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The emergence of flat bands in twisted bilayer graphene at the magic angle can be understood in terms of a
vanishing Fermi velocity of the Dirac cone. This is associated with van Hove singularities approaching the Fermi
energy and becoming higher-order. In the density of states, this is reflected by flanking logarithmic van Hove
divergences pinching off the central Dirac cone in energy space. The low-energy pseudogap of the Dirac cone
away from the magic angle is replaced by a power-law divergence due to the higher-order van Hove singularity
at the magic angle. This plays an important role in the exotic phenomena observed in this material, such as
superconductivity and magnetism, by amplifying electronic correlation effects. Here we investigate one such
correlation effect—the Kondo effect due to a magnetic impurity embedded in twisted bilayer graphene. We use
the Bistritzer-MacDonald model to extract the low-energy density of states of the material as a function of twist
angle and study the resulting quantum impurity physics using perturbative and numerical renormalization group
methods. Although at zero temperature the impurity is only Kondo screened precisely at the magic angle, we find
highly nontrivial behavior at finite temperatures relevant to experiments, due to the complex interplay between
Dirac, van Hove, and Kondo physics.

DOI: 10.1103/PhysRevB.107.245102

I. INTRODUCTION

The properties of two-dimensional monolayer systems are
strongly modified by stacking two layers with a relative
twist, the so-called moiré effect in twisted bilayer systems
[1]. In particular, twisted bilayer graphene (TBG) exhibits
peculiar properties at specific “magic” twist angles [2–11].
One characteristic of the system at these magic angles is
that the noninteracting band structure contains almost-flat
bands. This leads to a dramatic enhancement of the density of
states (DoS). Consequently, electronic interaction effects are
boosted, favoring the appearance of magnetism and other cor-
related phases, for example superconductivity [9–21]. Away
from the magic angle in TBG, the slightly modified Dirac
cones of the single layers persist [1], giving a low-energy
linear pseudogap DoS. However, pronounced van Hove sin-
gularities [22] (vHs’s) dominate the band structure at higher
energies, leading to logarithmic divergences in the DoS. Ex-
perimentally, it was recently shown [23] that as the magic
angle is approached, the vHs divergences in the DoS move
to lower energy, pinching off the Dirac cone from either side
in energy space. At the magic angle, the vHs divergences in
the DoS merge, and a single higher-order vHs [6] (HO-vHs)
emerges, yielding a stronger, power-law divergent DoS. This
is a characteristic feature of the emergent flat bands in this
system. The enhanced effect of electron correlations due to
the HO-vHs in the bulk TBG material has been studied the-
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oretically [10,11,13,24] and confirmed in scanning tunneling
spectroscopy (STS) experiments [25,26].

Detailed information on the electronic structure of new ma-
terials can also be obtained by exploiting defects or impurities
as in situ probes [27]. The nature of the electronic scattering
from impurities in a system is strongly dependent on the band
structure and DoS of the clean host material and can be probed
either locally at the impurity site by STS [28,29], or by col-
lecting momentum-space information through quasiparticle
interference (QPI) measurements [30]. For quantum impu-
rities such as magnetic adatoms [31,32] or single-molecule
magnets [33], the impurity spin degree of freedom gener-
ates additional spin-flip scattering, which is boosted at low
temperatures by the Kondo effect in standard metallic hosts
[34]. The Kondo effect itself depends sensitively on the lo-
cal spin-resolved DoS of the host material, and hence such
“Kondo probes” can provide additional electronic structure
information [35] or be utilized for quantum metrology [36].
Aside from the spectroscopic and QPI signatures of Kondo
physics in metals [32], the Kondo effect has been studied in
a range of other unconventional materials, including mono-
layer graphene [37–40], topological insulators [41], Dirac and
Weyl semimetals [42], ferromagnets [43,44], superconduc-
tors [45,46], and spin liquids [47–49]—each giving its own
distinctive response. In particular, for Dirac systems with a
low-energy pseudogap, the depleted conduction electron DoS
is known to suppress the Kondo effect [39,41,42] (although it
can be revived upon doping [50]).

By contrast, in the case of TBG, one might expect Kondo
correlations to be strongly enhanced by the flat bands and
diverging DoS close to the magic angle. The study of Kondo
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(a) (b) (c)

FIG. 1. (a) Schematic representation of a magnetic impurity on the surface of the twisted bilayer graphene host material, with inter-layer
twist angle θ . (b) Evolution of the clean TBG density of states for different twist angles near the magic angle at θ = 1.05◦. Vertical dashed
lines indicate the energy of the dispersion saddle points Ev , which determine the van Hove singularity locations. (c) Vanishing vHs saddle point
scale Ev (top) and determinant of the saddle point Hessian (bottom) as the magic angle is approached, showing how two vHs’s coalesce into a
single HO-vHs.

physics in TBG, and how it evolves with twist angle, is the
topic of this article. We find that magnetic impurities are sensi-
tive probes of the nontrivial band structure of the material, and
we uncover rich thermodynamic and spectroscopic signatures
that rapidly change on approaching the magic angle.

Specifically, we consider a single, interacting Anderson
impurity embedded in the TBG host—see Fig. 1(a). The clean
TBG material is modelled using the Bistritzer-MacDonald
(BM) model [3], which we discuss in Sec. II. We focus on
the role of the vHs’s and their evolution with twist angle.
The model shows an intricate interplay between different
DoS elements: metallic, Dirac pseudogap, vHs logarithmic
divergence, and HO-vHs power-law divergence. In Sec. III,
we review the physics of the Kondo model, emphasizing the
different limiting behaviors arising in the metallic, pseudo-
gap, and log-diverging or power-law diverging DoS needed
to understand the compound DoS structure in TBG. Finally,
in Sec. IV, we present full numerical renormalization group
(NRG) results for an Anderson impurity in TBG in the vicinity
of, and at, the magic angle. We focus on thermodynamic
quantities such as the impurity entropy as a clear means of
identifying the different fixed points and emergent energy
scales. We furthermore study the energy-dependence of the
local impurity spectral function, which is relevant to STS
experiments. We conclude in Sec. V, commenting on the suit-
ability of magnetic impurities as in situ probes for the physics
of TBG near the magic angle and an outlook for experiments.
Technical material is given for reference in Appendixes.

We note that the Kondo model we consider in this work is
completely different from recent studies of TBG as a heavy
fermion problem [51–54], where the quenched kinetic energy
of the flat band lends itself to being treated as an immobile
lattice of impurities. In those works, the correlated local mo-

ments are a part of the TBG lattice itself, whereas here we con-
sider additional adatom impurities coupled to the TBG host.
The effective impurity models and corresponding electronic
hybridization functions are rather different in these two cases.

II. VAN HOVE SINGULARITIES IN THE
BISTRITZER-MACDONALD MODEL

Before considering a Kondo impurity in TBG, we first ana-
lyze the clean host material, focusing on how the vHs’s affect
the band structure and local DoS. In the first part of this sec-
tion we briefly recall the details of the Bistritzer-MacDonald
(BM) model of TBG and its particle-hole symmetric limit.
The original derivations were performed in Refs. [2,3,55];
further details are provided in Appendixes. In the second part,
we analyze the formation of flat bands from saddle points and
discuss the detailed structure of the lowest energy bands.

A. Particle-hole symmetric Bistritzer-MacDonald model

To describe TBG with a small twist angle θ , it is necessary
to take into account both the intralayer hopping parameter t
for each of the individual graphene layers, as well as the in-
terlayer tunneling w. In the following we take these to be t ≈
2.87 eV and w ≈ 0.11 eV, as used in Ref. [3]. The twist angle
between the layers generates a Moiré pattern with an emergent
superlattice structure. For small twist angles θ , the character-
istic Moiré length scale Lθ is given by Lθ = √

3a/[2 sin(θ/2)]
with a = 1.42 Å being the interatomic distance in monolayer
graphene. The corresponding effective low-energy Hamilto-
nian near the K point of the Moiré Brillouin zone (MBZ) has
the form [3,55],

H (k) =

⎛
⎜⎜⎜⎜⎜⎝

hK
θ
2
(k) wT1 wT2 wT3

wT †
1 hK

− θ
2
(k − q1) 0 0

wT †
2 0 hK

− θ
2
(k − q2) 0

wT †
3 0 0 hK

− θ
2
(k − q3)

⎞
⎟⎟⎟⎟⎟⎠. (1)
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The wave vector k is measured relative to the K point, and
the Hamiltonian acts on eight-component wave functions
� = (ψ0,k, ψ1,k, ψ2,k, ψ3,k )T , where ψ0,k is a two-component
spinor in the A-B sublattice basis in the top layer, and ψ1(2,3),k

are spinors in bottom layer at wave vectors k − q1(2,3). Here
hK

φ (k) is the effective low-energy Hamiltonian of single layer
graphene near the K point, in a coordinate frame rotated by
angle φ,

hK
φ (k) = kvF

[
0 ei(θk−φ)

e−i(θk−φ) 0

]
. (2)

Here, the angle θk measures the orientation of the momentum
relative to the x axis, k = |k|, and the Fermi velocity is vF =
9.3 × 107 cm/s. The wave vectors q1,2,3 connecting K points
of the top and bottom layers are

q1 = kθ {0,−1}, (3a)

q2 = kθ

{√
3

2
,

1

2

}
, (3b)

q3 = kθ

{
−

√
3

2
,

1

2

}
, (3c)

with Moiré wave number, kθ ≡ |q j | = 8π

3
√

3a
sin( θ

2 ).
Finally, the interlayer tunneling matrices T1(2,3) are ex-

pressed in terms of Pauli matrices, viz.

T1 = 1 + σx, (4a)

T2 = 1 − σx

2
−

√
3σy

2
, (4b)

T3 = 1 − σx

2
+

√
3σy

2
. (4c)

Hamiltonian (1) captures the essential physics of TBG and
correctly predicts the first magic angle at θ � 1.05◦. At the K
point of the MBZ, one finds that the lowest energy bands have
a Dirac cone dispersion with an effective Fermi velocity,

v�
F = 1 − 3w2/(h̄vF kθ )2

1 + 6w2/(h̄vF kθ )2 , (5)

which vanishes exactly at the magic angle, where h̄vF kθ =√
3w.
In the following, we will use the particle-hole symmetric

version of the BM model. This form is obtained from Eq. (1)
by eliminating subleading (second-order) corrections in the
diagonal elements coming from the effect of the twist on the
single layer Hamiltonian [55]. This is simply achieved by
setting φ = 0 in Eq. (2),

H (k) =

⎛
⎜⎜⎜⎜⎜⎝

hK
0 (k) wT1 wT2 wT3

wT †
1 hK

0 (k − q1) 0 0

wT †
2 0 hK

0 (k − q2) 0

wT †
3 0 0 hK

0 (k − q3)

⎞
⎟⎟⎟⎟⎟⎠.

(6)

The low-energy TBG DoS ρ(ω), obtained by diagonalizing
this Hamiltonian is shown in Fig. 1(b), for different twist
angles in the vicinity of the magic angle at θ = 1.05◦. When

precisely at the magic angle, we see a single divergence in
the DoS at the Fermi energy. We measure energies relative to
the Fermi energy and set EF = 0, such that ρ(ω) = ρ(−ω),
embodying the particle-hole symmetry of Eq. (6). However,
moving away from the magic angle, we have a Dirac cone
feature, with the pseudogap vanishing DoS ρ(ω) ∼ |ω| below
an emergent scale |ω| � Ev . We also see two vHs points with
diverging DoS at ω = ±Ev . Below we analyze the low-energy
bands and vHs structure of the model, extracting the angle
dependence of the vHs scale Ev .

B. Characterization of van Hove singularities in the
particle-hole symmetric BM model

We start our analysis of vHs properties in TBG by recalling
the classification recently introduced in Refs. [6,56,57], which
expands the definition from the usual vHs with logarithmi-
cally diverging DoS [22] to include HO-vHs with power-law
diverging DoS. For a band dispersion ε(k), which is a func-
tion of the 2D momentum vector k, we calculate the first
derivatives ∇kε(k) and the Hessian matrix of second deriva-
tives Di j (k) ≡ 1

2∂ki∂k j ε(k). The Hellman-Feynman theorem
allows to carry this out with high numerical accuracy (see
Appendix A). A logarithmic vHs arises at a point k0 in the
dispersion corresponding to a saddle point when

ln vHs: ∇kε(k0) = 0 and det D(k0) < 0. (7)

The negative Hessian determinant means that we have both a
maximum and a minimum in each of the principal directions
of the saddle point. A higher-order saddle point, correspond-
ing to a HO-vHs, is instead characterized by zero determinant
of Hessian matrix:

HO-vHs: ∇kε(k0) = 0 and det D(k0) = 0. (8)

In addition, higher-order saddle points can be classified ac-
cording to the leading polynomial terms in an expansion of
the dispersion ε(k) around the saddle point k0 [56,57]. These
leading terms in the expansion correspond directly to the
numerical exponent of the power-law divergence in the DoS.

With the help of this classification, we proceed to inves-
tigate the structure of the lowest band in the BM model
Hamiltonian given by Eq. (6). Using particle-hole symmetry
in conjunction with the transformation kx → −kx allows us to
concentrate only on the lowest positive energy band for our
analysis. Technical details of our numerical implementation
are presented in Appendix A. In Fig. 1(c), we show the nu-
merically computed Ev scale (top panel) and the determinant
of the saddle-point Hessian det D(k0) (bottom panel) as a
function of twist angle. Both are seen to vanish at the magic
angle, heralding the emergence of the HO-vHs at this point.
This behavior is further analyzed below.

In Fig. 2, we plot the momentum-resolved spectrum of the
BM model for twist angles θ = 1.2◦ [panel (a)] and θ = 1.05◦
[panel (b)]. We compute ∇kε(k) throughout the MBZ and
search for the vHs points for which ∇kε(k) = 0. These are
indicated in both panels as the red circle points.

Having located the vHs points in the MBZ for a given twist
angle, we can classify them and study their neighborhood in
momentum space. Away from the magic angle [e.g., for θ =
1.2◦ shown in Fig. 2(a)], we indeed find a negative determi-
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(a) Conventional vHs (b) Higher Order vHs at the magic angle

FIG. 2. Low-energy features of the particle-hole symmetric BM model of pristine TBG, showing energy contours of the dispersion ε(k)
as a function of momentum k in the extended MBZ. Red points show the saddle points of the dispersion, corresponding to the van Hove
singularities. Dashed lines show the contours at energy Ev , on which the van Hove points sit.

nant of the Hessian det D(k0) < 0, and the vHs’s have a local
hyperbolic geometry in momentum space. The dispersion is
found to have the leading form,

εp = Ev + αp2
x − βp2

y, (9)

where the coefficients are obtained from the eigenvalues of the
Hessian, and the labels px and py are measured in the principal
directions of the saddle point, with p = 0 defining the saddle
point itself. The corresponding leading correction to the DoS
then takes the form,

ρ(ω) = 1

4π2

1√
αβ

ln

∣∣∣∣ D

ω − Ev

∣∣∣∣, (10)

where D is a high-energy cutoff, taken to be the conduction
electron bandwidth. In this way, we may extract the vHs scale
Ev .

As we begin twisting toward the magic angle, the vHs
energy scale Ev starts to decrease, and the two logarith-
mic singularities at ω = ±Ev therefore move closer together.
Furthermore, the magnitude of the Hessian at the vHs,
| det D(k0)|, also decreases. The two vHs points merge at
ω = 0 precisely at the magic angle θ = 1.05◦ [23], at which
point the Hessian also vanishes, det D(k0) = 0. This transition
is shown in Fig. 1(c). As the magic angle is approached and
the HO-vHs is formed, we see a further flattening of the dis-
persion in the py direction. The fittingly named higher-order
singularity requires a higher-order polynomial to faithfully
capture its dispersion. The lowest polynomial which correctly
captures all the symmetries is given by

εp = αp2
x + γ px p2

y + κ p4
y. (11)

This comes hand-in-hand with a sharper, power-law diver-
gence in the DoS,

ρ(ω) = (2π )−
5
2 �

(
1
4

)2
(4α�̃2)−1/4 |ω|−1/4, (12)

with �̃2 = γ 2 − 4ακ and �(x) the usual gamma function.
The low-energy DoS at different angles can be computed

numerically by binning histograms of energies for the lowest
band of the BM model, as shown in Fig. 1(b). Away from the

magic angle, the numerical calculation indicates a linear DoS
around the Fermi energy, coming from the Dirac cone in the
spectrum. Around ω = ±Ev , we see the vHs log-divergences.
At the magic angle, the HO-vHs around the Fermi energy “eat
up” the Dirac cone, and we have instead a large DoS at low
energies, diverging as ρ(ω) ∼ |ω|−1/4.

III. THE KONDO PROBLEM

The Kondo effect is a classic paradigm in many-body quan-
tum physics [34]. The corresponding Kondo model features a
single quantum spin-1/2 magnetic impurity coupled by anti-
ferromagnetic exchange to a single channel of noninteracting
conduction electrons. Originally, the Kondo model was for-
mulated to describe dilute magnetic impurities such as iron,
in bulk metals such as gold [31,58]. In these metallic systems,
an impurity local moment becomes strongly entangled with
its surrounding conduction electrons at low temperatures, and
is dynamically screened [59–61]. This leads to dramatically
enhanced spin-flip scattering in the host metal, which can be
detected spectroscopically [32].

A more microscopic starting point is provided by the single
impurity Anderson model [34], which describes the impurity
as a single quantum orbital with strong electron interactions,

HAM = Hhost + εd

∑
σ

d†
σ dσ + Ud d†

↑d↑d†
↓d↓

+ g
∑

σ

(d†
σ c0,σ + c†

0,σ dσ ), (13)

where d (†)
σ is an annihilation (creation) operator for an impu-

rity electron with spin σ =↑/↓, and Hhost = ∑
k,σ εkc†

k,σ
ck,σ

describes the clean host. Here c(†)
k,σ

annihilates (creates) a
conduction electron of the host material with momentum k
and spin σ . We do not employ band indices in this expression.
The impurity couples locally in real-space to the effective host
orbital c0,σ = ∑

k ξkck,σ , where ξk is the weight of state k at
the impurity location (taken to be at the origin).

For small host-impurity hybridization g, repulsive
Coulomb interaction Ud > 0, and suitably chosen impurity
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potential −Ud < εd < 0, a spin-1/2 local moment can
be trapped on the impurity. Projecting onto this doubly
degenerate spin-1/2 manifold of impurity states by
eliminating virtual excitations to empty or doubly occupied
impurity configurations by means of a Schrieffer-Wolff (SW)
transformation [34,62] yields the simpler Kondo model,

HKM = Hhost + JS · s0 + V
∑

σ

c†
0,σ c0,σ , (14)

where J > 0 is the antiferromagnetic exchange interaction
between the impurity spin-1/2 degree of freedom S, and the
spin density of the host conduction electrons at the impurity
position s0 = 1

2

∑
α,β c†

0,ασαβc0,β , where σ is the vector of
Pauli matrices. The third term describes potential scattering of
the host conduction electrons induced by the impurity (since
c†

0,σ c0,σ = ∑
k,k′ ξkξk′c†

k,σ
ck′,σ ).

The standard Schrieffer-Wolff result [34,62], which be-
comes exact in the limit Ud/g2 → ∞, yields J = 2g2[(Ud +
εd )−1 − (εd )−1] and V = −g2[(Ud + εd )−1 + (εd )−1]. At the
particle-hole symmetric point of the model εd = −Ud/2, we
therefore obtain J = 8g2/Ud and V = 0 (the latter result can
be viewed as a many-body quantum destructive interference
effect between particle and hole processes). Although the
Kondo model Eq. (14) correctly captures the low-energy
physics of Eq. (13), it should be noted that for realistic values
of Ud , εd , and g outside of the strict perturbative regime, the
values of the effective parameters J and V must be obtained by
more sophisticated means that take into account renormaliza-
tion from the conduction electrons and the specific conduction
electron DoS [63]. We also emphasize that J and V are not
independent parameters in Eq. (14), being both derived from
the same microscopic parameters of the underlying Anderson
model.

The physics of the impurity problem is controlled by
the local (free) conduction electron DoS seen by the impu-
rity, ρσ (ω) = − 1

π
Im 〈〈c0,σ ; c†

0,σ 〉〉0, where 〈〈c0,σ ; c†
0,σ 〉〉 is the

retarded, real-frequency local host Green’s function at the
impurity position, and the 0 superscript denotes that it is
calculated for the clean host.

In this work, we consider a single magnetic impurity (the
“dilute limit”) embedded in an otherwise clean host TBG
system modelled by the BM model. SU(2) spin symmetry
is taken to be unbroken. We also assume that the impurity
couples equally to all BM bands independently of the impurity
position (ξk is constant for all momenta and band indices),
such that ρσ (ω) ≡ ρ(ω) is the TBG DoS, whose low-energy
form is described by Eqs. (10) or (12). This is certainly a
simplification, since details of the impurity-TBG hybridiza-
tion will naturally affect details of the impurity response. The
specific form of the impurity hybridization function will in
practice depend on the impurity location within the moiré
unit cell and how the impurity couples in real space to the
constituent TBG carbon atoms. We leave such ab initio studies
for future work. However, the rich physics uncovered be-
low will remain qualitatively unaltered provided the impurity
hybridization function still features van Hove divergences
flanking a central pseudogap Dirac cone. Since the origin of
these features is rooted deeply in the symmetry and topology
of the TBG material, we expect the idealized Kondo physics
described here to be rather generic. On the other hand, insights

from monolayer graphene [40] indicate that the physics of
vacancies in TBG or substitutional dopants may drastically
differ, since the local DoS in these cases is strongly modified.

In the rest of this section, we review the methods that
we use to attack the problem as well as the quantities to be
analyzed.

A. Poor man’s scaling approach

The Kondo model as defined by Eq. (14) is a nontrivial
strong correlation problem. For metallic host systems, the
first insights were provided by Kondo’s calculation of the
scattering T matrix [58], which is related to the impurity
spectral function. Kondo found a low-temperature divergence
in perturbation theory: even when the bare J is small, straight
perturbation theory does not give a good description of the
low-temperature physics or a proper understanding of the
many-body ground state of the system. This divergence was
better understood by Anderson’s self-coined “poor-man’s
scaling” approach [64]—a precursor to the renormalization
group (RG). It identified an emergent low-energy scale TK —
the Kondo temperature—below which perturbation theory
breaks down, and the problem becomes a strong coupling
problem. We briefly introduce the method here, since we will
employ it in the next section to understand analytically the
scaling properties of an impurity in the TBG host.

Conventionally in the poor man’s scaling approach, one
uses dimensionless couplings j = ρ0J and v = ρ0V with
ρ0 = ρ(ω = 0) the Fermi level DoS. However, for considera-
tion of Dirac systems where ρ0 may in fact vanish, a different
choice is required. Here we simply use the original dimension-
ful couplings J and V . Furthermore, we assume that the host
DoS is particle-hole symmetric, meaning ρ(ω) = ρ(−ω), a
property satisfied by Eq. (6); and is defined within a band of
halfwidth D, meaning ρ(ω) ∝ θ (D − |ω|).

Anderson’s scaling procedure goes as follows [64]: (i) in-
tegrate out high energy conduction electron states D − δD <

|ω| < D close to the band edges in a shell of width δD; (ii)
incorporate the effect of virtual excitations to these eliminated
states perturbatively by rescaling the couplings J and V to give
an effective Hamiltonian of the same form but defined with a
reduced bandwidth D → D − δD; (iii) study the flow of the
parameters J and V on successive reduction of the bandwidth.
Making δD infinitessimal, one obtains the following scaling
equations:

dJ

dD
= −ρ(D)

D
J2,

dV

dD
= 0. (15)

The first equation determines the flow of the coupling constant
J on reducing the bandwidth, whereas the second equa-
tion shows that the potential scattering V does not flow. If
the bare model is particle-hole symmetric then no potential
scattering is generated under the scaling procedure. In the
remainder of this paper, we will focus on the case V = 0.
The scaling equation for J gives insight into the breakdown
of perturbation theory and hence TK , by identifying the point
where the rescaled J diverges. We consider various relevant
situations in the following.
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B. Numerical renormalization group

Wilson’s numerical renormalization group [65,66] (NRG)
is a nonperturbative technique for solving quantum impurity
type problems. It builds upon Anderson’s perturbative scaling
ideas [64], but overcomes its limitations by establishing a
more general framework in terms of which physical quantities
can be calculated numerically exactly, down to zero temper-
ature. Wilson’s original formulation of NRG [65], designed
to obtain the thermodynamic properties of a single magnetic
impurity in a metal, has since been extended to deal with arbi-
trary host systems [66,67], and to the calculation of dynamical
quantities via the full-density-matrix NRG approach [68,69].
The former has allowed NRG to be applied to monolayer
graphene [38], and other Dirac systems [41,42]. The latter
provides access to highly accurate spectral data, with excellent
real-frequency resolution, at any temperature. NRG has also
been adapted over the years to extend the range of prob-
lems that can be tackled and improve accuracy or efficiency
[70–76], making it the gold-standard method of choice for
solving generalized quantum impurity problems.

The basic NRG algorithm [65,66] proceeds as follows.
(i) The local conduction electron density of states ρ(ω) of
the pristine host material (without the impurity) must first be
calculated.

(ii) This DoS is then discretized logarithmically by di-
viding it up into intervals according to the discretization
points ±D�−n, where D is the bare conduction electron
bandwidth, � > 1 is the NRG discretization parameter, and
n = 0, 1, 2, 3, . . . The continuous electronic density in each
interval is replaced by a single pole at the average position
with the same total weight, yielding ρdisc(ω).

(iii) The conduction electron part of the Hamiltonian Hhost

is then mapped into the form of a “Wilson chain,”

Hhost → Hdisc
host

=
∑

σ

∞∑
n=0

[tn ( f †
n,σ fn+1,σ + f †

n+1,σ fn,σ ) + εn f †
n,σ fn,σ ], (16)

where the Wilson chain coefficients {tn} and {εn} are deter-
mined such that the DoS at the end of the chain reproduces
exactly the discretized host DoS, that is − 1

π
Im 〈〈 f0,σ ; f †

0,σ 〉〉 =
ρdisc(ω). For a system with particle-hole symmetry, εn = 0
for all n. Due to the logarithmic discretization, the Wilson
chain hopping parameters decay roughly exponentially down
the chain, tn ∼ �−n/2, although the precise details are also
important since they encode the specific host DoS [66].

(iv) The impurity is coupled to site n = 0 of the Wilson
chain. We define a sequence of Hamiltonians HN comprising
the impurity and the first N Wilson chain sites,

HN = Himp + Hhyb +
∑

σ

[
N∑

n=0

εn f †
n,σ fn,σ

+
N−1∑
n=0

tn ( f †
n,σ fn+1,σ + f †

n+1,σ fn,σ )

]
, (17)

where for the Anderson model Himp = εd
∑

σ d†
σ dσ +

Ud d†
↑d↑d†

↓d↓ and Hhyb = g
∑

σ (d†
σ f0,σ + f †

0,σ dσ ) while for the

Kondo model Himp + Hhyb = JS · s0 + V
∑

σ f †
0,σ f0,σ with

s0 = 1
2

∑
α,β f †

0,ασαβ f0,β . From Eq. (17), we obtain the recur-
sion relation,

HN = HN−1 +
∑

σ

[εN f †
N,σ fN,σ

+ tN ( f †
N−1,σ fN,σ + f †

N,σ fN−1,σ )], (18)

such that the full (discretized) model is obtained as Hdisc =
limN→∞ HN [77].

(v) Starting from the impurity, we build up the chain by
successively adding Wilson chain sites using the recursion,
Eq. (18). At each step N , the intermediate Hamiltonian HN

is diagonalized, and only the lowest Ns states are retained to
construct the Hamiltonian HN+1 at the next step (the higher
energy states are discarded). In such a way, we focus on
progressively lower energy scales with each iteration. Further-
more, the iterative diagonalization and truncation procedure
can be viewed as an RG transformation [65], HN+1 = R[HN ].

(vi) The partition function ZN can be calculated from the
diagonalized Hamiltonian HN at each step N . Wilson used
RG arguments to show [65] that thermodynamic properties
obtained from ZN at an effective temperature TN ∼ �−N/2

accurately approximate those of the original undiscretized
model at the same temperature. The sequence of HN can
therefore be viewed as coarse-grained versions of the full
model, which faithfully capture the physics at progressively
lower and lower temperatures.

(vii) The discarded states at each step form a complete set
(the Anders-Schiller basis [68]), from which the NRG full
density matrix can be constructed. This provides a rigorous
way of calculating real-frequency dynamical quantities via the
Lehmann representation [69].

In this work, we take the DoS ρ(ω) of the TBG system
for a given twist angle θ (as calculated from the BM model
in Sec. II), discretize it logarithmically, and map to Wilson
chains. The DoS used and the resulting Wilson chains are
shown in Appendix B. NRG is then used to solve the An-
derson and Kondo models describing an impurity embedded
in the TBG host. Thermodynamic and dynamical quantities
are calculated and discussed in Sec. IV. Throughout, we use
an NRG discretization parameter � = 2 and retain Ns = 4000
states at each step of the calculation.

C. Observables

The physics of an impurity in the TBG host can be charac-
terized by a number of observables, both thermodynamic and
dynamical. Here we consider the impurity contribution to the
total thermal entropy Simp(T ) as a function of the temperature
T , and the low-T impurity spectral function A(ω) as a function
of energy ω.

The impurity entropy readily allows us to extract the
Kondo scale TK from NRG data, to track accurately the
RG flow, and to identify RG fixed points. It is defined as
Simp(T ) = Stot (T ) − S0(T ), where Stot is the entropy of the en-
tire system, while S0 is the entropy of the free TBG host with-
out impurities. The residual impurity entropy Simp(T = 0),
is a finite universal number of order unity which characterizes
the stable RG fixed point and hence the ground state of the
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TABLE I. Summary of properties for the Kondo model with the different host DoS encountered in this work.

Density of states, ρ(ω) Kondo temperature, TK Impurity entropy, Simp(T = 0)

Metal ρ0 : constant De−1/ρ0J 0

Standard van Hove ρ0[1 + a ln(D/|ω|)] : logarithmic diverging De
1
a − 1

a

√
1+ 2a

ρ0J 0
Higher Order van Hove ρ0|ω|−α : power-law diverging D(1 + αDα

ρ0J )−1/α −2α ln 2
Dirac cone ρ0|ω| : linear pseudogap TK = 0 ln 2

system; for example, Simp(0) = ln 2 for a free, unscreened
impurity spin S = 1/2 local moment.

The impurity spectral function gives dynamical informa-
tion and is accessible experimentally via scanning tunneling
spectroscopy (STS), which probes the energy-resolved im-
purity density of states [32]. For an Anderson impurity
it is related to the impurity Green’s function, A(ω) =
− 1

π
Im Gdd (ω), where Gdd (ω) = 〈〈dσ ; d†

σ 〉〉.
Electronic scattering in the TBG system induced by the

impurity is characterized by the t matrix, which in turn is
controlled by the impurity Green’s function. In momentum
space, the t matrix equation reads,

Gkk′ (ω) = δkk′G0
kk (ω) + G0

kk (ω)Tkk′ (ω)G0
k′k′ (ω), (19)

where G(0)
kk′ (ω) = 〈〈ck,σ

; c†
k′,σ 〉〉(0) is the electron Green’s func-

tion for the full (free) TBG system with (without) the impurity,
and Tkk′ (ω) = g2ξkξk′Gdd (ω) is the t matrix itself. Transform-
ing to real space, the t matrix equation becomes,

Grir j (ω) = G0
rir j

(ω) + G0
rir0

(ω)T (ω)G0
r0r j

(ω), (20)

where G(0)
rir j

(ω) are the full (free) electronic propagators be-
tween real-space sites ri and r j of the TBG system, and the
local t matrix is T (ω) = g2Gdd (ω). The impurity is taken to
be located at site r0.

A related experimental quantity obtained by Fourier trans-
form STS [30] (FT-STS) is the quasiparticle interference
(QPI) pattern, defined as,

�ρ(q, ω) =
∑

i

e−iq·ri�ρ(ri, ω), (21)

where �ρ(ri, ω) = − 1
π

Im [Griri (ω) − G0
riri

(ω)] is the differ-
ence in electronic density at site ri due to the impurity. As
such, the QPI pattern �ρ(q, ω) can be obtained entirely from
the free TBG propagators and the impurity Green’s function,
via the t matrix equation.

In the following, we study the zero temperature, T = 0,
impurity spectral function A(ω) using NRG; the t matrix and
QPI can be obtained from this as described above.

D. Limiting cases of the Kondo problem

The physics of the Kondo model strongly depends on the
host DoS. For the problem of a magnetic impurity in a TBG
host, as modelled using the BM model, there are a number
of relevant limits. We assume that the impurity couples to all
the orbitals in the same way meaning the local TBG DoS
ρ(ω) is the only relevant quantity characterizing the host.
Furthermore, we consider here the particle-hole symmetric
case V = 0 for simplicity.

The main insights of the ensuing discussion are summa-
rized in Table I.

1. The metallic limit

The case of a magnetic impurity embedded in a metallic
host is the most commonly encountered and well-studied sit-
uation, with extensive literature to its name (see Ref. [34] for
an introduction). The most important feature of the problem
is that upon reducing the temperature, the system becomes
increasingly strongly correlated. This is captured by the poor-
man’s scaling equation, Eq. (15). In a metal, it is a reasonable
assumption that the DoS is roughly constant within the rel-
evant energy window, ρ(ω) ≈ ρ0. Integrating Eq. (15) then
straightforwardly yields

J (�) = J0

1 + ρ0J0 ln
(

�
D

) , (22)

where � is the energy scale of interest whereas D is the
starting high-energy cutoff (physically D is the conduction
electron bandwidth). J0 is the starting value of the coupling
constant at the scale D [with J0 ≡ J in Eq. (14)] whereas
J (�) is the running coupling strength at energy scale �.
Perturbation theory breaks down, once the running coupling
J (� = TK ) → ∞. This happens at the root of the denomina-
tor and the corresponding running energy scale reads

TK = De−1/(ρ0J0 ). (23)

This energy scale has a number of interpretations. One im-
plication is that for temperatures T � TK , the physics can
be captured using a perturbative expansion around J = 0,
meaning the limit of a free impurity henceforth referred to
as the local moment (LM) regime. Consequently, the impurity
entropy, up to small correction, is that of a free spin, meaning
SLM

imp = ln 2.
Conversely, for T ∼ TK , perturbation theory breaks down.

Nozières showed [78] that at zero temperature, the ground
state is a complicated many-body spin-singlet state and the
system is a local Fermi liquid. The low-temperature limit
T � TK is referred to as the strong coupling (SC) regime. The
corresponding impurity entropy is that of a unique state with
SSC

imp = 0. The strong coupling physics in this regime shows
up in the local spectral function A(ω) as a strong quasiparticle
resonance around the Fermi energy, with a spectral pinning
condition satisfying the Friedel sum rule [34]. The RG flow
between the two fixed points is relatively simple, with J (�)
increasing from LM to SC as the energy scale � is decreased.
This is illustrated in the upper panel of Fig. 3. The Kondo scale
TK is the scaling invariant along this RG flow. Note that in the
metallic case, the potential scattering V is strictly marginal
and consequently plays no role.
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FIG. 3. One-dimensional RG diagram showing the flow into dif-
ferent stable fixed points as the temperature is lowered, for different
host density of states profiles.

2. Close to a van Hove singularity

This case is a twist on the usual metallic Kondo problem,
with very similar physics. The poor man’s scaling analysis
points to an RG flow from weak to strong coupling, with the
running coupling J (�) again increasing from LM to SC as
the energy scale � is decreased (Fig. 3, upper panel). The
main difference from the standard metallic case is an en-
hanced Kondo temperature [79–81] due to the enhanced DoS,
which diverges logarithmically at low energies for standard
vHs points. Taking the low-energy form of the DoS to be
ρ(ω) = ρ0(1 + a ln(D/|ω|)), we can integrate Eq. (15) and, as
before, extract the Kondo scale from the divergence in J (�).
In this case, we obtain

TK = De
1
a − 1

a

√
1+ 2a

ρ0J0 . (24)

Note that for a → 0 the DoS becomes metallic and we recover
the metallic limit result for TK .

This expression has two limiting cases and the relevant
parameter is now a/(ρ0J0): (i) For a/(ρ0J0) � 1, the logarith-
mic enhancement of the DoS plays no role and one recovers
the metallic limit result, TK = De−1/(ρ0J0 ) since the system
starts out already close to the SC fixed point. (ii) In the

opposite limit, a/(ρ0J0) � 1, we find TK = De
−

√
2

aρ0J0 , which
is strongly boosted relative to the metallic case. The Kondo
temperature TK is therefore enhanced in the vicinity of a
vHs. As expected, the impurity entropy is quenched at low
temperatures, Simp(T → 0) = 0, embodying Kondo singlet
formation. In terms of the impurity spectral function A(ω),
the quasiparticle Kondo resonance around the fermi energy
is in fact suppressed logarithmically by the logarithmically
diverging DoS of the free host [35]. However, the fact that
A(ω = 0) = 0 should not in this case be interpreted as a flow
towards weak coupling since the relevant quantity is rather
ρ(ω) × A(ω), which remains finite as |ω| → 0 and satisfies a
generalized Friedel sum rule [82] for strong coupling physics.

3. Close to a higher order van Hove singularity

As discussed in Sec. II, a HO-vHs is characterized by a
power-law divergence in the DoS. In the following discus-
sion, we neglect the metallic background on top of which
the power-law divergence sits, and take the DoS to be of the
form ρ(ω) = ρ0|ω|−α with 0 < α < 1. This problem falls into
the class of power-law Kondo problems [83]. Intuitively, one
expects the Kondo temperature to be further enhanced through
the more strongly divergent DoS. Integrating Eq. (15) with
this DoS yields

TK = D(
1 + αDα

ρ0J0

)1/α
. (25)

This problem also has two limits, one characterized by the
local moment physics of a free impurity (LM) the other limit
by a particle-hole symmetric strong coupling fixed point that
we henceforth call SSCHO. This RG fixed point has properties
that are slightly different from the metallic strong coupling
fixed point SC. It is characterized by a T → 0 impurity en-
tropy of Simp = −2α ln 2, which is negative. We emphasize
that although the total thermodynamic entropy is of course
never negative, the impurity contribution to the total system
entropy as defined in Sec. III C can be negative, if the presence
of the impurity causes dramatic changes to the host (local)
electronic structure, relative to the clean host. This is precisely
the case for the power-law Kondo model [83]. As for the
impurity spectral function, the quasiparticle Kondo resonance
is suppressed by the divergent free host DoS, and we find
A(ω) ∼ |ω|α at low energies. However, again, the signature of
Kondo singlet formation and strong coupling physics is that
ρ(ω) × A(ω) remains finite as |ω| → 0, which is indeed the
case for SSCHO.

The RG flow in the particle-hole symmetric case con-
sidered here is again one-dimensional, running from LM to
SSCHO as the energy scale or temperature is reduced (see
middle panel of Fig. 3). We note that strong particle-hole
asymmetry can play a role in the power-law Kondo model,
unlike the pure metallic case, and leads to the intricate phase
diagram discussed in Ref. [83].

4. The limit of a two-dimensional Dirac cone

The linear vanishing DoS associated with a Dirac cone
in two dimensional systems gives rise to a subtle impurity
problem which falls into the class of so-called pseudogap
Kondo models. This is by far the most complicated situation;
it has been discussed at length in Refs. [39,82,84–86]. In the
following, we focus on the particle-hole symmetric case, with
a linear pseudogap ρ(ω) = ρ0|ω| that is characteristic of 2d
Dirac materials. Naively, one might expect a reduced Kondo
temperature due to the reduced DoS of a Dirac cone compared
with that of a metal. In fact, the Kondo effect is suppressed
entirely in this case and TK vanishes, regardless of the strength
of the bare coupling J0. The LM fixed point is stable and the
impurity local moment remains unscreened.

For large bare J0 the system starts off close to the particle-
hole symmetric strong coupling fixed point of the linear
pseudogap Kondo model, dubbed SSCDirac. In this regime, the
impurity entropy is Simp = 2 ln 2. However, this fixed point
is unstable and RG flow on reducing the temperature tends
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FIG. 4. NRG results for an Anderson impurity in the TBG host
material described by the BM model, at various twist angles θ ap-
proaching the magic angle at θ = 1.05◦. (a) Impurity entropy Simp(T )
vs temperature T ; and (b) impurity spectral function A(ω) vs energy
ω at T = 0. Inset shows low-energy spectral details on a linear
scale for representative cases approaching the magic angle. All plots
shown for Ud = 0.4D, εd = −Ud/2 and g = 0.2D, with D the TBG
bandwidth.

towards the LM fixed point with entropy Simp = ln 2. Unlike
the other cases considered, here the renormalized running
coupling J (�) decreases on reducing temperature, so that the
impurity always becomes asymptotically free as T → 0. This
is illustrated in the lower panel of Fig. 3. The Kondo effect
can only be revived by doping so that the Dirac point is not
longer at the fermi energy (in which case the low-energy DoS
is finite and we recover the metallic scenario); or if very strong
potential scattering is introduced. For the linear pseudogap
case ρ(ω) ∼ |ω|, the impurity spectral function also goes
as A(ω) ∼ |ω|. Note that in this case ρ(ω) × A(ω) → 0 as
|ω| → 0, indicating a free impurity at low energies.

IV. RESULTS AND DISCUSSION

We now turn to our full NRG results for a magnetic im-
purity embedded in the TBG host. The impurity is taken to
be of Anderson type [Eq. (13)], and the BM model is used
for the host [Eq. (6). The observables of primary interest are

FIG. 5. Near the magic angle, the TBG host DoS has a compound
structure. At high energies �, the power-law diverging DoS asso-
ciated with the HO-vHs generates a rapid RG flow towards strong
coupling—blue arrow. On the scale of Ev the DoS crosses over to
logarithmic vHs—green arrow. Below Ev the Dirac cone pseudogap
dominates the DoS and J (�) begins to decrease again as the system
flows back towards the free local moment regime on an emergent
scale E∗. The color-coding is the same as that in Fig. 3.

the temperature-dependence of the entropy Simp(T ), and the
energy-resolved impurity spectral function A(ω) at T = 0, for
TBG systems with different twist angles—see Fig. 4. The
most dramatic changes are observed in the vicinity of the
magic angle at θ = 1.05◦, and this is where we focus our
discussion. The physical quantities we calculate reveal a com-
plex RG flow in the system, illustrated in Fig. 5. The physics
precisely at the magic angle is also investigated in detail,
and the dependence of the Kondo temperature on microscopic
parameters is extracted—see Fig. 6.

Consider first the entropy flows presented in Fig. 4(a).
At the highest temperatures T ∼ D, the impurity has four
thermally populated configurations (empty, doubly occupied,
and up/down spin states) and the entropy for all systems is
therefore ln(4) in this limit. On the scale T ∼ U the empty and
doubly occupied impurity configurations become thermally
inaccessible and only the local moment states of the impurity
survive. Note that this high-T charge-freezing crossover is ab-
sent in the Kondo model, which features only the two impurity
spin states from the outset. Far away from the magic angle,
where the low-energy TBG DoS is dominated by the linear
pseudogap of the Dirac cone, the Kondo effect is inoperative
and the impurity spin degrees of freedom remain unscreened
down to T = 0. The impurity entropy therefore saturates at the
LM value of ln(2). This is the basic picture for the blue line in
Fig. 4(a) obtained for twist angle θ = 2◦. In the opposite limit,
when the system is tuned to the magic angle θ = 1.05◦ the
impurity physics is dominated by the power-law divergence
in the low-energy DoS of TBG. The physics in this case
is effectively that of the power-law Kondo model discussed
in the previous section. Since ρ(ω) ∼ |ω|−1/4, the entropy
saturates to − 1

2 ln(2) for T � TK , where the Kondo scale TK

itself is strongly enhanced. This is precisely what we observe
for the red line in Fig. 4(a).
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FIG. 6. NRG results for an impurity embedded in magic angle
TBG. Entropy Simp vs T for Anderson and Kondo impurities (points
and lines, respectively) for different impurity-host couplings. For a
given Kondo J , the low-temperature physics of an Anderson model
with fixed U = 0.4D is fit by tuning g. The relationship between J
and g is shown in the lower-left inset (points), comparing with the
SW result (red dashed line). The evolution of TK with J is shown in
the lower-right inset (points), comparing with Eq. (25) (red dashed
line) and its small-J asymptote (blue dotted line). TK is extracted
numerically from NRG results for the entropy, defined in practice
via Simp(T = TK ) = 0.

However, the situation is much more complex for twist
angles close to (but not at) the magic angle. To understand
the full RG flow in this intermediate regime, consider Fig. 5,
together with the fixed point discussion in Sec. III D and the
RG flow diagrams in Fig. 3. Note that the same color-coding
is used in Figs. 3 and 5.

Near the magic angle, the TBG host DoS has a com-
pound structure featuring multiple elements, each of which
corresponding to a different limiting Kondo problem. At high
energies, the system shows behavior that is characteristic of
the HO-vHs, denoted in blue in Fig. 5. This behavior crosses
over to that of a standard logarithmic vHs on the scale of Ev ,
denoted in green. Far below this scale, the linear vanishing
pseudogap DoS of the Dirac cone emerges, denoted in red.
Depending on the energy window, the RG flow will therefore
be controlled by the different regimes depicted in Fig. 3.

This RG flow is reflected in the temperature dependence of
the entropy. After the charge degrees of freedom are frozen
out on the high-temperature scale of T ∼ U and the impurity
entropy reaches ∼ ln(2) characteristic of the LM regime, the
system then rapidly flows towards SSCHO on further reduc-
ing the temperature. On this trajectory, the effective coupling
strength J (�) grows as the energy scale � decreases, and the
entropy approaches Simp = − 1

2 ln 2. However, at the scale Ev ,
the physics of the logarithmic vHs takes over and the system

starts to flow towards the regular SC fixed point with Simp = 0.
The running coupling J (�) continues to increases. But on the
“other side” of the vHs in energy space, as the temperature
is further decreased, the effect of the low-energy pseudogap
DoS begins to dominate. Interestingly though, at this point in
the RG flow the system already has a very strong coupling
strength J (�), which puts the system close to the unstable
SSCDirac fixed point. The entropy therefore “overshoots” up
to ln(4) characteristic of this fixed point. The ultimate RG
flow on the lowest energy scales is therefore between SSCDirac

and the stable LM fixed point of the pseudogap Kondo prob-
lem, with a residual T = 0 entropy of ln(2). The ground
state is an unscreened local moment with ln(2) entropy in
all cases except when precisely at the magic angle (where
Ev = 0 such that this final part of the flow towards LM is
omitted). Our NRG results for the entropy show that the final
low-temperature flow between SSCDirac and LM is controlled
by an emergent energy scale E∗ ∼ |Ev|3. As we get closer
to the magic angle, the Ev scale reduces and the lines fold
progressively onto that of the red line for the magic angle
itself. The E∗ scale rapidly becomes very small. This gives
a finite window in twist angle over which magic angle physics
can be observed at intermediate temperatures.

The same RG flow is demonstrated by the T = 0 spectral
function for the impurity A(ω), which we plot in Fig. 4(b) for
the same systems. On the lowest energy scales |ω| � E∗, we
find A(ω) ∼ |ω| characteristic of the linear pseudogap Kondo
model, for all cases except when precisely at the magic angle.
This is because the physics here is controlled by the Dirac
cone and the resulting RG flow toward the LM fixed point.
By contrast, at the magic angle, the enhanced DoS leads to
strong coupling physics and a flow towards the SSCHO fixed
point for all |ω| � TK , yielding A(ω) ∼ |ω|1/4 (red line). As
the magic angle is approached, the Ev scale diminishes and
so the spectrum progressively folds onto the magic angle
result, see e.g. black line for θ = 1.1◦ in Fig. 4(b). The most
prominent feature of the impurity spectral function is however
the dramatic peak on the scale of E∗ (note the logarithmic
scale), which characterizes the flow between SSCDirac and LM
fixed points. This is highlighted in the inset to Fig. 4(b) which
compares on a linear scale the magic angle result (red line) to
systems at θ = 1.6◦ (orange) and 2◦ (blue). The rapid change
in position and intensity of this spectral peak on nearing the
magic angle demonstrates that quantum impurities are highly
sensitive probes of magic angle physics in TBG systems.

In Fig. 6, we turn to an analysis of NRG results for systems
at the magic angle itself. In the main panel (top) we plot the
impurity entropy Simp(T ) for impurities of either Anderson
type [Eq. (13), points] or Kondo type [Eq. (14), lines], for
different impurity-host couplings.

At the highest temperatures T ∼ D, the Anderson impurity
again shows ln(4) entropy for the four quasi-degenerate
impurity states. At lower temperatures T ∼ U , the charge
configurations on the impurity in the Anderson model are
frozen out and only the local moment spin states survive,
giving ln(2) entropy. In this regime, the system is close to the
LM fixed point. RG flow towards the SSCHO strong coupling
fixed point results in a crossover in the entropy on the scale
of the Kondo temperature T ∼ TK to Simp = − 1

2 ln(2). This
remains the T = 0 residual impurity entropy for TBG systems
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at the magic angle. However, the Kondo scale itself varies
with the impurity-host coupling, as seen in the main panel
of Fig. 6 by the evolution of the different lines. For good
scale separation TK � U , we see clear two-stage behavior,
with distinct crossovers to and from the LM fixed point in
the Anderson model. However, given the strongly enhanced
TK at the magic angle, such a scale separation may not be in
evidence in practice [see, e.g., pink and orange lines in Fig. 6
which show a more or less direct crossover in the entropy
from ln(4) to − 1

2 ln(2); or indeed the cases close to the magic
angle in Fig. 4].

By contrast, the Kondo impurity features only the local
moment spin configurations and hence has a ln(2) entropy
at high temperatures T ∼ D. The Kondo scale generated by
finite antiferromagnetic exchange coupling J results in the
same crossover to the SSCHO fixed point, with the same T = 0
residual entropy of − 1

2 ln(2). Indeed, RG arguments imply
[34] that the physics of the Anderson and Kondo models for
T � U should be identical, providing the effective Kondo
coupling J is chosen appropriately for a given U and g of
the Anderson model. To verify this Anderson-Kondo mapping
in the magic-angle TBG setting, in Fig. 6, we considered
Kondo models with different J and then fit Anderson models
to match the low-temperature physics by tuning g at fixed U .
In such a way, the Kondo and Anderson models have the same
Kondo temperature TK . The precise agreement in the universal
regime confirms that at particle-hole symmetry the effective
Kondo model is a faithful description of the more microscopic
Anderson model.

The Anderson-Kondo mapping can be performed pertur-
batively via the approximate SW transformation [34,62] as
described in Sec. III. The exact relationship between J and
g as extracted from our NRG results is shown in the lower
left panel of Fig. 6 as the circle points. The SW result (red
dashed line) is seen to work well when the bare coupling of
the underlying Anderson model is small, g � U (small TK

regime). Away from this limit, NRG results show that the
Kondo model is still the correct low-energy effective model,
but that nonperturbative techniques must be used to obtain the
correct effective model parameters [63]. The evolution of the
numerically extracted Kondo temperature as a function of the
effective J is shown in the lower right panel of Fig. 6 (points),
and is compared with the analytic result for the Kondo model
Eq. (25) (red dashed line). The blue dotted line is the asymp-
totic small-J limit of this expression, TK ∼ (4ρ0J )1/α .

Our full NRG results for an impurity in magic angle TBG
therefore confirm the analytic predictions of the previous sec-
tions. For a comparison with results for an impurity coupled
to a standard logarithmic vHs, see Appendix C.

Finally, we comment on the role of potential scattering and
particle-hole symmetry breaking. In the above analysis we
have for simplicity neglected particle-hole asymmetry in the
TBG host DoS by employing the symmetric BM model. How-
ever, we believe this approximation is well-justified and does
not affect the presented results. Although in principle particle-
hole asymmetry can lead to Kondo screening in the linear
pseudogap case [39] relevant to the low-energy Dirac cone
in TBG away from the magic angle, the singlet-doublet quan-
tum phase transition arises only at very strong asymmetry. In
practice, the relatively small particle-hole symmetry breaking

in TBG means that the impurity problem is far away from the
asymmetric strong coupling Kondo phase. Within the doublet
local moment phase, particle-hole asymmetry is RG irrelevant
and can be safely ignored. We have also assumed that the
impurity itself is particle-hole symmetric (εd = −Ud/2 in the
Anderson model, or V = 0 in the Kondo model). Relaxing
this condition induces potential scattering in the TBG host.
Very strong deviations away from the half-filled Anderson
impurity are required to destroy the local moment ground
state (the resulting asymmetric Kondo strong coupling state
is continuously connected to the trivial empty orbital state
of the impurity). In this regime, the mapping to the Kondo
model breaks down (the large value of V in the Kondo model
required for Kondo screening is unphysical). Therefore we
argue that the results presented above are generic for a local
moment impurity embedded in a TBG host material.

V. CONCLUSIONS

In this paper, we have studied the physics of a single mag-
netic impurity in TBG at, and close to, the magic angle. We
find a surprisingly rich range of behavior, rooted in the unique
evolution of the TBG density of states. It is interesting to note
that there is no Kondo screened ground state in general, only at
the magic angle. However, the signatures at finite temperature
relevant to experiment show highly nontrivial structure due to
the interplay between van Hove and Dirac physics on the level
of a strongly correlated quantum impurity problem. Close to
the magic angle, the TBG host density of states at different
energy scales yields different limits of paradigmatic Kondo
models—from logarithmic and power-law diverging Kondo
to pseudogap vanishing Kondo. The subtle renormalization
group flow between these limits shows up in the temperature
and energy dependence of physical observables.

The behavior we uncover should be detectable in STM ex-
periments. Indeed we argue that the impurity response in TBG
gives a very clear signature of magic angle physics. Magnetic
impurities may therefore prove useful as highly sensitive in
situ probes for moiré materials.

An interesting direction of future research is the role of the
RKKY interaction between multiple magnetic impurities in
TBG, and how it competes with the Kondo effect of individual
impurities near the magic angle.

Although van Hove-boosted Kondo physics may be ob-
servable in other systems (including 3d bulk metals [87,88]
with magnetic impurities), we note that TBG stands out as
a uniquely tunable platform. Furthermore, TBG also allows
one to study the complex interplay of these effects with Dirac
physics.
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APPENDIX A: LOCATING SADDLE POINT POSITIONS IN
THE PARTICLE-HOLE SYMMETRIC BM MODEL

To locate the saddle points in the Brillouin zone, we require
gradients of the energy. The flat bands make it imperative
that the first derivative is computed very accurately, and this
means that we must avoid crude finite difference methods
for numerical derivatives of the energy. This problem can be
addressed by utilizing our analytical access to the Hamiltonian
itself, and implementing the Hellman-Feynman theorem,

∂E

∂ki
= 〈ψk|∂H

∂ki
|ψk〉, (A1)

where ψk is the wave function of the lowest positive en-
ergy band at momentum k. A more extended analysis of this
method has been introduced recently in [89].

The saddle point is found by minimizing the value of
(∂kx εk)2 + (∂kyεk)2 over the Brillouin zone vectors, by using
the conjugate gradient method. The coefficients for the lo-
cal energy dispersion are then calculated along the principal
directions of the saddle point. These directions are given by
the eigenvectors of the Hessian matrix, and are in general
different from the kx and ky of the Brillouin zone. Derivatives
are convenient to compute along the natural Brillouin zone
directions, however. The trick to overcome this is to note that
a matrix formed from n derivatives of a scalar transforms like
a rank-n tensor. Then the tensor transformation rule can be
used with a covariant Jacobian to obtain the coefficients along
the rotated axes.

One subtlety is that for angles very close to the magic
angle, there are secondary vHs points at other locations in
the Brillouin zone than those indicated in Fig. 2(a). For the
purposes of the Kondo effect, we have only considered the
one with the largest spectral weight, since this is found to
dominate the results of our NRG calculations. This is done
by computing the local dispersion coefficients α and β at each
of the saddle points, and picking the one with the largest value
of 1√

αβ
.

APPENDIX B: MAPPING FROM TBG DENSITY OF
STATES TO THE NRG WILSON CHAIN

The TBG DoS away from the magic angle has two qualita-
tive features: the linear-pseudogap Dirac cone at low energies
and the divergence due to the vHs on the scale of Ev . We
extract an effective model DoS from analysis of the BM model
for different twist angles—see left panels of Fig. 7 for the
cases explicitly considered in the main text (we have rescaled
the energy range in terms of the bandwidth cutoff and nor-
malized the spectrum to unity). This DoS is then discretized
logarithmically and mapped to a Wilson chain [66] as de-
scribed in Sec. III B. The corresponding Wilson chain hopping
parameters are plotted in the right panels of Fig. 7. The results
show that the different DoS elements can be captured in NRG
through the crossover behavior in the functional form of the
Wilson chain.

FIG. 7. (Left) DoS used in our NRG calculations, obtained from
analysis of the effective BM model, for different twist angles θ as
used in the main text. Vertical dotted lines show the Ev scale at which
the vHs divergence occurs. This scale moves to lower energies as
the magic angle is approached. Right panels: corresponding Wilson
chain coefficients.

APPENDIX C: NRG CALCULATIONS FOR AN IMPURITY
COUPLED TO A CONVENTIONAL LOG-vHs HOST

In Fig. 8, we provide reference NRG calculations for a
Kondo impurity coupled to a pure log-diverging DoS. This

FIG. 8. NRG results for the impurity entropy Simp vs temperature
T for different bare coupling strengths J , in a system with a pure
log-diverging DoS (standard vHs). Right inset shows the extracted TK

scale (points), compared with Eq. (24) (black line), and the asymp-
totic result TK ∼ De−1/

√
AJ/D (red dashed line), with A = aρ0D/2.
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gives a useful comparison to our result for an impurity em-
bedded in the magic-angle TBG system, which has a HO-vHs
point and hence a stronger power-law diverging DoS. As
predicted from our perturbative scaling (poor man’s scaling)
results, the system flows towards strong coupling in all cases,
in which the impurity is Kondo-screened. The residual en-
tropy at T = 0 is seen to be Simp = 0, although this limit is
approached logarithmically slowly from below. This is char-
acteristic of the logarithmic DoS. From the scaling with bare

coupling strength J in the left panel, the Kondo temperature
TK is seen to be enhanced relative to the metallic case, but
substantially suppressed relative to the power-law diverging
DoS case. In the right panel, we analyze the behavior of TK

in more detail, comparing NRG results at different J (circle
points) with our analytic formula Eq. (24) (black line). The
results agree almost perfectly. The red dashed line is the
asymptotic result at small J , which also does remarkably well
compared with exact NRG results.
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