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Abstract. Recently, in [1], we presented the first combined non-parametric reconstruction of
the three time-dependent functions that capture departures from the standard cosmological
model, ΛCDM, in the expansion history and gravitational effects on matter and light from
the currently available combination of the background and large scale structure data. The
reconstruction was performed with and without a theory-informed prior, built on the general
Horndeski class of scalar-tensor theories, that correlates the three functions. In this work,
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we perform a decomposition of the prior and posterior covariances of the three functions to
determine the structure of the modes that are constrained by the data relative to the Horn-
deski prior. We find that the combination of all data can constrain 15 combined eigenmodes
of the three functions with respect to the prior. We examine and interpret their features in
view of the well-known tensions between datasets within the ΛCDM model. We also assess
the bias introduced by the simplistic parameterizations commonly used in the literature for
constraining deviations from GR on cosmological scales.

Keywords: cosmological parameters from CMBR, cosmological perturbation theory, dark
energy experiments, modified gravity
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1 Introduction

Rapidly improving data from cosmological surveys is opening new opportunities for testing
the pillars of the Λ Cold Dark Matter (ΛCDM) model. Along with probing the nature of dark
matter and dark energy (DE), it is becoming possible to examine the foundational principles
of General Relativity (GR), such as the universal geometric nature of gravity and the precise
way in which matter distorts spacetime. Since the discovery of cosmic acceleration [2, 3], sig-
nificant effort went into constraining the dynamics of DE, primarily by looking for deviations
of its equation of state from wΛ = −1. The past decade and a half also witnessed the emer-
gence and maturing of the field of cosmological tests of GR, which led to identifying broad
classes of potentially interesting modified gravity (MG) theories (see [4–8] for reviews) and
developing phenomenological frameworks for non-model-specific tests [9–18] along with their
numerical implementations [19–23]. Testing gravity and the physics of DE is one of the pri-
mary science goals of the ongoing and upcoming surveys, such as DESI [24], Euclid [25] and
Vera Rubin Observatory [26], which will take these tests to qualitatively higher levels [27–30].

Until recently, the majority of phenomenological tests of DE dynamics and departures
from GR were conducted independently from each other. Namely, GR would be assumed
when constraining the evolution of w with redshift z, or w = −1 would be assumed when
constraining the MG effects in the growth of structure, parameterized, e.g., by phenomeno-
logical functions µ(k, z) and Σ(k, z) [31]. In addition, in most cases, fixed simple parametric
forms were used for w(z), µ(z) and Σ(z) or their equivalents. Such a simplification may be
justified when the constraining power of the data is limited — e.g. measurements of the cos-
mic microwave background (CMB) temperature and polarization anisotropies only constrain
a weighted average of w(z), hence it makes sense to fit a constant w to CMB alone. How-
ever, measurements of the baryon acoustic oscillations (BAO), supernovae (SN) magnitudes,
as well as the galaxy counts and galaxy shear surveys, offer measures of the background
expansion and the growth of large scale structure at multiple redshifts. Using simple param-
eterizations when analyzing these datasets is likely to bias the outcome and result in a loss
of potentially important information. In addition, in any specific MG theory, the dynamics
of the effective DE, which impacts the background expansion, is correlated with the changes
in the growth of perturbations. Thus, rather than assuming that only one of the two is
modified, it makes more physical sense to vary them simultaneously when performing fits to
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the data. As was demonstrated in [1], current datasets already allow us to simultaneously
reconstruct the effective DE density and the two modified growth functions using flexible
non-parametric forms.

There are several approaches to the non-parametric reconstruction of cosmological func-
tions such as w(z). Popular methods include binning the functions at several redshifts, using
Gaussian Processes (GP) [32–34], and the correlated prior approach [35–38]. A simple bin-
ning, with the function assumed to be constant and independent in each bin, or with a smooth
interpolation between the redshift nodes, makes the results dependent on an unphysical im-
plicit smoothness prior. Also, one is typically restricted in the number of bins they can use
by the MCMC convergence times. Using a small number of bins might, in turn, bias the
reconstruction. The GP method is not restricted in the number of bins, introducing instead
a Gaussian prior that correlates the function at neighbouring redshifts. However, the choice
of the GP prior is essentially phenomenological (without any relation to a physical theory)
and the parameters of the prior are typically marginalized over, thus obscuring the Bayesian
interpretation of the resultant reconstruction. The correlated prior approach also introduces
a correlation between the neighboring redshifts but, unlike the GP method, it uses a fixed
prior covariance matrix which is meant to be derived from theory. Having an explicit prior
makes it possible to clearly state how much the data improves on the prior, and to compute
the Bayesian evidence that can be compared to that of the ΛCDM model.

In this work, we examine the joint reconstruction of the redshift dependence of the
effective DE fractional energy density ΩX(z) and the phenomenological functions µ and
Σ, which parameterize possible modifications of the Poisson equation relating the matter
density contrast to the Newtonian and the lensing potentials, respectively, performed from
the combination of the current CMB, BAO, Redshift Space Distortion (RSD), SN, galaxy
counts and galaxy weak lensing data in [1]. Since the phenomenological parameterization
by µ and Σ is valid only for linear perturbations, such an analysis is restricted to linear
scales. The reconstruction was performed with and without using a prior covariance of the
three functions derived from the Hordenski class of theories [39]. It was shown that the
theoretical prior has a significant smoothing effect on the allowed variation of these functions
with redshift. We perform a decomposition in Covariant Principal Components [40] of the
prior and posterior covariances of the three functions to determine the number of modes that
are constrained by the data relative to the Horndeski prior, and find that current data can
constraint 15 independent degrees of freedom (DOF) (combined eigenmodes) of the three
functions relative to the prior. This means one can learn much more from the current data
than one would if using simple ad hoc parametric forms. We also asses the bias introduced
by using some of the commonly used parametric forms.

This paper is organized as follows. In section 2 we briefly review the phenomenological
functions ΩX , µ and Σ and the reconstruction performed in [1]. We then present the CPCA
decomposition and discuss the significance of features in section 3. The analysis of the bias
introduced by simplistic parametric forms is presented in section 4, followed by a concluding
summary in section 5.

2 Reconstructed gravity

2.1 Model

The reconstruction of [1] concerned the background expansions and linear scalar perturba-
tions to the Friedmann-Lemaitre-Roberston-Walker (FLRW) metric. Working in the Newto-
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nian gauge, the line-element reads:
ds2 = −(1 + 2ψ)dt2 + a2(1− 2φ)dx2 , (2.1)

where a is the scale factor, t is the cosmic time, and ψ and φ are the scalar perturbations to
the metric. The dynamics of the expansion is set by the Friedmann equation,

H2

H2
0

= Ωr(1 + z)4 + Ωm(1 + z)3 + ΩX(z) , (2.2)

where H = d ln a/dt is the Hubble parameter, H0 is its current value, z = 1/a − 1 is
the redshift, Ωr and Ωm are the fractional energy densities of radiation and matter. The
time evolution of the fractional energy density of dark energy is described by ΩX(z) with
ΩDE ≡ ΩX(z = 0), the fractional energy density of dark energy today. We assume spatial
flatness, hence Ωr + Ωm + ΩDE = 1. It is worth noting that the DE component is defined
quite broadly through this equation, to capture not only a dynamical DE field, but also, e.g.,
modifications to gravity or non-minimal interactions with matter. In other words, ΩX(z)
represents an effective DE fluid that encodes all contributions to the Friedmann equation
different from radiation and minimally coupled matter, with ΩX(z) = ΩDE corresponding
to the cosmological constant Λ. As emphasized in [38], using the DE equation of state to
describe such an effective fluid could potentially bias the reconstruction because it prohibits
the effective DE density from changing its sign, which is not uncommon in theories with new
interactions. This is the reason for choosing to work with ΩX(z) instead of w(z).

The linearly perturbed Einstein equations provide a set of equations relating metric
perturbations to the perturbations in the energy-momentum tensor of the matter fields. As
shown in [9–11], the phenomenology of linear perturbations in many extensions of ΛCDM
can be effectively captured by introducing two functions of time and scale, defined through
the Poisson equations in Fourier space for the Newtonian potential ψ and the lensing (Weyl)
potential φ+ ψ, as

k2ψ = −4πGµ(a, k)a2 [ρ∆ + 3(ρ+ P )σ] , (2.3)
k2(φ+ ψ) = −4πGΣ(a, k)a2 [2ρ∆ + 3(ρ+ P )σ] , (2.4)

where k is the Fourier number, G is the gravitational constant, ρ is the background matter
density, and ∆ is the comoving density contrast, ∆ ≡ δ + 3aHv/k, where δ ≡ δρ/ρ is the
density contrast in the Newtonian gauge and v is the irrotational component of the peculiar
velocity. The anisotropic stress σ due to relativistic components is included for consistency
but is negligible during matter and dark energy dominated epochs. Since Σ directly controls
the Weyl potential, it is best constrained by weak lensing (WL) measurements. On the other
hand, µ sets the Newtonian potential, which determines the peculiar velocities of galaxies.
Thus, combining the WL data with RSD allows us to effectively break the degeneracy between
the two functions [9, 11, 41].

In Horndeski models, µ and Σ are ratios of second order polynomials in scale, k, as
shown in [42]. The k-dependence is set by the Compton wavelength of the scalar field.
For scalar-tensor theories to be viable, given Solar System constraints, they must include a
screening mechanism that restores GR at small scales. There are two broad types of screening
mechanisms: Vainshtein and Chameleon [6, 43–46]. In the former case the Compton length
tends to be comparable to the Hubble scale, while in the latter case it is usually below 1Mpc.
In both cases, the scale-dependence is outside the range probed by large scale structure
surveys in the linear regime, as confirmed numerically in [39]. Hence we do not consider the
k-dependence of µ and Σ, focusing solely on their evolution with redshift.
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2.2 Reconstruction

A joint reconstruction of ΩX(a), µ(a) and Σ(a) from the currently available data was recently
performed in [1]. Here we briefly review their method. The three functions were represented
by their values at 11 discrete values (nodes) of a, with a cubic spline used to interpolate
between them. From the 11 nodes, 10 values are distributed uniformly in the interval a ∈
[1, 0.25] (corresponding to z ∈ [0, 3]) with another one at a = 0.2 (z = 4). The functions were
made to approach their ΛCDM values at higher redshifts, although studying earlier times
deviations from GR is generally possible within the same framework [47]. The cubic spline
introduces correlations between the nodes shown in Panel (a) of figure 1.

In addition to performing the reconstruction of ΩX(a), µ(a) and Σ(a) from the data
alone, we used the method of [35, 48] to add the Horndeski prior that correlates the nodes
{ΩXi, µi,Σi} ≡ f . It is introduced as a Gaussian prior

Pprior ∝ exp[−(f − ffid)C−1(f − ffid)T ] , (2.5)

where C is the correlation matrix derived from the joint covariance of the three functions
obtained in [39]. While we have, from [39], the prior mean values, we opt not to use them
as our fiducial values ffid in order to avoid biasing the outcome of the reconstruction. ffid is
determined during sampling using the so-called “running average” method [35]. The theory
prior acts much like a Wiener filter, discouraging (but not completely prohibiting) abrupt
variations of the functions. Panel (b) of figure 1 shows the Horndeski correlation prior used
in this work. One can clearly see that the correlation “length” is much longer than that of
the implicit prior due to the cubic spline shown in Panel (a). This ensures that the prior
aided reconstruction is independent of the binning scheme.

The reconstruction was performed using an appropriately modified version of
MGCosmoMC1 [19, 20, 49], based on CosmoMC2 [50], to sample the parameter space, which,
in addition to the node parameters ΩXi, µi, Σi introduced earlier, includes the usual cos-
mological parameters: Ωbh

2, Ωch
2, θ?, τ , As, ns, N , where Ωbh

2 and Ωch
2 are the physical

densities of baryons and CDM, θ? is the angular size of the sound horizon at the decoupling
epoch, τ is the reionization optical depth, As and ns are the amplitude and the spectral index
of primordial fluctuations, and N collectively denotes the nuisance parameters that appear
in various data likelihoods.

The following datasets were considered:

• “Planck”: the 2018 release of the CMB temperature, polarization and the reconstructed
CMB weak lensing spectra [51];

• “BAO”: the eBOSS DR16 BAO compilation from [52] that includes measurements
at multiple redshifts from the samples of Luminous Red Galaxies (LRGs), Emission
Line Galaxies (ELGs), clustering quasars (QSOs), and the Lyman-α forest [53–56],
along with the SDSS DR7 MGS [57] data. We also add the BAO measurement from
6dF [58]. This compilation covers the BAO measurements at 0.07 < z < 3.5. Note
that the BAO data considered here are the “tomographic” version of the DR12 BOSS
BAO at 0.20 < z < 0.75 [59] (not the “consensus” version using effective redshifts
presented in [52]).

1https://github.com/sfu-cosmo/MGCosmoMC.
2http://cosmologist.info/cosmomc/.
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Figure 1. (a) The implicit correlation prior, as a function of redshift, induced by the cubic spline
on the functions ΩX , µ and Σ. All functions have the same implicit prior independently of each
other. (b) The Horndeski prior correlation. The correlation between each function is much stronger
than that introduced by the cubic spline. In the Horndeski prior we also see a strong correlation
between µ and Σ. (c) The correlation obtained from our “Baseline” data posterior covariance of
the nodes, i.e. that determined by the data and the implicit prior correlation in Panel (a). (d) The
correlation corresponding to the posterior covariance derived from the Baseline data with the help
of the Horndeski prior in Panel (b). (e)/(f) same as Panels (c)/(d) for the “Baseline+LSS” data
combination.
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• “SN”: the Pantheon SN sample at 0.01 < z < 2.3 [60];

• “RSD”: the eBOSS joint measurement of BAO and RSD for LRGs, ELGs and QSOs [55,
61–63], using it instead of the eBOSS BAO-only measurement. For LRGs, it combines
eBOSS LRGs and BOSS CMASS galaxies spanning the redshift range 0.6 < z < 1, at
an effective redshift of zeff = 0.698. QSOs cover 0.8 < z < 2.2 with an effective redshift
of zeff = 1.48, while ELGs cover 0.6 < z < 1.1 with an effective redshift of zeff = 0.845.
In addition, we add BAO-only measurements from 6dF and MGS.

• “DES”: the Dark Energy Survey Year 1 measurements of the angular two-point correla-
tion functions of galaxy clustering, cosmic shear and galaxy-galaxy lensing with source
galaxies at 0.2 < z < 1.3 [64]; since our formalism has no nonlinear prescription for
structure formation, the angular separations probing the nonlinear scales were removed
using the “aggressive” cut option of MGCAMB described in [49], which uses the method
introduced in [64, 65].

The baseline dataset combination (labelled “Baseline”) includes Planck, BAO and SN. In
addition, we also considered Baseline+RSD+DES. Note that, when RSD is included in the
combination, the BAO data do not coincide with the one used in Baseline for the eBOSS LRGs
BAO measurement, as we replaced it with the joint RSD-BAO measurement. For brevity,
RSD+DES is referred to as simply “LSS”. We do not include the SH0ES determination of the
intrinsic SN type Ia brightness magnitude as obtained by [66] in our analysis. The impact
of the inclusion of this measurement and its implication for the Hubble constant tension can
be found in [1].

Figure 2 shows the functions ΩX(z), µ(z) and Σ(z) reconstructed from the Baseline
and Baseline+LSS data combinations with and without the Horndeski correlation prior.
One can see that the correlation prior smooths out the oscillations seen in the data-only
reconstructions of all three functions. These oscillations are dependent on the number of
nodes and affected by the implicit cubic-spline-induced correlation shown in figure 1(a). The
impact of the implicit prior is apparent for the data-only case shown in figure 1(c), where the
pattern of the rings evidently has the same frequency as the features in figure 1(a). One can
also see from figure 1(c) that data (the Baseline dataset in this case) introduces correlations
among the three functions, with Σ being more strongly correlated with ΩX than µ. The
data also introduces correlations between µ and Σ. The artifacts of the implicit prior are not
present when data is combined with the Horndeski prior, as shown in figure 1(d). The theory
prior suppresses correlations introduced by the cubic spline, while retaining the correlation
introduced by the data. This shows the important role played by the theory prior in the
reconstruction, as it prevents an overfitting of the data by favouring the reconstruction of
only those features that are consistent with the theory. Figure 1(e) and figure 1(f) show the
effect of including the LSS measurement. It mainly affects the cross-correlations among the
three functions as well as the correlation of µ.

3 Significance of the detection and the CPCA decomposition

To gain further insight into the features and the number of DOF of the three functions
constrained by the data, we use the Covariant Principal Components Analysis (CPCA), as
discussed in [40]. This decomposes the posterior covariance in units of the prior covariance
to ensure the independence of results from the specific parametrization that is used.
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Figure 2. Reconstruction of ΩX(z) (top panels), µ(z) (middle panels) and Σ(z) (bottom panels)
from the Baseline (red lines) and Baseline+LSS (blue lines) data, without (left panels) and with the
Horndeski correlation prior (right panels). The shaded regions show the 68% confidence levels. The
two vertical lines show the redshifts of equality between the matter and DE densities, zeq, and the
beginning of cosmic acceleration, zacc, in the best fit ΛCDM model.

More specifically we decompose the prior CΠ and posterior Cp covariances as

CΠΨ = CpΨΛ, (3.1)

where the matrix Ψ has as columns the CPC eigenmodes of the posterior with respect to
the prior, and the matrix Λ is diagonal and quantifies the improvement of the posterior with
respect to the prior. While the CPC modes are not orthonormal in the Euclidean sense, they
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are orthogonal in the metrics induced by the prior and posterior covariances:

ΨTCΠΨ = Λ
ΨTCpΨ = I, (3.2)

so that parameters projected along the CPC modes are statistically independent for both the
prior and the posterior.

The posterior Fisher matrix can also be decomposed into the same CPC modes:

C−1
p = ΨΨT , (3.3)

so that we can easily compute the Signal to Noise Ratio (SNR) as a sum of the SNR in each
of the independent CPC modes:

SNR2 ≡ (θ − θ0)TC−1
p (θ − θ0) =

∑
a

(ΨT
a (θ − θ0))2 (3.4)

where θ0 is the reference vector for the SNR calculation and the index a spans the CPC
modes.

Following [67], we can also define the number of parameters in our reconstruction that
are constrained relative to the prior as

Neff = N − Tr(C−1
Π Cp), (3.5)

where N is the number of nominal parameters. This is a coarse measure of the constraining
ability of a measurement, because it only counts how many parameters are appreciably
constrained, rather that quantifying how well they are constrained. Along with this, we
introduce a quantitative measure of the constraining power, T , defined as the trace of the
“improvement” matrix Λ,

T = Tr(Λ). (3.6)

Figure 3 shows the eigenvalues of Λ ordered from highest to lowest, thus corresponding to
the best-to-worst constrained eigenmodes Ψ. They can be written as λi = σ2

Π,i/σ
2
p,i−1, where

σ2
Π,i and σ2

p,i are the eigenvalues of the prior and the posterior covariances, so that a mode
can be considered “constrained” relative to the prior when λi & 1. We show the eigenvalues
of the “combined” modes, corresponding to the joint covariance of all three functions, as well
as those for the individual functions, after marginalizing over the other two. The former
tells us how many independent DOF (roughly) quantifying departures from ΛCDM can be
measured without asking what function they correspond to. The latter quantify the ability
of data to constrain the specific functions. One can see that the number of constrained
combined modes is quite large, around 15, and that the top highest eigenvalues are the same
as those for ΩX that probes the background expansion. Also, it is clear that Σ is much better
constrained than µ.

Interestingly, the number of constrained modes does not change appreciably with the
inclusion of the LSS data. This is, in part, because our Neff is only a coarse measurement of
improvement. Also, since we have cut the LSS data to exclude nonlinear scales, the CMB and
LSS are probing a similar range of scales. Hence, most of the modes that can be constrained
on linear scales are already constrained, to some extent, by the Baseline data. The addition
of the LSS data, however, makes a notable difference in how well the individual modes of µ
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Figure 3. The eigenvalues of the improvement matrix Λ computed from the posterior and the prior
covariances of the three functions jointly and individually.

ΩX µ Σ Combined
Baseline Neff 5.6 1.7 7.6 14.9

Baseline+LSS Neff 5.6 2.0 8.3 15.3
Baseline T 1834.4 22.7 141.7 2603.6

Baseline+LSS T 1816.8 40.3 170.3 2755.6

Table 1. The number of well-constrained eigenmodes of Λ, Neff , for each function and for the three
combined, along with the trace, T = Tr(Λ), that quantifies the net constraining power of the data.

and Σ are constrained. As one can see from table 1, the trace T is increased by a factor of
∼2 for µ and by 20% for Σ. This illustrates that combining the RSD data and WL helps to
break the degeneracy between µ and Σ.

Further insight can be gained by considering the shapes of the best constrained eigen-
modes Ψ when plotted as functions of redshift. They can be interpreted as the window
functions representing sensitivity of the data to the redshift evolution of ΩX , µ and Σ. As
one can see from figure 4, the modes derived from Baseline and Baseline+LSS appear rather
similar. For ΩX , in particular, the change is difficult to detect by eye. This is because the
LSS constraint on the expansion history is much weaker than that of Baseline. The redshifts
covered by the top three modes of ΩX , in the order from best to worst constrained, are low-z,
high-z, and in between.

The two constrained eigenmodes of µ can be identified with the overall growth of struc-
ture and the ISW effect. In both cases, the impact of µ is an integrated effect, i.e. via the
change of the gravitational coupling in the differential equation that determines the growth
of density perturbations. Hence, both modes have a broad support in redshift. Interestingly,
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Figure 4. The shapes of the best constrained individual eigenmodes of ΩX , µ and Σ plotted vs.
redshift for the Baseline (left) and Baseline+LSS (right). The amplitude and the overall sign of
modes are arbitrary and are rescaled in the figure so that the maximum of each mode is one. The
eigenmodes can be interpreted as the window functions representing sensitivity of the data to the
redshift evolution of the three functions.

the addition of LSS flips the two modes — the “ISW” mode, best constrained by Baseline,
becomes the second best, since LSS includes additional measurements of WL and RSD.

The top two modes of Σ mirror those of µ, but with different pivot points, since the
impact of Σ on the Weyl potential is direct, not integrated like in the case of µ. The higher
order modes match quite well the lensing kernels that contribute to the lensing of the CMB
temperature and polarization anisotropies (see figure 11 of [68]). With the addition of LSS,
the CMB kernels that correspond to the large scale CMB lensing, i.e. occurring at lower
redshifts, become mixed with the galaxy lensing kernels of DES, but the first few best modes
are largely unchanged in shape. As mentioned earlier, the ability to constrain the modes of
µ and Σ increases appreciably with the addition of LSS.
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Figure 5. The SNR of deviations from ΛCDM for each individual constrained mode, for Baseline
and Baseline+LSS.

Finally, figure 5 shows the SNR of deviations from ΛCDM for each mode.
There are several well-known tensions in ΛCDM. The first is the disagreement in the

galaxy clustering amplitude, quantified by the parameter S8, predicted by the best fit to
CMB and that measured by galaxy weak lensing surveys. In addition, the CMB temperature
anisotropy measured by Planck appears to be more affected by weak gravitational lensing
than expected in ΛCDM [69], known as the AL anomaly. Finally, the temperature (TT)
power spectrum at low multipoles is lower than the ΛCDM prediction.

In the case of ΩX , for both Baseline and Baseline+LSS, the most anomalous modes are
the first and the fifth, which have support at low and high redshifts. These are representative
of the low TT power at low multipoles and the AL anomaly, respectively. The most anomalous
mode of µ is also the one that is best constrained, corresponding to the net growth of the
large scale structure and, therefore, most affected by the S8 tension. Essentially the same
mode is also the most anomalous for Σ, where it is the second best constrained. In all cases,
the significance of detection is increased with the addition of the LSS.
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4 Bias introduced by simple parametrizations

It is interesting to check how well our reconstructed functions can be fit by simple parame-
terizations. For µ and Σ, we consider the following forms:

1. constant µ and Σ, although this parametrization is not commonly used;

2. the “DE fraction” parametrization used by DES [70] and Planck [65], where the time
dependence of µ and Σ is determined to the fraction of the total energy density in
DE, i.e.

µ,Σ = 1 + αµ,ΣρDE(a)/ρtot(a) ;

3. the “linear model” used by Planck [65], where

µ,Σ = 1 + αµ,Σ + βµ,Σ(1− a) ;

For the effective DE evolution, we consider two commonly used parametrization DE equation
of state:

1. constant w;

2. the Chevallier-Polarski-Linder (CPL) parametrization [71, 72]

w(a) = w0 + wa(1− a).

We then take the reconstruction MCMC chains and, sample by sample, project them on the
above parameterizations.

As mentioned earlier, the projection of ΩX(a) onto w(a) is not always well-defined, as
the effective DE density can be negative in MG theories and in particular MCMC samples
in our reconstruction. In fact, we found that such occurrences were too frequent at z > 1 in
reconstructions without the Horndeski prior, and at z > 2 when using the prior. Thus, in
the case of w, we restrict our projections to z ∈ [0, 1] and [0, 2], respectively.

To quantify the bias introduced by simple parameterizations, we compute the “Bias”,
defined as

Bias = dTC−1
p d (4.1)

where d is the vector of differences between the reconstructed values of the nodes of a given
function, and the values given by the best fit simple parameterization. Bias is bounded from
above by the square of the SNR. The closer the bias is to its upper bound, the less adequate
is the parametrization. Table 2 shows the two values for the parameterizations listed above.
As one can see, both the constant w, and the CPL forms are a very poor representation of
DE evolution if no theory prior is used. However, with the Horndeski prior, they perform
quite well, as ΩX(a) in this case was quite consistent with a constant.

In the case of µ and Σ, most parameterizations perform quite poorly, with the exception
of the linear model of µ(a). The DE fraction parametrization, which is one of the most popular
ones in the literature, performs the worst. To visualize the bias, we plot the differences
between the reconstructed µ and Σ and the best fit DE fraction parameterizations in figure 6.
Figure 6 also shows the difference plot for w(z) in the case of the CPL parametrization.
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SNR2 Bias
no theory prior
w constant 4.7 4.6

w = w0 + wa(1− a) 4.7 4.6
µ constant 3.1 2.7

µ = 1 + αΩDE 3.1 2.7
µ = 1 + α+ β(1− a) 3.1 0.7

Σ constant 6.2 4.3
Σ = 1 + αΩDE 6.2 4.4

Σ = 1 + α+ β(1− a) 6.2 3.0
with Horndeski prior

w constant 1.0 1.0
w = w0 + wa(1− a) 1.0 1.0

µ constant 2.5 1.9
µ = 1 + αΩDE 2.5 2.5

µ = 1 + α+ β(1− a) 2.5 0.4
Σ constant 5.3 2.4

Σ = 1 + αΩDE 5.3 4.3
Σ = 1 + α+ β(1− a) 5.3 1.8

Table 2. Bias introduced by using a simple parameterization for the Baseline+LSS dataset, as defined
by eq. (4.1) and the SNR2 for the corresponding reconstruction, which is the upper bound of Bias.
The closer the two values are, the worse is the ability of the parameterization to represent the function.
For w, to avoid singularities caused by negative effective DE densities, the comparison was restricted
to z ∈ [0, 1] and [0, 2] for the cases without and with the Horndeski prior, respectively.

5 Summary

In this paper, we examined the joint reconstruction of three time-dependent functions that
capture departures from the standard cosmological model, ΛCDM, at the level of the ex-
pansion history as well as gravitational effects on matter and light on linear scales. The
background expansion is described in terms of the effective dark energy fractional energy
density ΩX(z), while gravitation effects in the large scale structure are described by µ(z)
and Σ(z), which parametrise the relation of the Newton potential and the lensing potential
to the density contrast, respectively. The reconstruction was performed with and without
a theoretical prior derived from the Horndeski theory, both for a Baseline dataset (Planck,
BAO and SN) and an extended one including DES and RSD. Without the Horndeski prior,
the reconstruction is affected by an implicit prior imposed by the redshift binning and is
prone to high frequency oscillations that are poorly constrained by the data. The theoretical
prior successfully suppressed oscillations in the reconstructed functions. All reconstructed
functions are consistent with the GR predictions within 2–3σ.

Using the Covariant Principal Component (CPC) analysis of the prior and posterior
covariances, we determined the number of modes that are constrained by the data relative to
the Horndeski prior. Function µ is the least constrained, with only 2 such modes, while 8 and
6 modes are constrained for Σ and ΩX , respectively. We examined the redshift dependence
of the eigenmodes, identifying the features in the data that determines them, and quanti-
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Figure 6. Left panel: the reconstructed equation of state, w(z) (top panel) and the difference between
the reconstructed w(z) and the best fit CPL parametrization (bottom panel) with and without using
the Horndeski prior. Only z ∈ [0, 1] are shown due to the presence of singularities at higher z caused
by negative values of the effective DE density. Right panel: the difference between our reconstruction
of µ and Σ from Baseline+LSS with and without the Horndeski prior and the corresponding best fit
DE fraction parametrization used by DES and Planck. The corresponding Bias values are given in
table 2.

fied their contributions to deviations from ΛCDM. When looking for any departure from
ΛCDM, without identifying the function responsible for it, we find that data can constrains
15 combined eigenmodes of µ, Σ and ΩX .

Overall, our work shows that current data allow for an informative, data-driven, re-
construction of the cosmological model, allowing us to constrain much more than a few
parameters of the ad hoc simple parametrizations that, as we have demonstrated, would lead
to significantly biased results.
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