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Increasing availability of real-world data (RWD) generated from
patient care enables the generation of evidence to inform clini-
cal decisions for subpopulations of patients and perhaps even
individuals. There is growing opportunity to identify important
heterogeneity of treatment effects (HTE) in these subgroups.
Thus, HTE is relevant to all with interest in patients' responses
to interventions, including regulators who must make decisions
about products when signals of harms arise postapproval and
payers who make coverage decisions based on expected net
benefit to their beneficiaries. Prior work discussed HTE in
randomized studies. Here, we address methodological consider-
ations when investigating HTE in observational studies. We pro-
pose 4 primary goals of HTE analyses and the corresponding

approaches in the context of RWD: to confirm subgroup effects,
to describe the magnitude of HTE, to discover clinically impor-
tant subgroups, and to predict individual effects. We discuss
other possible goals including exploring prognostic score– and
propensity score–based treatment effects, and testing the trans-
portability of trial results to populations different from trial partic-
ipants. Finally, we outline methodological needs for enhancing
real-world HTE analysis.
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T he widespread availability of rich, real-world data
(RWD) generated from patient care provides increased

opportunities to generate evidence to inform clinical
decisions for subpopulations of patients, and perhaps
even for individuals (1, 2). Heterogeneity of treatment
effects (HTE) describes how treatment effect varies
across patients. Although there is considerable litera-
ture on HTE among patients enrolled in randomized
clinical trials (RCTs) (3–10), the assessment of HTE in
RWD is a newer challenge.

We first consider RCTs. In trials, the treatment effect
is most commonly reported as an overall treatment effect,
a comparison of the average response between 2 treat-
ment groups; RCTs often report estimates for patient
subgroups that are defined by single characteristics,
sequentially, such as men versus women and older versus
younger patients. A recent advance in reporting HTE in
RCTs came with the Predictive Approaches to Treatment
effect Heterogeneity (PATH) statement, published in 2020
(3), which provided recommendations on 2 approaches
with trial data. One uses a multivariable model to predict
the risk for the outcome of interest for the trial participants,
with treatment effects reported within strata of prognostic
risk. The second approach estimates the treatment effect
among trial participants with models that include interac-
tions between treatment and baseline covariates; this sup-
ports estimation of treatment effects that vary by patient
characteristics.

Another important development is guidance from the
Instrument to assess the Credibility of Effect Modification
Analyses (ICEMAN) report (7), which assists in interpreta-
tion of treatment effect differences in RCTs across subpo-
pulations, that is, when there is effect modification. The
core questions are whether prior evidence supports effect
modification, was the direction of the effect correctly
hypothesized a priori, did the test for interaction exclude a
chance finding, and did investigators test only a few effect
modifiers and avoid arbitrary cut points of the effect modi-
fier? Both PATH and ICEMAN are important advances for

appropriate interpretation of HTE in RCTs; it is unclear
whether these recommendations are sufficient for observatio-
nal studies using RWD, where treatments are not randomly
assigned and there may be greater variation in treatment
response than in RCTs.

When designing an observational study, investigators
make similar decisions as when designing a trial: they
specify eligibility to define a population at a time zero,
choose an exposure and comparator of interest, assess
the outcomes after time zero, and analyze all persons in
the population (11, 12). Thus, PATH and ICEMAN recom-
mendations should be relevant. However, the greater het-
erogeneity among real-world patients compared with trial
participants creates opportunities to generate meaningful
evidence for more personalized practice decisions. Also,
RWD introduces the challenge of the treatment effect
being confounded with the treatment uptake mechanism
(that is, confounding by indication). Thus, the analysis of
RWD presents both opportunities and challenges not
addressed in PATH and ICEMAN.

WHAT ARE THE PRIMARY SOURCES OF HTE?
By definition, HTE is the nonrandom variability in the

direction or magnitude of individual treatment effects (13)
(Appendix Table, available at Annals.org). This variability
may be due to intrinsic biological characteristics of treated
persons (genetics, clinical conditions), extrinsic environmental
factors (diet, pollution), and behaviors (adherence to treat-
ment). In addition, heterogeneity arises when there are differ-
ences in treatment access or delivery, concomitant therapies,
clinician expertise, or site features. Furthermore, patients are
treated by clinicians who are nested within hospitals nested
within health systems; each level of nesting can contribute to
variation in the observed responses to treatment.

WHAT MOTIVATES HTE ASSESSMENT?
For nearly every treatment, effects should be expected

to differ across individuals. Rarely, a drug or vaccine is
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known from preapproval trials to be exceedingly beneficial
for all subgroups of recipients (14). In most situations, how-
ever, one cannot assume the absence of HTE. One reason
that many regulatory authorities require postmarketing
research is the likelihood of treatment risks in subpopula-
tions that were not detected during premarket studies (15).
For a clinical decision, information about the net benefit is
most valuable. Net benefit that incorporates both benefits
and harms attributable to the intervention is most valuable
to clinical decision making (16, 17). Because both benefits
and harms can be heterogeneous across treated persons,
net clinical benefit can be heterogenous as well (18).

WHAT ARE THE KEY CONSIDERATIONS WHEN

USING RWD THAT MUST PROCEED BEFORE

ANY EVALUATION OF HTE?
Evaluation of HTE necessarily comes after one has

generated a valid estimate of the overall effect across all
patients. There is well-described guidance for conducting
reproducible real-world evidence studies of the effective-
ness and safety of medical therapies (19–21). Investigators
using RWD will typically make design choices that allow
assessment of the effectiveness of an intervention, which
may differ from its efficacy in a tightly controlled setting.
Investigators will choose an appropriate approach to
addressing missing data, and will address issues of selec-
tion bias when reporting results. Investigators will also
consider the risk of measurement biases, assess the suffi-
ciency of information about potential confounders, and
address potential confounding using stratification, adjust-
ment, weighting, or matching.

Yet, even if the main effect does not differ signifi-
cantly or clinically between treatment groups, investiga-
tion of HTE should still proceed. The null effect could be
due to 1 subgroup of persons responding strongly to 1
therapy and another responding strongly to the compar-
ator. Without exploring HTE, valuable information for de-
cisionmaking is missed.

WHICH EFFECT SCALE SHOULD BE USED

WHEN EVALUATING AND REPORTING HTE?
In comparative effectiveness research, there are 2 pri-

mary ways to compare outcomes across treatment groups:
a relative comparison (ratio) or an absolute comparison (dif-
ference). Whether HTE should be assessed on a relative or
on an absolute scale, depends on the purpose. An advant-
age of absolutemeasures is that the effect of the treatment
on the subgroup can be described directly; interpretation
of relative measures requires knowing the baseline risk for
the outcome of interest without treatment (22) (Figure 1).

Some have proposed that both multiplicative (relative)
and additive (absolute) interactions should be reported
(23, 24). Methodologists supported by the Patient-
Centered Outcomes Research Institute (PCORI) advised
that: 1) HTE on the additive (absolute) scale is most in-
terpretable to guide clinical decisions, as heterogeneity
reported on themultiplicative (relative) scalemay obscure the
magnitude or direction of an important interaction; 2) the
additive (absolute) scale may give clues about interactions

that are likely to be etiologic, although etiologic consider-
ations may not be relevant to patients' treatment choices;
and 3) statistical modeling need not, necessarily, be con-
ducted on the same scale as that with which results are
communicated (25). The STROBE (Strengthening the
Reporting of Observational Studies in Epidemiology)
checklist for reporting observational studies urges
that estimates of relative risk be translated to absolute
risk estimates across a meaningful time period (26).

WHAT ARE THE DIFFERENT OBJECTIVES OF

CONDUCTING HTE ANALYSES?
Any study may have several primary and secondary

objectives regarding the assessment of HTE. We strongly
encourage investigators to specify the goal in a protocol
or study plan. The text that follows presents these objec-
tives (in no essential order).

Objective 1: Confirm SubgroupHTE
When there is a signal of possible HTE in a clinical

trial—perhaps in the confirmatory trials regulators might
require for drug approval, or when passive surveillance
systems (like the U.S. Food and Drug Administration
[FDA] Adverse Event Reporting System) suggest possi-
ble harm in a subgroup—investigators should answer the
hypothesis-driven question of whether a subgroup responds
differently. A key requirement is specification of the effect
estimate that will answer the study's clinical question—the

Figure 1. Risk for myocardial infarction.
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y.o. = year old. Top. Assume a lipid-lowering drug reduces the risk for
the myocardial infarction by a relative 40%, regardless of a patient's
baseline risk, that is, no heterogeneity of treatment effects on the rela-
tive scale. Then, in older adults with a baseline risk of 50%, the absolute
risk reduction will be 20%. In middle-aged adults with a baseline risk of
25%, the absolute risk reduction will be only 10%. Bottom. If the effect of
a different lipid-lowering drug is homogeneous on an absolute scale,
meaning that the treatment will lead to the same absolute risk reduction
in all patients (15%), the relative effect will be larger for patients with a
lower baseline risk for the outcome.
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estimand. In a study focused on confirming HTE across
subgroups, the estimand is generally a subgroup-specific
treatment effect. The goal is to test whether the treatment
effect in any subgroup is different from the overall treat-
ment effect. An example is the studies that sought to con-
firm the risk for fungal infections attributable to use of
sodium–glucose cotransporter-2 inhibitors (SGLT2 inhibi-
tors) in subpopulations of treated patients. Pooled analy-
ses of phase 3 trials of canagliflozin (an SGLT2 inhibitor)
indicated an elevated risk for genital infection in the whole
treated population, however, with earlier onset in women
(27). This prompted confirmatory studies using RWD from
patients exposed to SGLT2 inhibitors to better understand
the effects in subgroups defined by sex in usual care set-
tings. A cohort study using data from Ontario demon-
strated a risk for genital infections associated with SGLT2
inhibitors, relative to dipeptidyl peptidase-4 (DPP4) inhibi-
tors, in the whole population, without important differen-
ces by sex (28). We caution, however, that the statistical
methods in that study were not as we would recommend.

Varadhan and colleagues highlight that the goal of
confirmatory HTE analysis is to rigorously test hypothe-
ses. Required elements include prespecification of sub-
groups, strong biological rationale and prior evidence to
support subgroup hypotheses, adequate power to test
subgroup hypotheses, prespecification of the analytic
plan, control of family wise type I error, and the presence
of a significant overall treatment effect (13). A distinguish-
ing feature of confirmatory analysis is that uncertainty in
the results, such as the CI surrounding the effect estimate,
can be validly interpreted.

Effect estimates from observational studies are sus-
ceptible to confounding. In addition to stratification and
model-based adjustment, investigators often implement
propensity score methods. However, the propensity score
generated in the whole population cannot be used to esti-
mate subgroup-specific treatment effects (29, 30). Rather,
one can estimate a propensity score within each prespeci-
fied subgroup for either matching or inverse probability
weighting to achieve balance and control for confounding
within the subgroups (31, 32). The size of subgroups
should be sufficiently large to enable robust estimation of
stratified propensity scores and matching. These methods
to control for confounding cannot control for imbalance
regarding unmeasured or coarsely measured covariates.

Confirming the presence or absence of HTE is also at
the core of investigating the generalizability of trial evidence
to subgroups poorly represented in the seminal RCTs (for
example, ethnic minority members who are older with
comorbid conditions). Such persons might be found in
adequate numbers in RWD to permit subgroup analyses.
In addition, replicating trial results in subgroups using RWD
frompersons like the trial participants can suggest that the
observational methods are generating valid results in the
other subgroups.

Objective 2: Describe theMagnitude andNature
of HTE

Descriptive HTE is the process of reporting on treat-
ment effects, and their CIs, in prespecified subgroups but
without testing hypotheses about the differences between

subgroups or about differences between subgroup
effects and the overall treatment effect (13). The primary
objective—to estimate and report the magnitude of the
treatment effect in known subgroups of interest—is valua-
ble for later use in meta-analyses or for planning addi-
tional or larger studies. Investigators should report effect
estimates within key subgroups with correspondingmeas-
ures of precision. A forest plot is an acceptable first step
for describing the consistency (or lack thereof) of treat-
ment effect across important baseline characteristics, one
variable at a time.

An illustration is found in a retrospective cohort study of
management of severe carotid stenosis comparing carotid
endarterectomy (CEA) to carotid artery stenting (CAS). The
investigators report on the outcomes of stroke and death for
the patients stratified by frailty to describe HTE in response
to these treatments (33). For nonfrail patients, there was no
important difference in the rate of the 30-day combined out-
come between the CEA and CAS groups (CEA, 2.4% vs.
CAS, 1.9%; P = 0.59). However, when compared with the
CAS group, the CEA group had a higher rate of the out-
come in prefrail patients (CEA, 2.9% vs. CAS, 1.0%; P<
0.001), frail patients (CEA, 3.9% vs. CAS, 1.2%; P< 0.001),
and severely frail patients (CEA, 6.5% vs. CAS, 3.0%;
P = 0.04).

Generally, the choice of subgroups for descriptive
HTE analyses depends on the purpose of the study and
should be prespecified in the study protocol. Potentially
important classes of variables may be the intrinsic, extrin-
sic, and behavioral variables described in “What Are the
Primary Sources of HTE?” as sources of HTE. Rothwell
provided an extensive set of potential determinants of
HTE (34). Descriptive HTE might be important for subpo-
pulations for which limited evidence is available from tri-
als, including subgroups defined by several variables, for
example, older non-White women who are, in general,
poorly represented in trials. Therefore, describing treat-
ment effects using RWD for such underrepresented sub-
groups is valuable. Although investigators may start with
binary explorations of subgroups (akin to what is reported
in forest plots accompanying trial reports), they should
also consider multivariable models that include higher
level interactions.

DescriptiveHTE Based on BayesianMethods
A Bayesian subgroup analysis can be an effective

approach for descriptive HTE when the subgroups are
prespecified in the protocol (35). As described in the
previous paragraph, the subgroups might be defined
with several variables (for example, young White men,
older Black women, and so forth). A Bayesian approach
addresses the problem of large variance due to small
subgroups by combining the subgroup treatment effects
using a hierarchical model, where the subgroups are
nested within the overall study. Estimated subgroup
effects using Bayesian approaches will be a compromise
between the subgroup-specific effect and the overall av-
erage effect. This type of subgroup estimation is known
as shrinkage estimation, and the concept has a long history
in statistical science and especially in the analysis of mixed
effects models in which individual patient predictions are
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important (36). The same concept can apply to subgroups
of patients.

In the simplest case, where all subgroups are assumed
to be similar in their characteristics, the degree of compro-
mise depends on the variance of the treatment effectwithin
the subgroup and the variance between the different sub-
group treatment effects. If the within variance is large, then
the treatment effect of that particular subgroup will be
shifted close to the overall treatment effect, which is good,
because a large within subgroup variance is a warning
that the subgroup-specific effect is not trustworthy. A
Bayesian approach does not borrow information indis-
criminately, but borrows so that information on treatment
effect is shared among persons with similar covariates.
User-friendly software is now available for performing
Bayesian subgroup shrinkage estimation (37).

Bayesian methodology for subgroup analysis, although
designed for analysis of RCTs, applies to nonexperimental
studies using RWD. Investigators need only unconfounded
subgroup-specific effects, and their variances, to use the
methodology. These subgroup estimates can be obtained
from propensity score–based matching or by weighting
within each subgroup, as was discussed in “Objective 1:
Confirm Subgroup HTE” about confirmatory HTE analyses.

Descriptive HTE Based on Prognostic and Propensity
Scores

There are 2 fundamental approaches to describing
heterogeneity based on summary scores; 1 captures
HTE dependent on the risk for outcome and the other
captures HTE dependent on the probability that a person
receives a treatment of interest. In the first approach,
Kent and colleagues advocate for the use of the baseline
risk for the outcome, a prognostic score, as the dimen-
sion along which to describe HTE. Baseline risk is the
probability of the outcome in the absence of the treat-
ment (9, 10). Treatment effect is then estimated within each
quintile, for example, of the prognostic score. Although for-
mal tests of heterogeneity may be conducted to assess
whether the treatment effect varies across the quintiles,
Kent and colleagues have generally emphasized a visual–
qualitative approach, particularly for descriptive purposes
(9). If available, an externally validated prognostic scoring
system can be used, provided it calibrates well to the avail-
able data. For example, a safety study of the effect of teno-
fovir on kidney disease outcomes used a validated chronic
kidney disease risk score (called Data Collection on
Adverse Events of Anti-HIV Drugs chronic kidney disease
risk) (38) and revealed little heterogeneity in the risk for the
outcome among tenofovir-exposed and -unexposed per-
sons when stratified by risk (Table 1). When a validated
prognostic scoring system is not available, a scoring system
can be developed (3). Modeling HTE as a function of a
“treatment response score” is similar to use of a prognostic
risk score but does not require separate estimation of the
prognostic score (39).

The second approach to descriptive HTE uses the
propensity score: the estimated probability of receiving
treatment (compared with nontreatment) as a function of
baseline covariates. The propensity score is used similarly
to the prognostic score. For example, Kurth and colleagues

used propensity score adjustment methods for confound-
ing adjustment when evaluating the effect of tissue plasmin-
ogen activator on stroke mortality (40). Importantly, they
also demonstrated an important gradient in the treatment
effect across levels of the propensity score. Patients with
high probabilities of being treated with tissue plasminogen
activator were more likely to benefit than patients who
were less likely to be treated; as shown, subgroups defined
by the likelihood of being treated fared differently with
treatment (Table 2).

Objective 3: Discover SubgroupsWith Important
HTE

In contrast with objective 1, which focuses on hy-
pothesis testing, this exploratory objective identifies sub-
groups that might benefit from treatment more than the
average patient and with lower risk for harm. An impor-
tant study objective might be to identify subgroups that
should be further evaluated using rigorous observational
designs with RWD or RCTs. Here, there is less concern
about adequate power and multiple comparisons, but
attention to bias and confounding cannot be ignored.
For example, the oncology literature has reported ex-
ploratory studies of a tumor marker that is predictive of
greater or lesser response to treatment. A recent exam-
ple is the expression of the CD155 ligand on melanoma
cells and on non–small cell lung cancer cells. In 2 different
observational studies, people whose tumors expressed
this marker had less response to anti-PD1 therapies than
people whose tumors did not express these markers (41,
42). This discovery of HTE should prompt hypothesis-
driven studies to confirm that this tumor marker is causally
related to diminished benefit from these immunothera-
pies and to quantify the difference across groups to
inform clinical decisionmaking.

Ruberg and Shen describe the key elements to pre-
specify in subgroup search (43): 1) the method to be used

Table 1. Association Between TDF Exposure, D:A:D CKD
Risk Strata, and Incidence of CKD*

TDF/D:A:D
Risk Group

Unadjusted OR
(95% CI)

Adjusted OR
(95% CI)

No TDF
Low-risk 1.00 (Ref) 1.00 (Ref)
Medium-risk 4.69 (1.70–12.96) 2.32 (0.72–7.52)
High-risk 37.56 (17.20–82.02) 19.55 (7.35–52.00)

TDF
Low-risk 0.42 (0.16–1.11) 0.55 (0.19–1.54)
Medium-risk 5.37 (2.40–12.01) 3.96 (1.38–11.39)
High-risk 18.30 (8.42–39.78) 12.84 (4.57–36.07)

CKD = chronic kidney disease; D:A:D = Data Collection on Adverse
Events of Anti-HIV Drugs; OR, odds ratio; TDF = tenofovir disoproxil
fumarate.
* This table illustrates that the odds of the CKD outcome increase
across the predicted risk strata and vary little by exposure: the incidence
rate of the CKD outcome for the low-risk group with no TDF is 0.0017
versus 0.0006 with TDF (38).
(Table body reproduced from R Hsu, L Brunet, J Fusco, A Beyer,
G Prajapati, C Wyatt, M Wohlfeiler, G Fusco, Risk of chronic kidney dis-
ease in people living with HIV by tenofovir disoproxil fumarate (TDF)
use and baseline D:A:D chronic kidney disease risk score, HIV Medicine
[John Wiley & Sons Ltd on behalf of British HIV Association], Volume 22,
Issue 5, May 2021, Pages 325-333.)
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for exploration, 2) the list of potential predictive biomarkers
(subgroup-defining variables), 3) how continuous predic-
tors will be categorized to define subgroups, 4) other
choices to be made in the analyses, 5) how adjustment for
multiplicity will be done, and 6) bias correction, that is,
how the estimated treatment effects in subgroups will be
corrected for selection. Methods for subgroup discovery
generally applicable to observational RWD include recur-
sive partitioning (44–46), modified covariate regression
(47), and a Bayesianmethod (48, 49).

Exploration for effect modification typically examines
interactions between baseline characteristics of the per-
son and the treatment. However, this approach is insufficient
if the effect modifier is time-varying (such as the underlying
disease severity) or if it is affected by prior treatment, as is of-
ten the case for chronic conditions where treatment deci-
sions are updated on the patient's evolving condition. Often,
both time-varying modifiers and time-varying treatments are
present; conventional regression and propensity score
stratification methods that naively condition on time-vary-
ingmodifiers affected by prior treatment may yield biased
estimates of modified treatment effects (50, 51). Methods
such as g-estimation or structural nested mean models (52,
53) and history-adjusted marginal structural models might
apply (54, 55).

Objective 4: Predict Individualized Treatment
Effects

Like RCTs, many effectiveness studies using RWD are
designed to test whether an intervention is efficacious on
average. Ideally, we would like to estimate the treatment
effect for an individual. However, this is not possible
because each person receives only 1 of the comparison
treatments. We can, however, estimate individualized
treatment effects, which rely on modeling assumptions

about how the treatment effect varies according to indi-
vidual characteristics. Individualized estimates, also known
as conditional average treatment effects (CATEs), may be
more realistically estimated with RWD than in RCTs given
the size and richness of RWD. El Sanadi and colleagues,
as an example, used their institution's electronic medical
record to create an online tool to assist the clinician and
patient in selecting the next medication to add to metfor-
min to improve outcomes associated with type 2 diabetes
(56). They hypothesized that the effects of the treatment
options would depend on characteristics of the individual
patients. They developed parsimonious prediction mod-
els for each of 5 clinical outcomes of interest, following
the TRIPOD (Transparent Reporting of a multivariable pre-
diction model for Individual Prognosis Or Diagnosis)
guidelines (Figure 2).

Estimation of CATE using machine-learning algo-
rithms is an active area of statistical research. The pro-
posed methods can be categorized into 2 large groups:
meta-learners or modified machine-learning methods.
Künzel and colleagues used a machine-learning algo-
rithm that uses regression or classification as the “base
learner” (for example, lasso, random forest, gradient
boosting, or neural networks); they then estimated the
expected outcome as a function of covariates in the
treatment and comparison groups separately to assess
for HTE (57). The modified machine-learning methods
are mostly tree-based algorithms that seek to estimate
the CATE directly, such as causal forest (58), causal
boosting (59), and Bayesian regression tree models
(60). Causal forest, for example, works by first finding a
set of covariate values (“a neighborhood”) where the
treatment effect is constant but differs from the treat-
ment effect in other neighborhoods; it then estimates
the CATE over the neighborhoods.

Table 2. Proportion of Deaths Among 6,269 Ischemic Stroke Patients Registered in a German Stroke Registry Between 2000
and 2001 Who Were Treated or Not Treated With Tissue Plasminogen Activator, According to Percentiles of the Propensity
Score for the Entire Study Population

Percentile Treated (n = 212) Not treated (n = 6,057) Empirical OR*

Score† No. Deaths Score† No. Deaths

No. % No. %.

99 to 100 0.5809 36 3 8.3 0.5474 26 7 26.9 0.25
95 to <99 0.3143 73 13 17.8 0.2912 178 27 15.2 1.21
90 to <95 0.1393 55 8 14.6 0.1363 258 19 7.4 2.14
75 to <90 0.0585 31 3 9.7 0.0459 910 82 9.0 1.08
50 to <75 0.0115 10 4 40.0 0.0084 1,558 87 5.6 11.27
25 to <50 0.0017 5 2 40.0 0.0014 1,561 54 3.5 18.60
10 to <25 0.0004 2 1 50.0 0.000267 940 36 3.8 25.11
5 to <10 0 0 0 0.000066 313 6 1.9
1 to <5 0 0 0 0.000027 251 8 3.2
0 to <1 0 0 0 0.000007 62 1 1.6
Overall 0.2521 212 34 16.0 0.0262 6057 327 5.4 3.35

*Propensity-stratum-specific-treatment–mortality odds ratio.
†Mean propensity score in percentile.
This table illustrates that the odds ratio (OR) varies inversely with the propensity of being treated, that is, individuals with a lower propensity score
had higher odds of mortality (40).
(Table title and body reproduced from Tobias Kurth, Alexander M. Walker, Robert J. Glynn, K. Arnold Chan, J. Michael Gaziano, Klaus Berger,
James M. Robins, Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensity-based weighting under
conditions of nonuniform effect, American Journal of Epidemiology [Johns Hopkins Bloomberg School of Public Health in association with the
Society for Epidemiologic Research], 2006, Volume 163, Issue 3, Pages 262-270, by permission of Oxford University Press.)
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These methods are based in the frequentist frame-
work. Henderson and colleagues developed an alternative,
that is, a fully nonparametric, Bayesian machine-learning
algorithm for individualized estimation of treatment effects
in an RCT that might apply equally to RWD (61). This
approach can quantify overall HTE, identify important
patient characteristics related to HTE, estimate the pro-
portion who benefit from the treatment, identify patient
subpopulations deriving most benefit from treatment,
detect crossover (qualitative) interactions, identify patients
who are harmed by treatment, estimate individualized
treatment effects, and predict treatment effect for a future
patient. In reporting predictions for individuals, investiga-
tors should adhere to the TRIPOD Initiative guidelines for
the reporting of studies developing, validating, or updat-
ing a predictionmodel (62). Although themodels referred
to in the TRIPOD guidelines are for the purposes of
prognosis or diagnosis, they are also relevant to treatment
effect predictionmodels.

WHAT IS STILL NEEDED?
Our work extends existing recommendations about

HTE evaluation (for example, the PATH statement) in 2
main respects: 1) it is tailored to RWD rather than RCTs—
the burgeoning literature on RWD does not address HTE
assessment and 2) it addresses a broad range of study
objectives from confirmatory to exploratory assessments.

We distinguish here between 4 objectives that investiga-
tors may specify when investigating HTE: confirming sub-
group HTE, describing the magnitude of HTE, discovering
subgroups, and predicting individualized treatment
effects. Here, we make recommendations for a principled
approach to assessing HTE when using RWD that should
complement those for HTE evaluation in the setting of
RCTs (for example, FDA guidance on subgroup analysis
[63], ICH-E9 [64], PATH statement [3]). Yet, more work is
needed.

Outstanding issues include interpretation of results
in subgroups when the biological plausibility or social ration-
ale for differences in outcomes is not strong. In other words,
there is a need for principled approaches to using informa-
tion about newly discovered subgroups. Recommendations
are needed for presenting results clearly to decisionmakers,
including on what scale and with the best graphical
approach for communicating HTE. Methods are urgently
needed to address the problem of applicability of RCT
evidence to subpopulations that are poorly represented
in trials. Most importantly, we need to develop a frame-
work for determining whether evidence on HTE is action-
able for decision makers. For example, do clinicians
make different prescribing decisions when presented
with real-world HTE findings? Will payers limit coverage
of products to subgroups that showed little benefit from
the treatment? Should coverage with evidence develop-
ment studies as requested by the Centers for Medicare &

Figure 2. Screenshot of the clinical decision support tool “labs” page and prediction outputs for an example “Patient X”.

Predicted 5-year risk of outcomes

Run Calculator

HbA1c(%)

Cholesterol levels (mg/dL)
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5 10

90

55

Demographics Medication history

Medical history

Labs

English Metric

SGLT2

Death 1.5% 2.7% 4.7% 4.9%

7%7%8.4%6.4%

4% 3.2% 4.3% 3.6%

3% 1.9% 2.8% 2.8%

35.3%36.1%34.9%31.4%

MI

Renal failure

Stroke

Hypertension

Drugs predicted to be inferior for all outcomes are displayed in gray shading in the table above. 
DPP4: Dipeptidyl peptidase-4 inhibitor;
GLP1: Glucagon-like Peptide-1 agonist;
SGLT2: Sodium-Glucose Co-transporter 2 inhibitor;
SFU: Sulfonylurea;
TZO: Thiazolidinedione;
Insulin: Insulin-Basal or Bolus or Mixed insulin

Note:

GLP1 DPP4 TZO SFU Insulin

8.8%

5.4%

5.3%

44.3%37.8%

3.4%

4.2%

7.6%

11.3%6.3%

Patient X is an example of a standard patient whose demographics, laboratory values, and medical history were entered into the tool to provide a sample
output. The image illustrates how individualized treatment effect estimates can be presented (56). BMI = body mass index; DPP4 = dipeptidyl peptidase-4
inhibitor; GLP1 = glucagon-like peptide-1 agonist; HbA1c = hemoglobin A1c; HDL = high-density lipoprotein; insulin = insulin-basal or bolus or mixed in-
sulin; LDL = low-density lipoprotein; MI =myocardial infarction; SFU = sulfonylurea; SGLT2 = sodium–glucose cotransporter-2 inhibitor; TZO= thiazolidine-
dione. (Image reproduced from Endocrine Practice [American Association of Clinical Endocrinology], Volume 27, Caroline E. El Sanadi, Kevin M.
Pantalone, Xinge Ji, Michael W. Kattan, Development and internal validation of a prediction tool to assist clinicians selecting second-line therapy following
metformin monotherapy for type 2 diabetes, Pages 334-341, Copyright (2021), with permission from Elsevier.).
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Medicaid Services require HTE evaluation, especially for
very high-cost drugs (for example, chimeric antigen recep-
tor T cells in oncology)?

Furthermore, there is a need for methods that can
incorporate sources of heterogeneity beyond patient-
level characteristics, including provider-level and health
system–level factors. Hierarchical modeling approaches
to incorporate these sources of HTE are needed, particu-
larly techniques for quantifying the magnitude of their
contributions to the overall HTE. Hierarchical propensity
score modeling is one possibility (65). In the absence of
peer-reviewed reporting guidelines on HTE in the con-
text of RWD, an important next step will be to develop
consensus on methods to evaluate HTE, followed by pro-
mulgation of expert-based guidelines.

We are optimistic that there will be increasing rigor
in the use of RWD to generate reliable evidence to inform
the care of patients. We urge clinicians and investigators
to consider HTE always when interpreting the results of
studies and when generating new evidence because HTE
is almost certainly present and there are valid methods to
study it.
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Appendix Table. Glossary of Terms

Terms Description

Overall treatment effect A comparison of response between 2 groups that comprise the entire study sample, where each group is
exposed to a different treatment.

Bayesian inference versus frequentist inference Frequentist inference is a statistical framework that evaluates the population parameters by imagining
repeated samples from an appropriate model. The population parameters are assumed to be fixed,
but unknown. Bayesian inference is a framework that uses prior beliefs or information and updates
those beliefs based on the observed data to derive probabilistic statements about unknown popu-
lation parameters, using an appropriate model for the data-generating process. Here, the popula-
tion parameters are random and unknown. Both frequentist and Bayesian frameworks require a
data-generating model, but the Bayesian framework also requires a prior distribution for popula-
tion parameters. In the frequentist framework, the parameters are fixed but the data are random,
whereas in the Bayesian framework, the data are fixed and the parameters are random.

Conditional average treatment effect (CATE) A model-based estimate of the individual treatment effect where a model depicting the relationship
between the outcome, treatment, and covariates is fitted. Then, CATE is calculated for each individ-
ual in a study sample as a contrast of their model-estimated response under 2 treatments.

Effect modification A measure of how the treatment effect varies according to different values of a covariate. Effect modi-
fication is commonly assessed by including a treatment by covariate product term in a regression
model. For example, the coefficient of age–treatment product term is a measure of how the treat-
ment effect varies as age varies.

Effectiveness The performance of an intervention in the setting in which it is usually used in practice.
Efficacy The performance of an intervention under ideal and controlled circumstances.
Heterogeneity of treatment effect (HTE) The explainable (nonrandom) variation in treatment response that can be attributed to differences in

patient characteristics.
Individual treatment effect A comparison of an individual’s response under 2 different treatments. This is often unobservable

because any individual can only be exposed to 1 treatment (unless the condition being treated is
acute).

Individualized treatment effect See conditional average treatment effect.
Interaction Same as effect modification in terms of statistical description, but quite different conceptually.

Interaction is said to exist between 2 manipulable variables, whereas effect modification measures
how 1 manipulable variable varies as a function of a fixed covariate. Interaction can be synergistic
or antagonistic.

Posterior distribution A probability distribution that reflects the researcher’s belief about a population parameter of interest
after observing the data.

Prior distribution A probability distribution that reflects the researcher’s belief about a population parameter of interest
before observing the data.

Qualitative HTE A variation in treatment effect, of the opposite direction, according to levels of covariate. For exam-
ple, men have a beneficial effect from the treatment, but women have a harmful effect.

Quantitative HTE A variation in treatment effect, of the same direction, according to levels of a covariate. For example,
men and women both have a beneficial effect from the treatment, but the magnitude of benefit is
significantly different.

Real-world data (RWD) Data relating to patient health status and/or the delivery of health care routinely collected from a vari-
ety of sources.

Real-world evidence Clinical evidence about the usage and potential benefits or risks of a medical product derived from
analysis of RWD.

Shrinkage estimation Treatment effect in a subgroup is estimated as a compromise between the “raw” or “observed” treat-
ment effect in that group and the overall (average) treatment effect. The degree of compromise
depends on the size of the subgroup and the shrinkage method. The smaller the subgroup the
greater the compromise.

Subgroup analysis The most popular way of examining HTE, in which the entire study sample is divided into mutually
exclusive groups and the treatment effect is estimated in each group—for example, the treatment
effect in men and in women.

Generalizability/ Transportability Pertains to whether the evidence on benefits and risks of an intervention obtained from a controlled
clinical trial is valid when applied to patients in the real world.

Applicability Pertains to whether the evidence on benefits and risks of an intervention obtained from a controlled
clinical trial is relevant and valid for a particular subpopulation of at-risk individuals. The distinction
between applicability and generalizability is that applicability requires that we define a specific sub-
population, for example, Hispanic, women, older than 70 years, with diabetes.

Treatment effect scale The scale in which treatment effect is measured. For example, this could be a ratio of average
response under treatment to the average response without treatment (relative scale), or it could be
the difference in average response under treatment to the average response without treatment
(absolute scale).
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