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ABSTRACT
Objective: When correcting for the “class imbalance” problem in medical data, the effects of resampling applied on classifier algorithms remain
unclear. We examined the effect on performance over several combinations of classifiers and resampling ratios.

Materials and Methods: Multiple classification algorithms were trained on 7 resampled datasets: no correction, random undersampling, 4 ratios
of Synthetic Minority Oversampling Technique (SMOTE), and random oversampling with the Adaptive Synthetic algorithm (ADASYN). Perform-
ance was evaluated in Area Under the Curve (AUC), precision, recall, Brier score, and calibration metrics. A case study on prediction modeling for
30-day unplanned readmissions in previously admitted Urology patients was presented.

Results: For most algorithms, using resampled data showed a significant increase in AUC and precision, ranging from 0.74 (CI: 0.69–0.79) to
0.93 (CI: 0.92–0.94), and 0.35 (CI: 0.12–0.58) to 0.86 (CI: 0.81–0.92) respectively. All classification algorithms showed significant increases in
recall, and significant decreases in Brier score with distorted calibration overestimating positives.

Discussion: Imbalance correction resulted in an overall improved performance, yet poorly calibrated models. There can still be clinical utility due
to a strong discriminating performance, specifically when predicting only low and high risk cases is clinically more relevant.

Conclusion: Resampling data resulted in increased performances in classification algorithms, yet produced an overestimation of positive predic-
tions. Based on the findings from our case study, a thoughtful predefinition of the clinical prediction task may guide the use of resampling techni-
ques in future studies aiming to improve clinical decision support tools.

LAY SUMMARY
Study need and importance: The class imbalance problem is an underexposed topic specifically to classifier-based algorithms (eg, RandomFor-
est). This is common in medical data, since patients with the outcome of interest are often much less prevalent opposed to patients without the
outcome of interest. Performance metrics may produce false results as caused by class imbalance problem. Using resampling on outcome data,
the effect of the imbalance problem in performance metrics can be evaluated, providing an informed choice to develop algorithms with a per-
formance suited for clinical decision support tools.
What we found: Using a case study to predict 30-day unplanned readmissions in Urology, multiple classification algorithms were trained on 7
resampled datasets: no correction, random undersampling, 4 ratios of Synthetic Minority Oversampling Technique (SMOTE), and random over-
sampling with the Adaptive Synthetic algorithm (ADASYN). Resampling data resulted in increased performances in classification algorithms, yet
produced an overestimation of positive predictions.
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Interpretation for clinicians: Based on our findings from our case study, resampling improved most performance metrics in multiple classifica-
tion algorithms. To address the overestimation of positive predictions when resampling, a thoughtful predefinition of the clinical prediction task is
necessary, and may guide the use of resampling techniques.

Key words: class imbalance, resampling, RUS, SMOTE, ADASYN, classification algorithms

INTRODUCTION

An underexposed and not widely known topic in machine
learning is the “class imbalance” problem, meaning that there
is an imbalance in the event outcome.1 While classification
algorithms are frequently used for prediction models of binary
outcomes in a clinical setting, these tend to learn based on the
outcome class with the most observations: in medical sciences
this is often the negative outcome.2 This may lead to an over-
estimation of predicting the most prevalent class in an imbal-
anced dataset, and developing algorithms which are less
adequate for use in clinical setting.3,4 In medical data the out-
come of interest is often much less prevalent opposed to the
outcome not of interest (ie, negative outcome). For example in
population screening for cancer or when predicting an
adverse event following treatment. A severe imbalance would
be that 0.1% of the patients have the outcome of interest,
while 99.9% of the patients is negative for the outcome of
interest. This would mean, that for every new prediction, the
trained classification algorithm will predict a negative out-
come with 99.9% accuracy.

In order to address the class imbalance problem, resam-
pling can be applied to create a synthetic balanced dataset
and thereby overcoming the class imbalance problem. The
most common techniques are Random Under-Sampling
(RUS), and Synthetic Minority Oversampling Technique
(SMOTE).5,6 Oversampling synthesizes data based on the
group of observations being positive on the specified outcome
(ie, assuming the minor class), and undersampling by remov-
ing observations on the group being negative on specified out-
come (ie, the major class). Also, sampling techniques are often
used combining over- and undersampling methods to reach a
well-balanced outcome in the dataset for the classification
algorithm. There is no default ratio in which to resample data
for each problem, despite that several clinical studies have
shown that resampling can yield improved results with differ-
ent ratios.7–10 Within classification algorithms there is a dis-
tinction between so-called weak and strong learners, where a
weak learner is defined to be a classifier that can label exam-
ples better than random guessing, and a strong learner is a
combination of weak learners. The latter option, also known
as an ensemble based algorithm improves using findings from
the weak learners and combining this into a classifier with
strong accuracy.11–13

A recent study found that resampled data applied to logistic
regression algorithms distorts model performance, with a
notable impact in overestimations of positive predictions as
opposed to the unsampled data.14 The effects of resampling
using different ratios applied on classifier algorithms other
than a logistic regression in a clinical scenario remain unclear.

OBJECTIVE

The aim of this study was to investigate the impact on model
performance using different respective resampling ratios pro-
duced by over- and undersampling techniques applied to sev-
eral classification algorithms. A case study on prediction

modeling for 30-day readmissions in 7570 Urology patients
with 757 (10%) unplanned readmissions was used as a typical
unbalanced dataset. We hypothesized that: (1) correcting for
class imbalance using resampling techniques improves model
performance, and (2) resampling will improve model per-
formance of more elaborate classification algorithms such as
XGBoost, RandomForest, Neural Network, and Support Vec-
tor Machine.

MATERIALS AND METHODS
Case study: predicting the risk of a 30-day

unplanned readmission

For this study, prediction models were developed to estimate
the risk of a 30-day unplanned hospital readmission after dis-
charge from the department of Urology. An unplanned hospi-
tal readmission was defined as where a patient, who was
previously treated at the urology ward, had to return to the
urology ward within 30 days of being discharged for an indi-
cation related to the original treatment. A prediction model
could be used in clinical discharge management, and improve
decision making whether to continue admission or safely dis-
charge a patient. Previous study findings were applied on this
case study, based on a former study we performed in predict-
ing 30-day unplanned readmissions at Urology. In total, 7570
patients were available for inclusion, 757 of whom (10%)
had an unplanned hospital readmission at Urology within 30-
days. Patients having a clinical admission at Urology between
January 2015 and October 2021 were included, only exclud-
ing patients who were deceased (n¼ 74) during clinical admis-
sion. Patient characteristics can be found in Table 1, and in
detail under the “Feature” section in the Supplementary
Materials. This retrospective cohort study was approved and
registered with the institutional review board (METC).

Data preprocessing

Missing values were imputed using multiple imputation by
chained equations (MICE), and features with > 55% missing
data were dropped. More information considering performed
imputation and output can be found in the Supplementary
Materials under the “Result of Imputing Missing Values with
MICE” section.15 Over the original count of 53 features avail-
able, feature selection was carried out to identify and select
those features contributing most to our outcome variable.
Feature engineering (variable selection) was evaluated using a
RandomForest algorithm to identify the predictive value for
each feature, with the default set from 500 to 2500 to assure
including most feature combinations.16 Based on 2 criteria,
being: (1) feature had a good predictive value (�10% impor-
tance), and (2) feature was expected to have clinical impor-
tance, 28 features were included. These consisted of patient
characteristics, laboratory values, medication during admis-
sion, health care logistics (eg, length of stay or count of clini-
cal admissions in the last 6 months), comorbidity, and type of
surgery. More detailed information about the features can be
found in the addendum under the “Features” section. Data
were split into a train and a test set (70:30, respectively), and
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Table 1. Patient characteristics

Unplanned readmission within 30 days

Yes (N¼774) No (N¼6796) P value Total (N¼7570)

Charlson Comorbidity Index
Mean (SD) 1.48 (2.03) 0.998 (1.74) <.001 1.05 (1.77)
Median [Min, Max] 0 [0, 10.0] 0 [0, 11.0] 0 [0, 11.0]

Age
Mean (SD) 70.3 (15.7) 64.4 (17.5) <.001 65.0 (17.4)
Median [Min, Max] 74.0 [20.0, 103] 68.0 [13.0, 109] 69.0 [13.0, 109]

BMI
Mean (SD) 26.4 (5.48) 25.9 (4.92) .0181 26.0 (4.99)
Median [Min, Max] 25.6 [13.3, 66.5] 25.3 [13.3, 53.1] 25.3 [13.3, 66.5]

Systolic blood pressure
Mean (SD) 134 (17.2) 131 (18.8) <.001 131 (18.7)
Median [Min, Max] 133 [93.0, 182] 129 [85.0, 210] 129 [85.0, 210]

Diastolic blood pressure
Mean (SD) 74.5 (8.18) 74.4 (9.04) .644 74.4 (8.96)
Median [Min, Max] 74.0 [53.0, 105] 74.0 [44.0, 126] 74.0 [44.0, 126]

Creatinine blood
Mean (SD) 115 (90.9) 95.5 (64.2) <.001 97.5 (67.7)
Median [Min, Max] 91.0 [37.0, 1260] 83.0 [21.0, 1480] 84.0 [21.0, 1480]

Hemoglobin
Mean (SD) 7.67 (1.12) 7.72 (1.22) .246 7.71 (1.21)
Median [Min, Max] 7.70 [4.10, 11.6] 7.80 [4.00, 11.6] 7.80 [4.00, 11.6]

Clinical medication
Mean (SD) 51.7 (34.0) 30.4 (25.7) <.001 32.6 (27.4)
Median [Min, Max] 44.0 [7.00, 227] 22.0 [0, 267] 24.0 [0, 267]

Home medication
Mean (SD) 12.8 (8.47) 8.07 (7.33) <.001 8.55 (7.59)
Median [Min, Max] 11.0 [0, 48.0] 6.00 [0, 60.0] 6.00 [0, 60.0]

Clinical admissions last year
Mean (SD) 0.860 (1.52) 0.311 (0.732) <.001 0.367 (0.862)
Median [Min, Max] 0 [0, 11.0] 0 [0, 9.00] 0 [0, 11.0]

ED visits last 6 months
Mean (SD) 0.382 (0.890) 0.144 (0.503) <.001 0.169 (0.560)
Median [Min, Max] 0 [0, 8.00] 0 [0, 8.00] 0 [0, 8.00]

Length of stay
Mean (SD) 3.98 (5.44) 2.21 (3.35) <.001 2.39 (3.66)
Median [Min, Max] 3.00 [0, 97.0] 1.00 [0, 65.0] 1.00 [0, 97.0]

Sex
Female 153 (19.8%) 2439 (35.9%) <.001 2592 (34.2%)
Male 621 (80.2%) 4357 (64.1%) 4978 (65.8%)

History of smoking
No 656 (84.8%) 5577 (82.1%) .0702 6233 (82.3%)
Yes 118 (15.2%) 1219 (17.9%) 1337 (17.7%)

Use of alcohol
No 420 (54.3%) 3308 (48.7%) .00363 3728 (49.2%)
Yes 354 (45.7%) 3488 (51.3%) 3842 (50.8%)

Interpreter needed
No 738 (95.3%) 6618 (97.4%) .00183 7356 (97.2%)
Yes 36 (4.7%) 178 (2.6%) 214 (2.8%)

Fluency in Dutch
No 78 (10.1%) 783 (11.5%) .255 861 (11.4%)
Yes 696 (89.9%) 6013 (88.5%) 6709 (88.6%)

Uses a catheter at home
No 716 (92.5%) 6563 (96.6%) <.001 7279 (96.2%)
Yes 58 (7.5%) 233 (3.4%) 291 (3.8%)

Use of anticoagulants
No 116 (15.0%) 2392 (35.2%) <.001 2508 (33.1%)
Yes 658 (85.0%) 4404 (64.8%) 5062 (66.9%)

Use of NSAIDs
No 529 (68.3%) 4697 (69.1%) .692 5226 (69.0%)
Yes 245 (31.7%) 2099 (30.9%) 2344 (31.0%)

Use of corticosteroids
No 686 (88.6%) 6533 (96.1%) <.001 7219 (95.4%)
Yes 88 (11.4%) 263 (3.9%) 351 (4.6%)

Use of antipsychotics
No 715 (92.4%) 6578 (96.8%) <.001 7293 (96.3%)
Yes 59 (7.6%) 218 (3.2%) 277 (3.7%)

(continued)
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resampling was only performed on the training set to prevent
information leakage to the test set.

Sampling methods

The original dataset had an outcome balance where 90%
(6813 of 7570 patients) had no unplanned readmission (ie,
the major group), compared to the remaining 10% (757 of
7570 patients) who did (ie, the minor group). The training set
was resampled in order to generate 5 additional training sets.

RUS was performed using the undersampling option of
ROSE, and oversampling using SMOTE and ADASYN (Fig-
ure 1). The ratio of the outcome class was expressed in per-
centages of total observations, showing the major group first
followed by the minor group.

For this study, the outcome in the original train data was
resampled in 5 additional training sets. Ratios and population
size are specified in Table 2, with a flow-chart of the process
setup in Figure 2.

Table 1. (continued)

Unplanned readmission within 30 days

Yes (N¼774) No (N¼6796) P value Total (N¼7570)

Use of ulcer medication
No 380 (49.1%) 4086 (60.1%) <.001 4466 (59.0%)
Yes 394 (50.9%) 2710 (39.9%) 3104 (41.0%)

Oncology
Absent 700 (90.4%) 6358 (93.6%) .0014 7058 (93.2%)
Present 74 (9.6%) 438 (6.4%) 512 (6.8%)

Medication
No 83 (10.7%) 1793 (26.4%) <.001 1876 (24.8%)
Yes 691 (89.3%) 5003 (73.6%) 5694 (75.2%)

Comorbidity
Absent 607 (78.4%) 5995 (88.2%) <.001 6602 (87.2%)
Present 167 (21.6%) 801 (11.8%) 968 (12.8%)

Surgery
No 354 (45.7%) 4325 (63.6%) <.001 4679 (61.8%)
Yes 420 (54.3%) 2471 (36.4%) 2891 (38.2%)

P values calculated with Student’s t test for numeric variables and chi-squared test for categorical variables.

Figure 1. Process of under- and oversampling.
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Machine learning algorithms

The classification algorithms in our study were logistic regres-
sion (LR), decision trees (DT), XGBoost (XGB), RandomFor-
est (RF), Neural Network (NN), and Support Vector
Machine (SVM). For optimized performance, each algorithm
was tuned with a 5-fold cross validation grid search on the
original training data. Specified hyperparameters can be
found per algorithm in the addendum under the
“hyperparameter section.” Normalization was applied to LR,
NN, and SVM.

Model performance evaluation

Model performance was evaluated according to the ABCD-
framework for evaluation of a clinical prediction model,
which includes discrimination with the Area Under the
receiver operating Curve (AUC), precision (ie, Positive Predic-
tive Value), recall (ie, sensitivity or True Positive Rate), cali-
bration with a calibration curve, and the overall prediction
error with the Brier score.17,18 Performance of the resampled
datasets were calculated using a 5-fold cross-validation per
dataset compared to original test set. In order to test for statis-
tical significant differences of performance between the origi-
nal train set and resampled datasets, evaluation metrics were
calculated with 5-fold cross-validation, and tested using a
dependent t test for paired samples. See the “Metric
information” section in the addendum for more information
concerning the evaluation metrics.

Software

Data preprocessing and sampling were performed using R
Version 4.0.2, and R-studio Version 1.3.1073 (R-Studio,

Boston, MA, USA). Modeling and evaluating the model per-
formance were performed using Python version 3.9.8. with
the scikit-learn version 1.1.1. All Python and R code will be
made available immediately following publication to anyone
who wishes to access the code, and access requests can be
made to the corresponding author.

RESULTS

Our results show that resampling drastically improves model
performance in AUC, precision, and recall in our case study.
Specifically in XGB, RF, NN, and SVM, improvements in
AUC and precision are observed as opposed to LR, and DT.

The performance in AUC on the original dataset ranged
between 0.68 and 0.82 (CI: 0.64–0.85). A significant increase
was observed in the resampled datasets in XGB, RF, NN, and
SVM, with scores ranging from 0.74 (CI: 0.69–0.79), to 0.96
(CI: 0.95–0.96). No significant increase was observed in LR,
and DT regardless of resampled data. Based on the original
dataset, precision ranged from 0.00 to 0.67 (CI: 0–0.89), and
improved on resampled data with scores ranging from 0.35
(CI: 0.12–0.58) to 0.88 (CI: 0.87–0.88) observed in NN and
SVM, and decision trees. Significant increases in performance
were mostly observed in DT, NN, and SVM. Irrespectively of
resampled data, all classification algorithms showed a signifi-
cant increase of performance in recall with scores ranging
from 0.01 (CI: 0.00–0.01), to 0.92 (CI: 0.91–0.93) as
opposed to the scores of the original dataset ranging from
0.00 and 0.19 (CI: 0–0.25). Brier scores showed an overall
decrease in performance with scores ranging from 0.09 (CI:
0.07–0.10) to 0.21 (CI: 0.15–0.26), compared to the scores of
the original dataset ranging from 0.07 to 0.09 (CI: 0.04–
0.13). In comparison on performance in Brier scores, XGB,
RF, NN, and SVM showed less decline as opposed to LR, and
DT. A full overview of all scores and impact of resampled
data can be found in Table 3 and Figure 3.

The calibration curves show a similar effect leading to an
overestimation of predicting positives as opposed to predicting
negatives as seen in Figure 4. In most of the calibration overes-
timation of negatives was observed, showing that resampling
techniques mainly create an overestimation on positives for
our case of predicting 30-day unplanned readmission. In this
scenario, there would be an abundance of patients with high
positive prediction scores. Another effect observed is that all

Table 2. Sampled datasets

Dataset Major–Minor N

Original 90%–10% 7.570
Train set 90%–10% 5.251
Test set 90%–10% 2.319

RUS 50%–50% 1.119
SMOTE 20 80%–20% 5.249
SMOTE 30 70%–30% 3.632
SMOTE 40 60%–40% 4.045
SMOTE 50 50%–50% 4.302
ADASYN 50 50%–50% 9.451

Figure 2. Flowchart of resampling strategy.
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Table 3. Differences in performance per algorithm, outcome, and dataset

Metric

(95% CI)

Original RUS 50 SMOTE 20 SMOTE 30 SMOTE 40 SMOTE 50 ADASYN 50 P values (compared to original)

RUS

50

SMOTE

20

SMOTE

30

SMOTE

40

SMOTE

50

ADASYN

50

AUC
LR 0.77 (0.74; 0.8) 0.77 (0.74; 0.8) 0.77 (0.75; 0.79) 0.77 (0.74; 0.79) 0.77 (0.75; 0.79) 0.77 (0.76; 0.79) 0.82 (0.81; 0.83) .980 .859 .847 .942 .787 .005
DT 0.73 (0.69; 0.76) 0.74 (0.72; 0.76) 0.76 (0.74; 0.77) 0.77 (0.75; 0.78) 0.77 (0.74; 0.79) 0.77 (0.75; 0.78) 0.77 (0.75; 0.78) .340 .078 .054 .059 .031 .040
XGB 0.82 (0.79; 0.85) 0.83 (0.80; 0.85) 0.89 (0.88; 0.90) 0.88 (0.86; 0.90) 0.90 (0.89; 0.91) 0.91 (0.90; 0.92) 0.95 (0.95; 0.96) .673 .001 .009 .000 .000 .000
RF 0.82 (0.80; 0.85) 0.83 (0.80; 0.86) 0.91 (0.90; 0.92) 0.90 (0.89; 0.92) 0.92 (0.91; 0.93) 0.93 (0.92; 0.94) 0.96 (0.95; 0.96) .531 .000 .000 .000 .000 .000
NN 0.74 (0.71; 0.77) 0.78 (0.75; 0.8) 0.91 (0.9; 0.92) 0.88 (0.86; 0.89) 0.92 (0.91; 0.93) 0.93 (0.92; 0.94) 0.93 (0.93; 0.94) .016 .000 .000 .000 .000 .000
SVM 0.68 (0.64; 0.71) 0.74 (0.69; 0.79) 0.76 (0.75; 0.77) 0.75 (0.74; 0.77) 0.78 (0.76; 0.8) 0.78 (0.77; 0.79) 0.77 (0.76; 0.78) .024 .001 .001 .000 .000 .000

Precision
LR 0.53 (0.37; 0.69) 0.70 (0.65; 0.75) 0.58 (0.52; 0.65) 0.65 (0.61; 0.69) 0.69 (0.66; 0.72) 0.71 (0.68; 0.73) 0.74 (0.73; 0.75) .042 .538 .132 .063 .038 .015
DT 0.25 (0.10; 0.40) 0.68 (0.63; 0.72) 0.56 (0.50; 0.61) 0.59 (0.54; 0.63) 0.65 (0.62; 0.67) 0.71 (0.69; 0.72) 0.68 (0.66; 0.71) .000 .000 .000 .000 .000 .000
XGB 0.67 (0.54; 0.8) 0.74 (0.70; 0.79) 0.75 (0.70; 0.79) 0.74 (0.70; 0.78) 0.78 (0.76; 0.81) 0.80 (0.78; 0.82) 0.86 (0.85; 0.87) .249 .296 .298 .100 .049 .010
RF 0.67 (0.44; 0.89) 0.74 (0.69; 0.79) 0.86 (0.81; 0.92) 0.81 (0.78; 0.84) 0.81 (0.79; 0.84) 0.83 (0.81; 0.86) 0.88 (0.87; 0.88) .460 .088 .171 .166 .126 .065
NN 0.45 (0.36; 0.54) 0.70 (0.67; 0.74) 0.77 (0.74; 0.8) 0.75 (0.72; 0.77) 0.82 (0.8; 0.84) 0.85 (0.84; 0.87) 0.86 (0.84; 0.87) .000 .000 .000 .000 .000 .000
SVM 0.00 (0; 0) 0.65 (0.57; 0.72) 0.35 (0.12; 0.58) 0.62 (0.58; 0.67) 0.65 (0.63; 0.67) 0.69 (0.67; 0.71) 0.67 (0.66; 0.69) .000 .007 .000 .000 .000 .000

Recall
LR 0.09 (0.07; 0.12) 0.66 (0.61; 0.7) 0.20 (0.19; 0.22) 0.36 (0.34; 0.39) 0.54 (0.51; 0.57) 0.72 (0.7; 0.73) 0.77 (0.75; 0.78) .000 .000 .000 .000 .000 .000
DT 0.04 (0.01; 0.08) 0.66 (0.59; 0.73) 0.20 (0.13; 0.28) 0.44 (0.28; 0.6) 0.64 (0.59; 0.7) 0.73 (0.7; 0.76) 0.79 (0.74; 0.83) .000 .002 .001 .000 .000 .000
XGB 0.17 (0.13; 0.21) 0.73 (0.70; 0.77) 0.44 (0.40; 0.49) 0.62 (0.59; 0.66) 0.77 (0.75; 0.80) 0.88 (0.86; 0.89) 0.92 (0.91; 0.93) .000 .000 .000 .000 .000 .000
RF 0.08 (0.05; 0.11) 0.73 (0.70; 0.77) 0.39 (0.36; 0.42) 0.58 (0.55; 0.61) 0.77 (0.75; 0.78) 0.88 (0.86; 0.89) 0.91 (0.9; 0.92) .000 .000 .000 .000 .000 .000
NN 0.22 (0.18; 0.27) 0.68 (0.64; 0.72) 0.62 (0.6; 0.63) 0.66 (0.63; 0.69) 0.83 (0.8; 0.86) 0.91 (0.89; 0.93) 0.91 (0.9; 0.92) .000 .000 .000 .000 .000 .000
SVM 0.00 (0; 0) 0.65 (0.59; 0.71) 0.01 (0.0; 0.01) 0.21 (0.19; 0.23) 0.59 (0.56; 0.61) 0.76 (0.74; 0.78) 0.77 (0.76; 0.78) .000 .003 .000 .000 .000 .000

Brier score
LR 0.08 (0.05; 0.11) 0.20 (0.15; 0.24) 0.13 (0.12; 0.15) 0.17 (0.14; 0.2) 0.19 (0.16; 0.22) 0.19 (0.18; 0.21) 0.17 (0.16; 0.19) .000 .000 .000 .000 .000 .000
DT 0.09 (0.05; 0.13) 0.21 (0.14; 0.28) 0.14 (0.06; 0.21) 0.17 (0.01; 0.33) 0.19 (0.13; 0.24) 0.19 (0.16; 0.22) 0.19 (0.15; 0.23) .000 .000 .000 .000 .000 .000
XGB 0.07 (0.04; 0.11) 0.17 (0.14; 0.21) 0.10 (0.06; 0.14) 0.13 (0.09; 0.16) 0.13 (0.1; 0.15) 0.12 (0.11; 0.13) 0.09 (0.07; 0.1) .000 .000 .000 .000 .000 .013
RF 0.08 (0.05; 0.11) 0.17 (0.13; 0.21) 0.10 (0.07; 0.13) 0.12 (0.09; 0.15) 0.12 (0.1; 0.14) 0.12 (0.1; 0.13) 0.09 (0.08; 0.11) .000 .000 .000 .000 .000 .001
NN 0.09 (0.04; 0.14) 0.20 (0.15; 0.24) 0.08 (0.07; 0.1) 0.12 (0.09; 0.16) 0.11 (0.08; 0.14) 0.10 (0.08; 0.12) 0.10 (0.09; 0.11) .000 .293 .001 .033 .156 .286
SVM 0.09 (0; 0) 0.21 (0.15; 0.26) 0.15 (0.15; 0.16) 0.18 (0.16; 0.2) 0.19 (0.16; 0.21) 0.19 (0.18; 0.21) 0.19 (0.18; 0.21) .000 .000 .000 .000 .000 .000

Note: Yellow marking indicates a significant difference compared to the original dataset.
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classification algorithms are affected in a similar manner of
producing overestimates of positive predictions.

DISCUSSION

Resampling data has a subtle yet substantial impact on per-
formance of algorithms, producing more positive than nega-
tive predictions as compared to the original dataset. To our
surprise, XGB, RF, NN, and SVM showed significant
improved performances measured in AUC and precision
when resampling compared to LR, and DT. For precision and
recall, most algorithms showed a significant improvement in
performance measured, let alone a notable difference when
using resampled data. Another surprise was the improvement
observed between 2 oversampling techniques set with the
same 50-50 ratio, being ADASYN and SMOTE. Using ADA-
SYN, improvements in precision and recall were seen in most
models except for SVM and DT. Our results are in line with
findings of previous studies, indicating that resampling data
leads to similar results when applied to different data.3,11

Other studies show similarities in improved results by apply-
ing resampling, but not much drift in calibration, suggesting
that the impact of resampling effects on calibration are more
case-sensitive as compared to other evaluation metrics.
Although distorting calibration, models trained on resampled
data can still have clinical utility whereas the model can have
poor calibration yet a strong discriminating performance.
When correctly identifying cases with only low and high risk

is important, as opposed to identifying cases across the range
of all probability scores, the model can still benefit in per-
formance from resampling data.19,20 Correcting the class
imbalance problem with resampling for the case of 30-day
unplanned readmissions, may yield more clinical utility as
compared to no resampling. More clinical utility would be
derived from improved performance in discriminative per-
formance (ie, AUC), resulting in more accurate risk stratifica-
tion of low and high risk patients, and possibly improving
(safe) discharge management.

We acknowledge 2 limitations of this study. The first limi-
tation is the limited use of different resampling algorithms,
not using other options such as SMOTE Nominal and Con-
tinuous (NC), and borderline SMOTE. Although using
another oversampling algorithm (ie, ADASYN) in this study,
the limited choice may lead to a different effect on perform-
ance as compared to the techniques applied in this study. The
second limitation is studying one clinical case, where we only
observed the impact of sampling data over all trained algo-
rithms with data of 30-day unplanned readmissions for
patients in Urology. Performance might differ when applying
resampling techniques to data in other clinical case scenarios,
to investigate if the class imbalance problem might be less
case-sensitive.

Future studies should aim at investigating other resampling
techniques, in order to gain insight concerning the resampling
techniques applied next to the overestimation of positives.
Also, more than one clinical case should be analyzed in the

Figure 3. Evaluation metrics per learner.
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same manner to investigate whether the class imbalance prob-
lem might be case-sensitive.

CONCLUSION

Our study highlights the importance of resampling techniques
to overcome the class imbalance problem in a clinical scenario

for prediction of unplanned readmission in urology patients.
Resampling data results in increased performances in classifi-
cation algorithms, yet produces an overestimation of positive
predictions based on data in our case study. Based on our
findings when using medical data from our case study, a
thoughtful predefinition of the clinical prediction task,
thereby balancing the importance of discrimination and

Figure 4. Calibration curve plots per algorithm per sampled dataset.
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calibration, may guide the use of resampling techniques in
future studies aiming to improve clinical decision support
tools.
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