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Comparing individual-based models of collective
cell motion in a benchmark flow geometry†

Carine Beatrici,ab Cássio Kirch,a Silke Henkes,c François Granerb and
Leonardo Brunnet *a

Collectively coordinated cell migration plays a role in tissue embryogenesis, cancer, homeostasis and

healing. To study these processes, different cell-based modelling approaches have been developed,

ranging from lattice-based cellular automata to lattice-free models that treat cells as point-like particles

or extended detailed cell shape contours. In the spirit of what Osborne et al. [PLOS Comput. Biol., 2017,

13, 1–34] did for cellular tissue structure simulation models, we here compare five simulation models of

collective cell migration, chosen to be representatives in increasing order of included detail. They are

Vicsek–Grégoire particles, Szabó-like particles, self-propelled Voronoi model, cellular Potts model, and

multiparticle cells, where each model includes cell motility. We examine how these models compare

when applied to the same biological problem, and what differences in behaviour are due to different

model assumptions and abstractions. For this purpose, we use a benchmark that discriminates between

complex material flow models, and that can be experimentally approached using cell cultures: the flow

within a channel around a circular obstacle, that is, the geometry Stokes used in his historical 1851

experiment. For each model we explain how to best implement it; vary cell density, attraction force and

alignment interaction; draw the resulting maps of velocity, density and deformation fields; and eventually

discuss its respective advantages and limitations. We thus provide a recommendation on how to select a

model to answer a given question, and we examine whether models of motile particles and motile cells

display similar collective effects.

1 Introduction

Collectively coordinated cell migration plays a role in tissue
embryogenesis, pattern formation, cancer, homeostasis, regene-
ration and healing.1,2 It is a ubiquitous process involving different
morphologies and mechanisms in different cell types and tissue
environments3. Cells grow, move, divide or die, and also change
size, shape or neighbours: all these processes contribute together
to tissue shape and size changes4–6 and generate stresses. Due to
the cumulative effects of structural changes at subcellular and
cellular levels, the tissue-scale response to these stresses is
complex in terms of viscoelasticity,7,8 yielding and jamming.9,10

Statistical physics and hydrodynamics approaches in active
matter studies11–14 have raised fundamental questions regarding

symmetry breaking at the onset of cell migration, either in
general2,15 or in specific cases.16,17 Other questions include
motility-induced phase separation and its link to tissue glassi-
ness,18 and the onset of waves19 or vortices.20

Individual-based numerical models of motile cells have
been developed in several contexts, each one with its own
variants, in two and/or three dimensions. Some models link
the cell scale with collective cell migration,21 and a minority
also include the subcellular scale,22 pointing to cell motility
and polarization as essential ingredients in tissue dynamics.
Other models use the cell center as the degree of freedom; in
this case a cell is either treated as a point,11,23,24 an elastic
adhesive circle or sphere25–27 or a polygon of a Voronoi
tessellation.9,28 Finally, some models describe the cell body in
more detail, using the cell contour shape as the degree of
freedom. This includes descriptions based on vertices of poly-
gons tiling the space,29,30 pixels similar to experimental images
(cellular Potts model),31–33 several vertices free to move and
interacting pairwise,34 or a smooth and continuous phase
field.35,36 Finally, some of these models are lattice-based while
others are lattice-free.

An exhaustive list of commonly used models in the literature
is out of scope of this paper. In fact, ‘‘no one review paper can
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do justice to the entire field’’, as claimed by a recent review.22

In order to keep the computational cost reasonable, we have to
make choices. Our primary objective is to explore models
covering the spectrum from entirely particle-like models to
entirely cell-like ones. We thus leave the exploration of other
important models, in particular the family of phase field ones,
for future work.

Each of the models we consider here derives from the
existing non-motile cell simulation models reproducing tissue
structure and simple dynamics. Several reviews exist, including
those of Fletcher and coworkers.37–39 The two-dimensional
version of five models (cellular automaton, cellular Potts
model, overlapping spheres, Voronoi tessellation, and vertex
model) have been compared, using a common computational
framework and four case studies;37 the influence of cell pro-
liferation, adhesion, death, differentiation and signaling range
have been studied in detail, and practical conclusions are
drawn regarding the choice of a model to address a given
question.

In the context of cell tissues, the flow around a circular
obstacle in a two-dimensional channel can play a significant
role. This geometry favors shear and viscous flow, which is
essential for understanding the heterogeneous deformation,
deformation rate, and rearrangement rate of cells. These non-
zero velocity gradients, resulting from the heterogeneity of cell
velocity orientations, are critical for gathering the discriminant
information regarding both amplitude and direction (so-called
‘‘tensor field’’ information) necessary for benchmarking cell
migration models. Moreover, the flow around a circular obstacle
was used in Stokes’ historical 1851 experiment40 and is similar
to the motion of an intruder within a cellular material.10 For non-
motile cellular materials like soap froth, this geometry has been

particularly efficient in differentiating and testing different
models’ predictions.41 The corresponding experiment with cells
is feasible and has been carried out several times,7,42,43 as
illustrated in Fig. 1. Quantitative comparison between experi-
ments and models is beyond the scope of this study and will be
the subject of future work.

Here, we build on these advances in simulation models and
of benchmarking. In the spirit of ref. 37, we run comparable
collective movement simulations in the Stokes geometry for five
motile cell simulation models, chosen as a representative of the
progression from the simplest to the most detailed. The first
model is derived from the now classical Vicsek and Grégoire
particle models.11,12 The second one, the Szabó-like particle
model,23 is similar, but dominated by cell velocity self-persistence
instead of direct neighbor alignment. The third one, the self-
propelled Voronoi model, based on particles associated with a
Voronoi tesselation,9,28 is chosen because it is an intermediate
between the cell center and cell contour based models. The
fourth one, derived from the cellular Potts model,31,32 uses
pixels and thus an experimental image can be directly com-
pared with simulations (or even injected as the initial image of
a simulation44). The last one, which uses multiparticle cells,34

can handle highly deformed cells and the dissipation asso-
ciated with cell shape changes. For all five models, and espe-
cially for the fifth, we have introduced new details with respect
to the literature.

Our motivation is twofold. First, we want to understand how
each model behaves, depending on its ingredients and under-
lying assumptions, and examine the common points and
differences between models. In particular, models based on
cell centers versus on cell contours display common properties
(e.g. soft elastic particles versus self-propelled Voronoi45) but it

Fig. 1 Experiment. A MDCK epithelial cell monolayer after 20 hours of migration in Stokes geometry, from left to right. On a flat substrate, a channel is
drawn as a region where cells can adhere and crawl, while the channel walls and a circular obstacle are unfavorable for cell adhesion. (a) Deformation
field measured for a phase contrast snapshot. The deformation tensor deviator is diagonalized and each bar represents its main axis of extension.
The color codes for the angular position of each point, in polar coordinates originating at the obstacle center. (b) Corresponding velocity field averaged
over 8 h. Scales are indicated below each panel. Maps are zoomed around the obstacle; actual strip length 4 mm, strip width 1 mm, obstacle diameter
0.2 mm, pixel size 0.65 mm. Reproduced with permission from ref. 7, which did not publish the corresponding density field.
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is unclear to which extent. Second, we want to examine the
respective advantages and limitations of each model: for each
given scientific question we want to provide the reader with a
guide to help choose the most adequate model, the best
implementation method and the range of parameter values.
For that purpose, we vary input parameters such as cell density,
attraction force and alignment interaction; as outputs we draw
the resulting maps of velocity, density and deformation fields.

This paper is organized as follows. We first describe the
common simulation set-up, the choice of parameters and
measurements and present the formulation of the five models
and their implementation. We then present the results for each
model, that is the input parameter range and the output
measurement maps. We compare and discuss these results,
along with a guide for the reader (Table 15), and then conclude.

1.1 Simulation set-up

Our benchmark is a standard simulation set-up common to the
five models. Cells flow within a channel around a circular
obstacle (Stokes geometry).41 To keep cells migrating and to
emulate a steady-state-like regime, we constantly create new
cells in the source region on the left side of the channel, in red
on Fig. 2, and drop cells at the same rate in the sink region on
the right side of the channel, in blue on Fig. 2 (with a few
variations for the Voronoi model).

The cell diameter at equilibrium may depend on several
model parameter values such as the force between neighboring
cells, or the cell creation rate. In order to compare simulations,
we use the cell equilibrium diameter as the unit length. In these
units, the channel is 50 cells wide and the obstacle diameter is
15 cells, while the source and sink regions are only 1 cell long.

The simulations produce snapshots over which we make two
very different sets of measurements, which we call ‘‘input
measurements’’ and ‘‘output measurements’’. Output measure-
ments are our results, and are plotted as maps over the whole
output measurement region, which is 75 cells long, and centers
on the obstacle. Conversely, input measurements are used to
monitor the simulation at the entrance of the output measure-
ment region, and ensure the comparison between different

models is performed under similar conditions. The input mea-
surement region is 1 cell long and the spatial average is
performed over the channel width.

Close to the source region, the creation process frequently
produces transient artifacts which can vary from model to
model, which motivates us to leave a model-dependent transition
region between the source and the input measurement region.
We set the obstacle center at least 100 cell diameters from the cell
source region and we use the same distance from the obstacle
center to the sink region. After a transient period to allow for the
steady-state-like regime to establish itself, with a time scale deter-
mined by the typical cell velocity divided by the obstacle size,
measurements are averaged in time over the simulation duration.

1.2 Acceptable parameter values

Each model has its own restrictions when it comes to accep-
table parameter values. Our objective is to determine these
values and identify the specific regions for each model where
realistic cell flow can potentially occur.

We are interested in three main model parameters: align-
ment (that affects the collective migration), force/tension
between neighbor cells (that affect the tissue liquid or solid
behaviour) and cell creation rate (that affects the density). In
Fig. 3, the eight limit cases are presented and identified by a
number 0, 1, 2,. . .7 which we use throughout this article.

Some parameter limits are simply due to the numerical
implementation, as the numerical solution may not converge, or
the simulation may stop running due to infinite or non-numerical
values. Other more striking limitations are the physical
and biological ones, like unrealistic densities or velocities. For
example, the particles with the Voronoi model cannot support
empty spaces; therefore for low densities, instead of creating
empty spaces in the tissue the cells would stretch indefinitely.
In many cases, some parameter values may generate artifacts in
the dynamics and the physics is no longer correct.

1.3 Input measurements

1.3.1 Implementation of input measurements. A natural
approach to compare simulations from different models would

Fig. 2 Simulation set-up, definitions and dimensions (expressed in cell size units).
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consist in standardizing the set of parameters from the different
models in order to construct a common set of dimensionless
numbers based on the model parameter values.46 However, here,
this approach is unfeasible: in fact, model ingredients are very
diverse, especially since cell centers and cell contours are qualita-
tively different degrees of freedom. Even the number of model
parameters varies a lot, from the parsimonious Vicsek–Grégoire
model to the detailed Potts model, so that the number of relevant
dimensionless parameters would be difficult to decide.

We have therefore chosen an alternative route: we define a
standardized set of dimensionless input measurements. This has
the following advantages: first, we can draw a common phase
diagram, with identical axes corresponding to input measure-
ments; we can then position each simulation on these axes, and
thus on the same phase diagram. Second, if in the future a
reader wants to compare the current five simulation models
with a new one, it will not be necessary to perform any
theoretical analysis; it will be sufficient to measure the input
quantities as we do here. Third, it will determine which models
can or cannot be compared; if the input measurements do not
present any intersection range, the models are too different to
be comparable. Fourth, the input measurements are physical
quantities and are in direct correspondence with the output
measurements that we are interested in. In contrast, some
model ingredients have no intuitive physical interpretation,
or are not in correspondence with the output measurements.
Fifth, the same approach will in principle be applicable to
experiments too; in fact, the input measurements are accessible
from experiments, as opposed to the dimensionless numbers
based on the underlying parameter values.

Here, given our interests in the cellular and tissue aspects,
we choose as input measurements three cell-scale characteris-
tics: first, the alignment of a cell velocity with its neighbours
velocity, which quantifies local order or disorder in the velocity
field. Second, the liquid or solid behaviour, based on each cell
center’s local displacements relative to its neighbors. Third, the
relative density that characterizes the confluence and compres-
sion of the monolayer, or its absence.

Additional measures, such as tissue softness and viscosity,47

have been shown to provide valuable insights into cell
behavior.48,49 However, due to the variety of particle-based

models (Vicsek, Szabó) and extended models (Voronoi, Potts,
Multiparticle) utilized in our study, these measures cannot be
readily applied to all models. Furthermore, as commented
above, each model that we have used has additional parameters
to vary beyond the three we have chosen, and these cannot be
easily mapped to one another within each model. Therefore, we
have selected the most common values reported in the litera-
ture for these fixed parameters. Below, we examine each of
the three chosen quantities in greater detail, and show how to
measure them in practice.

For each model we determine the set of ingredients that can
contribute to set these particular tissue characteristics; these
ingredients are model-dependent. For instance, in some
models the alignment is explicitly prescribed, while in others
it is only an indirect consequence of ingredient choices. The
cell behaviour can become more solid-like due to a large
interaction force between cell centers, or to a large tension of
cell–cell junctions. The density can directly or indirectly depend
on several ingredients, for instance it increases with the cell
creation rate (when it exists) and decreases with the free cell
velocity.

We run simulations with several values of the model para-
meters to delimit the accessible range of input measurements.
The phase diagram is three dimensional so that there are eight
combinations of limit cases which we explore (Fig. 3). Note that
in principle, there can be several combinations of model
parameter values that result in the same limit case. Exploring
these combinations of parameter values is beyond the scope of
this work. Here, we choose to change as few parameter values
as possible at a time, ideally one.

1.3.2 Choice of dimensionless input measurements. To
measure the degree of alignment of motile cell movements,
we use the parameter originally proposed by Vicsek et al.,11 the
velocity order parameter:

f ¼ 1

N

X
i2N

~vi
jvij

(1)

where N is the number of cells and -
vi is the velocity of cell i.

If each cell movement direction is uncorrelated with the
surrounding ones, f = 0, cells form a non-collective flow.

Fig. 3 Representations of parameter space. (a) The id numbers 0, 1, 2,. . .7, corresponding to the corners of a three-dimensional cube, identify the limits
of parameters for the simulations and resulting maps. (b) Cube visualising extreme value labels, as defined in (a).
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Conversely, if cells are all moving in the same direction, f = 1,
they form a collective flow.

In order to evaluate the level of solidity or liquidity in the
tissue, we could employ a measure commonly used in the soft
matter field: the mean-square displacement (MSD). This mea-
sure quantifies the distance that a particle travels in time t, and
is averaged spatiotemporally, i.e., over both space and time,
denoted as h(r(t0 + t) � r(t0))2it0,space. When MSD reaches a value
around s2, where s represents the typical size of cells, it
indicates the occurrence of a glass-to-liquid transition. Never-
theless, this measure is only an indirect indicator of rearrange-
ments, and it is sensitive to spatial irregularities and the
method of overall flow subtraction.

We thus choose here to use the more robust parameter
proposed by Grégoire et al.:12

D ¼ 1� 1

ni

X
i�j

1� rij
2ðtÞ

rij2ðtþ TÞ

� �
(2)

where rij(t) is the distance between centers of cells i and j at
time t, while rij(t + T) is their distance after time interval T. This
sum is normalized by the number of particles ni. By that
definition D is close to one when a cell’s motion is only
fluctuating locally, keeping most of its neighborhood: this is
solid-like behaviour. Conversely, D is close to zero when a cell
frequently exchanges most of its neighborhood: this is liquid-
like behaviour. The value of D of course depends on the choice
of T, and this point is even more sensitive for an out-of-
equilibrium tissue like the one we consider here. To choose
T, we use an adaptive method: we first run the transient
simulation time steps, and list the cells inside the input
measurement region. We then track them while they flow over
one obstacle radius and calculate D during this time interval T.
Using the measurement over an interval of one obstacle radius
just beyond the region of input measurements allows us to

define whether the cells exchange their neighborhood along a
spatially well-defined region, sufficiently far from the source
and the obstacle, and independent of the velocity associated
with the flow.

In order to convert the density into a non-dimensional form,
we define

dr ¼ r
req

* +
� 1; (3)

where r denotes the number of cells per unit area, and req

represents its equilibrium value under model-specific conditions,
i.e., in the absence of external forces and stresses. According to this
definition, dr vanishes when, on average, the cells are at equili-
brium density. It becomes positive when the cells are compressed,
and negative when the cells are stretched or create gaps.

1.4 Output measurements

Output measurements are performed over 466 boxes disposed
in a 28 � 18 rectangular grid (minus 38 grid elements corres-
ponding to the obstacle). We measure and represent the
following three quantities.

The normalized density dr = 0 is the same as the one used as
an input measurement (eqn (3)). It is a scalar quantity and is
represented by a color. Blue represents negative values of dr,
i.e. a density lower than the equilibrium; white represents
dr = 0, i.e. the density at equilibrium; and red represents
positive values of dr, i.e. a density higher than in equilibrium.

For each snapshot, we measure each cell velocity during the
time interval immediately following the snapshot. The velocity,
averaged over all cells in the box, is a vector represented as an
arrow which we place in the middle of the box, while a yellow
unit scale arrow is shown in the middle of the obstacle. In the
snapshot, we color each particle by its direction of movement
according to the angular color map shown in Fig. 4.

Fig. 4 Snapshots for the motile cell simulation in the Stokes geometry in the Vicsek model’s eight limit cases where the panel labels correspond to Fig. 3.
The values for the parameters used in this model are specified in Table 1. Images with even numbers present systems with density close to confluence,
while the odd ones are constructed with higher densities. The top row presents the low alignment cases while the bottom one presents the high
alignment ones. The four images on the left correspond to low attraction forces (liquid-like), while the four images on the right correspond to high
attraction forces (solid-like). The images are restricted to an area around the obstacle; particle source and sink regions are not depicted. The color of
each particle is related to the direction of its movement, see the orientational color map at the bottom right. Objects migrating in the flow direction,
along the positive x-axis towards the right, are displayed in red. Objects moving upwards, along the positive y-axis, are represented in yellowish-green.
Objects moving backwards, towards the left, are cyan. Objects moving downwards are a blueish-purple color. A black background color corresponds to
holes in the tissue.
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The deformation is the anisotropy of the coarse-grained cell
shape deformation (not to be confused with the coarse-grained
average of the cell shape deformation anisotropy). It is mea-
sured by averaging links between cells using the inter-cellular
texture matrix as defined in ref. 50. We divide the system into
boxes of four cell diameters in size and perform a time average
of the textures over typically 50 snapshots, during which cells
have moved at least 30 cell diameters. The average texture is
diagonalized yielding two eigenvalues, Lmax

2 and Lmin
2. From

these we calculate the cell deformation deviator amplitude,
1

2
ln
Lmax

Lmin
; and the cell deformation deviator orientation, which

is the angle of the larger eigenvalue direction relative to the
x-axis.51 We represent the deviator as a bar, with a length
corresponding to the magnitude of the deformation anisotropy
and with an angle corresponding to its major axis. To indicate
scale, the red line in the middle of the obstacle represents a
deformation of ln2, corresponding to cells whose length is
twice their width.

2 Materials and methods: simulation
models

In this section we present the simulation models covering their
principle, their implementation, and their parameters. Ingre-
dients include motility, alignment, polarization, interaction
(force between cell centers, or cell–cell junction tension), area,
perimeter, density, cell creation and cell destruction. We
emphasize that all models are in their motile version.

For each model, we determine three model parameters that
affect the three input measurements alignment (eqn (1)), rigid-
ity (eqn (2)) and density relative to the equilibrium density
(eqn (3)). We vary these three model parameters (keeping the
others fixed) and determine the range of their values which lead
to low and high levels of these input measurements. We also
briefly discuss the effects on running simulations outside of
this parameter range.

2.1 Vicsek model

The Vicsek model11 describes each cell i as a single motile particle.
For each time step, the particle position evolution is given by

-
xi(t + Dt) = -

xi(t) + -
vi(t)Dt. (4)

Here, the time interval is fixed as 1 and the time scale is
determined by the velocity module, chosen as v0 = |-vi| = 0.05.
Each particle has a speed of fixed modulus, so it always moves
regardless of the external forces and all particles are identical.

The sole degree of freedom is the velocity direction, which
evolves according to:12

yiðtþ DtÞ ¼ arg
X
j� ih i

a
~vjðtÞ
v1
þ
X
j� ih i

b~fi; jðtÞ þ Z~uiðtÞ

2
4

3
5 (5)

The first term is the alignment with neighbors, here an
explicit model ingredient. These neighbors are defined according

to a metric (i.e. distance-based, as opposed to topology-based)
criterion where j is the neighbour to i if their distance is smaller
than a distance rmax = 1. The collective migration behaviour is then
tuned by the coupling parameter a.

The second term is the pairwise, radial force between
neighboring particles, tuned by the b coupling parameter:

fi; j ¼
0 rij � rmax

1� rij

req
rc o rij o rmax

þ1 rij � rc

8><
>: (6)

Particles have a hard-core repulsion ( fc = 1000) below a radius
rc = 0.18. Between rc and rmax the force is harmonic and the
equilibrium force distance is req = 0.8; req/2 is used as the size
unit. This equilibrium distance we define as the equilibrium
density for req = 1/(p(req/2)2). The last term is the vector noise
where ~uiðtÞ is a random unitary vector, and where we keep the
amplitude Z fixed as one.

The system dimensions in simulation units are: channel
length 101, width 25, obstacle center position (50, 12.5), obsta-
cle radius 3.75, source region from x = 0 to 1, and sink region at
x = 100. The time scale is given by the particle speed and time
interval; we keep v0Dt o 0.1rC to prevent a particle from
jumping over another one.

Fig. 4 shows simulation snapshots in the limit cases. The
three model parameters directly affect the input measure-
ments, as shown in Table 2. First, a low value of the alignment
a prevents any collective behaviour (see top row of Fig. 4),
i.e. the f value is low. When the alignment a value is high, the
collective phase is well simulated, and the f value is high. Note
that at high alignment, particles barely separate and D is high,
as in a solid phase. Second, the force b determines the liquid
versus solid behaviour, D = 0 to 1; note the nearly crystalline
structure in images 2 and 3 of Fig. 4. Finally, the density dr
increases with the cell creation rate. A low creation rate keeps
the density around confluence while a high one keeps the
cells under pressure. This creation rate needs to be carefully
adjusted in order to keep the flow as steady as possible
(Table 1). Note the frequent formation of voids at different
parameter values. Overall, the Vicsek model is robust to para-
meter variation and artifacts are easy to avoid.

Table 1 Limit values for the parameters varied in the Vicsek model. The
particle creation rate needs to be carefully adjusted in order to keep the
flow as confluent and steady as possible, and this adjustment strongly
depends on the alignment degree. The lowest creation rate to keep the
confluent flow is 0.007 for disordered cells, while it is 3.0 to keep a highly
aligned confluent flow. In order to produce a high density flow, we
increase the creation rate by approximately 50%, which leads to the high
creation rate of 0.0105 for disordered cells and 5 for ordered cells

Parameter Level Value

Alignment (a) Low 0.0
Alignment (a) High 0.5
Force (b) Low 2.0
Force (b) High 5.0
Creation (rate) Low 0.007 to 3.0
Creation (rate) High 0.0105 to 5.0
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2.2 Szabó model

The Szabó model23 is also based on motile particles, but is
defined as a set of continuous differential equations, and with
no explicit neighbor alignment term. Each cell has a polarity
direction, which determines self-persistence of the velocity.
This polarity changes with collisions and with an angular noise.
Any collective behavior in this model is a result of this self-
persistence.52,53

The i-th particle polarity n̂i is a unitary vector with direction
yi. This angle tends to relax in the direction of the particle
displacement -

vi = d-
ri/dt in a characteristic time t:

dyiðtÞ
dt
¼ 1

t
arcsin n̂i �

~vi
j~vij

� �
� êz

� �
þ xi (7)

The angular noise xi follows a Gaussian distribution with zero

mean hx(t)i = 0 and auto-correlation xðtÞxðt 0Þh i ¼ Z2

12
dðt; t 0Þ

where d is the Dirac delta function. There is no direct noise
on the displacement, and the angular noise only changes the
polarization direction; êz is the unit vector orthogonal to the
plane of motion.

The velocity evolution of the i-th particle is given by

d~riðtÞ
dt
¼ v0n̂iðtÞ þ m

XN
j¼1

~f j~rij j
� �

: (8)

Without any external influences, the particle will move in the
polarity direction with its free velocity v0. The interaction with
particles or obstacles follows overdamped Langevin dynamics,
where the mobility (or inverse friction) m controls the amplitude
of the velocity response to forces. Additionally, if force and
polarity vectors are aligned, the particle velocity increases while
it slows down in the converse case. This type of non-reciprocal
interaction is responsible for the global flocking state in the
system.

The force between two particles i and j is radial, i.e. it only
depends on their distance rij ¼ j~rij j:

f ðrijÞ ¼

Frep
rij � req

req
rij o req

Fadh
rij � req

rmax � req
req � rij o rmax

0 rij � rmax:

8>>>>>><
>>>>>>:

(9)

At short distance the particles repel each other with a harmonic
repulsion with stiffness parameter Frep. If the particles are more
distant than the equilibrium distance req they adhere with
adhesion parameter Fadh, and finally, if the particles are more
distant than rmax they do not interact.

The fixed parameters are: interaction coupling m = 1.0,
repulsion between particles Frep = 30.0, particle free velocity
v0 = 0.05, noise amplitude Z = 1.0. The interaction of the
obstacle with the particles is defined as a central repulsive
force with stiffness constant equal to 100.0. The maximum
interaction and alignment distance is rmax = 1.0, and the
equilibrium force distance is req = 0.666. To avoid crystal-
lization as an artifact of this model we introduce in the
equilibrium distance req a polydispersity 0.1.

The system dimensions in simulation units are channel
length 101, width 25, obstacle center position (50, 12.5), obstacle
radius 3.75, source region from x = 0 to 1, and sink region at
x = 100. The time interval used for numerical integration is
Dt = 0.005, chosen for numerical stability and also such that
Dt { t.

Fig. 5 shows simulation snapshots in the limit cases. Table 3
shows which parameters we vary. First, the relaxation time t,
where low values of t favor global alignment. The relationship
between t and alignment is indirect, and not explicit; note for
instance that the simulation time interval limits the maximum
possible alignment. Second, the adhesion parameter Fadh: a
high value of Fadh favors solid-like behaviour, but it also affects
the density and should remain small enough to avoid particle
overlap. Third, the creation rate: it has to be carefully tuned in
order to keep a constant density. Note that void formation is
rare in this model. Velocity coherence regions are wider than
for the Vicsek model, and the disordered region before the
obstacle appears at higher densities (labels 5 and 7). Here
again, at high alignment, particles barely separate and D is
high, as in a solid phase.

2.3 Voronoi model

In a Voronoi model, the degree of freedom is the cell center, but
cells have geometrical quantities (a shape, a perimeter, an area,
vertices, edges) which can play a role in the dynamics. The
neighbours are defined by the Delaunay triangulation (the dual
of the Voronoi tessellation).

We use here the self-propelled particle version of the Vor-
onoi model proposed by Bi et al.9 and implemented with
boundaries and division by Barton et al.28,54 As in the Szabó

Table 2 Input measurements for the Vicsek model. The values of the
three input measurements, alignment f, liquid–solid behaviour D and
normalized density dr, are indicated for the Vicsek model simulations with
different values of the three model parameters. A value shown in normal
font indicates the simulation was performed with a lower level of the
parameter related to that measure, a value shown in bold font indicates a
higher level of that parameter, see Table 1. For example, the line with id = 3
is the result of a simulation with low alignment, high force and high
creation rate

id f D dr

0 0.124 0.025 0.711
1 0.122 0.018 1.022
2 0.158 0.686 0.062
3 0.154 0.623 0.381
4 0.967 0.824 0.174
5 0.990 0.892 0.997
6 0.963 0.908 0.169
7 0.988 0.933 1.014
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model, the i-th Voronoi velocity is given by an overdamped
Langevin equation:

d~ri
dt
¼ v0n̂i � mr~riE (10)

where v0 is the free particle velocity and n̂i the particle polarity

while m is the mobility. The last term, ~Fi ¼ �r~riE, is the force
term acting on particle i. It is written in terms of the energy E
calculated for the entire Voronoi tiling, which includes the
interaction with neighbors through a preferred area and peri-
meter:

E ¼ K

2

X
i

Ai � A0
i

� �2 þ G
2

X
i

Pi
2 þ

X
ij

Llij (11)

Here, the preferred area is A0
i and each cell’s actual area Ai is

determined by its Voronoi tile. The compressibility modulus K
determines the effect of area variation on energy; G plays the
same role for the perimeter Pi, whose preferred value P0 = �L/G
is implicit in the last term of the energy. The latter is summed
over each cell–cell junction ij, which is a Voronoi edge, and L is
its tension.

The model can incorporate both an explicit neighbor align-
ment and the self-persistence of a polarity, with an angular

noise, so that the cell polarity evolves according to

dn̂i

dt
¼~ti þ~xi (12)

where the torque ti acting on the particle is given by

~ti ¼ �n̂i �rn̂iEalign (13)

We separately test both options (Table 5). If Ealign is a result
of the explicit neighbor alignment, similar to the Vicsek particle
model, then Ealign ¼ �J

P
j

n̂i � n̂j and in that case J is the

alignment parameter. If Ealign is the result of the particle self

Table 3 Limit values for the parameters varied in the Szabó model. The
creation rate needs to be carefully adjusted in order to keep the flow as
confluent and steady as possible, and this adjustment strongly depends on
the degree of alignment: the lowest creation rate to keep the confluent
flow is 0.01 for disordered cells, while it is 0.35 to keep a highly aligned
confluent flow. In order to produce a high density flow, we increase the
creation rate by approximately 50%, which leads to the high creation rate
of 0.015 for disordered cells and 0.525 for ordered cells

Parameter Level Value

Alignment (t) Low 100.0
Alignment (t) High 0.1
Force (Fadh) Low 1.0
Force (Fadh) High 3.0
Creation (div) Low 0.01 to 0.35
Creation (div) High 0.015 to 0.525

Table 4 Input measurements for the Szabó model. A value shown in
normal font indicates the simulation was performed with a lower level of
the parameter related to that measure, a value shown in bold font indicates
a higher level of that parameter, see Table 3

id f D dr

0 0.252 0.171 0.153
1 0.250 0.226 0.275
2 0.195 0.914 0.801
3 0.241 0.944 1.037
4 0.969 0.912 0.194
5 0.845 0.723 0.936
6 0.953 0.813 0.173
7 0.939 0.776 0.885

Table 5 Limit values for the parameters varied in the Voronoi model. Note
the two options for alignment: either J (for neighbours) or t (for
persistence)

Parameter Level Value

Alignment ( J) Low 0.0
Alignment ( J) High 0.5
Alignment (t) Low 500.0
Alignment (t) High 0.5
Force (L) Low �4.0
Force (L) High �4.5
Creation (r0) Low 1.0
Creation (r0) High 1.5

Fig. 5 Snapshots for the Szabó’s eight limit cases; the same caption as Fig. 4. See Table 3 for the parameter values.
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persistence, similar to the Szabó model, then Ealign ¼ �
1

t
n̂i � v̂i

in which case t is the alignment parameter.
The second variable parameter is the cell–cell junction

tension L, uniform for all cells and independent of the junction

length. This measure maps to the shape parameter p0 ¼

� L
G
ffiffiffiffiffiffi
A0

p that controls the mechanical transition from a rigid

to a floppy system in this model.9 The third parameter is the
initial density, r0. Note that in this model, we create new
particles by division: cells inside the source region divide every
100 time steps with a probability of 3%. When we increase the
cell density in the source area, the rate of creation is indirectly
increased. Also, we do not destroy the cells at the end of
the channel as this is difficult to integrate into a persistent
Delaunay triangulation, so we simply leave enough free space
for the particles to migrate.

The system dimensions in simulation units are: channel
length 200, width 50, obstacle center position (0, 0), obstacle
radius 7.5, channel left at x = � 100, channel right at x = 100.
Each cell has an equilibrium area A0

i = p, and stiffness K = 1,
G = 1 as well as m = 1, v0 = 0.6 and a rotational noise amplitude
xiðtÞ � xjðt 0Þ ¼ 2Drdijdðt� t 0Þ with 2Dr = 0.5.

Fig. 6 shows simulation snapshots in the limit cases, see
Table 6. As expected, a low tension favors a liquid behaviour
and a high tension favors a solid one. But the density also plays
a strong role: high density favors Voronoi topological changes,
so that the D value is low as in a liquid phase. The neighbor
alignment is difficult to tune: when we increase the parameter J,
before the system reaches a collective behaviour some artifacts

appear. Examples include the empty spaces after the obstacle
when the density is low (images J0 and J2), disordered regions
after the obstacle when density is high (images J1 and J3), or
particle accumulations (top left of image J3). Conversely, the
alignment obtained with high self-persistence (bottom row,
indicated by the letter t) yields more realistic collective beha-
viours, consistent with the observation of a flocking Voronoi
model phase with self-alignment in ref. 55 and 56.

2.4 Potts model

In its version without motility,57–59 the cellular Potts model
represents each cell as a connected set of pixels on a square
lattice, like a picture of experimental cells. The degrees of
freedom are the cell contours, and each cell has a preferred

Fig. 6 Snapshots for the Voronoi model limit cases. The obstacle and the walls are groups of fixed particles represented by small white particles.
Clinging particles are also represented this way. Moving particles’ color indicate their velocity direction according to the color scheme at the bottom
right. The numbers indicate the levels of each parameter, see Tables 3a and 5. The first line corresponds to the case without neighbor alignment and low
self-persistence. The second line is for high explicit neighbor alignment, while the third line imposes high self-persistence. Images with even numbers
present systems with density close to confluence, while the odd ones are constructed with higher densities. The six images on the left of the figure
correspond to low cell–cell junction tension, while the six on the right correspond to high junction tension.

Table 6 Input measurements for the Voronoi model. A value shown in
normal font indicates the simulation was performed with a lower level of
the parameter related to that measure, a value shown in bold font indicates
a higher level of that parameter, see Table 5

id f D dr

0 0.182 0.373 0.619
1 0.155 0.011 0.901
2 0.205 0.624 0.806
3 0.173 0.061 1.042
J0 0.582 0.661 0.393
J1 0.623 0.666 1.031
J2 0.942 0.509 0.507
J3 0.903 0.718 0.560
t0 0.862 0.736 0.621
t1 0.501 0.099 1.171
t2 0.903 0.794 0.617
t3 0.851 0.544 1.114
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area. The evolution of the pattern is described by the following
Monte-Carlo dynamics. At each step, we choose at random a
pixel of cell i. If it is in the bulk of the cell, it is not examined.
If it is near the cell contour, we propose to switch its value by
copying that of a neighboring pixel, in another cell j. The energy
cost DH (where H is the total system energy) that this copy
incurs is evaluated. If the energy H of the system would
decrease with the proposed copy, then it is always accepted
(which is equivalent to moving the junction between i and j by
one pixel). If the energy would instead increase, the proposed
copy will be accepted with a probability that exponentially
depends on the cost DH and on a fluctuation allowance, b:

P ¼
e�bDH ; DH4 0

1; DH � 0

(
(14)

In this case without any cell motility, the energy is given by

H ¼
X
i�j

J þ lA
X
i

Ai � A0ð Þ2; (15)

where the first term is the tension of the junction between cells
i and j, and the sum is performed over all pixels at the junction,
hence encompasses the junction length. As J increases, changes
are less probable, and the tissue has a more solid-like beha-
viour. The second term is the area conservation: the cell has an
equilibrium area A0 and an actual area Ai, while the parameter
lA is an area compressibility modulus. When there is a free
space between cells, it is treated as a zone with no preferred
area and no compression modulus, and its border with a cell
has tension J. The channel walls and the obstacle are treated as
a fixed zone without changes.

In the present work, we add motility to the Potts model
based on Käfer et al.31 cells by introducing the following motile
force

-

F:

DH =
-

Fi�
-
c(i, j), (16)

where -
c is the copy vector. That is, for each pixel copy proposed

during the Monte-Carlo step, the vector -
c which links both

pixels is a proxy of the direction of movement for the whole cell.
If the copy is aligned with the force, the energy decreases and
the copy is favored; conversely, if the copy vector has a direction
opposed to the force, the energy increases and the copy is less
probable. If the copy is perpendicular, it does not change the
energy: hence some random perpendicular copies occur.

The motile force is:
-

Fi(t + Dt) = a
-

Pi(t) (17)

Here a is the total motility parameter; if it is zero the cell has no
motility and vi

! is the past cell velocity before the change. The
cell polarity is defined as the direction of the motile force, and
thus of -

c(i, j). Both neighbor alignment and self-persistence
terms can be implemented as:

P̂iðtþ DtÞ ¼ lC
X
j�i

P̂jðtÞ þ lPv̂iðtÞ
" #

: (18)

We have observed that, since -c(i, j) is pixelated, it yields
highly fluctuating simulations. We thus mostly study the
neighbor alignment term, by making lC variable. The second
variable parameter is J, i.e. the tension of cell–cell junctions.
The third parameter is the division area A*. In the source
region, the mother cells grow, and once they reach A* they
divide into two particles. To obtain higher density values we
decrease A* (Table 7), and other parameters are fixed.

All dimensions are expressed in pixels: channel length 2020,
width 520, obstacle center position (810, 260), obstacle radius 74,
cell target area A0 = 100. We use a = 100 and b = 1/50, lA = 10, lP = 1.

Fig. 7 shows simulation snapshots in limit cases, see
Table 8. While voids between cells are possible to simulate,
here we do not intend to simulate them so by construction
there are none. Note that the polarization is nearly random in
the top images where there is no collective motion. When in
collective motion, the polarization is overall aligned, with
direction fluctuations only close to the obstacle.

2.5 Multiparticle model

In this work we introduce a Multiparticle model where several
vertices are free to move and interacting pairwise, in the same
spirit as ref. 34 and 60.

Each cell is composed of two kinds of motile particles: a
central one and several peripheral ones (Fig. 8). The central one
(representing the nucleus), also labelled m, interacts only with
the peripheral particles of the same cell (representing the
membrane or the cytoskeleton), which are labelled m,i.

Within a given cell the neighborhood is fixed. Each periph-
eral particle is always a neighbor to the central particle, and to
two other peripheral particles. In addition, the peripheral
particles of one cell are capable of interacting with the peripheral
ones from neighboring cells and so are responsible for cell–cell
interactions. We use the following notations: vm is the speed of the
central particle of cell m; vmi is the speed of the peripheral particle i
of cell m; when two particles are neighbors we note i B j, finally
~r m;n
i;j is the vector connecting the position of particle i from cell m to

the position of particle j from cell n.
An individual particle is described by an adapted Vicsek

equation and the central particle movement of the m-th cell is
given by:

-
xm(t + Dt) = -

xm(t) + -
vm(t)Dt. (19)

As in the Vicsek model, the velocity has a constant modulus
|-vm|. Its direction depends on the alignment and forces of the

Table 7 Limit values for the parameters varied in the Potts model. Note
that bigger area A* means less divisions

Parameter Level Value

Alignment (lC) Low 0.0
Alignment (lC) High 5.0
Force ( J) Low 50
Force ( J) High 150
Creation (A*) Low 80
Creation (A*) High 53.33
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peripheral particles of the same cell. The velocity direction ym of
the central particle evolves according to

ymðtþ DtÞ ¼ arg a
X
i2m

~viðtÞ þ b
X
i2m

~hið~ri; tÞ þ Z~uðtÞ
" #

; (20)

where a, b and Z, respectively, regulate the weights of the
alignment with the peripheral particle’s velocity, the harmonic
forces,

-

hi, produced by peripheral particles on the central one,
and the intensity of the unitary noise vector -

u. The evolution
equation for the peripheral particle i in cell m is similar

-
xmi (t + Dt) = -

xmi (t) + -
vmi (t)Dt. (21)

The interaction between peripheral particles of the same cell
and particles of different cells (i and j in Fig. 8) results from the
sum of several contributions. The particle i in cell m has velocity
direction y given by

ymi = arg[Am
i + Fmi + Gm

i + Hm
i + Tm

i ], (22)

where each term is explained one by one below.
First, consider a peripheral particle i that is part of the cell m.

The total alignment acting on it, Am
i , is composed of the central

particle direction v̂m, that is a self-persistence term, and the
direction of the velocity of neighboring peripheral particles
either from cell m and from neighboring cells n:

Am
i ¼ av̂m þ a

X
i; j2m

v̂m;mi;j þ a1
X

i2m; j2n
v̂m;ni; j : (23)

The second term in Eq. (22) is a force term and also involves
contributions from the central particle and from peripheral
particles,

F
m
i ¼ b ~hmi þ

X
j�i

~hmi; j

 !
þ b1

X
i2m; j2n

~f m;ni; j (24)

where
-

h is an infinite range of harmonic interaction between
peripheral particles of the same cell or with the central particle
of their cell. The last term represents interactions with periph-
eral particles of the same cell m when not first neighbors, or
from a neighbor cell n. This last force between pairs is inspired
by the force for Vicsek-like particles (eqn (6)): it is radial,
with limited reach and its module depends on the distance
rm,n

i,j between peripheral particles

f r
m;n
i; j

	 

¼

0 r
m;n
i; j � rmax

1�
rm;ni; j

req
rc o r

m;n
i; j o rmax

fc r
m;n
i; j � rc:

8>>>>>><
>>>>>>:

(25)

Here, rmax is the cut-off, or maximum interaction distance, req is
the equilibrium distance, rc is the core size, and fc plays the role
of an infinite repulsion force. In practice, in the simulation it is
set to a large value compared to typical forces in the system.

Fig. 7 Snapshots for the Potts model’s eight limit cases; the same caption as Fig. 4. See Table 7 for parameter values.

Table 8 Input measurements for the Potts model. A value shown in
normal font indicates the simulation was performed with a lower level of
the parameter related to that measure, a value shown in bold font indicates
a higher level of that parameter, see Table 7

id f D dr

0 0.101 0.090 0.224
1 0.084 0.099 0.654
2 0.100 0.777 0.282
3 0.089 0.822 0.797
4 0.498 0.772 0.187
5 0.460 0.613 1.114
6 0.485 0.791 0.058
7 0.570 0.811 1.114

Fig. 8 Multiparticle model. Schema of the springs composing the
extended cell model, including interaction with neighboring cells. Each
cell and its central particle is labelled by a Greek letter, here m and n. The
cells m and n interact only via their peripheral particles m,i and n,j.
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The next force reflects the cell area constraint:

Gm
i = �kA(Am � A0)r̂mi , (26)

where Am is the instantaneous cell area, A0 is a target area, r̂mi is a
unitary radial vector and kA is a stiffness constant.

The polygonal shape of each cell is not impenetrable: in
principle a peripheral particle could invade another cell. In
practice this seldom happens, but for these rare cases we
introduce a force to repel the invader:

Hm
j ¼

fc r̂
m;n
i if j inside m

0 else;

(
(27)

with fc and r̂i as defined above, and with an equal force with
opposite sign that is applied to the center particle of cell m.

Since the topological relationship between peripheral parti-
cles are fixed within a cell, we introduce a torque that keeps the

particle near the correct relative angle with its neighbors.
The tangential force resulting from this torque is given by

T
m
i ¼ krmi

X
j¼�1

fm
j � f0; (28)

where f0 is an equilibrium angle, rmi is the radial distance to the
center particle, fi�1

m is the angle between peripheral particles i
and i � 1, and k is a constant.

In this work we keep constant all parameters (Table 9) except
for three parameters we vary (Table 10).

The first parameter we vary is the external alignment a1,
which we increase in order to establish collective movement.

The second parameter we vary is the attractive force between
different cells b1. If the attractive force b1 is low or even zero,
particles from different cells still repel each other due to core
repulsion. All forces are fixed at a value carefully chosen in
order to prevent artifacts such as cell breakage, overlap or
collapse.

The third parameter is the cell creation rate, which deter-
mines the density. As in the Potts model, the creation of new
particles is implemented by cell division, which happens at a
given rate, t.

Fig. 9 shows simulation snapshots in limit cases, see
Table 11. Note the presence of voids and coherent polarization
patches when the alignment is high and the motion is collec-
tive. Even with a high self-persistence value, collective align-
ment is never reached, probably because peripheral particles
generate a lot of noise.

3 Results

Fig. 10–19 represent the output measurement maps for the five
models, using the scheme explained above: in Fig. 10, 12, 14, 16
and 18, the normalized density dr is in color, with blue, white
and red representing density lower, equal and higher than the
equilibrium density req, respectively. Velocity is represented as
black arrows on the same plot, with a yellow unit scale arrow
shown in the middle of the obstacle. When the flow is slow and
disordered the scale appears large, while when a strongly
collective flow is established the scale appears small. In Fig. 11,

Table 9 Parameters kept constant in the multiparticle model. N is the
number of peripheral particles composing each cell

Parameter Value

N 20
a 14
b 1
Z 1
req 1.1
rmax 1.3
ka 10
k 10
f0 2/N
R N/(2p)
A0 pR2

Table 10 Limit values for the parameters varied in the multiparticle model

Parameter Level Value

Alignment (a1) Low 0.0
Alignment (a1) High 14.0
Force (b1) Low 1.0
Force (b1) High 2.5
Creation (t) Low 50
Creation (t) High 30

Fig. 9 Snapshots for the Multiparticle’s eight limit cases; the same caption as Fig. 4. See Table 10 for parameter values.

Paper Soft Matter

Pu
bl

is
he

d 
on

 0
2 

Ju
ne

 2
02

3.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ite
it 

L
ei

de
n 

/ L
U

M
C

 o
n 

3/
14

/2
02

4 
7:

49
:1

8 
A

M
. 

View Article Online

https://doi.org/10.1039/d3sm00187c


This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 5583–5601 |  5595

13, 15, 17 and 19, the deformation anisotropy magnitude
and direction are represented by a bar length and direction.
To indicate the scale, the red line in the middle of the obstacle
represents the deformation ln 2, corresponding to cells whose
length is twice their width. This means when the cell deforma-
tions are small and disordered, the scale appears large, while

when a strongly collective deformation pattern is established
the scale appears small.

Fig. 10 presents velocity–density maps for the Vicsek model.
At low alignment, the density is higher before the obstacle, and
its distribution is symmetrical around the y-axis. In contrast, at
high alignment and low densities (Fig. 10-4 and -6), there is a
break in the density distribution symmetry, and the region of
high density shifts towards one of the narrow spaces between
the obstacle and the wall. The deformation maps (Fig. 11)
indicate an upstream/downstream asymmetry, particularly near
the obstacle, where the direction close to it is favored. When
compared to the other cases, the low alignment and low
attraction cases (maps 0 and 1) exhibit minimal deformations.

Fig. 12 and 13 illustrate the Szabo model’s behavior. In all
cases, the density map appears to be roughly symmetrical with
respect to the y-axis, with high densities before the obstacle.
The deformations observed in this model are more intense
than those in the Vicsek model and display different patterns
before the obstacle. When the alignment is low (maps 0–4), the
deformation is primarily in the x-direction. In contrast, at high

Table 11 Input measurements for the Multiparticle model. A value shown
in normal font indicates the simulation was performed with a lower level of
the parameter related to that measure, a value shown in bold font indicates
a higher level of that parameter, see Table 10

id f D dr

0 0.182 0.086 0.098
1 0.161 0.145 �0.013
2 0.285 0.337 �0.050
3 0.290 0.353 �0.010
4 0.643 0.439 �0.028
5 0.599 0.654 0.030
6 0.671 0.720 �0.240
7 0.794 0.708 �0.079

Fig. 10 Vicsek model: density and velocity. The numbers in the image are the labels detailed in Table 1. The values for the parameters used in this model
are specified in Table 1. Images with even numbers present systems with density close to confluence, while the odd ones are constructed with higher
densities. The top row presents the low alignment cases while the bottom one presents the high alignment ones. The four images on the left correspond
to low forces (liquid-like), while the four images on the right correspond to high forces (solid-like). The images are restricted to an area around the
obstacle; particle source and sink regions are not depicted.

Fig. 11 Vicsek model: deformation anisotropy, for the same data as in Fig. 10.

Soft Matter Paper

Pu
bl

is
he

d 
on

 0
2 

Ju
ne

 2
02

3.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ite
it 

L
ei

de
n 

/ L
U

M
C

 o
n 

3/
14

/2
02

4 
7:

49
:1

8 
A

M
. 

View Article Online

https://doi.org/10.1039/d3sm00187c


5596 |  Soft Matter, 2023, 19, 5583–5601 This journal is © The Royal Society of Chemistry 2023

alignment, except for the high-density and low adhesion case
(map 5), there is a region of low deformation just downstream
of the obstacle. However, upstream of the obstacle, a region of
high deformation can be observed.

The Voronoi model, as depicted in Fig. 14 and 15, exhibits
significant density fluctuations with explicit alignment. Similar
to the Vicsek model, low alignment results in small deformations,
which increase significantly with both types of alignments.

Fig. 12 Szabó model: density and velocity, for the 8 cases outlined in Tables 3 and 4.

Fig. 13 Szabó model: deformation anisotropy, for the 8 cases outlined in Tables 3 and 4.

Fig. 14 Voronoi model: density and velocity, for the 12 cases outlined in Tables 5 and 6. In J2, regions downstream of the obstacle with aberrant cell
shapes and velocities have been removed.
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Additionally, deformations are closely tangential to the obstacle
in most cases.

Fig. 16 and 17 demonstrate the Potts model’s behavior. With
the exception of map 0, the density is higher before the
obstacle, and some accumulation occurs close to the obstacle
in the case of low adhesion and high alignment (map 4).
Furthermore, a clear contrast in the velocity field is evident in
cases with and without alignment (maps 0, 1, 2, 3 versus maps
4, 5, 6, 7). The deformations are primarily tangential to the
obstacle in the upstream and lateral parts of the obstacle.
However, they are parameter-dependent in the downstream
part, as demonstrated by the comparison between maps 4
and 6 on one side and 3 and 5 on the other.

Within the parameter range investigated in this study, the
Multiparticle model (Fig. 18 and 19) exhibits coherent polariza-
tion waves but does not exhibit complete ordering. The density

exhibits limited variation, and fluctuations arise due to aver-
aging over void regions. Tangential deformation is dominant
near the obstacle, although voids can alter this behavior.

4 Discussion: choosing a model

For each given scientific question, several criteria can help
to choose a suitable numerical model. In order to help the
reader, we provide several comparison tables. Table 12 provides
an overview of the physical ingredients incorporated in
each model.

Table 13 explains how to choose the model parameter in
order to avoid artifacts and execution troubles. For instance,
some of the parameters only make sense for positive values, such as
the alignment or the force between cells. In some cases, if the

Fig. 15 Pictures/Voronoi model: deformation anisotropy, for the 12 cases outlined in Tables 5 and 6. In J2, regions downstream of the obstacle with
aberrant cell shapes and velocities have been removed.

Fig. 16 Potts model: density and velocity, for the 8 cases outlined in Tables 7 and 8.
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interaction or the junction tension is too strong, the cells can
shrink or even disappear. In the Potts and Multiparticle models,
cells may break if the alignment parameter is excessive.

In all models the density should be carefully adjusted: in the
Voronoi model, which is always confluent by construction
(no free space is allowed), a too low density induces very
unrealistic cell shapes and velocities. In the other models a
too low density prevents confluence, i.e. some cells form small

groups surrounded by free space. Conversely, at high density in
all models except for Potts, the pressure becomes too high
and induces spurious movements, cell overlaps or obstacle
invasion. In particular, in the Multiparticle model cells easily
overlap which induces severe artifacts.

Table 14 compares the range of input measurements
range that each model can reasonably simulate. Since these
input measurements are standardized and dimensionless, this

Fig. 17 Potts model: deformation anisotropy, for the 8 cases outlined in Tables 7 and 8.

Fig. 18 Multiparticle model: density and velocity, for the 8 cases outlined in Tables 10 and 11.

Fig. 19 Multiparticle model: deformation anisotropy, for the 8 cases outlined in Tables 10 and 11.
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comparison is physically relevant. For instance, all models
enable us to vary alignment f, but the Vicsek model can
produce high alignment, while the Potts and Multiparticle
models are restricted to smaller values of f to remain stable.
The Multiparticle model is suitable for low density simulations;
in fact, density falls below the equilibrium one when in
collective motion. In the other four models it is possible to
increase the density above the equilibrium value by controlling
the cell creation rate. The Voronoi model is the most suitable
for reaching a high density.

All models reasonably reproduce both liquid and solid
behaviours, although this can be sensitive to alignment, to

Table 12 Overview of model ingredients. ‘‘Force’’ refers to pairwise radial forces between cell centers, while ‘‘tension’’ refers to cell–cell junction tension

Vicsek Szabó Voronoi Potts Multiparticle

Degree of freedom Particle Particle Particle Contours Multiparticle
Cell shape Disk Disk Polygon Set of pixels Polygon
Alignment Neighbor Persistence Both Both Both
Interaction Force Force Tension Tension Force
Core Hard Soft Soft None Hard
Lattice No No No Yes No
Speed Fixed Variable Variable Variable Fixed
Walls Repulsive Repulsive Attractive Attractive Repulsive
Obstacle Repulsive Friction Attractive Attractive Repulsive
Cell source Creation Creation Division Division Division
Cell death Yes Yes No Yes Yes

Table 13 Model parameter limitations. For each model, lower and upper limits are suggested. For each limit, a reason for this choice (e.g. the
appearance of an artifact) is indicated in italics. Here we use N/A: not applicable

Vicsek Szabó Voronoi Potts Multiparticle

Lowest alignment 0.0 disorder N/A 0.0 disorder 0.0 disorder 0.0 disorder
Highest alignment No limit N/A Finite alignment drops Finite cells break Finite cells break
Lowest persistence N/A 1/t - 0 disorder 1/t - 0 disorder 0.0 disorder 0.0 disorder
Highest persistence N/A Finite alignment drops Finite tissue collapse Finite cells break Finite cells break
Lowest interaction Finite gas Finite gas Finite rosettes Finite cells break Finite gas
Highest interaction Core repulsion cores

overlap
Repulsion force
cores overlap

Finite cells collapse Finite cells collapse Finite cells break

Lowest density Confluence holes Confluence holes Confluence retraction Confluence holes Confluence holes
Highest density Finite cores overlap,

invade obstacle
Finite cores overlap Finite cells are liquid,

execution crashes
Finite cells collapse Finite cells collapse

and/or overlap

Table 14 Input measurements range reached for each model. All values
indicated are approximate. Remember that the normalized density is compared
with the equilibrium density (eqn (3)), hence can reach negative values

Vicsek Szabó Voronoi Potts Multiparticle

Alignment
low f 0.12 0.2 0.17 0.09 0.2
high f 0.98 0.9 0.9 0.5 0.6
Density
low dr 0.05 0.2 0.5 0.25 �0.1
high dr 1.0 1.0 1.1 1.1 0.1
Liquid/solid
low D 0.02 0.2 0.2 0.09 0.1
high D 0.85 0.85 0.7 0.8 0.7

Table 15 Model guide chart: subjective appreciations of each model’s advantages (5 colored stars indicate the best quality)

Vicsek Szabó Voronoi Potts Multiparticle

Density range
Density fluctuations
Tissue shrinkage
Cell shape
Cell stretch
Cell velocity
Velocity asymmetry
Cell self-persistence
Neighbour alignment
Neighbour exchange
Closing after obstacle
Simulation time efficiency
Simulation stability
Number of cells B7600 B11 400 B8100 B7500 B7300
Main advantages Robustness, simplicity Simplicity, alignment Good compromise Shape, fluctuations Large deformations
Main limitation Shape Shape Density Alignment Density
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forces and to several artifacts. More precisely, in the absence of
collective behavior (low f), Vicsek, Szabó and Potts models
present D values which increase with the force. In collective
motion (high f), the Vicsek, Szabó and Potts models show solid
behaviour (high D) independently of attraction forces or density.
Conversely, the Voronoi model displays a liquid behavior (low D)
at high densities, whatever the force; while in the Multiparticle
model, at high force cell shapes become more irregular, neighbor
exchanges become more frequent and thus the behaviour becomes
liquid (D decreases).

Finally, as expected, the Vicsek and Szabó models are simple
and robust. Conversely, the Potts and Multiparticle models
offer realistic shapes, shape changes and neighbour exchanges.
In between, the Voronoi model is often a good compromise.
Table 15 refines this comparison. These appreciations are
entirely subjective and solely intended to help in choosing a
suitable model. Criteria include the physical ingredients, para-
meter limitations, quantities to be measured, possible artifacts,
simulation running time, and even the likelihood of execution
crashes. For instance, depending on the flow alignment and
spatial gradients, after the obstacle a hole can appear (or, in the
Voronoi model, cell shapes and velocities become unrealistic).
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