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Abstract: Anomaly detection describes methods of finding

abnormal states, instances or data points that differ from

a normal value space. Industrial processes are a domain

where predicitve models are needed for finding anoma-

lous data instances for quality enhancement. A main chal-

lenge, however, is absence of labels in this environment.

This paper contributes to a data-centric way of approaching

artificial intelligence in industrial production. With a use

case from additive manufacturing for automotive compo-

nents we present a deep-learning-based image processing

pipeline.We integrate the concept of domain randomisation

and synthetic data in the loop that shows promising results

for bridging advances in deep learning and its application

to real-world, industrial production processes.

Keywords: additive manufacturing; anomaly detection;

domain randomisation; infrared imaging.

1 Introduction

Predictive models approach industrial manufacturing com-

plexity by facilitating the assessment of multidimensional

relationships. They enable optimisation of process and

product quality by unveiling machining dependencies and

root-causes of defects. Typically, industrial processes gener-

ate heterogeneous datasets consisting of process measure-

ments, quality inspection feedback andmaintenance events
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that only in combination expose causal interactions. One

main challenge in industrial production is data quality and

pre-processing so that reliable pipelines for modelling can

be built [1–3]. Quickly changing conditions and drift, miss-

ing labels, highly imbalanced datasets and noise are some

examples of impediments that need to be handled [4]. Due

to that, open issues still exist in integrating and exploiting

potentials of machine learning in actual series production

as literature on industrial applications reveal [5].

A main challenge we like to highlight in this paper

is absence of labels in industrial production data, impor-

tant for the development of automated anomaly detection

pipelines. We present a deep-learning-based image process-

ing pipeline, applied to a use case from additive manufac-

turing for automotive components. Our main contribution

is a data-centric approach that integrates the concept of

domain randomisation and synthetic data in the loop for

deep learning (DL) model development. It shows promising

first results for bridging advances in DL and its application

to real-world, industrial production processes.

The remainder of this paper is structured as follows:

Sections 2 and 3 introduce the problem environment, from

a broader perspective of data processing and analysis in

industrial production to themore focused aspect of anomaly

detection for improving process quality. As a use case from

production, we present an additive manufacturing pro-

cess to analyse open issues in the industrial application of

an automated process monitoring based on DL. Section 4

presents pipeline components and an approach of synthetic

data in the loop for developing anomaly detection models

for real-world production data. Finally, in Section 5, we sug-

gest future research directions.

2 Implications of industrial data

The industrial production system, opposed to a laboratory

set-up, is characterised by many environmental and uncon-

trollable influences, leading to noise and disturbance in
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data acquisition and mediocre data quality. As a result, any

analysis is reliable only after careful data pre-processing

[1]. Output targets and production key performance indica-

tors, however, pursue high efficiency with low scrap rates

and machine down times. Advanced process monitoring

as well as predictive methods need to be adaptive and

overcome such limitations, like robustness, to be applica-

ble in series production. As stated in [6] less than 30% of

potential in application of data analyticsmethods, especially

machine learning, is exploited in manufacturing. It illus-

trates that the gap between advances in research and appli-

cation in real-world is still high. Highlighted reasons are

needed expert knowledge, very problem-specific solutions

and uni-dimensional concentration on optimising model

output rather than input data.

The importance of a context-based data processing was

highlighted also by Andrew Ng with the ‘Data-Centric AI

Competition’ and adopted by Motamedi et al. [2], focus-

ing on actions of dataset preparation and data quality

enhancement before training and fine-tuning a predictive

model (data-centric before model-centric). Ng shows that

an increase in data quality can exert far greater influ-

ence on the prediction accuracy than hyperparameter opti-

misation of a machine learning model alone [7]. In the

context of real-world industrial applications this is an

encouraging and advisable approach as well to develop

maturity levels further (from descriptive towards self-

optimising/prescriptive). Main success factor for achieving

promising results is representative, sufficiently large and

high-quality data.

Another aspect of industrial processes is the amount

of data that is created and that is available for knowledge

discovery. However, the process frommerging of data bases

to actual analysis becomes a difficult task if unique identi-

fiers, timestamps and labels (e.g. from quality inspection)

are missing. Unsupervised approaches are favourable in

these environments to get insights from data, neverthe-

less. Another approach is domain randomisation or adapta-

tion, hence, utilising synthetic data for model development,

either simulated or abstracted from the real process. Major

benefits are creation of labelled data and the high amount

of data at low cost, especially for under-represented classes

as in anomaly detection cases. In principle, the concept

intends to reach high generalisation for the real-world data

by transfer learning withmodels trained solely on synthetic

data [8, 9].

3 Anomaly detection in industrial

processes

Anomaly detection describes methods of finding abnor-

mal states, instances or data points that differ from a nor-

mal value space [10]. The three categories of supervised,

semi-supervised and unsupervised each summarise differ-

ent techniques and methods from statistics (e.g. z-score)

or machine learning (e.g. One-Class SVM, Autoencoders,

LSTM). The term is predominantly used for highly unbal-

anced problems. Often no labels are available for learn-

ing or classes for different states are not known [11]. The

unsupervised approach is applied in several domains, such

as medicine (e.g. detection of critical cardiac arrhythmia,

tumor detection with computed tomography), banking (e.g.

fraudulent financial transactions, payments with stolen

credit cards), security (e.g. surveillance, document forgery,

network intrusion) but also engineering (e.g. critical state

detection) [10]. Besides point anomalies (one data instance

lies out of the normal data region) Chandola et al. define two

other types of anomalies: contextual anomalies (instance

of data is anomalous only in a certain context but not

in another) and collective anomalies (individual values lie

within normal data region but as a collection of related data

instances they form an anomaly) [12].

3.1 Use case: binder jetting additive
manufacturing

Additive manufacturing (AM) is a widely used technology

that comprises many sub-technologies. What most have in

common is a layer-wise construction with deposition of

new material. However, the actual way of how these lay-

ers are created differentiates sub-technologies and is stan-

dardised by ISO 17296 [13]. One major benefit over classic

manufacturing techniques is free form design of complex

geometries. Another advantage is a tool-independent pro-

duction of different shapes and therefore a quick adaptation

to new designs or product updates. Typically, AM is used

in rapid prototyping, small series and small dimensions.

However, advances in technology enable also medium to

high scale production of specific components. Also larger

components can be manufactured with AM technologies,

especially binder jetting. Due to comparably low working

temperature nearly no heat induced shrinkage, cracks or
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porosities appear that typically hinder other AM technolo-

gies from manufacturing bigger dimensions [14].

In series production binder jetting is often combined in

amulti-stage process with other manufacturing techniques,

like casting. One example are automotive cylinder heads

of BMW straight-four and straight-six engines. Advantages

of both conventional and modern manufacturing are com-

bined in thisway. In the following current developments are

described.

3.2 Related work

A majority of research on optical process monitoring and

computer vision related to additive manufacturing is con-

centrating on powder bed fusion. Quality and defect pre-

dictions are built especially on (image) data from the melt

pool. Nevertheless, also other AM processes are adduced for

image-based process monitoring and anomaly detection for

quality enhancement. A comprehensive summary can be

found in [15].

With a focus on image processing, various algorithms

are discussed in [16]. In an application to a small sample

of image data from an extrusion process they are com-

pared based on accuracy for defect prediction. The trained

data model is constantly fed with a stream of new images

and classifies in real time. As soon as a production error

is discovered, the process is automatically stopped. How-

ever, issues like generalisation and processing of large

datasets hinder application in series production. Günther

et al. [17] describe requirements for condition monitoring

for binder jetting and propose an image-based defect detec-

tion. Research is focused on nozzle failures that lead to

work-piece defects. In a series of steps the work-piece shape

is extracted from the recorded image and defect analysis

is performed based on the transformed binary image. The

distribution density of black and white pixels along the

printing direction indicate a printing failure [17].

Current literature presents and discusses approaches

for process monitoring and defect detection with computer

vision. Even though the need for anomaly detection in

processes with un-labelled data is stated research concen-

trates on process engineering parameter setting and is often

related to detection of material-specific and mechanical

defects [15, 18]. The development of methods for bigger

datasets, series production and the implication associated

with it is still at an early stage.

4 Data processing pipeline for the

AM binder jetting in-situ

monitoring

In order to bring anomaly detection into deployment, first,

process historic data is analysed and used for model devel-

opment. The pipeline components are described in the

following.

4.1 Data acquisition

Data from manufacturing at BMW plant Landshut consists

of processing measurements, machining parameters, ambi-

ent conditions and quality inspection. However, in focus

of our work is image data coming from an infrared (IR)

camera mounted in the inside of the printing room. During

the process of sand and binder application an infrared light

activates the binder that bonds loose sand particles. With

a normal camera setup only a flat sandy surface can be

seen. However, as the process heats up the whole powder

bed, shapes of the printed part become visual by infrared

imaging. Another benefit of IR-imaging by visualising tem-

peratures is to make information of energy deposition onto

the print bed available for process monitoring. Since binder

and energy deposition have a major influence on dimen-

sional accuracy a systematic image data analysis is needed

to support process optimisation decisively. In terms of a

live monitoring system the objective is to detect temper-

ature and geometric anomalies and provide information

to a worker about location, layer and severity. The setup

in place is triggered automatically by the machine control

unit (PLC) and generates an image per each layer. Depend-

ing on the part produced a complete image stack con-

sists of 600–800 images. An example is shown in Figure 1.

Images are recorded in grayscale where the pixel values

(0-black, 255-white) correspond to a fixed range of temper-

atures to assure comparability between print jobs and over

time.

4.2 Data cleaning

Data cleaning is performed to have a dataset free of incor-

rectly acquired records and an important step for improv-

ing data quality. With the goal of learning patterns it is

necessary, especially for training machine learning models,
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Figure 1: Example thermal image from an AM print job (layer 500 of 700)

with different visualisations. (a) Original grayscale image. (b) False colour

transformed image for an improved visualisation.

to not detract learning from erroneous data that falsifies

underlying dependencies. However, at the same time the

cleaned dataset must still accurately represent the distribu-

tion of the real sample to generalise well [19].

For the binder jetting process, two types of anomalies

must be distinguished. First type (Type 1 anomaly) is related

to possible sensor malfunction or human intervention that

leads to incorrect data acquisition. These anomalies can

also be referred to as actual process flow outliers that lead

to data quality issues. Examples are shown in Figure 2,

where the camera triggered in a wrong process instance.

The anomalous or outlier image, in this context, does not

present a clear view onto the print bed.

Type 2 anomalies, in contrast, are defined as devia-

tions from the normal manufacturing procedure, poten-

tially resulting in product related quality issues like defects

or dimensional inaccuracy. Figure 3 shows an example of

Type 2 anomaly. These anomalies show an explicit deviation

from the print model and are mostly based on geometrical

features within the print bed.

Data cleaning refers only to Type 1 anomalies since

Type 2 anomalies are the actual matter of investigation in

the dataset. In later model development for Type 2 anomaly

detection the Type 1 anomalies must be filtered out to min-

imise pseudo-defects. Since it is a classification task a DL

model can potentially solve the distinction of good and bad

images for Type 1 anomalies.

This has been tested with a convolutional neural net-

work (CNN) of six convolutional 2D layers, each followed

by 2D max-pooling and batch normalisation layer. Finally,

a flatten layer and two dense layers are used for classi-

fication (activation function: ReLU, optimiser: Adam with

default values). Early stopping is applied based on valida-

tion accuracy. The starting set consists of 22,000 images

(70/30% good/bad) for training, of which 20% are hold

out for validation to monitor model generalisation during

training. 10 learning repetitions were carried out with ran-

domisedweights initialisation. Standard data augmentation

was performed on the training data within the Tensorflow

model. Testing was performed with additional 5000 images

(70/30% good/bad distribution) on each of the 10 models.

Train and test images have been randomly sampled from

different jobs and printers over a production period of 3

months.

The mean performance including 95%-confidence

interval is shown in Figure 4 in terms of the confusion

chart. The network is clearly able to distinguish well bet-

ween ’good’ images of the process working fine and ’bad’

images (Type 1 anomalies) as exemplified in Figure 2.

Labelling was performed manually by reviewing

thumbnails of a collection of images. It must be pointed out

that for process flow outlier images this is still a bearable

effort since these Type 1 anomalies are simple to distinguish

for the human vision. A decision about the labels can be

done easily, even by looking at a collection of images at

a time. Type 2 anomalies must be treated differently as

defect characteristics may not be that explicit and manual

labelling is not efficient.

Even though data of three months was used and 10

different models were compared, results must be exam-

ined closely for a long-term, on-line application. One main

limitation is data drift and changing conditions over time.

This can influence performance negatively, as discrimina-

tive features may disappear or borderline cases are not

effectively detected. A regular re-training is needed for such

application to be always based on current data and related

variability.
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Figure 2: Example of Type 1 anomalies. Print bed and components are hidden by print head due to falsely timed camera trigger. This is a data quality

issue as pseudo-defects need to be avoided in the model training phase.

Figure 3: Example Type 2 anomalies that influence process quality which

results in product defects.

Figure 4: Normalised confusion chart for test set (5 000 images) of Type

1 anomalies. The chart shows mean and confidence interval of the test set

as input to the 10 trained models. An F1 score of 0.98 could be reached.

4.3 Data preparation

Due to space constraints, wide-angle lenses with 80◦ open-

ing angles are used that create a radial distortion. By print-

ing straight checkerboard patterns, this lens distortion can

be calibrated. New images are undistorted by the cam-

era matrix and distortion coefficients in a post-processing

step. Camera calibration functions of the Python package

OpenCV are implemented [20]. Checkerboards of different

dimensions and viewing angles are tested and examined

by the re-projection error. As multiple machines work in

parallel, slightly distinct camera mounting positions result

in different viewing angles onto the print bed. To align

images an image registration algorithm is implemented

using OpenCV. Here, the enhanced correlation coefficient

maximisation (ECC) algorithm, adopted from [21], outper-

forms other feature-based algorithms like Oriented FAST

and Rotated BRIEF (ORB) with brute force matching. ECC

is independent from photo-metric distortions like contrast

and brightness, hence, well applicable to thermal images

where temperatures actually translate into brightness or

colour. Transformation parameters can be calculated by tar-

get and source image of the exact same layer and is valid for

the whole stack of images of one print job. Finally, images

are cropped to the region of interest, namely the print bed.

4.4 Synthetic data in the loop for DL model
development

The aim of a live monitoring system is to detect anomalies

in (near-)real time that become sources of product defects.

This information must be passed to a worker to either stop

the print job, to scrap affected parts directly after process

completionwithout quality test or to perform amore target-

oriented inspection. Additionally, process optimisation by
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parameter adaptation is a prospective way to approach

quality enhancement in the long term.

Figure 3 shows a noticeable Type 2 anomaly, namely

striations. Vertical striations from excess binder, sand or

nozzle-clogging, foreign objects and porosities can lead

to work-piece internal defects that remain hidden during

visual inspection. Resulting layer disintegration that affects

the material strength cause broken sand cores during sub-

sequent casting steps. Other defects like layer shifts and

sand agglomerates cause dimensional inaccuracies. Due to

the large amount of image data in the industrial setup a

manual labelling and training set preparation is very cost

intensive. We therefore see huge potential in approach-

ing the anomaly detection problem with transfer learning

from synthetic data that can be generated and automati-

cally labelled in only a fraction of time. In the AM binder

jetting case this data is abstracted from the real process.

Figure 5 illustrates the workflow of integrating synthetic

data into model development for the real data. It follows

the hypothesis that learning from synthetic data allows for

generalisation to real-world data.

For the synthetic data creation process, as shown in

Figure 6, we utilise the Standard Tessellation Language (stl)

file generated from the work-piece CAD file. As in the prepa-

ration of the AM print job, we slice the stl file into layers

and create Support Vector Graphic (svg) files that define

the layer-by-layer contours of the work-piece by spatial

coordinates. We adapt domain randomisation in terms of

background andwork-piece grayscale dispersion on texture

maps, which simulates the changing temperature distribu-

tion of printbed and component. By masking the shapes

characterised by the edge coordinates and the parame-

terised work-piece position with the textures, we obtain

random layer-by-layer temperature distributions without

reference to previous layers. Furthermore, the layer-to-

layer temperature decay and the blurring of the sharpwork-

piece contours are adjusted by parameters to approximate

the real AM process. The randomisation intervals of these

job parameters are defined by minimum and maximum

values of a random subsample of real images. This proce-

dure is performed both layer-by-layer as well as job-wise to

increase variability.

In addition, we extended the synthetic data with a set

of aforementioned defects that are visually defined and

placed on specific layers. These anomalous jobs have their

own respective parameters such as geometry, location and

duration of anomaly in terms of number of layers affected

with a randomised domain to prevent bias in the data. Syn-

thetic images, as shown in Figure 7, are labelled accordingly

so that the resulting dataset of clean and anomalous jobs

can be used for further research and validation of develop-

ments.

As a first experiment with the synthetic dataset, we

want to evaluate supervised classification methods. There-

fore, we use similar CNN architecture and parameters as

for the Type 1 anomaly classification, with a softmax layer

added for prediction of class membership probability and

train it on 12 500 synthetic images, each 2 500 per class

(healthy/no defect, agglomerates, foreign objects, porous

and striation). In the next step, we evaluate the model on

684 real images, manually labelled for the anomaly type

’striation’, such as shown in Figure 3. On average, the model

Figure 5: Synthetic data in the loop (in false-

colour representation for better visualisation):

data from the real process is abstracted and syn-

thetic data is created by domain randomisation.

Domain randomisation follows the hypothesis

that if distributions are well projected from real

to synthetic data and variability is significantly

high in the synthetic dataset, then DL models,

trained only on synthetic data, will generalise

well on the real-world data [8, 22].
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Figure 6: Synthetic data creation process: firstly, we slice a 3d-model and mask printbed and component with the created randomised textures. Then,

we create a correlation of layer k to previous layers to model temperature decay over time. In a subsequent step, we blur, invert and scale the images

to achieve an closer approximation to the data of the real AM process.

No Defect Agglomerate Foreign Object Porous Striation

Figure 7: Anomaly types included in the synthetic data (red: highlighted location of anomaly). Agglomerate: accumulation of unwanted loose

components into a solid compound. Foreign object: unknown objects on the printbed. Porous: temperature difference in the direction of print head

movement. Striation: vertical striations from excess binder, sand or nozzle-clogging.

decided with a confidence of 74% that the real images show

a ’striation’. Followed by defect type ’foreign object’ with

22% probability. The predicted probability for the images to

fall within the ’good’ class (no defect) is at only less than

2% on average, showing first proof of the concept shown

in Figure 5 for transfer learning by synthetic data. Figure 8

shows the responding confusion chart.

We consider 12 500 images for training a sufficiently

large amount of data for our test case. However, typically

deep learning performs betterwhen trained on big datasets.

Figure 8: Confusion chart of the predicted class membership for real

striation images: 512 real striation images are predicted correctly as

striations, whereas 158 images are misclassified as foreign objects.

Although, the proof of concept is promising, the ML perfor-

mance must be highly increased for an on-line application

as false positives and negatives may disturb a smooth pro-

duction flowmore than it supports workers on quality deci-

sions. Again, data drift needs to be considered additionally.

In this case, not only re-training ofMLmodels alone but also

the creation of newand adapted synthetic data are essential.

5 Conclusions

One major challenge in advancing deep learning poten-

tials for industrial processes, e.g. quality improvements, is

access to clean and labelled data for model development. A

more data-centric approach to artificial intelligence shifts

attention towards data pre-processing and quality. With

this model input optimisation deep learning, like anomaly

detection techniqueswill likely performbetter in real-world

scenarios. We consider domain randomisation a valuable
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approach in developing anomaly detection pipelines, espe-

cially when quality labels are absent or not trustworthy.

Bringing synthetic data into the loop shows considerable

potential. Economically due to low cost of creation with-

out any physical production, as well as technically due to

exact labelling. First results on defect prediction with a CNN

trained only on synthetic data are promising to investi-

gate this approach further. Future work will direct towards

enhancing domain randomisation in order to explore effects

of higher variability levels in synthetic data. This can be

implemented by:

– extending the randomisation intervals of the adjustable

parameters, i.e. the range of brightness, decay and

translucency of layers as well as geometric dimensions.

– including borderline cases of harmless and small syn-

thetic anomalies in the non-anomalous class.

– combining multiple anomalies within one image.

At this stage, tests were only performed with defect type

striation. In the future we will extend tests to other defects.

Further anomalous images from the real dataset must be

labelled manually but likely allow for more realistic syn-

thetic defects. Temperature patterns of porosities could be

further inspected and remodeled by higher resolved ther-

mographic images, i.e. with changes in the camera set-up.

Also, only object-like defects were considered as anoma-

lies so far. Additionally, quality related trends, patterns

and higher order features may be present. Deeper anal-

ysis on unknown, more implicit anomalies must be per-

formed. Autoencoders present high potential for the kind

of task. Generative models are also further to be inves-

tigated due to their photo-realistic recreation capabilities

for synthetic data. GAN-based architectures like f-AnoGAN

[23] or ALAD [24] are of particular interest. Additionally,

supervised-unsupervised combinations are to be tested as

shown by Balzategui et al. [25] and using small data for

labelling big data with no prior labels. Another aspect for

future research is time and spatial dependency of (ther-

mal) images as input for anomaly detection. Approaches

of combining different neural network types like CNN

with Recurrent Neural Networks (e.g. LSTM) to include the

aspect of time dependency are discussed in recent litera-

ture but need further elaboration for a series production

case [26].
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