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Proliferation of defects is a mechanism that allows for topological phase transitions. Such a phase transition is

found in two dimensions for the XY model, which lies in the Berezinskii-Kosterlitz-Thouless (BKT) universality

class. The transition point can be found using renormalization group analysis. We apply renormalization group

arguments to determine the nature of BKT transitions for the three-dimensional plaquette-dimer model, which is

a model that exhibits fractonic mobility constraints. We show that an important part of this analysis demands a

modified dimensional analysis that changes the interpretation of scaling dimensions upon coarse-graining. Using

this modified dimensional analysis, we compute the beta functions of the model and predict a finite critical value

above which the fractonic phase melts, proliferating dipoles. Importantly, the transition point is found through a

renormalization group analysis that accounts for the phenomenon of UV/IR mixing, characteristic of fractonic

models.

DOI: 10. 1 lO3/PhysRevB .107 .045139

I. INTRODUCTION

Quantum excitations with mobility constraints constitute
new phases of matter called fractons. In the quest of under-
standing properties of these phases and their experimental
realization it is necessary to develop their macroscopic de-
scription and identify unique properties that distinguish them
from other phases of matter studied in the past. The frame-
work that allows for a systematic investigation of physical
systems at different scales is called the renormalization group
(RG). Unfortunately a direct application of this framework
to fracton models is faced with difficulties due to the so-

called UV/IR mixing phenomenon [1-4], which in essence

means that, depending on the chosen direction, low-energy
modes can have very high momenta. As a consequence it
was suggested that renormalization group is not applicable
to fracton phases [5,6]. However, it was recently argued that
this difficulty can be circumvented by adapting the integration
of the high-energy modes to the symmetries exhibited by the
fracton models [7].

Renormalization group analysis of the XY model reveals
that it lies in the universality class of the Berezinskii-
Kosterlitz-Thouless (BKT) transition [8,9]. A distinctive
feature of this universality class is the critical temperature that
governs the proliferation offree topological defects. Applying
a similar analysis to fractonic theories can potentially provide
a novel diagnostic of universality classes in theories with

mobility constraints. Our goal is to refine the framework of
renormalization group to study the proliferation of defects in
a theory with mobility constraints.

A new universality class of the BKT type was recently
anticipated in the context of superfluids and plaquette-dimer
liquids [6]. Dimer models represent lattice systems with de-

grees of freedom on the links instead of the nodes [10-19].
Such models originate from the quest of understanding mag-

netic materials and are used to shed light on valence bond
liquids or classical spin ice. In constructing these dimer mod-
els, one imposes a constraint on the dimers, namely that each

site form a dimer with only one of its neighbors. Sites that vio-
late this condition are associated with defects. A site that is not
attached to any dimer is called a monomer. A single monomer
cannot move alone, while a pair of monomers between links
can only move along the transverse direction. A generalization
of simple dimers involves trimers and plaquettes. Crucially,
a class of plaquette-dimer models can be mapped to electro-
statics with higher-rank tensor electric fields, considered by
Pretko in the context of gapless fractons l20,2ll.In addition
the low-energy effective theory is governed by the physics

of defects, i.e., singular configurations of the fields [22]. The
goal of the present paper is to employ renormalization group

analysis to study the transition from the liquid phase to the
ordered configuration. Our approach can be applied to a va-

riety of fracton models using the powerful technique of the
renormalization group.

* 
grosvenor @ lorentz. leidenuniv.nl

trubenl@pks.mpg.de
*piotr.surowka @pwr.edu.pl

II. FRACTONIC PLAQUETTE-DIMER MODEL

In this work, we study a dual fractonic model obtained
in Ref. [6] from the point of view of momentum shell RG.
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The model follows from Villain-dualizing a plaquette-dimer
model with compact fields. We can formulate the Lagrangian
density of this dual model as

t : )6,Lrh)2 + ZrU,rr' + zEul cos(Zn f), (1)
-I

where A, is a discrete derivative that acts on a general func-
tion 7(x;) as

Ar71x;) : a;t (lGi * arer) - j(x7)), (2)

where trr e (x,y,z), a, are the lattice constants, and e,, is a
unit vector. The cosine terms in Eq. (1) contain a ft-dependent

functions f1 and have a corresponding "fugacity" o1. For the

fractonic-dimer plaquette model, the dual theory contains the

functions

fi : {h, orA,,h, orLrhl, 1 e {0,.r, y}, (3)

These .fi are functions that enter through a cosine as they

represent topological defects. Specifically, the 1:0 term
represents a monopole defect that can only move along the

z-direction. Such a cosine term is also present for the Sine-

Gordon model dual to the XY model 123,241. The /:x,y
terms represent dipole defects that can only move in the di-
rection orthogonal to the dipole direction (x and y directions,
respectively) [6]. The Lagrangian enters the partition function
AS

, : [* ffanrry)"*n [-n, I rttt*ril-1, @)J-*','l7"I
where the index i runs through all the sites of the cubic lattice
and Qo is the volume of the lattice site.t We study the system

at static equilibrium, which is why the time integral does not
appear in the action in Eq. (4), having been canceled by the
inverse temperature in Euclidean signature.

Characteristic of fractonic models, the Gaussian term in
Eq. (1) has a peculiar dispersion, which can be obtained by
peiforming a Fourier transform that leads to \{L,Lrlr)2 +
+(L,D2 --> )enhz,with

€ p : 16 K,y sinz (a, p I 2) sinz (a, q / 2) + 4 rc, sinz (ark I 2), (5)

where we defined p: (p, q,k)r. To simplify the dispersion,
we assume that

'a,p 111arq 1<-1, ark 4l, (6)

so that Eq. (5) turns intoz

ep o rc(pzqz + k2), (7)

I By putting Oo in the exponential we made sure that the Lagrangian

of Eq. (1) is indeed a density, despite it being summed over a lattice,
This will be of use in the proceeding RG analysis.

2This simplification cannot be generally valid for fractonic models,

as UV/IR mixing makes it so that even at low energies Eq. (6) can

be violated. We show however in Appendix B that assuming Eq. (6)

merely leads to a quantitative deviation.

kg

0
p

FIG. 1. Constant-energy surfaces.

where we defined3

K : Kxy: Kz. (8)

Since the dispersion of Eq. (7) vanishes when p : 0 or 4 : 0
one has to take note of short-wavelength effects even at low
energies. Because of this is argued in Ref. [6] that this model is

beyond the renormalization group paradigm. By considering
the correlation functions, those authors were nevertheless able

to derive a critical point where the low-energy theory is no
longer described by a free fractonic theory but instead by a

proliferation of dipoles. Because this proliferation of defects

destroys the quasi-long-range order, it is reminiscent of the

BKT transition [8,9]. Corresponding to this phase transition
is a critical r., above which the coefficients u, and ay are

relevant and grow large in the IR. When this happens, the field
h arranges itself to be in the valley of the cosines with I : x, !,
so that at low energies, the cosines can be expanded and one

is left with a three-dimensional sine-Gordon model l23l that
does not have any fractonic properties. In this work we show

that it is possible to do momentum shell RG for the model
of Eq. (1) by using an RG procedure which is an extension
of the RG procedure in Ref. [7], where RG for the exciton
Bose liquid 125,261is considered, which is a quantum model
that also suffers from UV/IR mixing. With this approach the

momentum shells are along the constant energy surface of the

fractonic dispersion (see Fig. l). Because of this, one flows
towards the axes as opposed to the origin, and one thus avoids

issues related to UV/IR mixing. In the following section, we
discuss this approach and specifically the nature ofthe dilata-
tion operator for this RG procedure. We then use this to derive
the critical point r.. With this approach we are furthermore
enabled to compute the screening effect that the cosine terms

have on rc, i.e., the inverse of the "fractonic spin-stiffness,"
which we find to be absent.

3The definition of r in Eq. (8) is not without loss of generality as

rc,, and r. are independent. Equation (8) is introduced as it simplifles
the RG picture. At a later stage, the independent rc,u and rc. will be

reintroduced when needed.

q

0

€-
J

t''j
I*
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III. RG PROCEDURE

The RG procedure of integrating out high-energy modes in
a way which is adapted to the fractonic plaquette-dimer model

was first proposed and implemented in Ref. [7]. However,

the crucial subsequent step of rescaling the low-energy modes

back up in order to retum to the original form ofthe action, but

with renormalized parameters, was still done the usual way,

which is not adapted to the fractonic model. In this section,

we describe the appropriate modification to this second step.

In essence, what we are pointing out here is that the concept of
dintensional analysis itself is modified near the fractonic free-

field fixed point as compared with the homogeneous one. This
will obviously influence what we mean by relevant, ircelevant,

and marginal in the context of RG.
The most natural way to make manifest the concept in

RG of "flowing to the IR" is to integrate o\t hiSh-energy

shells. These contain only modes with energies between some

high-energy cutoff A to some slightly lower energy scale lt /b,
where b is a number slightly greater than 1. We emphasize tbat
this is a high-energy shell and not a high-momentum shell, as

it is often called; it simply happens to be the case that high
energy and high momentum are usually equivalent. This is
not the case for the fractonic phase. Nevertheless, the proce-

dure is operationally the same: we integrate out modes with
energy between It and |t/b. In momentum space, (p,q,k),
the constant-energy surface is given by J@d'* ft2 : A and

depicted in Fig. 1. Whereas the zero-energy locus is usually
just one point, namely the origin in momentum space, in our
case, it is the union ofthe p and 4 axes.

Normally, the constant-energy surfaces are concentric
spheres and the RG flow is towards the origin. Therefore the
RG flow is described by the dilatation operator in momentum
space D : p . Vp. Thus, after integrating out a shell between
energies It and ltlb, we rescale momenta precisely by the

dilatation operator in order to bring lt/b back up to A. In
this regard, what is meant by the dimension of an operator
or a parameter is really just its eigenvalue with respect to
dilatation.

In our case, it no longer makes sense to define scaling
dimension with respect to the dilatation operator D since
that does not describe the RG flow towards the IR anymore.
Instead, we define a modified dilatation operator D, which de-
scribes the flow from one constant-energy surface to another.
First, define the modified momentum vector

F: ([p] p,lqlq,lklk)r, (9)

where [p], lql,lkl denote the dimensions of the momentum
components. The new dilatation operator is

D: F.vp, (10)

under which the eigenvalues of p, q and k are, by construction,
their dimensions. We ask that D be orthogonal to the constant-
energy surfaces. Furthermore, we have the freedom to set

the dimension of any one component to 1, which then fixes
the remaining two. It is natural to set [k] : 1, which fixes the
dimensions to be

a2 o2
Lpl: -;:-, lq): -;j- , [/<] : 1. (11)

p" + q' p'+ q"

This means that if we rescale the energy lt --> blt, then the

momenta are rescaled according to p --> 6trlp, and similarly
for q and ft. This is quite different and exotic compared with
the standard dimensional analysis, which would say that p
and 4 both have dimensi on I 12. Of course, in either case, the

dimension of the product p4 is still given by

[pq]: r. (12)

Since the meaning of classically relevant, irrelevant, and

marginal depends on dimensional analysis, the above mod-

ified definition of dimensions has some rather important
consequences. One issue is the question of whether gradient

operators without fractonic properties, such as (Erh)z and
(0rh)2, will get generated. The naive form of dimensional
analysis would conclude that these operators are relevant com-
pared with the operator (Ar}yh)z. However, with respect to

the modified dimensional analysis appropriate near the frac-
tonic fixed point, (0,h)2 and (3rh)2 do not even have constant

dimensions and, in fact, their highest dimension is 2, which
is the same as the dimension of the operator (A'Alh)2. This
may seem to suggest that these operators are no more relevant

than the fractonic one. However, consider, for example, the

dimension of the operator (}rh)z in the region near the q-axis,

which is where it could destroy UV/IR mixing. Here, this

dimension vanishes and from the point of view of the potential
destruction of UV/IR mixing, this operator is even more rele-

vant than in the naive dimensional analysis. We conclude that

the fractonic theory is highly susceptible to being destroyed by
simple gradient terms without fractonic properties, which is

why it is so important that the UV theory is pristine. Because

of this, dimensional analysis alone cannot determine whether

or not the ordinary gradient terms do in fact get generated. We

then ask what kind of theory the cosine perturbations induce

in the IR. To answer this question, we now perform the RG

analysis along the lines we described above.

IV. FRACTONIC PLAQUETTE.DIMER
MELTING BY THE PROLIFERATION OF DIPOLES

With the RG procedure just described, we can now derive

the critical point where the fractonic dimer-plaquette liquid
becomes unstable, which was discussed in Ref. [6]. This crir
ical point is due to the cosine operators in Eq. (1) with 1 : x
and 1 : y becoming relevant. In the appendices, following
Refs. 124,27,281, we consider the effect of a general cosine
term on the renormalization of the coefficients when one splits

the field h into

h: h- * h+, (13)

where ft+ corresponds to the high-energy modes in the mo-
mentum shell that are being integrated out, leading to a

renormalization of the coefficients for the low-energy theory
with modes h- .Taktng I : r, we show in Appendix A that the

fugacity coefficient c, experiences the following renormaliza-
tion:

u,(b) - bza.*e-ist'Jo), (14)

wtrere gt/,(O) is the correlator of the high-energy modes

for operators f1 and fi. The factor fr is consistent with the
rescaling for the momenta previously described, specifically

045139-3
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Eq. (11), which determines the dimension of cr, to be 2. We
thus must compute4

' o2' f atP P2
81"",,(0): -v\r^' r'Jn-n,u; *eTF (ls)

Let us first pass over to dimensionless variables

^Qx^QytA*Ay0::p, Q:Jq, k:#k, (16)
7tn

so that lBl, l4l < 1. Similarly, define the dimensionless cutoff,

^ |ta..a.,
n : -;-. 'L7)

With these definitions, Eq. (15) becomes

,rrf"6z
s{+.,)(o) : i J o_o,ud'fr, *Vp. (18)

We change variables from (p, q, f<1 rc fP, t, b, wherc I : PQ.
The Jacobian for this change of variables is l/lpl:

, 4nl ^" b
st,(ol : ; J4=o,bdkdt 

afr 
n, + Or, 119)

k,t,p>0

where we used that by parity symmetry, we can restrict the

integral to the positive octant and multiply by 8. Since ?. : fQ
and the maximum value for f is 1, the lower limit for p is A.

And, just as for f, the upper limit for p is l. Thus

. 4n f di<dt tt
8(*,,)(o) : ; Jo;ullu irz a p Ju 

nP P

:4 t di<d?'

*- Jo'',uffil - h' Qo)
k,(>0

By i <+ / symmetry, we may replace the factor I - P inthe
integrand with t - ft'tP 

:

+

FIG. 2. The deformation of the momentum shell to one that is
parallel to the k direction.

Plugging this into Eq. (14), taking a derivative with respect to
ln(b), and setting b : 1 gives the RG flow:

*91 :lr-!('-{)]"" e4)dtn(b)lu=, L- 2' \- 2 ) )'
As we have argued previously by our modified dimensional
analysis, the UV/IR mixing is most in danger of being de-
stroyed near the p-q axes. To probe this region and to ensure

that the momentum shell covers as wide an angular range as

possible, we take the limit i. << t. Thus our final RG flow
equation for a, reads

da,(b)l * (r_ {)*, es)dt"\Ulr:, - \'- 2* )"''
The RG flow equation for cv, is exactly the same, but with
a,x --> q,y. Hence, there is a critical value

tt2Kc: T,
at which otx, qy are marginal at this order, below which a*, a,
are irrelevant, and above which or, c, become relevant. In
other words, this operator does destabilizethe fractonic phase

when r > r,. This is precisely the process of dipole prolif-
eration. When we compute higher-order screening effects on
r, we will see that this RG flow picture gets slightly more
complicated, but the essential point remains that there is a
region in parameter space where the fractonic phase is stable
(see Fig. 4).

We will discuss the k-integral in more detail, In fact, the
natural scale of ft as far as the shell is concerned is A since
a constant energy surface extends from -A to +A in the ft
direction. Therefore, in natural units, the width of the end-
caps of the constant energy surface (i.e., where the surface
hiti the bounds set by the lattice constants) is of order A,
whereas the height is of order 1. In other words, locally near
ft :0, the surface is very nitrrow and almost vertical. This
suggests the following simplification: deform the surface to
be its intersection with the k :0 plane simply translated from
k : -n laz to k : lr f au as shown in Fig. 2. Bear in mind
that the elliptical holes on the original surface and the gaps

in the deformed surface should, in truth, be very nanow.
Our expectation is that the difference between performing the
integral over the exact integration region and the deformed
one should vanish in the limit A < t. Because of this de-
formation, the boundary conditions of the /c-integral are now

(26)

sf,,,tor : T l^f:l,,ai' 
ai( ) et)

Now, convert to polar coordinates by setting

f : icosd, /: isind. Q2)

Since we have restricted to the positive quadrant in i< and ?.,

the polar angle Q goes from 0 to t. Meanwhile, i goes from
Llun A. Therefore

8t)(o) :'+ 
I,' or 

Ioo,urt(* -;)
:!:' A2/ l\l

" lrnlr';- 4(t- F)) (23)

ir, +t, 2

aln Eq. (15), we have made the same assumption as in Eq. (6),
which enables us to linearize the discrete derivatives both in the

kinetic terms as well as in the cos(Zn f1) terms. The case without
this assumption is considered in Appendix B.
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p p

q

n /n,n rlq,

---+
I a".

FIG. 3. The deformation of the momentum shell corresponding
to Eq. (28) but where the limits of the { integral are not dividedby p.

decoupled from the p and q integral, which are the momenta
that are related to UV/IR-mixing. Because of this decoupling,
there is no longer any reason not to work in the continuum
limit for the z direction, i.e., we take a, --+ 0, still keeping the
x and y directions discrete. The integral simplifies to

t atp--. I apaq [* arr, (2i)
J tt-tt1u J tt-tt1t J -a

and similarly for the hatted variables. Making this approxima-
tion gives

so that the lattice effects reduce the critical parameter by
approximately 20Vo relative to the continuous limit.

V. MONOPOLEEFFECTS

The fugacity for the monopole operator is as. We will now
show that a6 can always be assumed to be irrelevant. The flow
of ae is given by

ao(b) :6zor'-ist*'(o'' (gO)

The quantity 860)(0) can be computed exactly in precisely the

same manner as Sf-y(0). The crucial difference is that the p2

term in the numerator of the integrand is no longer present.
Where the integrand in the previous calculation vanished near
small p, it now diverges like I I p and thus contributes a log-
arithmic divergence. As computed in Appendix C, the exact
result for s1**,tO) it

s1+oo;(0) : fd3p 1

I 2r @q)2 + kz

['"(i) +]r'rar]r'rar

1
K

?
K

2n2 ft fltp aaldppl +rc JA Jilup Q

n2:'L(r - A2)m(a). (28)
K

Of course, this does not quite agree with Eq. (23). How-
ever, as expected, the difference is of order A2 and vanishes
in the A (( I limit. Note that due to the logarithmic nature
of the f integral, it makes no difference whether or not the
limits of integration of Q arc divided by p. Therefore another
simplification we can make is to flatten out the shell to be
parallel to the p axis, as depicted in Fig. 3. The width of the
gap near small B is of order A and so the A ( I limit is
equivalent to closing this gap. This fact is not so crucial here,
but it will have very important consequences later on when we
compute higher-order screening effects. In fact, it will play a
critical role in our understanding of how to properly take the
continuum limit of fractonic theories.

Finally, before we compute the RG flow of other parame-
ters, we revisit the assumption Eq. (6), which allowed us to
obtain the more workable dispersion of Eq. (7). This assump-
tion works only when the lattice constant can be assumed to
always be unimportant for the RG computations. However,
due to the UV/IR mixing, the IR theory contains momentum
modes near the axes that reach the momentum cutoffset by the
inverse of the lattice constant, so that this assumption is never
valid. Because of this, incorporating lattice effects modifies
Eq. (26) so that adifferent rcfL) is found. Specifically, the result
found in Appendix B is given by

.-(L) 
- 

oAc -., 
(29)

(3 1)

The resulting RG flow reads

'ffi|,:,:1,-1h(i)]- ez)

Because A < t we find that the coefficient cs c?n always be

considered to be irrelevant, confirming the result in Ref. [6],
To summarize, we have derived a similar prediction as that of
Ref. [6], namely that there is a finite critical value r" above

which the fractonic phase melts via dipole proliferation. We
find only a difference in the precise value of r". Crucially, we
have established this result now firmly within the formalism of
the renormalization group by working with momentum shells
that adhere to UV/IR mixing.

Now that we know that the 1 : 0 cosine term is irrelevant,
one may still worry that while this inelevant term flows to
the IR shrinking rapidly, it acts as a dangerously irrelevant
operator by giving rise to a new term in the Gaussian part
in Eq. (l). Let us imagine that this Gaussian part fc gets

modified so that it now includes the following y term:

L,c : Lc + lffL,n>z + (LyDzl. (33)

Even for small y, this term violates the fractonic properties
that were there for lz : 0 and thus undoes the arguments
related to the stability of the fractonic plaquette-dimer liquid
as these arguments relied on UV/IR mixing. The flow equa-
tion for y is given in Eq. (A19):

y@):1zn12afip1a"D (.7 +yf)(es,.*,<.'l - t)

- 2oo3@t n", I oro(t 
+.:?)r','^* . (34)K -Jtr-n1u \pqf+k'

This integral is complicated due to the nature of the cutoff
surfaces. Therefore we deform the shell as we did earlier: we
integrate t from -Tr la, to ln /az and take the continuum

s,+*,tol : * I o_ o,udl 
aa ll_t,

^ap'

aw +F

045r39-5
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limit for the z direction, so that integrating the z dimension
out yields

(2r)zq?(b)
Y\b): -----..-axay

K

"r/ ooon8lp{i!. (3s)

-nn, 
J tt- ttlt lPq f

where A' runs through the spatial lattice on the xy plane. The
lattice constants c, and a^/ entff the integrand ofEq. (35) only
to prevent the shell from touching the axes, and we can simply
take the continuum limit so that the shells are asymptotic to
the axes. This yields

y (b) : qryV 
I o* orl 

n-n,uo 
o ont#.

(36)

We move to polar coordinates both for real space as well as

for momentum space and first integrate over the angle 0 in
real space:

v(b\ : Qn l3o4(b) [- o, I o oo^ r3J_oQp)
r \"/ r Jo 

*' 
Jn-n1t''*'Isinz(z1)pt'

(37)

We then change the integration variables as p -
llsin{zill p andT: rf llsin{2il|. Because we consider

the continuum limit, the integral over @ is simply 2n:

y(b): Qn)4d3@)
K Io*0, IErry (3s)

VI. HIGHER-ORDER SCREENING EFFECTS

Now we consider the renormalization of quartic operators.
For this, we first need to undo the simplification performed in
Eq. (8) by splitting the r term up into

K^
|{L,nrnf + \}',Dzt

l(-,, ^ K" ^-+ -l(A,Auh)'+:(Lzh)'. (41)
2'2

Only r' can receive corrections from screening effects related
to the / : x, y cosine terms. The flow equation for r,, is given
in Eq. (A22):

rcr(b) - rc,

:6rcry(b) |

: 2(2n)2 &a',@)a,D y? @t[",,t*') - I ) * x .' y

o +naXal(b)
Kxy

a,lt7 ,^ pZeip'*'
o'P 

rpql'+ qt'I^

t p,x <> q,y, (42)

with ( : rcr/K,y.The integral in Eq. (42) is divergent, and

to regularize this integral is difficult, as the shell has a com-
plicated structure. To make progress, we perform the same
simplification as in Fig. 2, which is to deform the shell and

take a, --+ 0 so that we can integrate out z and k. The result
.5
1S"

Z1Zn12as.arul(b)
lrc*r(b) : Dr7

ei(P't+qY')dpdq 
"q'I^-tCxy

* p, x <> q'y.

ieA,r

(43)
The integral in Eq. (38) is divergent, but can be regularized by
smoothing the momentum shell as follows:

IE,, - Io*,e(# * - #i#d (3e)

where for theories with quadratic correlators one can take
n : I f24,27,281. This turns a massless correlator for a mo-
mentum shell into the difference of massive correlators with
effective masses r/A and Jffi over the full momentum
space, thereby avoiding an IR divergence. Similarly, the value
for n that regularizes Eq. (38) is n : 2 which yields

y(b):o+o(1n2(b)). (40)

Therefore the simple cosine operator is not in fact dangerous
in that it does not generate terms which destroy the frac-
tonic UV properties of the model. Note that the vanishing
of y(b) relies only on the quartic nature of the correlation
function that remains after the third spatial and momentum
dimensions are integrated out in Eq. (35). This means that for
two-dimensional theories with quartic dispersion, such as the
vector sine-Gordon model [29], which describes dislocation-
induced melting of two-dimensional crystals [8,30-32], a

similar argument precludes dangerously irrelevant cosine op-
erators, The vanishing of the correction to the quadratic
derivative term in the vector sine-Gordon model can also be
derived using dimensional regularization in the same spirit as

in the two-dimensional sine-Gordon model [33],

where we see that ( drops out completely. We again simplify
the integrand in Eq. (43) according to Fig. 3, and introduce the

dimensionless variables

-n-l\a,4: ^ q, i: tY, (44)
I\Ax fr

to end up with

(2''\sar!4(7.of 
yi [' oa*6r*r(b):_-2L3_r, o 

,ua"r, J,uo, a,

* p,x <> q,y, (45)

with

@: axD_,u_,^;" oo* I^,'i;,'r1,,,., (46)

sln this calculation, a factor ofp2 canceled between the numerator
and the denominator after z and k were integrated out. Had we
not made the assumption in Eq. (6), the factor that would have
canceled between the numerator and denominator would have been

fr sinz(la,p). Either way, the result is the same. Therefore, whereas

taking the more complicated and correct dispersion relation into
account makes a quantitative difference for the flow of oi with 1 : x
or y, as shown in Appendix B, it does not make a difference for r"u.
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Now we consider the integral over the momentum shell in
Eq, (45). Because the integral over 4 has no dependence on the

lattice constant, we can now take the continuum limit. Note
that the gap in the p integral betwee 

" - f and + f closes in
this limit for the x and y directions, i.e., we take a, : dy = O.

Taking the continuum limit for the x and y directions turns
the sums in Eq. (45) into integrals and closes the gap in the p
integral to give @ :2n . We thus find that Eq. (45) turns into

t2n\7a?tblf ^lt ei4i,6r*,,(b):-ffi 
J 

Or;,' 
J,,uO7V

* p, x <> q,y, (47)

It is clear at this point that the only effect of the switch p, x <>

q, y is to change q.x to otr. Therefore, defining

^, -d' ". 
0l

ur - ^7, dy : ;;. (48)

we can write

6rc,(b) - qIY#Sg 
I ooo, 

Ir' 
or'v. ron,

Equation (49) can be regularized similarly to Eq. (39), by
taking

I,' 
ou' 

Io* 'a(pl;-;r) (so)

so that the final result is

Qil'W(D._$etl(r_, \ -6rr,(b) 4Kxy \ F). (51)

The RG flow equation thus reads

finy

n Fractonic r Non-fractonic

FIG.4. RG flow diagram for the rescaled coefficient ft,, and
fugacity &7.

This is a consistent truncation to the order of our RG cal-
culations since the beta function of the difference ax - ay
is proportional to itself and so if it is set to 0 initially, then
it does not subsequently get generated. Let us collectively
denote these fugacities as

Ax:Ay=Ad, (ss)

where the subscript tC denotes "dipole." It is a simple matter to
trace through the computation of cu,(b) to see what difference
is made by splitting r up into rcr, and r.. The result for d7
reads

'*91 : (r- ^4)t, (s6)}ln(b)lu:, \ 2JK{,y/ "

ad

0
20 I

0rc,r(b)

0ln(b)
_ <zr>8(a* + 4)

ZKxy
(s2)

b:t
It is also possible to formulate an integral corresponding

to a quartic pure term. Specifically, let us imagine that the

Gaussian part L6 in Eq. (1) gets modified so that it now
includes the term:

L'c: Lc + llu-(Lln)' + ""1ttrn7'1, (s3)

Using Eq. (A25), one finds that the generation of u*(b) is
given by

u*(b) :212n12fiu2"(D9"D 2s?1ast "{"') - 11. 64)

Following the same steps as *'o" p"rfor-" d for 6rcrr(b),

one finds that the integral aver p localizes the spatial sum
tt x; :0, so that one obtains u*(b) :0 and the same for
ur(b). A similar argument will also cause the vanishing of any
integral generating nonfractonic coeffrcients at higher order
in derivatives. We thus find agreement with the statement
in Ref. [6] that dipole interactions only take place on the
plane orthogonal to the dipole direction, thereby preventing
screening effects that would break fractonic symmetry.

VII. RG FLOW DIAGRAM

Let us return to the RG flow of the dipole fugacities. For
simplicity, let us consider the isotropic case when {y, : {yr.

If we define the rescaled variables

- l6rcrrcrr, -kry : --jfL, &d : 64rr&1,

then, the RG flow equations simplify to

3ln(b)

_')
ad

Kxy

- 26ta

(s7)

aft,y(b)

3ln(b)

E&.a(b)

l,=,

l,=,

(58a)

(s8b)
11--

I K'tY

The RG flow diagram is plotted in Fig. 4 and the fractonic
and nonfractonic regions are shaded accordingly. The critical
trajectory, which flows to the fixed point from the left and
away from the fixed point on the right, and is drawn as a thick
black line in the plot, is determined by dividing Eq. (58b) by
(58a) to get Efu/\kay and solving the resulting differential
equation for d7 as a function of fto. This gives a generic
trajectory parametrized by an arbiffary integration constant.
Then, simply set the constant such that the trajectory passes

through the fixed point. The result is

I
I
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Of course, we can only trust this perturbative calculation as

long as d7 is small, which, for this critical trajectory, means

that k*, is close to 1. Around the critical point, the critical
trajectory simplifies significantly to

&"0"'* lr*r - 11. (60)

The critical trajectory that flows towards the fixed point from
the left and separates the fractonic and nonfractonic regions is

also called a separatrix [24,34].

VIII. CONCLUSION

In this work, we looked at a fractonic BKT-transition in
three dimensions that was first mentioned in Ref. [6], where

a fractonic plaquette-dimer liquid with algebraic correlations
melts into a disordered phase without fractonic properties.

With a momentum shell RG scheme we tailored for UV/IR
mixing, we showed that one can derive the critical propefties
of this model. This is done through momentum shell RG by
considering the renormalization of the cosine terms represent-
ing to defects in the dual theory. We also considered screening
effects which happen at second order in fugacity. Specifically,
we considered the possibility that the simple cosine operator,
which represents monopole defects in the dual theory, act as

a dangerously irrelevant operator that destroys the fractonic
dispersion, thereby removing the UV/IR mixing nature of the
model in the IR. We also considered screening effects related
to terms quartic in derivatives, induced by dipole defects. Also
at the quartic level, we find all screening effects generating
nonfractonic couplings vanish, consistent with the statement
in Ref. [6] that dipole interactions only exist transverse to the
dipole direction. Moreover, we find that the coefficient of the
fractonic term quartic in derivatives does get renormalized.
We therefore were able to formulate an RG flow diagram
which contains a low-temperature fractonic regime where one
flows towards a fractonic phase. At higher temperatures, the
fractonic phase gets destroyed through dipole proliferation,
analogous to the ordinary BKT transition, The RG scheme
introduced in this work is an extension of Ref. [7], which
focused on computing the anomalous dimension of broad set

of operators in case one has a Gaussian term with fractonic
symmetry. In this work, the effect of defect screening was
also considered, providing a mol'e detailed understanding of
the fractonic BKT transition of a dimer-plaquette model. This
work opens the door to further exploring, from a renormal-
ization group perspective, other models with the property that
short wave length modes are part of the low-energy theory.
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APPENDIX A: LOW-ENERGY EFFECTIVE ACTION

In the RG computations performed in this Appendix, we
will closely follow Ref. [24] (see also Refs. [27,28]), where

a similar momentum shell RG computations is performed
but for the standard BKT transition. A key difference in this
Appendix however, is that this Appendix does not work in the
continuum limit, as the continuum limit is not as trivial for
fractonic models and it is best to consider the continuum limit
at a later stage when the integral has been rewritten in such a

way that the lattice constant no longer plays a role except as

part of a Riemann sum.
We start with the partition function of our model expanded

near the fractonic free-field fixed point:

s: o,(K * v), (A1)

where S is the static action and K and V are the kinetic and

potential energies,

u : [* flan, r-',J-* i

r :D \t\\n)' +l{t,n)',

v :2Dlar cos(2r f1). (A2)
iI

First, let us expand out the contribution of potential to the
partition function:

eTv'
(A3)

nl.

To integrate out the momentum shells, as usual, we divide the

field ft into high- and low-energy parts:

h:h+ +h- (A4)

The modes h+ have energies within some energy shell
between energies lt/b and A, where b is a number slightly
greater than 1. We integrate these modes out leaving behind
just the low-energy modes h-.The remaining momenta have

to then be rescaled back up from ltlb to A. The latter step

similarly scales the couplings according to their scaling di-
mension. As we have argued in the main text, the scaling
that is appropriate near the fractonic fixed point is a type of
dilatation towards the x and y axes, as opposed to towards the
origin.

Since lr- and h+ have no overlap there are no cross terms
between them arising from the free kinetic part of the action.
However, we must still expand the cosine terms:

cos(2r fi) : cos[Zr (ff + fl )] : cos(Zr ff) cos(2n fl )

- sin(Zn ff ) sin(2r f1 ). (A5)

u : [* l\0r,,-""r tu-@ i n:O

045139-8
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The partition function now reads

x sin(2nf, )Xx;) + O(Y3)

z: 
IDh- 

e-a'K, I rr* €-Q"K+{t *rn, Durlcos{znff1cos(2nfl)-sin(2nf\; sin(2nfi-)J(xi)

+zalDo,orlcos(2nff)cos(2nfl)-sir(2nff)sin(Zr.fl)l(x'11cos(2nff)cos(2nfl)-sin(znff)
i,i.r ,J

(.{6)

(A11a)

(A1lb)

(A1lc)

(A12)

where we defined .;[ n, dhi : I Dh.Integrating out ft+ amounts to taking the expectation value with respect to K+, which we

denote by

(0) I Dh* e-K* o
(A7)

I on* e-K* '

for an arbitrary functional O of h+,
Since there is no tadpole for ft+ (no term linear in h+), the expectation value of any function which is odd in h+ vanishes. In

other words,

(sinf}nff (xi)l)+ : (sint2nf{(xi7lcost2nff (xi)l)+ : g. (A8)

Therefore the only terms which survive in the partition function are

z- : I Dh- e-a"K- l, * rn"l otr cos(2n f ;)(cos(zn ff ))+ + zaf, L o,o, cosl2n f, (x)1
/ I "7' 

i,i,t,r

xcosl}nfl(xi)l(cos[2zf(4)]cos[22'lr+1xi)1)+ +2fz7Do,orsinf2nfl(x)]sint2z/t(xj)l
i,j,r,J

x (sinl2nf1(x;)lsin[2nlr+(x;)])* + orv3l]. (A9)
I

The expectation values of these trigonometric functions are related to the basic two-point function

s1+rry(x;) : (zil,\ff (t,),f (o))n, (A1o)

via Wick's theorem

+_

(cos[2n f{ (x;)])+ : e-trsi'fo) ,

(cosf2nf{(x;)lcosl2nff(x;)1)+ : e-Ltet'lo)+8trr)(0)l cosh[g+7;(x; - x;)J,

(sinl2n ff (x;)lsinlzn ff (x7)1)+ : 
"-itef,r(0)+sf,,r(o)l 

sinh[gr+rrr(xi - x;)].

Therefore the low-energy partition function reads

Z- : I Dh- e-e.K-{t *rn,lar"-trsi,,{o) cos(2nff) +2Aj"l wale-si,r(O) cos[22fi-(xi)]J t -7, 
i,j,t,r

x cosl2n fl (xy)1 coshlsl+r"r;(xi - xi)l + 2a? | uole-si'r(0) sin[22fr(xi)]
i, j,t .J

x sinl2n f1 (xi)J sinhtsl+17,(x; - xy)J + O(V3)

We can re-exponentiate this to define a low-energy potential term,

V- :2eoDD",r-iet,n((') cos(2nfl) +Zfz|l o,or"-ite[,,{o)+sf,,,to)]1cos[22fi-(xi)J
i r i,j,t,J

x cosl2n ft (xi)l coshlsl+17,(xi - x;)1 4 sin[Zr fl (x;)]sinl2n f, (x;)J sinhlsl+17,(xi - xi)J

- cos[2rf, (xi)) cosl2nf , (x;)]] +... ,
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where . . . are higher-order terms involving more factors of cv1. We can massage this into the form

V - : 2{2 oD o, 
"- 

i tt,,<o) cos(2r f 1 ) + 2A1 L,,o, o r r- ttsll) (0)+8tr/) (0)l

x lcosl2n(f, (xi) +/i(x;))J(e-el,,rt*'-";) - t)+ cosl2r(fl(xr) - li(x;))l(est,,(*'-*;) - l)). (A14)

Finally, we rescale momenta by a factor of b in order to bring the cutoff back up from ltlb to A and be able to compare the

renormalized action to the original one. Each factor of cvl gets multiplied by b2 since they have dimension 2, as argued in the

main text. LetV (b) be the renormalized potential as a function of b:

v (b) :za,Dlur &e-itl/o cos(2n f r ) + zsz], D o,o, b4e-+t8t,D@+8t'4@l

i I i,j,t,J

x {cost2n(f , (1) -t lf (x;)))(e-s\'/*'-"1) - t) + cosf2r(f, (x;) - lf (x;))1(eet rt''-*;) - t)}. (Al5)

The renormalization of the original cosine terms in the potential are retrieved from the first line above and we will focus on these

terms in the following sections. The renormalized fugacities read

a1(b): aft2e-l8t,lo). (416)

This is an implicit equation that requires the evaluation of cv1 at some scale. As usual, what we are interested in is the beta

function, which is the logarithmic derivative with respect to b.6

Importantly, however, additional terms are generated in the subsequent lines of V (b). This is not surprising, this happens also

in the usual BKT analysis in two dimensions. The terms in the second line introduce so-called "higher harmonics" (e.g., when

I : J :0 these are vortices of vorticity number greater than 1). These terms are less relevant and will be ignored for the same

reason as in the standard case 124). The terms in the expansion of the final line around xi : xj, at least for 1 : ,/, constitute
corrections to kinetic terms, which we will consider.

Let us write out this term in general. First, shift x, to x - x/ and expand in x':

V1(b) =za"lalUar-el,r{0) cosl2n(f, (x) - fi-(x;)l(rs[,u{x-*; - 1) o }AZDu!@)cos12n", . A1-t")](rsf,;t';r - 1;

i,j,t i,i,l

xzaf;D"?ru(t - )t o*. Lf, @r')(eei,,,{*;) - t). (Al7)
i, j,r

LetVlrr be the contribution to the kinetic operator -if\t*f{ t*,;12. Then, for example,

1

Vxe: -,212,t12"201t)43t fi@tt*,<*'t -r)ffA,a-(xi))2. (Al8)
tji

By xi <>)7 slmmetrJ, we can replace fi with ry-. hthis way, it is clear that the coefficient of lLrn-lz in V.r6 is exactly the

same as the coeffrcient of (L,h-)z in V,s. Therefore the contribution to a putative yl(L-D2 + (LyD2l term in the Lagrangian
from a6 is given by

r@):12n12u1@)a,I ("i +yf)(e8t*,(.,r - t). (Al9)

Similarly, consider

1"vy,: -;2er)zaf;u]luynll y'("tt,a-) - 1)f (A"Ara-1x';;2. (A20)

JT

Caution: we do not have x; + y, symmetry herel However, we do have another term:

t^
vry: - Uztz">'$"tr<u>a|D 4krt",o-) - 1) I {A,A,,a-{*'))'. (Azt)

lt

Then, the flow of r,, is given by

lrc,r(b) : K,y(b) - K*y :"2(2nS2a^?fipla"D r?k*,",r-,) - t) + x + y. (A22)

6Our deflnition of the beta function is negative of the standard one because by some historical quirk the usual definition of the beta function
flows towards the UV.
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Lastly, we consider V^ or Vrr:

APPENDIX B: TAKING NOTE OF THE DISCRETENESS
OF THE GRADIENTS SET BY THE LATTICE SCALE

In this Appendix, we revisit the simplification of Eq. (7).

As we show, this simplification is quantitatively invalid, be-
cause Eq. (6) is not valid for the fractonic momentum shells
that are integrated over in this work. If we do not perform this
simplification, the momentum shell is given by

v*, - - ) zo, l' ol,olfula?l fi 1r'["','* 
) - 1) I (A:/r- (x' D'z,

lt

vyy: -)reo>'otrojfu>ail y?(,'h'<. ) - 1)I (Ail,-c'))'z.
Jt

(A23)

(A24)

From Vrr, we can obtain the coefficient ur(b) of the nonfractonic operator:

ux(b) :2(2r:12a?-fip7a"f rl(ert"rt. ) - 1). (A2s)

Again, we pass to dimensionless variables as in Eq. (16) so

that Eq. (B4) turns into

qsinz(iv p12)-3Pct-lq:';; Jn-n,uo'F

(B1)

Note that in Eq. (Bl) the ft momentum is still expanded,
This is because for this direction there is no concern for the
expansion being inaccurate, as the phenomenon of UV/IR
mixing is restricted to the pq plane in this model. Then, the
simple Gaussian correlator in momentum space, which one

needs for the renormalization group analysis, is modified by

Uo(P)./o(ot) : --=] ^ -- 1
rc(P2q2 + kz) K

,.+.@z)
16 sin2 (a., p/21 sin2 taygl\ r tZ________@Q--rt'

Similarly

^, _ 16sin2 (a"pl2)sinz(a,qf21 , ,.,,. 
--T,. aia;

a?oz I
(,f'(p),f'(0)) - 

-+ 
-) -K\p'q'+ K't K

t6 (n F/2) (nd12) I rci.z
(Bs)

It is difficult to evaluate Eq. (B5) analytically because we have

to take note of the momentum shell given in Eq. (Bl) and

we therefore simplify in two ways. Firstly, as in Eq. (27), we
consider a momentum shell along the pq pIane, so that we can

immediately take the continuum limit for the z direction and

integrate out ft. Equation (B5) then reduces to

'" [ ']Pdl--!9!4 (86)g(-rr)(o):TJn_n/tt 
e

Secondly, like in Fig. 3, we simplify the shell by on the pq
plane by turning it into straight lines tangent to the I direction.
We then find

.2nft8
8;,)(0) * ; J _,dFlsin(trFl2)lln(r) 

: -tn(b). (87)

From Eqs. (87) it follows that the flow of cv, is given by

oa,(b)l : r(r_ ?)o,. (Bs)
3ln(b)lr:, \ r/ ^

So one learns that the critical point for this discretized com-
putation is given by

r[t) :2. (B9)

APPENDIX C: RENORMALIZATION OF THE SIMPLE
COSINE TERM

For the simple cosine term, which is when / - 0 and /s :
h,wehave

stooi(o) : li,m{2r)2 {h@)h(x')l : (2n)2 I #
1

rc[(pq)z + k2)
(c1)

In dimensionless variables, the expression of the integral ac-

tually remains the same, just with tildes on the variables:

aE aL

F;@

4 sinz (a*p 12)

a?sz I
(./"(p)./,(0)) : --------!-' --s -\., ) \, lr ! \ ,, rc(p:2qz + kz) K

4sinz(auq l2) _" 16sin2(a,nl2)sinzlatO12) * p2
a;d;

(B3a)

(B3b)

We are most interested in finding the quantitative effect
of the discretization on the critical value for the coefficient
r above which a transition takes place, For this, we use
Eq. (B3a) to find

(2n)2
rfd3B

sloo)(o): 2r* J 7*Va *T,dtp 4sin2(a,p/2)

Q")t Yit-'tl2it!-A..______-44-
(B4)

X

K In-n,u
I,

dp

F

(c2)

sf*,rol
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Again, the subscript >0 on the integral means restrict to the
positive octant or quadrant. In radial coordinates,

and the logarithmic derivative at b : I evaluates to7

dao(b)l :lr- 1'n f ?).l", (cs)
tttn(b)lu=,- l' r "'\l/l*"'

The key here is that, since I << t, it follows that as decays

very quickly under the RG flow towards the infrared. Thus,

around the fiactonic fixed point, this operator is irrelevant.

This operator does not destabilize the fractonic phase.

Tunlike in relativistic theories in which multilogs appear only at

two and higher loops, here a multilog has appeared already at one

loop. We treat this in precisely the same way as in nonrelativistic

quantum critical systems at finite density [35,36]. Notably, the ex-

ample of fermions near a Fermi surface interacting with a gapless

boson studied therein also exhibits UV/IR mixing.

s[o,ro; : * Ioo,,+ |,','", ," (i;|a)

'" (;)
:? 

T:,

:'rl^(?).:

dL

i"

ln(b ln(b). (C3)

Therefore the renormalized fugacity is

all(b) - qu 6z- l tr"tf,)+ l t"<r'lt, (c4)
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