing two quantum circuits U, V is the
average fidelity, Favg(U, V) = 1

1+2n (1 + |tr(UV †)|2), where tr(M) denotes the
trace of M . This metric has value 1 iff U = V , and has Favg(U, V) < 1 otherwise.
Burgholzer et. al [6], building on a result from Kueng and Gross [32] showed how
the average fidelity relates to inputs with random stabilizer states:

Theorem 1 (Burgholzer et. al [6]). Suppose |g〉 is a random stabilizer state,
and U, V are unitary matrices. Then there is the following relationship between
the expectation value and the average fidelity:

E|g〉[〈g| V † · U |g〉] ≈ Favg(U, V) (1)

Consequently, the average fidelity Favg(U, V) can be approximated by simulating
the two circuits on several random stabilizer states. Put another way, this quan-
tifies the statement that a random stabilizer state is to a quantum circuit what a
random input is to a classical circuit. This motivates the approach of Burgholzer
et al.: they repeatedly generate (two copies of) a random stabilizer state |g〉 as
input, then they classically simulate the two circuits on this input, obtaining
states U |g〉 , V |g〉. Lastly, they compute the inner product of the output states
〈g|V † · U |g〉; if the absolute magnitude of this number is smaller than 1, then
|g〉 is a counterexample which certifies that U
= V .

We use this reduction from circuit verification to circuit simulation as the
motivation for the setup in our case study in Sect. 5.

3 Motivation

Efficient classical simulation of quantum circuits is an important task for the
development of both quantum circuits and their compilation toolchains [7,9]. As
reviewed above, this task is conceptually simple (matrix-vector multiplication),
but practically hard due to the memory requirements of classical descriptions of
quantum states, i.e., state vectors require an exponential amount of memory with
respect to the number of qubits. However, certain families of quantum circuits,
such as those consisting only of Clifford gates, can be simulated in polynomial
time by the stabilizer formalism that exploits the strong algebraic structure
present in stabilizer states [12,13]. These techniques have the disadvantage that
they do not encompass all of quantum computing, since they cannot produce
all quantum gates, i.e., they are not universal. For general quantum circuits,
i.e., those with no restrictions on the gate set, decision diagrams as reviewed
later in this section are a promising data structure to drastically reduce memory
requirements in many cases. However, the stabilizer formalism and decision dia-
grams have thus far excelled only in their respective areas. LIMDDs unite the
capabilities of both worlds and thereby enable efficient representation of multiple
classes of quantum states.

Although the verification of a given quantum circuit is likely more diffi-
cult than simulation of that circuit on a given input, Burgholzer et al. [6]

10 L. Vinkhuijzen et al.

|q1q0
|00
|01
|10
|11

q1

q0

q0

1√
2

0
0
1√
2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(a)Vector

q1

q0 q0

1

1√
2

0 0

(b)QMDD

q1

q0

1

1√
2
I ⊗ I

I X

0

(c) Pauli-LIMDD

Fig. 2. Different representations of a Bell state

recently showed that simulation can nevertheless be very useful for verification
as explained in Sect. 2.3. In particular, they showed that a promising approach
is to simulate the circuit on a certain state called a stabilizer state, and gave
qualitative and quantitative analytical guarantees on the errors found by this
method. Since LIMDDs excel on this family of quantum states, we adopted this
approach for our case study in Sect. 5.

The remainder of this section first reviews the basics of QMDDs and
LIMDDs, and then discusses their respective strengths (as far as they have been
analytically investigated thus far). Based on this, we motivate the need for an
implementation of LIMDDs.

3.1 Quantum Multiple-valued Decision Diagrams (QMDDs)

Representing quantum states and operations in a straightforward fashion as
vectors and matrices requires an exponential amount of memory with respect
to the number of qubits. Decision diagrams are an established data structure
that approach this problem by providing a compact representation by exploiting
redundancies in the data in many cases. There are multiple types of decision
diagrams for the quantum domain [23–27]. We focus on Quantum Multiple-
valued Decision Diagrams (QMDDs, [26,33]) since they are the state of the art
for decision diagram-based quantum circuit simulation.

Conceptually, the QMDD corresponding to the amplitude vector |φ〉 ∈ C
2n

can be built as follows. First, we repeatedly split the amplitude vector in two
equal halves, until the individual amplitudes are reached, thus obtaining a binary
tree (of height n), in which a node at height k represents a (sub-)vector of length
2k. Next, whenever two nodes represent states |φ〉 , |ψ〉 satisfying |φ〉 = λ · |ψ〉
for some λ ∈ C, we merge these two nodes (discarding one of the subtrees) and
place the factor λ on one of the two incoming edges. This reduced QMDD is now
a directed acyclic graph (DAG) and no longer a tree. Thus, the way the QMDD
exploits structure in the vector is by recognizing repeated sub-vectors (or more
precisely: sub-vectors which are equal up to a complex constant), which is how it
can avoid the exponential blowup in many cases. Note that this construction is
explained for illustration purposes only as working with decision diagrams does

Efficient Implementation of LIMDDs for Quantum Circuit Simulation 11

not at any point require explicitly storing the vector representing a quantum
state. For a formal definition we refer to [29].

One can efficiently apply a given operation U to a state |φ〉 when both are
given as QMDDs. This is done by the multiply algorithm, which recursively
traverses the decision diagrams of U and |φ〉 and builds the DD corresponding
to the state |ψ〉 = U · |φ〉. We briefly sketch how this algorithm works. First,
note that if |φ〉 = |0〉 ⊗ |φ0〉 + |1〉 ⊗ |φ1〉, then the DD node representing |φ〉
has two children, v0 and v1, which represent the amplitude vectors |vj〉 = |φj〉
for j = 0, 1. Similarly, the matrix U =

∑
ij |i〉 〈j| ⊗ Uij is represented by a

QMDD node with four children vij , with each vij representing the submatrix
Uij , a quadrant of U . The algorithm first constructs decision diagrams for the
states Uij · |φj〉 using four recursive calls to multiply(Uij , vj). Next, it construct
decision diagrams representing the states |ψi〉 = Ui0 |φ0〉 + Ui1 |φ1〉 for i = 0, 1
using two calls to a procedure add implementing addition on QMDDs. Last, it
makes a node whose two children are |ψ0〉 and |ψ1〉, obtaining a node representing
|ψ〉 = |0〉⊗|ψ0〉+|1〉⊗|ψ1〉 = U ·|φ〉, as intended. We use dynamic programming to
store the results of all intermediate, recursive calls to multiply; as is typically
done to avoid the exponential-time behavior occurring when all paths in the
DAG are considered. In light of this, we remark that in this work we consider
matrices U representing a universal gate set that nonetheless each have a small
number of nodes that scales as O(n).

Thus, while it is instructive to consider how a QMDD may be constructed
from a given amplitude vector (in the way described above), our algorithms use a
more efficient approach, never “expanding” the decision diagram to its amplitude
vector, instead working directly on the DD representation of the vectors and
matrices. Indeed, this is the primary strength of decision diagrams in general:
that they can work on compressed data without decompressing it first.

Example 5. Consider the quantum state 1/
√
2 · (|00〉 + |11〉) from Example 1.

Figure 2a shows the corresponding vector, with superimposed information on
the splitting by qubit (on the left) and the basis states to each amplitude (on
the right). Figure 2b shows the same quantum state represented as QMDD.

Retrieving the amplitude of a given quantum state requires traversing the
decision diagram and multiplying the edge weights along the way. For readability,
edge weights of 1 are omitted; and edges with weight 0 are cut off and represented
as stubs. The bolded path in Fig. 2b represents the state |00〉, and following it
gives 1/

√
2 · 1 · 1 = 1/

√
2.

While QMDDs enable compact representation of quantum states in many
cases, Vinkhuijzen et al. [27] showed they can become exponentially sized for
stabilizer states, which can be efficiently simulated classically using the stabi-
lizer formalism as discussed in Sect. 2.1. These states are the intermediate states
of circuits consisting of only Clifford gates, thus preventing QMDDs from simu-
lating such circuits efficiently.

12 L. Vinkhuijzen et al.

3.2 Local Invertible Map Decision Diagrams (LIMDDs)

LIMDDs remove the limitation of QMDDs that cannot efficiently represent every
stabilizer state. They can represent each stabilizer state in polynomial space
by not just merging nodes that are equivalent up to a scalar, but also those
equivalent up to a LIM transformation while retaining universality. A LIM is
similar to the stabilizer generator except that it includes an arbitrary scalar.

Definition 1 (Local Invertible Map (LIM), adapted from [27]). An
n-qubit Local Invertible Map (LIM) is an operator P of the form P = λPn ⊗
· · · ⊗ P1, where the matrices Pi ∈ { I ,X, Y, Z } are local Pauli matrices and
λ ∈ C \ {0}. An isomorphism between two n-qubit quantum states |ϕ〉 , |ψ〉 is a
LIM P such that P |ϕ〉 = |ψ〉. We then say that |ϕ〉 is isomorphic to |ψ〉, denoted
|ϕ〉 � |ψ〉. Note that isomorphism is an equivalence relation.

In fact, LIMDDs can efficiently apply most Clifford gates to any quantum state
(i.e., even to non-stabilizer states), without increasing the size of the diagram
by more than a factor two. LIMDDs extend QMDDs by annotating an edge
not only with a complex-valued weight, but also with a series of local Pauli
gates represented by the LIMs. This allows LIMDDs to represent all states at
least as succinctly as QMDDs and stabilizer tableaus. Additionally, LIMDDs can
efficiently represent states which cannot be represented efficiently with either
the stabilizer formalism or QMDDs [27], for instance |T 〉 ⊗ |G〉, where |T 〉 =
1√
2
(|0〉 + eiπ/4 |1〉) and |G〉 is a stabilizer state.
The interpretation of a LIMDD is similar to that of a QMDD. Each node

still corresponds to a complex vector and, when following an edge, the vector
given by the child node is still multiplied by the weight on the followed edge.
For LIMDDs, rather than only multiplying the vector with a complex scalar, it
is now additionally multiplied by the tensor product of the single-qubit gates on
the incoming edge. This is illustrated in the following example.

Example 6. Consider again the state 1√
2
(|00〉 + |11〉) from Example 1. Figure 2c

shows the LIMDD of this state. Note that it uses one node less than the cor-
responding QMDD since it only requires one node q0 due to the X operation
annotated to the left out-edge of q1. The node labelled q0 represents the vec-
tor |0〉. From the root, following the left edge from node q1 gives the vector
1/

√
2 · I |0〉, while following the right edge gives 1/

√
2 · X |0〉 = 1/

√
2 · |1〉. Note that

correspondence is shown for illustration purposes only as working with decision
diagrams does not require explicitly storing the vector at any point.

3.3 The Need for a LIMDD Implementation

As discussed, stabilizer states and Clifford circuits are ubiquitous in many quan-
tum computing algorithms. Moreover, in the context of verifying quantum cir-
cuits, stabilizer states serve as good candidates for counterexamples. Therefore,
we stand to profit twice from the exponential advantage that LIMDDs promise
over existing decision diagrams: first, since stabilizers capture the symmetries

Efficient Implementation of LIMDDs for Quantum Circuit Simulation 13

present in all quantum states, LIMDDs likely improve universal simulation; sec-
ond, when we want to verify a quantum circuit by reduction to simulation with
a random stabilizer state, the Pauli-LIMDD is guaranteed to efficiently rep-
resent at least the initial state, whereas the QMDD is likely exponential [27,
Appendix B].

However, the asymptotic advantage of LIMDDs comes with a price. They
require both additional memory for bookkeeping the LIMs on edges and addi-
tional time for calculating canonical form of nodes. To the best of our knowledge,
it is still unknown how this affects the memory and time use in practice because
so far an implementation is absent. Existing implementations of decision dia-
grams in the classical domain [34–38] and the quantum domain [23–28] have
shown that translating the concept of a decision diagram into an efficient and
usable program or library is far from trivial. LIMDDs are no exception to this
rule and come with new challenges regarding the handling of the LIMs in the
nodes and edges of the decision diagram.

4 Implementation of LIMDDs

As discussed in the previous sections, LIMDDs scale exponentially better in
many cases compared to QMDDs. However, this advantage comes with an
increased overhead to keep track of the local invertible maps annotated to nodes
and edges in the decision diagram. Efficient management of this additional infor-
mation is paramount to implement LIMDDs efficiently. Further crucial ingredi-
ents for efficient decision diagram implementations are canonicity and dynamic
programming. Canonicity ensures that the diagram is never larger than neces-
sary and uniquely represents a quantum state (in QMDDs) or Boolean function
(in BDDs). Dynamic programming ensures that manipulation operations, such
as gate applications or measurements, take polynomial time in the size of the
diagram representing the state. To ensure canonicity, the implementation must
put nodes in canonical form, as worked out in [27], and also store them in a corre-
sponding table. To implement dynamic programming, LIMs must be normalized
and stored in caches.

This section discusses both established techniques in developing implemen-
tations of decision diagrams in Sect. 4.1 as well as new approaches to efficiently
handle the LIMs annotated to the edges of LIMDDs in Sect. 4.2. The estab-
lished and correspondingly adopted techniques include dynamically-sized unique
tables, garbage collection, compute tables, as well as indirect storing of complex
numbers [28]. While the aforementioned techniques lay a solid foundation for
the LIMDDs, they are not sufficient. Efficient approaches to store and manipu-
late the annotated local invertible maps are required to exploit the potential of
LIMDDs.

4.1 Established Techniques

Implementations of various types of (predominantly classical) decision diagrams
have been proposed in the last decades [23–27,34–38]. Over this time, a lot of

14 L. Vinkhuijzen et al.

effort has been put into translating abstract concepts of decision diagrams into
concrete instructions that run efficiently on classical computers. Multiple parts
and “tricks” of these implementations are reusable for the LIMDD implementa-
tion as well. The following list provides a brief description of the most important
building blocks:

Unique Tables store the nodes of the decision diagram and enable efficient
detection of redundant nodes. These tables are commonly implemented as
hash maps storing the nodes with two levels of indirection: the first level gives
the qubit (or variable) and the second level is the hash value of the node,
which is recursively calculated from the weights of the out-edges and hashes
of the respective successors. The subsequent strong canonical identifier [39]
of a node is the pointer into the memory of the unique tables, enabling access
via constant-time de-referencing of the pointer.
When a new node is created, the unique tables are checked for already exist-
ing equivalent nodes. If an equivalent node exists, this node is re-used, oth-
erwise the new node is stored in the unique tables.

Compute Tables cache results of operations to implement dynamic program-
ming, avoiding repetitions of the same calculation. Intuitively, the more
compact the decision diagram, the more paths (from root to leaf) traverse
through the same nodes in the decision diagram. We can avoid processing
exponentially many paths by hashing the operands of the recursive oper-
ation that traverses these paths in the diagram. The compute tables are
implemented as individual hash tables for different operations, where the
hash is calculated from the operand nodes.
Additionally, the compute tables are a key concept that enables efficient
operations on decision diagrams by enabling dynamic programming. With-
out them, operations such as multiplication during circuit simulation would
always be exponential, since no previous result could be re-used.

Handling of Complex Numbers requires special consideration to ensure that
the limited accuracy of floating point numbers does not lead to wrong results.
Two key aspects of these considerations are the introduction of a tolerance
in the comparison of the components of the complex numbers and storing
the components in a dedicated table to exploit the memory address as strong
canonical form (with constant-time dereferencing).

Garbage Collection is frequently run to remove entries of the aforementioned
tables that are not needed anymore, e.g., after each applied operation in
quantum circuit simulation. For each node, a reference count is used to keep
track of its state. Upon removal of nodes, garbage collection is also run on
the other tables, such as the compute tables, so that no invalid pointers
remain in memory—preventing an inconsistent state between the tables and
subsequent illegal memory accesses.

The established techniques described above are used in existing packages of
decision diagrams for quantum computing. However, LIMDDs require additional
functionality to manage the LIMs which are annotated to edges and nodes.

Efficient Implementation of LIMDDs for Quantum Circuit Simulation 15

The next section describes the techniques employed to efficiently integrate the
information on local invertible maps into the decision diagrams.

4.2 Implementing Local Invertible Maps

Efficient handling of the LIMs annotated to the nodes and edges in the LIMDDs
is the requirement to actually realize the exponential advantage over QMDDs
for certain quantum circuit simulations. Recall that a LIM consists of a complex
factor and a Pauli operator P = P1 ⊗ · · · ⊗ Pn with Pi ∈ {I,X, Y, Z} denoting a
local Pauli operator. We call the latter a Pauli string.

The proposed LIMDD implementation still provides a strong canonical form
for the nodes to ensure canonicity. We implement the canonical form presented
in [27], with minor changes described below, which entails, among others, finding
the lexicographically minimal Pauli strings for both of a node’s outgoing edges,
and possibly swapping the two children. The LIMs are stored in a new table
to enable constant-time decisions whether two LIMs are equal. Additionally,
because the all-identity operator occurs very frequently, we “hardcode” this as
null pointer, to prevent many lookups to the LIM table.

In line with existing work [13], we represent a Pauli operator using two bits,
so that the operators I,X, Y, Z are represented by 00, 01, 11, 10, respectively,
and a Pauli string of n operators is stored using 2n + 2 bits, using 2 extra
bits to store a scalar factor in {±1,±i}. This enables efficient multiplication of
Pauli operators, namely, the product of two LIMs is obtained by XORing their
respective bit strings. For QMDDs, the diagram can be traversed by following
edges, which is accomplished simply by dereferencing a pointer and multiplying
the weight of the considered edge. For LIMDDs, following an edge is slightly
more involved, since the local invertible map can affect each level downwards.
To keep track of the LIMs to be applied and to avoid creating a new decision
diagram for each followed edge, we keep auxillary information about the current
LIM during each step of the traversal.

We now briefly list the biggest changes that are required to turn a QMDD
package into a LIMDD package.

Putting Nodes in Canonical Form ensures canonicity, which keeps the dia-
gram as small as possible, by allowing nodes representing redundant sub-
vectors to be merged. We use the canonicity scheme for LIMs as proposed
in [27]. In this scheme, a node v always has the identity LIM I

⊗n
2 on its 0-

edge and a LIM P on its 1-edge, such that P is the lexicographically minimal
LIM possible, in the sense that using any smaller LIM results in a node v′

which is not Pauli-isomorphic to v. Since the LIM P depends only on the
state vector that the node represents, and is minimal in a precise way, this
makes the node canonical. Consequently, the diagram will merge two nodes
whenever they represent two Pauli-isomorphic subvectors. This minimal P
is found by first finding the stabilizer tableaux (see Section 2.2) of v’s two
children states, which requires time O(n3). This approach amortizes the cost
of computing canonical LIMs over the entire DD structure; in other words,

16 L. Vinkhuijzen et al.

to construct a canonical LIM for node v, we only need to inspect the stored
stabilizer generator sets of v’s children (and not their descendants). This
step, of constructing these groups, presents the biggest added computational
overhead of all changes, namely the time required for making a new node
increases from O(1) to O(n3) because of the need to find stabilizer groups.
Still, as shown in [27], this overhead enables a asymptotically exponential
advantage.

Edge Weight Normalization is part of making the node canonical. We employ
the normalization scheme from [40], which differs from the one proposed
in [27]. Namely, when choosing the weights α0, α1 on the out-edges of a
node, we require that |α0|2 + |α1|2 = 1, as opposed to requiring the left-
most non-zero edge weight to be normalized to 1 (meaning that α0 has to be
either 0 or 1). This allows us to better take advantage of the existing cache
for complex numbers and faster sampling from the decision diagram. Given
such numbers α0, α1, we have a choice between α1 and −α1, and we choose
the one having nonnegative imaginary part; ties are broken by choosing the
one with nonnegative real part. If we choose −α1, then we correct for this
by multiplying the LIM on the incoming edge by Z ⊗ I

⊗n−1.
The Operation Cache for LIMDDs allows us to improve the caching of the

Add operation results to potentially be more succinct and achieve more cache
hits. Specifically, we get a cache hit on input A |v〉 + B |w〉 whenever a pre-
vious call to Add had input C |v〉 + D |w〉 satisfying A−1B |w〉 = C−1D |w〉.
We implement this using the caching algorithm from [27], namely, on input
A |v〉+B |w〉, if the result is edge E |r〉, then we add Cache[F, v, w] := E |r〉,
where F is a canonically chosen LIM determined by A, B, and w.

The LIM Table stores the LIMs on the edges and the LIMs which generate a
state’s stabilizer group, so that common LIMs are shared in the LIMDD, thus
reducing the total memory footprint. Multiple LIMDD sub-routines make use
of a state’s stabilizer group, e.g., for finding canonical edge labels. We choose
to construct a set of LIMs which generate a state’s stabilizer group as soon as
that state’s node is created, using the algorithm by [27], and we store these
LIMs in the LIM Table. LIMs that are no longer required are identified via
reference counting and removed during garbage collection.

We focus on the efficient storing and manipulation of LIMDDs for quantum
states and continue to use QMDDs from the original package [28] to represent
quantum operations as explained in Sect. 3.2, so that simulation can still be
conducted in a fashion similar to [33]. This does not present a limitation of the
approach, since QMDDs efficiently represent all gates considered in this work.
Namely, we only use single-qubit gates with arbitrary controls, and these for
gates the size of the diagram scales as O(n). Therefore, storage of the quantum
state, rather than the matrix, remains the main memory bottleneck in common
simulation scenarios.

To ensure the validity of the LIMDD implementation, we performed exten-
sive tests on more than 1700 quantum circuits of varying sizes, parameters and

Efficient Implementation of LIMDDs for Quantum Circuit Simulation 17

complexity, ensuring that the intermediate state after every gate is the same as
that found by the QMDD.

The next sections provides a case study that compares LIMDDs against
QMDDs based on the Quantum Fourier Transform, which is an important build-
ing block of many quantum algorithms.

5 Case Study

In this section, we provide the results obtained by an experimental case study of
the implementation presented in this paper. To this end, we created a complete,
open-source LIMDD package in C++ available at https://github.com/cda-tum/
ddsim/tree/limdd, based on an existing open-source implementation for QMDDs
provided in [28,41]. The motivation of the case study is an investigation on the
extend that the theoretically proven advantage over QMDDs applies in an actual
implementation.

In order to demonstrate the efficacy of the resulting implementation and
thereby for the first time empirically comparing LIMDDs and QMDDs, we con-
ducted quantum circuit simulation of a circuit which implements the Quantum
Fourier Transform (QFT). The QFT is a common subroutine which is used
by many quantum algorithms (notably order-finding in Shor’s algorithm, phase
estimation, and solving the hidden subgroup problem [30]); thus, verifying the
correctness of this circuit is a useful step in the compilation toolchain of many
quantum algorithms. We consider QFT circuits for various numbers of qubits,
n = 3 . . . 24. We simulate the QFT on n qubits using a random n-qubit stabi-
lizer state as the input. This stabilizer state is prepared by prepending a random
Clifford circuit with 10 ·n gates, and then simulating from the initial state |0〉⊗n;
the output of this circuit is a random stabilizer state.

The evaluation was conducted for QMDDs and LIMDDs on a server running
GNU/Linux and GCC-10.3.0 with an AMD Ryzen 9 3950X running at 3.5 GHz
and 128 GiB memory.

The results in Fig. 3 show that LIMDDs outperform QMDDs on large
instances (from n = 19 qubits and up), whereas QMDDs outperform LIMDDs
on small instances (up to and including 18 qubits). This is most pronounced at
24 qubits, where LIMDDs are about five times faster. These results are expected:
LIMDDs are proven to be asymptotically faster, but this comes at the price of
adding a lot of computational overhead in the handling of the LIMs on the edges,
as explained in Sect. 4. The data show that this overhead pays off in the long
run where the asymptotically better performance becomes realized in practice.
In the graph, this translates into the fact that the LIMDD line is less steep than
the QMDD line. The LIMDD is still small (it has O(n) nodes) when it finishes
preparing a random stabilizer state and starts simulating the QFT, whereas the
QMDD is already very large (it has 2O(n) nodes) at this point. At the end of the
QFT, both types of decision diagrams are almost fully populated (i.e., almost
of maximum size), since the state after the QFT does not possess much redun-
dancy to be exploited. Generally, applying a gate to a small decision diagram

https://github.com/cda-tum/ddsim/tree/limdd
https://github.com/cda-tum/ddsim/tree/limdd

18 L. Vinkhuijzen et al.

2 5 10 15 20 24

10−1

100

101

102

103

104

105

106

Number of Qubits

T
im

e
(s
)

LIMDD
QMDD

Fig. 3. Quantum Fourier Transform Simulation on Random Stabilizer States

is more efficient than applying the same gate to a large decision diagram, so
especially the first few gates of the QFT can be applied quickly by LIMDDs,
which eventually leads to the better runtime. In summary, while the additional
overhead of LIMDDs outweights the lower complexity for small circuits, they
can demonstrate their advantage as the circuit size increases.

6 Conclusions

In this paper, we presented the first implementation of Local Invertible Map
Decision Diagrams (LIMDDs). The implementation includes techniques adapted
from other decision diagram packages (both classical and quantum) that are tried
and tested, as well as new considerations to efficiently handle Local Invertible
Maps (LIMs). By this, we enable the potential of LIMDDs to be realized in prac-
tice. A case study confirm that LIMDDs provide an advantage for the classical
simulation of quantum circuits that exceed a certain complexity, as shown by the
Quantum Fourier Transform. The resulting open-source C++ implementation is
available under the MIT license via https://github.com/cda-tum/ddsim/tree/
limdd.

Acknowledgment. This work received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 101001318) and was part of the Munich Quantum Valley, which
is supported by the Bavarian state government with funds from the Hightech Agenda
Bayern Plus.

https://github.com/cda-tum/ddsim/tree/limdd
https://github.com/cda-tum/ddsim/tree/limdd

Efficient Implementation of LIMDDs for Quantum Circuit Simulation 19

References

1. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Sym-
posium on Theory of Computing, pp. 212–219 (1996). https://doi.org/10.1145/
237814.237866

2. Montanaro, A.: Quantum-walk speedup of backtracking algorithms. Theor. Com-
put. 14(1), 1–24 (2018)

3. Ambainis, A., Gilyén, A., Jeffery, S., Kokainis, M.: Quadratic speedup for finding
marked vertices by quantum walks. In: Symposium on Theory of Computing, pp.
412–424 (2020)

4. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comp. 26(5), 1484–1509 (1997). https://
doi.org/10.1137/S0097539795293172

5. Lanyon, B.P., et al.: Towards quantum chemistry on a quantum computer. Nat.
Chem. 2(2), 106 (2010)

6. Burgholzer, L., Kueng, R., Wille, R.: Random stimuli generation for the verification
of quantum circuits. In: Asia and South Pacific Design Automation Conference,
pp. 767–772, New York, NY, USA,: Association for Computing Machinery. ISBN
9781450379991 (2021)

7. Burgholzer, L., Wille, R.: Advanced equivalence checking for quantum circuits.
IEEE Trans. on CAD Integr. Circ. Sys., 40(9):1810–1824 (2021). https://doi.org/
10.1109/TCAD.2020.3032630

8. Burgholzer, L., Raymond, R., Wille, R.: Verifying results of the IBM Qiskit quan-
tum circuit compilation flow. In: 2020 IEEE International Conference on Quantum
Computing and Engineering (QCE), pp. 356–365. IEEE (2020)

9. Carette, J., Ortiz, G., Sabry, A.: Symbolic execution of hadamard-toffoli quantum
circuits. In: Proceedings of the 2023 ACM SIGPLAN International Workshop on
Partial Evaluation and Program Manipulation, pp. 14–26 (2023)

10. Guerreschi, G.G., Matsuura, A.Y.: Qaoa for max-cut requires hundreds of qubits
for quantum speed-up. Scientific Reports, 9(1), 6903 (2019). ISSN 2045–2322.
https://doi.org/10.1038/s41598-019-43176-9

11. Jones, T., Brown, A., Bush, I., Benjamin, S.C.: Quest and high performance sim-
ulation of quantum computers. Scientific Reports, 9(1), 10736 (2019). ISSN 2045–
2322. https://doi.org/10.1038/s41598-019-47174-9

12. Gottesman, D.: Stabilizer codes and quantum error correction (1997)
13. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev.

A 70(5), 052328 (2004)
14. Gottesman, D.: Theory of fault-tolerant quantum computation. Phys. Rev. A 57,

127–137 (1998)
15. Gottesman, D.: Stabilizer codes and quantum error correction. California Institute

of Technology (1997)
16. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial

entanglement by local operations. Phys. Rev. A, 53, (1996). https://doi.org/10.
1103/PhysRevA.53.2046

17. Browne, D., Briegel, H.: One-way quantum computation. Quantum information:
From foundations to quantum technology applications, pp. 449–473 (2016)

18. Dijk, T.M., Wille, R., Meolic, R.: Tagged BDDs: Combining reduction rules from
different decision diagram types. In: Stewart, D., Weissenbacher, G., editors, For-
mal Methods in CAD, 2017. https://doi.org/10.23919/FMCAD.2017.8102248

https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1109/TCAD.2020.3032630
https://doi.org/10.1109/TCAD.2020.3032630
https://doi.org/10.1038/s41598-019-43176-9
https://doi.org/10.1038/s41598-019-47174-9
https://doi.org/10.1103/PhysRevA.53.2046
https://doi.org/10.1103/PhysRevA.53.2046
https://doi.org/10.23919/FMCAD.2017.8102248

20 L. Vinkhuijzen et al.

19. Minato, S.: Zero-suppressed BDDs for set manipulation in combinational problems.
In: Design Automation Conference, pp. 272–277 (1993)

20. Bryant, R.E.: Symbolic manipulation of Boolean functions using a graphical rep-
resentation. In: Design Automation Conference, pp. 688–694 (1985)

21. Bryant, R.E., Chen, Y.A.: Verification of arithmetic circuits with binary moment
diagrams. In: Design Automation Conference, pp. 535–541 (1995)

22. Drechsler, R., Sarabi, A., Theobald, M., Becker, B., Perkowski, M.A.: Efficient rep-
resentation and manipulation of switching functions based on Ordered Kronecker
Functional Decision Diagrams. In: Lorenzetti, M.J., editor, Design Automation
Conference, pp. 415–419 (1994). https://doi.org/10.1145/196244.196444

23. Abdollahi, A., Pedram, M.: Analysis and synthesis of quantum circuits by using
quantum decision diagrams. In: Design, Automation and Test in Europe, pp. 317–
322 (2006)

24. Wang, S.-A., Lu, C.-Y., Tsai, I.-M., Kuo, S.-Y.: An XQDD-based verification
method for quantum circuits. IEICE Trans. Fundamentals, 91-A(2), 584–594 (2008)

25. Viamontes, G.F., Markov, I.L., Hayes J.P.: Quantum Circuit Simulation. Springer
(2009). ISBN 978-90-481-3064-1. https://doi.org/10.1007/978-90-481-3065-8

26. Niemann, P., Wille, R., Miller, D.M., Thornton, M.A., Drechsler, R.: QMDDs: Effi-
cient quantum function representation and manipulation. IEEE Trans. on CAD
of Integr. Circ. Sys. 35(1), 86–99 (2016). https://doi.org/10.1109/TCAD.2015.
2459034

27. Vinkhuijzen, L., Coopmans, T., Elkouss, D., Dunjko, V., Laarman, A.: LIMDD: A
decision diagram for simulation of quantum computing including stabilizer states.
CoRR, abs/2108.00931, 2021. arxiv.org/abs/2108.00931

28. Zulehner, A., Hillmich, S., Wille, R.: How to efficiently handle complex values?
Implementing decision diagrams for quantum computing. In: David Z. Pan, edi-
tor, International Conference on CAD, pp. 1–7, 2019. https://doi.org/10.1109/
ICCAD45719.2019.8942057

29. Miller, D.M., Thornton, M.A.: QMDD: A decision diagram structure for reversible
and quantum circuits. In: 36th International Symposium on Multiple-Valued Logic
(ISMVL’06), pp. 30–30. IEEE (2006)

30. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information
(10th Anniversary edition). Cambridge University Press (2016). ISBN 978-1-10-
700217-3. www.cambridge.org/de/academic/subjects/physics/quantum-physics-
quantum-information-and-quantum-computation/quantum-computation-and-
quantum-information-10th-anniversary-edition?format=HB

31. Jozsa, R.: Quantum algorithms and the fourier transform. Royal Society London.
Series A 454(1969), 323–337 (1998)

32. Kueng, R., Gross, D.: Qubit stabilizer states are complex projective 3-designs.
arXiv preprint arXiv:1510.02767 (2015)

33. Zulehner, A., Wille, R.: Advanced simulation of quantum computations. IEEE
Trans. on CAD of Integr. Circ. and Sys. 38(5), 848–859 (2019). https://doi.org/
10.1109/TCAD.2018.2834427

34. Somenzi, F.: CUDD: CU decision diagram package release 3.0.0. http://www.vlsi.
colorado.edu/∼fabio/

35. Van Dijk, T., Laarman, A., Van De Pol, J.: Multi-core BDD operations for symbolic
reachability. Electronic Notes Theor. Comput. Sci. 296, 127–143 (2013)

36. Lv, G., Chen, Y., Feng, Y., Chen, Q.L., Su, K.: A succinct and efficient implementa-
tion of a 232 BDD package. In: Margaria, T., Qiu, Z., Yang, H., eds, International
Symposium on Theoretical Aspects of Software Engineering, pp. 241–244, 2012.
https://doi.org/10.1109/TASE.2012.22

https://doi.org/10.1145/196244.196444
https://doi.org/10.1007/978-90-481-3065-8
https://doi.org/10.1109/TCAD.2015.2459034
https://doi.org/10.1109/TCAD.2015.2459034
http://arxiv.org/2108.00931
https://doi.org/10.1109/ICCAD45719.2019.8942057
https://doi.org/10.1109/ICCAD45719.2019.8942057
https://www.cambridge.org/de/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition?format=HB
https://www.cambridge.org/de/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition?format=HB
https://www.cambridge.org/de/academic/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-computation-and-quantum-information-10th-anniversary-edition?format=HB
http://arxiv.org/abs/1510.02767
https://doi.org/10.1109/TCAD.2018.2834427
https://doi.org/10.1109/TCAD.2018.2834427
http://www.vlsi.colorado.edu/~fabio/
http://www.vlsi.colorado.edu/~fabio/
https://doi.org/10.1109/TASE.2012.22

Efficient Implementation of LIMDDs for Quantum Circuit Simulation 21

37. Herbstritt, M.: wld: A C++ library for decision diagrams. http://www.ira.
informatik.uni-freiburg.de/software/wld/ (2004)

38. Knuth, D.E.: The art of computer programming: Binary decision diagrams. http://
www-cs-faculty.stanford.edu/knuth/programs.html (2011)

39. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD pack-
age. In: Smith, R.C., editor, Design Automation Conference, pp. 40–45, 1990.
https://doi.org/10.1145/123186.123222

40. Hillmich, S., Markov, I.L., Wille, R.: Just like the real thing: Fast weak simula-
tion of quantum computation. In: Design Automation Conference, pp. 1–6. IEEE
(2020). https://doi.org/10.1109/DAC18072.2020.9218555

41. Wille, R., Hillmich, S., Burgholzer, L.: JKQ: JKU tools for quantum comput-
ing. In Int’l Conference on CAD, pp. 154:1–154:5 (2020). https://doi.org/10.1145/
3400302.3415746

http://www.ira.informatik.uni-freiburg.de/software/wld/
http://www.ira.informatik.uni-freiburg.de/software/wld/
http://www-cs-faculty.stanford.edu/knuth/programs.html
http://www-cs-faculty.stanford.edu/knuth/programs.html
https://doi.org/10.1145/123186.123222
https://doi.org/10.1109/DAC18072.2020.9218555
https://doi.org/10.1145/3400302.3415746
https://doi.org/10.1145/3400302.3415746

	Efficient Implementation of LIMDDs for Quantum Circuit Simulation
	1 Introduction
	2 Background
	2.1 Quantum States and Operations
	2.2 Classical Quantum Circuit Simulation
	2.3 Verification of Quantum Circuits

	3 Motivation
	3.1 Quantum Multiple-valued Decision Diagrams (QMDDs)
	3.2 Local Invertible Map Decision Diagrams (LIMDDs)
	3.3 The Need for a LIMDD Implementation

	4 Implementation of LIMDDs
	4.1 Established Techniques
	4.2 Implementing Local Invertible Maps

	5 Case Study
	6 Conclusions
	References

